Focusing on **TensorFlow**

Giving you all the **basics** you need in order to use TensorFlow for building neural networks.

Can’t cover everything (not even close). There is a lot of **material online** if you’re looking for how to do something specific in TensorFlow.

Looking at some **practical tips** for training neural networks.
Data Science: Principles and Practice

01: Introduction to TensorFlow
02: First steps with TensorFlow
03: Training a network
04: Useful things to know about Deep Learning
05: Practical 4
TensorFlow

Open source library for implementing neural networks.

Developed by Google, for both production code and research.

Performs automatic differentiation.

Comes with many neural network modules implemented.

Tensor – an n-dimensional vector.

https://www.cc.gatech.edu/~san37/post/dlhc-start/
Why TensorFlow?
Why TensorFlow?

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
Companies Using TensorFlow

- Google
- NVIDIA
- Dropbox
- Intel
- DeepMind
- UBER
- eBay
- Twitter
- LinkedIn
Why TensorFlow?

[Graph showing ArXiv Articles for different frameworks, with TensorFlow having significantly more articles than the others.]
TensorFlow: The First Steps
TensorFlow 1 static graph

- $f(a,b) = a + b$
- $f(x,y) = x^2 y + y + 2$
Distributed computing with TensorFlow

Minimal Example with TensorFlow 1

One of the **smallest examples** of running TensorFlow, while actually looking like a normal TensorFlow code.

Creates a **computation graph** that takes two inputs and sums them together.

We then **execute this graph** with values 4 and 5, and print the result.

```python
import tensorflow as tf

a = tf.placeholder(tf.float32, name="a")
b = tf.placeholder(tf.float32, name="b")
y = a + b

with tf.Session() as sess:
    result = sess.run(y,
                      feed_dict={a: 4, b: 5})
    print("Result: ", result)

Result:  9.0
```
One of the **smallest examples** of running TensorFlow, while actually looking like a normal TensorFlow code.

Creates a **computation graph** that takes two inputs and sums them together.

We then **execute this graph** with values 4 and 5, and print the result.

Let's go through this in more detail!
Minimal Example with TensorFlow 1

```python
import tensorflow as tf

a = tf.placeholder(tf.float32, name="a")
b = tf.placeholder(tf.float32, name="b")
y = a + b

with tf.Session() as sess:
    result = sess.run(y,
                     feed_dict={a: 4, b: 5})
    print("Result: ", result)

Result: 9.0
```

Install tensorflow for **CPU**:
```
pip install tensorflow
```

Install tensorflow for **GPU**:
```
pip install tensorflow-gpu
```
Define an input argument for our network.

Can have different types (float32, float64, int32, …) and shapes (scalar, vector, matrix, …)

Right now, we defined two single scalar placeholders: a and b.
Construction Phase with TensorFlow 1

```
import tensorflow as tf

a = tf.placeholder(tf.float32, name="a")
b = tf.placeholder(tf.float32, name="b")
y = a + b

with tf.Session() as sess:
    result = sess.run(y,
                      feed_dict={a:4, b:5})
    print("Result: ", result)

Result: 9.0
```

\[y = a + b \]

Probably the most important thing to understand about classic TensorFlow!
Symbolic Graphs

We first construct a **symbolic graph** and then apply it later with suitable data.

For example, what happens when this TensorFlow 1 line is **executed** in our code?

\[y = a + b \]

The system takes \(a \) and \(b \), adds them together and stores the value in \(y \). Right?
Symbolic Graphs

We first construct a **symbolic graph** and then apply it later with suitable data.

For example, what happens when this TensorFlow line is **executed** in our code?

\[y = a + b \]

The system takes \(a \) and \(b \), adds them together and stores the value in \(y \). Right?

Not really!

Instead, we create a TensorFlow-specific object \(y \) that knows its value can be calculated by summing together \(a \) and \(b \). But the addition itself is not performed here!
We can only use TensorFlow-specific* operations to construct a TensorFlow graph - they return TensorFlow objects, as opposed to trying to execute the operation.

* Most of numpy and standard operations are compatible with TensorFlow

Symbolic Graphs

Can construct a whole network structure by intuitively combining operations.

\[
\begin{align*}
z &= x + 8 \\
y &= z / 2
\end{align*}
\]
Execution Phase with TensorFlow

```python
import tensorflow as tf

a = tf.placeholder(tf.float32, name="a")
b = tf.placeholder(tf.float32, name="b")
y = a + b

with tf.Session() as sess:
    result = sess.run(y,
                      feed_dict={a: 4, b: 5})
    print("Result: ", result)

Result: 9.0
```

tf.Session()

Constructs the **environment** in which the operations are performed and evaluated.

Allocates the **memory** to store current value of variables.

When starting a new session, all the values will be **reset**.
Execution Phase with TensorFlow

```python
import tensorflow as tf

a = tf.placeholder(tf.float32, name="a")
b = tf.placeholder(tf.float32, name="b")
y = a + b

with tf.Session() as sess:
    result = sess.run(y,
                      feed_dict={a: 4, b: 5})
    print("Result: ", result)

Result:  9.0
```

`sess.run()`

Execute the network – actually perform the calculations in the symbolic graph.

Specify which values you want calculated and **returned** from the graph.

`feed_dict` specifies the values that you give to placeholders for this execution.

`result` contains the executed value of `y`.

The keys in `feed_dict` are the tensors!
From TensorFlow 1 to TensorFlow 2

- **TensorFlow 1** relies on symbolic graphs (“Define-and-Run” scheme): the network architecture is statically defined and fixed before computation; the graph cannot be modified after compilation.

- **TensorFlow 2** – eager execution (“Define-by-Run” scheme): the network is defined dynamically via the forward computation and can be modified during runtime.

- This makes implementation less challenging and more intuitively clear.

- **Keras** provides interpretable user-friendly interface on top of TensorFlow.

- TensorFlow 2 has a compatibility mode for version 1 – see notebooks on github.

https://blog.udacity.com/2020/05/pytorch-vs-tensorflow-what-you-need-to-know.html
Training a Network
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))  
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[[2., 3., 7.]]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))  
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[2., 3., 7.]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))  
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[2., 3., 7.]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[2., 3., 7.]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))  
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[2., 3., 7.]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```

This is where we define the `strategy` for our model training.

Other strategies are available:

- `tf.keras.optimizers.SGD`
- `tf.keras.optimizers.Adadelta`
- `tf.keras.optimizers.Adam`
- `tf.keras.optimizers.RMSprop`

TensorFlow documentation: https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))  
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[2., 3., 7.]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```

TensorFlow documentation: https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/
Training a Model in TensorFlow

```python
weight_matrix = tf.Variable(tf.ones(shape=(3,3)))
weight_vector = tf.Variable(tf.zeros(shape=(3,)))
```

With `tf.keras.layers.Dense` these parameters are initialised randomly

```python
weights, biases = model.layers[0].get_weights()
print(weights)
print(biases)
```
Training a Model in TensorFlow

```python
model = tf.keras.Sequential([  
    tf.keras.layers.Dense(3, input_shape=(3,)),  
    tf.keras.layers.Lambda(lambda x: tf.math.reduce_sum(x, axis=1))
])

def loss_fn(predicted, gold):
    return tf.square(predicted - gold)

input = tf.constant([[2., 3., 7.]])
gold_output = 20

def loss():
    return loss_fn(model(input), gold_output)

opt = tf.keras.optimizers.SGD(learning_rate=1e-3)

for epoch in range(10):
    opt.minimize(loss, var_list=model.trainable_variables)
    print(model(input))
```

Result:

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6623473</td>
</tr>
<tr>
<td></td>
<td>12.32598</td>
</tr>
<tr>
<td></td>
<td>15.226759</td>
</tr>
<tr>
<td></td>
<td>17.031046</td>
</tr>
<tr>
<td></td>
<td>18.153309</td>
</tr>
<tr>
<td></td>
<td>18.851358</td>
</tr>
<tr>
<td></td>
<td>19.285545</td>
</tr>
<tr>
<td></td>
<td>19.555609</td>
</tr>
<tr>
<td></td>
<td>19.72359</td>
</tr>
<tr>
<td></td>
<td>19.828072</td>
</tr>
</tbody>
</table>
Backpropagation in a nutshell

• For every training instance, the algorithm feeds it into the network and computes the outputs in each consecutive layer (forward pass)

• The algorithm measures the network’s output error (difference between predicted output and actual / desired output)

• It then computes how much each neuron in the last hidden layer contributed to each output neuron’s error. It proceeds to measure how much of these error contributions came from each neuron in the previous hidden layer – repeat for each layer (reverse pass)

• It efficiently measures the error gradient across all the connection weights in the network by propagating the error gradient backward in the network
Reverse-mode Autodiff: Forward pass

\[
\frac{\partial f}{\partial x} - ? \quad \frac{\partial f}{\partial y} - ?
\]

\[
f(x,y) = x^2y + y + 2
\]

Reverse-mode Autodiff: Forward pass

\[f(x, y) = x^2y + y + 2 \]
Reverse-mode Autodiff: Reverse pass

\[\frac{df}{dn_i} = 1 \]

\[n_7 + 42 \]

\[n_5 \times 36 \]

\[n_6 + 6 \]

\[n_4 \times 9 \]

\[n_2 \times y \]

\[n_3 \times 2 \]

\[n_1 \times 3 \]

Chain rule:

\[\frac{df}{dx} = \frac{df}{dn_i} \times \frac{dn_i}{dx} \]

Reverse-mode Autodiff: Reverse pass

\[
\frac{\partial f}{\partial n_i} = 1 \\
\frac{\partial f}{\partial n_5} = \frac{\partial f}{\partial n_7} \times \frac{\partial n_7}{\partial n_5} = 1 \times 1 = 1 \\
\frac{\partial f}{\partial n_6} = \frac{\partial f}{\partial n_7} \times \frac{\partial n_7}{\partial n_6} = 1 \times 1 = 1
\]
Reverse-mode Autodiff: Reverse pass

\[
\frac{\partial f}{\partial n_i} = 1
\]

\[
\frac{\partial f}{\partial n_5} = \frac{\partial f}{\partial n_7} \times \frac{\partial n_7}{\partial n_5} = 1 \times 1 = 1
\]

\[
\frac{\partial f}{\partial n_6} = \frac{\partial f}{\partial n_7} \times \frac{\partial n_7}{\partial n_6} = 1 \times 1 = 1
\]

\[
\frac{\partial f}{\partial n_4} = \frac{\partial f}{\partial n_5} \times \frac{\partial n_5}{\partial n_4} = 1 \times n_2 = 1 \times 4 = 4
\]

\[
\frac{\partial f}{\partial n_2} = \frac{\partial f}{\partial n_5} \times \frac{\partial n_5}{\partial n_2} = 1 \times n_4 = 1 \times 9 = 9
\]

Reverse-mode Autodiff: Reverse pass

Recap: Activation Functions

- **Logistic function:**
 \[\sigma(z) = \frac{1}{1 + \exp(-z)} \]

- **Hyperbolic tangent function:**
 \[\tanh(z) = 2\sigma(2z) - 1 \]

- **Rectified linear unit (ReLU) function:**
 \[\text{ReLU}(z) = \max(0, z) \]
Softmax Activation Function

An important activation function for classification problems (used not only in neural networks but also in multiclass classification methods in general)

In neural network-based classifiers – commonly used in the final layer

Normalises the output of a network to a probability distribution over output classes

\[
\sigma(s(x))_k = \frac{\exp(s_k(x))}{\sum_k \exp(s_k(x))}
\]

- \(K\) – number of classes
- \(s(x)\) – vector of scores of each class for instance \(x\)
- \(\sigma(s(x))_k\) – estimated probability that \(x\) belongs to class \(k\)
Cross-Entropy Loss Function

- **Objective**: build a model that estimates a high probability for the target class (and a low probability for all other classes)
- Cross-entropy loss function penalises the model when it estimates a low probability for the target class

Formulas

\[
J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(\hat{p}_k^{(i)})
\]

- \(y_k^{(i)}\) is equal to 1 if the target class for the i-th instance is k; otherwise 0
- \(\hat{p}_k^{(i)}\) – estimated probability that x belongs to class k

- \(\text{tf.keras.backend.clear_session}()\)
- nonlinear_model = \(\text{tf.keras.Sequential}([\text{tf.keras.layers.Dense(10, input_shape=(2,)}, \text{activation='relu'}, \text{tf.keras.layers.Dense(2, activation='softmax')}]\)
- nonlinear_model.compile(optimizer=\(\text{tf.keras.optimizers.SGD(learning_rate=1)}, \text{loss='sparse_categorical_crossentropy'})\)
Useful Things to Know about Deep Learning
PyTorch was designed for **eager execution** from the very beginning – no symbolic graphs, operations are performed where they appear in the code.

Advantages of Symbolic Graphs
- Can be internally optimized
- Faster (in theory)
- Easily deployable, even across languages

Advantages of Eager Execution
- Easier to understand
- Easier to debug
- Supports dynamic graphs

TensorFlow 2 also has **eager execution support**
Randomness in the Network

Different random initializations lead to different results.

Solution: Explicitly set the random seed. All the random seeds!
Randomness in the Network

Different **random initializations** lead to different results.

Solution: Explicitly set the random seed.
All the random seeds!

BUT!

GPU threads finish in a random order, also leading to randomness!
Small rounding errors really add up!
Doesn’t affect all operations.

Solution: Embrace randomness, run with different random seeds and report the average.
Tensorflow Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don’t Worry, You Can’t Break It. We Promise.

DATA
Which dataset do you want to use?

FEATURES
Which properties do you want to feed in?

OUTPUT
Test loss 0.504
Training loss 0.518

playground.tensorflow.org
TensorBoard

A tool for **visualizing** your own Tensorflow networks.
TensorBoard

A tool for **visualizing** your own Tensorflow networks.
Fitting to the Data

Underfitting
The model does not have the capacity to properly model the data.

Ideal fit

Overfitting
Too complex, the model memorizes the data, does not generalize.
Splitting the Dataset

In order to get realistic results for our experiments, we need to evaluate on a held-out test set.

Using a separate development set for choosing hyperparameters is even better.

- **Training Set**: For training your models, fitting the parameters
- **Development Set**: For continuous evaluation and hyperparameter selection
- **Test Set**: For realistic evaluation once the training and tuning is done
Early Stopping

A sufficiently powerful model will keep improving on the training data until it **overfits**. We can use the **development** data to choose when to stop.
Dropout

During training, randomly set some activations to zero.

Typically drop 50% of activations in a layer.

Form of regularization - prevents the network from relying on any one node.

https://www.learnopencv.com/understanding-alexnet/
Next time: Convolutional Neural Networks

Neural modules operating repeatedly over different subsections of the input space.

Great when searching for feature patterns, without knowing where they might be located in the input.

The main driver in image recognition. Can also be used for text.

https://github.com/vdumoulin/conv_arithmetic
Next time: Recurrent Neural Networks

Designed to process **input sequences** of arbitrary length.

Each hidden state A is calculated based on the **current input** and the **previous hidden state**.

Main neural architecture for **processing text**, with each input being a word representation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Your task: Learning objectives

- The basics of running TensorFlow
- How to implement a feedforward neural network in Python
- How to visualise your network architecture using TensorBoard and track changes
- How to apply deep learning to both classification and regression tasks.

- Assignment: Build a neural classification model to predict “ocean proximity“ of a house (California House Prices Dataset)

- Optional: Visualise your network architecture, changes in loss and metrics, explore the results (e.g., print out and visualise confusion matrices), compare to more “traditional“ ML models from previous practicals
Practical 4 Logistics

- Data and code for Practical 4 can be found on: Github (https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical4)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline (Tuesday 24 November, 4pm)