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Data Science: Principles and Practice

Ekaterina Kochmar1

Lecture 4: Deep Learning, Part I

________________________________________

1 Based on slides by Marek Rei
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What is Deep Learning?
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What is Deep Learning?

Deep learning is a class of machine learning 
algorithms.

Neural network models with multiple hidden 
layers.
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What is Deep Learning?

Deep learning is a class of machine learning 
algorithms.

Neural network models with multiple hidden 
layers.

Today: The basics of neural network models, optimization

Next lecture: Implementing models with Tensorflow, network 
components, practical tips
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The Rise of Deep Learning
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The Rise of Deep Learning
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The Rise of Deep Learning

https://research.fb.com/publications/deepface-closing-the-
gap-to-human-level-performance-in-face-verification/

https://www.technologyreview.com/2014/03/17/13822/facebook-
creates-software-that-matches-faces-almost-as-well-as-you-do/
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The Rise of Deep Learning

Kiros et al. (2014) Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (https://arxiv.org/pdf/1411.2539.pdf)
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The Rise of Deep Learning
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The Rise of Deep Learning
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The Rise of Deep Learning
Conference on Neural Information Processing Systems (NeurIPS, formerly NIPS) –
one of the main conferences on deep learning and machine learning.
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http://deeplearning.cs.cmu.edu

The Hype Train of Deep Learning

● “Deep learning” is often used as a 
buzzword, even without 
understanding it.

● Be mindful - it’s a powerful class of 
machine learning algorithms, but not 
a magic solution to every problem.

● Deep Learning is particularly 
successful in solving complex 
problems: breakthroughs in natural 
language processing, computer 
vision, board game programs.
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1958 - perceptrons, 
Rosenblatt

1974 - backpropagation, 
Werbos

2006 - Restricted Boltzmann 
Machine, Hinton

1998 - ConvNets for OCR, 
LeCun

1997 - LSTM, Hochreiter & 
Schmidhuber

2012 - AlexNet wins 
ImageNet, Krizhevsky

But Why Now?



18/36

1958 - perceptrons, 
Rosenblatt

1974 - backpropagation, 
Werbos

2006 - Restricted Boltzmann 
Machine, Hinton

1998 - ConvNets for OCR, 
LeCun

1997 - LSTM, Hochreiter & 
Schmidhuber

2012 - AlexNet wins 
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better for 
putting it into action.

1. Big Data

○ Large datasets 
for training

○ Better methods 
for storing and 
managing data
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1958 - perceptrons, 
Rosenblatt

1974 - backpropagation, 
Werbos

2006 - Restricted Boltzmann 
Machine, Hinton

1998 - ConvNets for OCR, 
LeCun

1997 - LSTM, Hochreiter & 
Schmidhuber

2012 - AlexNet wins 
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better for 
putting it into action.

2. Faster Hardware

○ Graphics 
Processing Units 
(GPUs)

○ Faster CPUs
○ More affordable

3. Better Software

○ Better 
Optimization 
Algorithms

○ Automatic 
Differentiation 
Libraries

1. Big Data

○ Large datasets 
for training

○ Better methods 
for storing and 
managing data
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Biological Inspiration

• Often, artificial neural 
networks (ANNs) are said 
to be (loosely) based on 
biological neural networks.

• For instance, Perceptron
algorithm was largely 
inspired by Hebb’s rule: 
“Cells that fire together, 
wire together”.

• Inspiration doesn’t mean 
exact copy: there are 
notable differences 
between the two.

https://en.wikipedia.org/wiki/Neuron
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Biological Inspiration

https://en.wikipedia.org/wiki/Neuron

“If the human brain were 
so simple that we 

could understand it, we would be 
so simple that we couldn’t.”

Emerson W. Pugh
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Fundamentals 
of 

Neural Networks
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Simple artificial neuron

● Threshold Logic Unit, or Linear Threshold Unit, by McCulloch and Pitts1

● Has one or more binary (on/off) inputs and one binary output
● Activates its output when more than a certain number of its inputs are active
● Even with such a simplified model it is possible to build a network of artificial neurons that 

computes any logical proposition

McCulloch and Pitts (1943). "A logical calculus of the ideas immanent in nervous activity"
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Simple artificial neuron

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"

Assume that a neuron is activated when at least two of its inputs are active:
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Simple artificial neuron

Quiz time: 

Can you draw an ANN that computes A ⊕ B, where ⊕ is the XOR operation, 

i.e. A ⊕ B = (A ⋀ ¬B) ⋁ (¬A ⋀ B)?
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Recap: Perceptron

where:
• is the dot product of the weight vector w 

and the feature vector         for instance i , i.e.

• b is the bias term

• f is a Heaviside step function

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term
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ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise
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This is a Linear Threshold Unit
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Linear separability of classes

http://introtodeeplearning.com/

Linear models are great if the data is linearly separable.



29/36

Linear separability of classes

http://introtodeeplearning.com/

… but often that is not the case.
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Linear separability of classes

Linear models are not able to capture complex patterns in the data.
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Recap: Non-linearly separable data

Consider the following classic example of the XOR problem y = x1⊕ x2
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Connecting the neurons

We can connect multiple neurons in parallel – each one will learn to detect 
something different.
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Connecting the neurons

Each node will learn to detect something different: e.g., one hidden node – whether 
at least one input is 1, and another – whether both are 1

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28
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Multilayer Perceptron (MLP) on XOR problem 
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Multilayer Perceptron (MLP) on XOR problem 
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Multilayer Perceptron

We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function 
over an input.

Not actually a 
perceptron
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Multilayer Perceptron

We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function 
over an input.

Each block is a layer

Each arrow is a 
matrix of weights
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Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(2)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)
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Mathematical Definition

◦ Each unit in the first hidden layer        
receives activations from each input unit     
multiplied with the weight relevant for this 
pair of units         plus unit’s own bias

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Fully connected network



42/36

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(2)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Mathematical Definition

◦ Each unit in the first hidden layer        
receives activations from each input unit     
multiplied with the weight relevant for this 
pair of units         plus unit’s own bias

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

◦ Second layer       units receive activations 
from the first layer units 

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Fully connected network



43/36

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(2)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Mathematical Definition

◦ Each unit in the first hidden layer        
receives activations from each input unit     
multiplied with the weight relevant for this 
pair of units         plus unit’s own bias

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

◦ Second layer       units receive activations 
from the first layer units 

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

◦ Different activation functions       …               
may be used at each level
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Non-linear Activation Functions

• Logistic function:

• Hyperbolic tangent function:

• Rectified linear unit (ReLU) function:

Formulas
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Neural Network Hyperparameters

• Depth – number of hidden layers

• Width – number of units per hidden layer

• Activation functions
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Deep Neural Networks

In practice we train neural networks with thousands of neurons and millions (or 
billions) of trainable weights.
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Learning Representations & Features

Traditional pattern recognition

End-to-end training: Learn useful features also from the data

Manually Crafted 
Feature Extractor

Trainable
Classifier

“Golden 
retriever”

Trainable 
Feature Extractor

Trainable
Classifier

“Golden 
retriever”
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Learning Representations & Features

Automatically learning increasingly more complex feature detectors from the data.
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Neural Network 
Optimization
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Optimizing Neural Networks

Define a loss function that we want to 
minimize

Update the parameters using gradient 
descent, taking small steps in the 
direction of the gradient (going downhill on 
the slope).

All the operations in the network need to 
be differentiable.
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Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Compute gradient based 
on the whole dataset

4. Update weights

5. Return weights
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Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Compute gradient based 
on the whole dataset

4. Update weights

5. Return weights In practice, datasets are 
often too big for this
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Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over each datapoint:

4. Compute gradient based 
on the datapoint

5. Update weights

6. Return weights
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Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over each datapoint:

4. Compute gradient based 
on the datapoint

5. Update weights

6. Return weights
Very noisy to take steps 
based only on a single 

datapoint
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Mini-batch Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over batches of datapoints:

4. Compute gradient based 
on the batch

5. Update weights

6. Return weights
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Mini-batch Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over batches of datapoints:

4. Compute gradient based 
on the batch

5. Update weights

6. Return weights
This is what we 
mostly use in 

practice
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Optimizing Neural Networks

Li et al., 2018. “Visualizing the Loss Landscape of Neural Nets”

Neural networks have very complex loss surfaces and finding the optimum is difficult.



58/36

https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
If the learning rate is too low, the model will take forever to converge.
If the learning rate is too high, we will just keep stepping over the optimum values.
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https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
A small learning rate can get the model stuck in local minima.
A bigger learning rate can help the model converge better (if it doesn’t overshoot).
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Alex Radford

Adaptive Learning Rates

Intuition:

Have a different learning rate for 
each parameter.

Take bigger steps if a parameter has 
not been updated much recently.

Take smaller steps if a parameter 
has been getting many big updates.
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https://jed-ai.github.io/opt2_gradient_descent_1/

Random initialization Matters
All other things being equal, just starting from a different location can lead to a 
different result.
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