
1/36

Data Science: Principles and Practice

Ekaterina Kochmar1

Lecture 4: Deep Learning, Part I

__

1 Based on slides by Marek Rei

2/36

What is Deep Learning?

3/36

What is Deep Learning?

Deep learning is a class of machine learning
algorithms.

Neural network models with multiple hidden
layers.

4/36

What is Deep Learning?

Deep learning is a class of machine learning
algorithms.

Neural network models with multiple hidden
layers.

Today: The basics of neural network models, optimization

Next lecture: Implementing models with Tensorflow, network
components, practical tips

5/36

Data Science: Principles and Practice

Introduction and motivation01

Fundamentals of Neural Networks02

Neural Network Optimization03

6/36http://uk.businessinsider.com/microsoft-research-beats-humans-at-speech-transcription-2017-8

The Rise of Deep Learning

7/36http://uk.businessinsider.com/microsoft-research-beats-humans-at-speech-transcription-2017-8
https://www.economist.com/technology-quarterly/2017-05-01/language

The Rise of Deep Learning

8/36https://venturebeat.com/2018/06/12/google-taps-neural-nets-for-better-offline-translation-in-59-languages/

The Rise of Deep Learning

9/36https://venturebeat.com/2018/06/12/google-taps-neural-nets-for-better-offline-translation-in-59-languages/

The Rise of Deep Learning

10/36

The Rise of Deep Learning

https://research.fb.com/publications/deepface-closing-the-
gap-to-human-level-performance-in-face-verification/

https://www.technologyreview.com/2014/03/17/13822/facebook-
creates-software-that-matches-faces-almost-as-well-as-you-do/

11/36

The Rise of Deep Learning

Kiros et al. (2014) Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (https://arxiv.org/pdf/1411.2539.pdf)

12/36Kiros et al. (2014) Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (https://arxiv.org/pdf/1411.2539.pdf)

The Rise of Deep Learning

13/36https://arstechnica.com/gadgets/2017/05/googles-alphago-ai-beats-worlds-best-human-go-player/

The Rise of Deep Learning

14/36https://arstechnica.com/gadgets/2017/05/googles-alphago-ai-beats-worlds-best-human-go-player/

The Rise of Deep Learning

15/36

The Rise of Deep Learning
Conference on Neural Information Processing Systems (NeurIPS, formerly NIPS) –
one of the main conferences on deep learning and machine learning.

16/36

http://deeplearning.cs.cmu.edu

The Hype Train of Deep Learning

● “Deep learning” is often used as a
buzzword, even without
understanding it.

● Be mindful - it’s a powerful class of
machine learning algorithms, but not
a magic solution to every problem.

● Deep Learning is particularly
successful in solving complex
problems: breakthroughs in natural
language processing, computer
vision, board game programs.

17/36

1958 - perceptrons,
Rosenblatt

1974 - backpropagation,
Werbos

2006 - Restricted Boltzmann
Machine, Hinton

1998 - ConvNets for OCR,
LeCun

1997 - LSTM, Hochreiter &
Schmidhuber

2012 - AlexNet wins
ImageNet, Krizhevsky

But Why Now?

18/36

1958 - perceptrons,
Rosenblatt

1974 - backpropagation,
Werbos

2006 - Restricted Boltzmann
Machine, Hinton

1998 - ConvNets for OCR,
LeCun

1997 - LSTM, Hochreiter &
Schmidhuber

2012 - AlexNet wins
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better for
putting it into action.

1. Big Data

○ Large datasets
for training

○ Better methods
for storing and
managing data

19/36

1958 - perceptrons,
Rosenblatt

1974 - backpropagation,
Werbos

2006 - Restricted Boltzmann
Machine, Hinton

1998 - ConvNets for OCR,
LeCun

1997 - LSTM, Hochreiter &
Schmidhuber

2012 - AlexNet wins
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better for
putting it into action.

2. Faster Hardware

○ Graphics
Processing Units
(GPUs)

○ Faster CPUs
○ More affordable

1. Big Data

○ Large datasets
for training

○ Better methods
for storing and
managing data

20/36

1958 - perceptrons,
Rosenblatt

1974 - backpropagation,
Werbos

2006 - Restricted Boltzmann
Machine, Hinton

1998 - ConvNets for OCR,
LeCun

1997 - LSTM, Hochreiter &
Schmidhuber

2012 - AlexNet wins
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better for
putting it into action.

2. Faster Hardware

○ Graphics
Processing Units
(GPUs)

○ Faster CPUs
○ More affordable

3. Better Software

○ Better
Optimization
Algorithms

○ Automatic
Differentiation
Libraries

1. Big Data

○ Large datasets
for training

○ Better methods
for storing and
managing data

21/36

Biological Inspiration

• Often, artificial neural
networks (ANNs) are said
to be (loosely) based on
biological neural networks.

• For instance, Perceptron
algorithm was largely
inspired by Hebb’s rule:
“Cells that fire together,
wire together”.

• Inspiration doesn’t mean
exact copy: there are
notable differences
between the two.

https://en.wikipedia.org/wiki/Neuron

22/36

Biological Inspiration

https://en.wikipedia.org/wiki/Neuron

“If the human brain were
so simple that we

could understand it, we would be
so simple that we couldn’t.”

Emerson W. Pugh

23/36

Fundamentals
of

Neural Networks

24/36

Simple artificial neuron

● Threshold Logic Unit, or Linear Threshold Unit, by McCulloch and Pitts1

● Has one or more binary (on/off) inputs and one binary output
● Activates its output when more than a certain number of its inputs are active
● Even with such a simplified model it is possible to build a network of artificial neurons that

computes any logical proposition

McCulloch and Pitts (1943). "A logical calculus of the ideas immanent in nervous activity"

25/36

Simple artificial neuron

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"

Assume that a neuron is activated when at least two of its inputs are active:

26/36

Simple artificial neuron

Quiz time:

Can you draw an ANN that computes A ⊕ B, where ⊕ is the XOR operation,

i.e. A ⊕ B = (A ⋀ ¬B) ⋁ (¬A ⋀ B)?

27/36

Recap: Perceptron

where:
• is the dot product of the weight vector w

and the feature vector for instance i , i.e.

• b is the bias term

• f is a Heaviside step function

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

This is a Linear Threshold Unit

28/36

Linear separability of classes

http://introtodeeplearning.com/

Linear models are great if the data is linearly separable.

29/36

Linear separability of classes

http://introtodeeplearning.com/

… but often that is not the case.

30/36
http://introtodeeplearning.com/

Linear separability of classes

Linear models are not able to capture complex patterns in the data.

31/36
http://introtodeeplearning.com/

Linear separability of classes

Linear models are not able to capture complex patterns in the data.

32/36

Recap: Non-linearly separable data

Consider the following classic example of the XOR problem y = x1⊕ x2

33/36

Connecting the neurons

We can connect multiple neurons in parallel – each one will learn to detect
something different.

34/36

Connecting the neurons

Each node will learn to detect something different: e.g., one hidden node – whether
at least one input is 1, and another – whether both are 1

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

35/36

Multilayer Perceptron (MLP) on XOR problem

36/36

Multilayer Perceptron (MLP) on XOR problem

37/36

Multilayer Perceptron (MLP) on XOR problem

38/36

Multilayer Perceptron (MLP) on XOR problem

39/36

Multilayer Perceptron

We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function
over an input.

Not actually a
perceptron

40/36

Multilayer Perceptron

We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function
over an input.

Each block is a layer

Each arrow is a
matrix of weights

41/36

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(2)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Mathematical Definition

◦ Each unit in the first hidden layer
receives activations from each input unit
multiplied with the weight relevant for this
pair of units plus unit’s own bias

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Fully connected network

42/36

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(2)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Mathematical Definition

◦ Each unit in the first hidden layer
receives activations from each input unit
multiplied with the weight relevant for this
pair of units plus unit’s own bias

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

◦ Second layer units receive activations
from the first layer units

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Fully connected network

43/36

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(2)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Mathematical Definition

◦ Each unit in the first hidden layer
receives activations from each input unit
multiplied with the weight relevant for this
pair of units plus unit’s own bias

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

◦ Second layer units receive activations
from the first layer units

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

◦ Different activation functions …
may be used at each level

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Fully connected network

44/36

Non-linear Activation Functions

• Logistic function:

• Hyperbolic tangent function:

• Rectified linear unit (ReLU) function:

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i)

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i)

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i)

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

45/36

Neural Network Hyperparameters

• Depth – number of hidden layers

• Width – number of units per hidden layer

• Activation functions

46/36

Deep Neural Networks

In practice we train neural networks with thousands of neurons and millions (or
billions) of trainable weights.

47/36

Learning Representations & Features

Traditional pattern recognition

End-to-end training: Learn useful features also from the data

Manually Crafted
Feature Extractor

Trainable
Classifier

“Golden
retriever”

Trainable
Feature Extractor

Trainable
Classifier

“Golden
retriever”

48/36

Learning Representations & Features

Automatically learning increasingly more complex feature detectors from the data.

49/36

Neural Network
Optimization

50/36

Optimizing Neural Networks

Define a loss function that we want to
minimize

Update the parameters using gradient
descent, taking small steps in the
direction of the gradient (going downhill on
the slope).

All the operations in the network need to
be differentiable.

51/36

Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Compute gradient based
on the whole dataset

4. Update weights

5. Return weights

52/36

Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Compute gradient based
on the whole dataset

4. Update weights

5. Return weights In practice, datasets are
often too big for this

53/36

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over each datapoint:

4. Compute gradient based
on the datapoint

5. Update weights

6. Return weights

54/36

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over each datapoint:

4. Compute gradient based
on the datapoint

5. Update weights

6. Return weights
Very noisy to take steps
based only on a single

datapoint

55/36

Mini-batch Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over batches of datapoints:

4. Compute gradient based
on the batch

5. Update weights

6. Return weights

56/36

Mini-batch Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over batches of datapoints:

4. Compute gradient based
on the batch

5. Update weights

6. Return weights
This is what we
mostly use in

practice

57/36

Optimizing Neural Networks

Li et al., 2018. “Visualizing the Loss Landscape of Neural Nets”

Neural networks have very complex loss surfaces and finding the optimum is difficult.

58/36

https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
If the learning rate is too low, the model will take forever to converge.
If the learning rate is too high, we will just keep stepping over the optimum values.

59/36

https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
A small learning rate can get the model stuck in local minima.
A bigger learning rate can help the model converge better (if it doesn’t overshoot).

60/36
Alex Radford

Adaptive Learning Rates

Intuition:

Have a different learning rate for
each parameter.

Take bigger steps if a parameter has
not been updated much recently.

Take smaller steps if a parameter
has been getting many big updates.

61/36

https://jed-ai.github.io/opt2_gradient_descent_1/

Random initialization Matters
All other things being equal, just starting from a different location can lead to a
different result.

62/30

