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Recap: Supervised Learning
Dataset: {<x() yD) > <« x) 2 5 < x(m) y(m) 51
Input features: (X](_i)7 Xéi), PP Xr(1i))

Known (desired) y(l), y(2), " y(m)

outputs:
Our goal: Learn the mapping f . X — Y

such that y(’) = f(x(')) forall 1=1,2,....m
Application: Learn the function on the training set, then use it

to predict yb) = f(XU)) for all Xj in the test set



Recap: Supervised Learning

Dataset: {<x() yD) > <« x) 2 5 < x(m) y(m) 51
Input features: (X1 7X2 ,---,Xr(vi))

Known (desired) y(1) y(2) y(m)

outputs:
Our goal: Learn the mapping f . X — Y

such that y(’) = f(x(')) forall 1=1,2,....m
Application: Learn the function on the training set, then use it

to predict yb) = f(XU)) for all Xj in the test set

Last time we looked into regression tasks, today — classification



Recap: Regression vs. Classification

Regression tasks: the desired labels are continuous

Examples: House size, age, income — price
Weather conditions, time — number of rented bikes

Classification tasks: the desired labels are discrete

Examples: Pixel distribution in the image — digit label
Word distribution in movie reviews — sentiment
(pos/neg/neut) label
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Data Science: Principles and Practice

Binary classification

Data transformations
Model evaluation
Multi-class classification

Practical 2



Binary classification

- Let’s start with a simpler case — binary classification (i.e. distinguishing between 2
classes)

- Task: Sentiment analysis in movie reviews (Part IA CST Machine Learning and
Real-world Data)

- Data: m x n matrix X with m reviews and n features (words)

- Labels: y € (0, 1) with O for neg and 1 for pos
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Binary classification with Naive Bayes

Naive Bayes classifier:

» relies on probabilistic assumptions about the data

* makes “naive” independence assumption about the features

» s fast and scalable compared to more sophisticated methods

» shows competitive results on a number of real-world tasks, despite its over-simplistic

assumptions



Binary classification with Naive Bayes

Prediction:

1, ifp(y = 1|x(i)) > p(y = 0|x(i))

p() = argmax = c|x)) =
y 4 CE(O,l)p(y x) 0, otherwise

where x0) = (£ £) is the ith review x() with its features £, ..., i)

p(c)p(xc)

Flipping conditions: Py = C|X(i)) =

p(x(1)
where:
* p(c) is the prior
. p(xWc) s likelihood
. P(X (i)) is evidence (note that it’s irrelevant for the argmax estimation)

« p(y = c|x) is the posterior



Binary classification with Naive Bayes

Naive independence assumption:
p(R", s 3 1y) = [Ty P(£ly)

conditional independence assumption — features are independent of each other given the class
(naive = do you think it always holds?)

Revised estimation: we've started with

1, ifp(y= 1|x(i)) > p(y = 0|x(i))

p() = aremax = c|x{)) =
y g CE(O’l)p(y >x7) 0, otherwise

= This is equivalent to

9 = argmax e 1)p(y = ) [11_y p(FPly = ©)



Practical notes on Naive Bayes

* Probabilities P(y = C) and P(fk(i)|y = C) are estimated from the training data using
maximum a posteriori (MAP) estimate

» Naive Bayes models typically differ with respect to the assumptions about the
distribution of features P(X(i)D’). Commonly used models include Gaussian NB,

Multinomial NB, and Bernoulli NB.!

Recommended reading: A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text
classification. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529



http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529

Linearly separable data

* Linearly separable data is the data where classes

30

can be separated with a single line (or a hyperplane

25

in a higher-dimensional Euclidean space)

20

» Linear classifiers, that try to learn a linear s

=
(=]

separation boundary between the classes, are well-

suited for such data

00

« Examples: Logistic Regression, Perceptron, —————————————

Support Vector Machines



Recap: Linear Regression

Estimated Corruption vs Urban Population
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Logistic Regression vs Linear Regression

» Despite the similarity in name, Logistic Regression outputs a discrete value, i.e. it is

used for classification
« Logistic Regression estimates whether the probability of an instance x() belonging

to class c is greater than 0.5. If it is, the instance is classified as c; otherwise it is
classified as —c.

y =

c, ifp(xt)ec)>05
—c, otherwise



Logistic Regression

- First, estimate w - X as before, where w is the weight vector (Wo, w1, ..., Wn)

« Next, apply a sigmoid function to the result p = a(@) where
=t

_ 1
ST

o(t) = e l.ﬁ

o(t




Prediction step with Logistic Regression

Estimate whether the probability of an instance x belonging to class ¢ is greater than 0.5, i.e.:

= 1, ifp>05 oL ifmzo.s L = 1, ift>0
0, otherwise Y= 0, otherwise 0, otherwise

o(t) = e l.ﬁ




Training Logistic Regression

 Learning objective: we need to learn the weights w such that
> has a high positive value for y = 1, and
o has a high negative value for y = 0

» The following cost function answers this objective:

—log(p ify =1
c(w) = log(p), ify
—log(1—p), ify=0



Training Logistic Regression

 Learning objective: we need to learn the weights w such that
> has a high positive value for y = 71, and
o has a high negative value for y = 0

* The following cost function answers this objective:

(—log(p) — 0, ify=1and p —1

C(W) _ —log(ﬁ), 'f.y =1 o o(w) =14 —log(p) —/)\oo, ify =1 and [f—) 0
"\ —log(1—p), ify=0 —log(1—p) >0, ify=0andp—0

| —log(1—p) = o0, ify=0and p—1



Log-loss function

« Cost function over the whole training set:
J(O) = — 5 Xy Dlog (b)) + (1 — y)log(1 — p0)]

* No closed form solution for w that minimises this cost function, but since the function
is convex, Gradient Descent (see previous lecture) can be used to find optimal
weights: e.g. partial derivative of the cost function wrt the j-th model parameter is

5J(0) = 7 ZLa(B0 =y
= 2 X007 - x) - y )



Recap: the Gradient

It may be more convenient to work with vector notation.

The gradient is a vector of all partial derivatives.

Forafuncton f:R"™ — R ,thegradientis

50,
of(0)
Vof(0)=| 9%




Single-layer perceptron

iy JL ifwexD 4 b>0
yvo= :
0, otherwise

where:

« w - x()is the dot product of the weight vector w
and the feature vector x{) for instance i , i.e.

S Wi

e bis the bias term

weights



Single-layer perceptron training

Initialisation: Initialise the weights w = (Wl, ey Wn) and the bias term b = wy to some value (e.g.,

0 or some other small value)



Single-layer perceptron training

Initialisation: Initialise the weights w = (Wl, ey Wn) and the bias term b = wy to some value (e.g.,

0 or some other small value)

Estimation at time t for each instance i:

PO () = F(w(t) - xD) = F(no(t) + wa(t)x? + ... + wa(t)x3?)



Single-layer perceptron training

Initialisation: Initialise the weights w = (Wl, ey Wn) and the bias term b = wy to some value (e.g.,

0 or some other small value)

Estimation at time t for each instance i:

§O(E) = F(w(t) - xD) = F(wo(t) + wa(t)x” + ... + wn(t)xs”)
Update for the weights at time (t + 1) for each instance i and each feature0 < j < n

Wj(t +1) = Wj(t) + r(y(i) - )A’(i)(t))xj(l) where ris a predefined learning rate



Single-layer perceptron training

Initialisation: Initialise the weights w = (Wl, ey Wn) and the bias term b = wp to some value (e.g.,

0 or some other small value)

Estimation at time t for each instance i:
o)1) = F x() = f (1) (7)
y(t) = fw(t) - x) = fwo(t) + wa(t)xy " + ... + wa(t)xn")
Update for the weights at time (t + 1) for each instance i and each feature0 < j < n

Wj(t +1) = Wj(t) + r(y(i) - )A’(i)(t))xj(l) where ris a predefined learning rate

Stopping criteria: convergence to an error below a predefined threshold 7 , or after a predefined

number of iterations t < T



Notes on single-layer perceptron

« If the data is linearly separable, the perceptron algorithm is guaranteed to converge

« If the data is not linearly separable, the perceptron will never be able to find a solution to
separate the classes in the training data

» A single-layer perceptron is a simple linear classifier, often used to illustrate the simplest
feedforward neural network.

» Multilayer perceptrons combine multiple layers and use non-linear activation functions, which
makes them capable of classifying data that is not linearly separable (more on this in later

lectures)
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Non-linearly separable data

Consider the following classic example of the XOR problem y =x; @ x5

y 4 .
oiolo
O:1(1 O .,"
1:i0]|1 Lz
1i1]o0
y=X1® Xz O - o > X1

0] 1
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Non-linearly separable data

Actual (raw) data: two classes non-
linearly separable

Y Label

Data projected to R~2 (nonseparable)
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Objective: transform the data using
additional dimensions such that it becomes
possible to separate the classes linearly
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Non-linearly separable data

Actual (raw) data: two classes non- Objective: transform the data using
linearly separable additional dimensions such that it becomes
s __ Data projected to R~2 (nonseparable) possible to separate the classes linearly
Data in R"3 (separable)
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Method: data transformations / feature maps that transform the data into higher dimensional
space (e.g. kernel trick)



Toy example

Suppose non-linearly separable

classes 0 and 1 such that: Consider using a square function:
o x©=(0.5,0.5) - blue dot o x0—x 0=(0.25,0.25)
o xMW=(-1,-1)-red dot o xMW—-x M=(1,1)

Data projected to R~2 (nonseparable)

1.5
Data in R™3 (separable)
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Kernel trick and feature maps

« With the new data representation, the instances of class 0 (blue) end up in the lower left
corner, and the instances of class 1 (red) end up in the upper right corner

» Kernel trick and feature maps allow us to cast the original data into higher dimensional
data: e.g., (x, y) — (X2, xy, y?)

Data projected to R~2 (nonseparable)
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Performance measures: Accuracy

« Task: suppose you select a digit in the
handwritten digit dataset (e.g., 5). You
perform a binary classification task of
detecting 5 vs 75 in a balanced dataset of
10 digits

« Evaluation: the most straightforward way to
evaluate the results is to calculate the
proportion of correct predictions, i.e.:

B num(y==y)
ACC = num(y==y)+num(y'=y)




Performance measures: Accuracy

« Task: suppose you select a digit in the
handwritten digit dataset (e.g., 5). You
perform a binary classification task of
detecting 5 vs 75 in a balanced dataset of
10 digits

« Evaluation: the most straightforward way to
evaluate the results is to calculate the
proportion of correct predictions, i.e.:

B num(y==y)
ACC = num(y==y)+num(y'=y)

Suppose you get an accuracy of 91%. Is this a good accuracy score?



VWhat accuracy score Is missing

* Note that if the classifier always predicts 75 (i.e., essentially does nothing), on a
balanced dataset with 10 digits its accuracy will be ACC=90%

» ltis also unclear what exactly the classifier gets wrong



VWhat accuracy score Is missing

* Note that if the classifier always predicts 75 (i.e., essentially does nothing), on a
balanced dataset with 10 digits its accuracy will be ACC=90%
» |tis also unclear what exactly the classifier gets wrong, e.g. all of the following

classifiers get ACC=90%, yet their decisions (and errors) are very different:

|predicted -5 | predicted 5 |predicted -5 |predicted 5 |predicted -5 | predicted 5
actual -5 a0 0 actual -5 85 5 actual -5 80 10
actual 5 10 0 actual 5 5 5 actual 5 0 10

Classifier 1 detects only =5’s Classifier 2 detects some 5's Classifier 3 detects all 5’s



Confusion matrix

predicted -c | predicted c
actual -c TN FP
actual ¢ FN TP




Confusion matrix

predicted -c | predicted c

actual -C N FP

actual ¢ FN TP

» True negatives (TN) — actual instances of 75 correctly classified as 75
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Confusion matrix

predicted -c | predicted c
actual -c TN FP
actual ¢ FN TP

» True negatives (TN) — actual instances of 75 correctly classified as 75

» False negatives (FN) — actual instances of 5 missed by the classifier

* True positives (TP) — actual instances of 5 correctly classified as 5



Confusion matrix

predicted -c | predicted c

actual -C N FP

actual ¢ FN TP

» True negatives (TN) — actual instances of 75 correctly classified as 75
» False negatives (FN) — actual instances of 5 missed by the classifier
* True positives (TP) — actual instances of 5 correctly classified as 5

» False positives (FP) — actual instances of =5 misclassified as 5



Performance measures

» Accuracy: proportion of correctly classified instances

_ TP+ TN
ACC = TprTmFPTEN
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» Accuracy: proportion of correctly classified instances

_ TP+ TN
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» Precision: “trustworthiness” of your classifier when it predicts class ¢

— _IP
P = 1pirp



Performance measures

» Accuracy: proportion of correctly classified instances

_ TP+ TN
ACC = TprTmFPTEN

» Precision: “trustworthiness” of your classifier when it predicts class ¢

_ TP
P = TP+FP
* Recall: “coverage” with respect to the class ¢

— _TIP
R= 57w



Performance measures

Accuracy: proportion of correctly classified instances

_ TP+ TN
ACC = TprTmFPTEN

Precision: “trustworthiness” of your classifier when it predicts class ¢

_ TP
P = 1pirp

Recall: “coverage” with respect to the class ¢

_ TP
R= 57w

F,-score: harmonic mean between precision and recall

Fir=2x £X8 [Fg = (1+ %) x 22557




Precision-recall trade-off

Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class ¢ = low recall

o You can reach perfect recall by always predicting class ¢ = low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests?
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o You can reach perfect recall by always predicting class ¢ = low precision

Some tasks require higher recall and some higher precision, e.g.:
o Detection of a potentially cancerous case that needs further tests? — recall

o Detection of suspicious activity on a credit card?
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o Detection of suspicious activity on a credit card? — recall

o Automated change of drug dosage for a hospital patient?



Precision-recall trade-off

Most likely your classifier won’t show both perfect precision and recall:
o You can reach perfect precision by identifying a single instance of class ¢ = low recall

o You can reach perfect recall by always predicting class ¢ = low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? — recall
o Detection of suspicious activity on a credit card? — recall

o Automated change of drug dosage for a hospital patient? — precision

o Detection of videos safe for kids?



Precision-recall trade-off

Most likely your classifier won’t show both perfect precision and recall:
o You can reach perfect precision by identifying a single instance of class ¢ = low recall

o You can reach perfect recall by always predicting class ¢ = low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? — recall
o Detection of suspicious activity on a credit card? — recall

o Automated change of drug dosage for a hospital patient? — precision

o Detection of videos safe for kids? — precision



Confidence thresholds and P-R curve

Precision:  6/8=75% 4/5 =80% 3/3 =100%

By Chang|ng your CIaSSIfler’S Recall: 6/6=100% 4/6=67% 3/6 =50%
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e et 239982519 €~ 55

decisions (the more conservative, the « N/' »
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Different thresholds
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Recelver Operating Characteristic (ROC)

™ Perfect classifier

- Specificity: TNTFFP 10
» False positive rate (FPR) / fall-out /

0.8 1

probability of false alarm =

o
o

(1— specificity)
* True positive rate (TPR) /

o
'S
.

" Random classifier

True Positive Rate

sensitivity / probability of detection =

recall 021

» Area under the curve (AUC) —

’I
0.0

11 0.0 0i2 0t4 0.'6 0.'8
close to 1.0 for the perfect classifier Fal Positive Rate



Multiclass classification

« So far, we have been looking into binary classification (distinguishing between exactly
two classes)
« Some classifiers naturally allow for multiple classes, e.g. Naive Bayes — simply output

the most probable class

« Linear classifiers are strictly binary classifiers, so how can they handle multiple classes?




Two strategies for linear classifiers

* One-vs-all (OvA) or one-vs-rest (OvR):

o Train n binary classifiers to detect one
class each (e.g., 10 binary digit detectors)

o Attest time, output the class with the
highest score

* One-vs-one (OvO):
o Train w binary class-vs-class
classifiers (e.g., 45 binary digit-vs-digit
classifiers)

o Attest time, output the class that wins
most of the time




Error analysis for multiclass classification

Confusion matrix Confusion heatmap

array((r36¢, o, o0, o0, 0, 0, 00, 0, 0, 0],
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Practical 2



Data

- Two datasets: iris flower dataset (150 samples, 3 classes, 4 features), and the hand-

written digits dataset (= 1.8K samples, 10 classes, 64 features)
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Your task: Learning objectives

- Learn about binary and multiclass classification in practice

- Investigate whether data is linearly separable, and what to do when it is not
- Apply 3 classifiers discussed in this lecture

- Focus on evaluation of the classifiers

- One dataset is used to illustrate the ML techniques; your task is to implement the above

steps for the other one



Practical 2 Logistics

- Data and code for Practical 2 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP practical2?)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline
(Thursday 12 November, 4pm)


https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical2




