
1/30

Data Science: Principles and Practice
Lecture 3: Classification

Ekaterina Kochmar

2/30

to predict for all in the test set

such that for all

Recap: Supervised Learning

Input features:

Known (desired)
outputs:

Dataset:

Our goal: Learn the mapping

Application: Learn the function on the training set, then use it

3/30

to predict for all in the test set

such that for all

Recap: Supervised Learning

Input features:

Known (desired)
outputs:

Dataset:

Our goal: Learn the mapping

Application: Learn the function on the training set, then use it

Last time we looked into regression tasks, today – classification

4/30

Recap: Regression vs. Classification
Regression tasks: the desired labels are continuous

Examples: House size, age, income → price
Weather conditions, time → number of rented bikes

Classification tasks: the desired labels are discrete

Examples: Pixel distribution in the image → digit label
Word distribution in movie reviews → sentiment
(pos/neg/neut) label

5/30

Data Science: Principles and Practice

Binary classification01

Data transformations02

Model evaluation03

Multi-class classification04

Practical 205

6/30

Binary classification

- Let’s start with a simpler case – binary classification (i.e. distinguishing between 2
classes)

- Task: Sentiment analysis in movie reviews (Part IA CST Machine Learning and
Real-world Data)
- Data: m ╳ n matrix X with m reviews and n features (words)

- Labels: y ∊ (0, 1) with 0 for neg and 1 for pos

7/30

Binary classification with Naïve Bayes

Naïve Bayes classifier:

• relies on probabilistic assumptions about the data

• makes “naïve” independence assumption about the features

• is fast and scalable compared to more sophisticated methods

• shows competitive results on a number of real-world tasks, despite its over-simplistic

assumptions

8/30

Binary classification with Naïve Bayes
Prediction:

where is the i-th review with its features

Flipping conditions:

where:
• is the prior

• is likelihood

• is evidence (note that it’s irrelevant for the argmax estimation)

• is the posterior

9/30

Binary classification with Naïve Bayes
Naïve independence assumption:

conditional independence assumption – features are independent of each other given the class
(naïve ⇒ do you think it always holds?)

Revised estimation: we’ve started with

⇒ This is equivalent to

10/30

Practical notes on Naïve Bayes

• Probabilities and are estimated from the training data using

maximum a posteriori (MAP) estimate

• Naïve Bayes models typically differ with respect to the assumptions about the

distribution of features . Commonly used models include Gaussian NB,

Multinomial NB, and Bernoulli NB.1

Recommended reading: A. McCallum and K. Nigam (1998). A comparison of event models for Naïve Bayes text
classification. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529

Binary classification with Naive Bayes

p(f (i)1 , ..., f (i)n |y) ⇡
Qn

k=1 p(f
(i)
k |y)

ŷ
(i) = argmaxc2(0,1)p(y = c)

Qn
k=1 p(f

(i)
k |y = c)

E. Kochmar DSPNP: Lecture 3 13 November 7 / 26

Binary classification with Naive Bayes

p(f (i)1 , ..., f (i)n |y) ⇡
Qn

k=1 p(f
(i)
k |y)

ŷ
(i) = argmaxc2(0,1)p(y = c)

Qn
k=1 p(f

(i)
k |y = c)

E. Kochmar DSPNP: Lecture 3 13 November 7 / 26

Binary classification with Naive Bayes

ŷ
(i) =(
1, if p(y = 1)

Qn
k=1 p(f

(i)
k |y = 1) > p(y = 0)

Qn
k=1 p(f

(i)
k |y = 0))

0, otherwise

where probabilities can be estimated from the training data using
maximum a posteriori estimate

Naive Bayes models typically di↵er with respect to the assumptions
about the distribution of features p(x (i)|y). Commonly used models:
Gaussian NB, Multinomial NB, Bernoulli NB.1

1Recommended reading: A. McCallum and K. Nigam (1998). A comparison of event models
for Naive Bayes text classification.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529

E. Kochmar DSPNP: Lecture 3 13 November 8 / 26

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529

11/30

Linearly separable data

• Linearly separable data is the data where classes

can be separated with a single line (or a hyperplane

in a higher-dimensional Euclidean space)

• Linear classifiers, that try to learn a linear

separation boundary between the classes, are well-

suited for such data

• Examples: Logistic Regression, Perceptron,

Support Vector Machines

12/30

Recap: Linear Regression

Controls
the

angle

Controls
the

intercept

13/30

Logistic Regression vs Linear Regression

• Despite the similarity in name, Logistic Regression outputs a discrete value, i.e. it is

used for classification

• Logistic Regression estimates whether the probability of an instance x(i) belonging

to class c is greater than 0.5. If it is, the instance is classified as c; otherwise it is

classified as ¬c.

14/30

Logistic Regression

• First, estimate as before, where w is the weight vector

• Next, apply a sigmoid function to the result where
= t

15/30

Prediction step with Logistic Regression
Estimate whether the probability of an instance x(i) belonging to class c is greater than 0.5, i.e.:

⇒ ⇒

16/30

Training Logistic Regression

• Learning objective: we need to learn the weights w such that

◦ has a high positive value for y = 1, and

◦ has a high negative value for y = 0

• The following cost function answers this objective:

17/30

Training Logistic Regression

• Learning objective: we need to learn the weights w such that

◦ has a high positive value for y = 1, and

◦ has a high negative value for y = 0

• The following cost function answers this objective:

⇔

18/30

Log-loss function

• Cost function over the whole training set:

• No closed form solution for w that minimises this cost function, but since the function
is convex, Gradient Descent (see previous lecture) can be used to find optimal
weights: e.g. partial derivative of the cost function wrt the j-th model parameter is

Logistic Regression

The following cost function answers this objective:

c(w) =

8
>>><

>>>:

�log(p̂) ! 0, if y = 1 and p̂ ! 1

�log(p̂) ! 1, if y = 1 and p̂ ! 0

�log(1� p̂) ! 0, if y = 0 and p̂ ! 0

�log(1� p̂) ! 1, if y = 0 and p̂ ! 1

Log-loss cost function: @
@✓j

J(✓) = 1
m

Pm
i=1(p̂

(i) � y
(i))x (i)j

= 1
m

Pm
i=1(�(✓

T · x (i))� y
(i))x (i)j

No closed form solution for w that minimises the cost function, but since
the function is convex, Gradient Descent (refer to the previous lecture) can
be used to find the optimal weights

E. Kochmar DSPNP: Lecture 3 13 November 14 / 29

19/30

Recap: the Gradient

It may be more convenient to work with vector notation.

The gradient is a vector of all partial derivatives.

For a function , the gradient is

20/30

Single-layer perceptron

where:
• is the dot product of the weight vector w

and the feature vector for instance i , i.e.

• b is the bias term

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

21/30

Single-layer perceptron training
Initialisation: Initialise the weights and the bias term to some value (e.g.,

0 or some other small value)

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

22/30

Single-layer perceptron training
Initialisation: Initialise the weights and the bias term to some value (e.g.,

0 or some other small value)

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

Estimation at time t for each instance i:

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

23/30

Single-layer perceptron training
Initialisation: Initialise the weights and the bias term to some value (e.g.,

0 or some other small value)

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

Estimation at time t for each instance i:

Update for the weights at time (t + 1) for each instance i and each feature

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

where r is a predefined learning rate

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

24/30

Single-layer perceptron training
Initialisation: Initialise the weights and the bias term to some value (e.g.,

0 or some other small value)

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

Estimation at time t for each instance i:

Update for the weights at time (t + 1) for each instance i and each feature

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

where r is a predefined learning rate

Stopping criteria: convergence to an error below a predefined threshold , or after a predefined

number of iterations

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 28

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wn) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n)

3 Update for the weights at time (t + 1) for instance i and each

feature 0 j n: wj(t +1) = wj(t) + r(y (i) � ŷ
(i)(t))x (i)j , where r is

a predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t T .

E. Kochmar DSPNP: Lecture 3 13 November 16 / 29

25/30

Notes on single-layer perceptron

• If the data is linearly separable, the perceptron algorithm is guaranteed to converge

• If the data is not linearly separable, the perceptron will never be able to find a solution to

separate the classes in the training data

• A single-layer perceptron is a simple linear classifier, often used to illustrate the simplest

feedforward neural network.

• Multilayer perceptrons combine multiple layers and use non-linear activation functions, which

makes them capable of classifying data that is not linearly separable (more on this in later

lectures)

26/30

Non-linearly separable data

Consider the following classic example of the XOR problem y = x1⊕ x2

27/30

Non-linearly separable data
Actual (raw) data: two classes non-
linearly separable

Objective: transform the data using
additional dimensions such that it becomes
possible to separate the classes linearly

28/30

Non-linearly separable data
Actual (raw) data: two classes non-
linearly separable

Objective: transform the data using
additional dimensions such that it becomes
possible to separate the classes linearly

Method: data transformations / feature maps that transform the data into higher dimensional
space (e.g. kernel trick)

29/30

Toy example
Suppose non-linearly separable
classes 0 and 1 such that:
o x(0) = (0.5, 0.5) – blue dot
o x(1) = (-1, -1) – red dot

Consider using a square function:
o x(0) → x’ (0) = (0.25, 0.25)
o x(1) → x’ (1) = (1, 1)

30/30

Kernel trick and feature maps

• With the new data representation, the instances of class 0 (blue) end up in the lower left
corner, and the instances of class 1 (red) end up in the upper right corner

• Kernel trick and feature maps allow us to cast the original data into higher dimensional
data: e.g., (x, y) → (x2, xy, y2)

31/30

Performance measures: Accuracy

• Task: suppose you select a digit in the
handwritten digit dataset (e.g., 5). You
perform a binary classification task of
detecting 5 vs ¬5 in a balanced dataset of
10 digits

• Evaluation: the most straightforward way to
evaluate the results is to calculate the
proportion of correct predictions, i.e.:

Performance measures

Task: suppose you select a digit in the
handwritten digits dataset (e.g., 5), and
perform a binary classification task of detecting
5 vs. ¬5 in a balanced dataset of 10 digits

Evaluation: the most straightforward way to
evaluate is to calculate the proportion of
correct predictions:
ACC = num(ŷ==y)

num(ŷ==y)+num(ŷ !=y)

Results: suppose that you get an accuracy of
91%. Is this a good accuracy score?

E. Kochmar DSPNP: Lecture 3 13 November 21 / 28

32/30

Performance measures: Accuracy

• Task: suppose you select a digit in the
handwritten digit dataset (e.g., 5). You
perform a binary classification task of
detecting 5 vs ¬5 in a balanced dataset of
10 digits

• Evaluation: the most straightforward way to
evaluate the results is to calculate the
proportion of correct predictions, i.e.:

Performance measures

Task: suppose you select a digit in the
handwritten digits dataset (e.g., 5), and
perform a binary classification task of detecting
5 vs. ¬5 in a balanced dataset of 10 digits

Evaluation: the most straightforward way to
evaluate is to calculate the proportion of
correct predictions:
ACC = num(ŷ==y)

num(ŷ==y)+num(ŷ !=y)

Results: suppose that you get an accuracy of
91%. Is this a good accuracy score?

E. Kochmar DSPNP: Lecture 3 13 November 21 / 28

Suppose you get an accuracy of 91%. Is this a good accuracy score?

33/30

What accuracy score is missing

• Note that if the classifier always predicts ¬5 (i.e., essentially does nothing), on a

balanced dataset with 10 digits its accuracy will be ACC=90%

• It is also unclear what exactly the classifier gets wrong

34/30

What accuracy score is missing

• Note that if the classifier always predicts ¬5 (i.e., essentially does nothing), on a

balanced dataset with 10 digits its accuracy will be ACC=90%

• It is also unclear what exactly the classifier gets wrong, e.g. all of the following

classifiers get ACC=90%, yet their decisions (and errors) are very different:

35/30

Confusion matrix

36/30

Confusion matrix

• True negatives (TN) – actual instances of ¬5 correctly classified as ¬5

37/30

Confusion matrix

• True negatives (TN) – actual instances of ¬5 correctly classified as ¬5

• False negatives (FN) – actual instances of 5 missed by the classifier

38/30

Confusion matrix

• True negatives (TN) – actual instances of ¬5 correctly classified as ¬5

• False negatives (FN) – actual instances of 5 missed by the classifier

• True positives (TP) – actual instances of 5 correctly classified as 5

39/30

Confusion matrix

• True negatives (TN) – actual instances of ¬5 correctly classified as ¬5

• False negatives (FN) – actual instances of 5 missed by the classifier

• True positives (TP) – actual instances of 5 correctly classified as 5

• False positives (FP) – actual instances of ¬5 misclassified as 5

40/30

Performance measures

• Accuracy: proportion of correctly classified instances

41/30

Performance measures

• Accuracy: proportion of correctly classified instances

• Precision: “trustworthiness” of your classifier when it predicts class c

42/30

Performance measures

• Accuracy: proportion of correctly classified instances

• Precision: “trustworthiness” of your classifier when it predicts class c

• Recall: “coverage” with respect to the class c

43/30

Performance measures

• Accuracy: proportion of correctly classified instances

• Precision: “trustworthiness” of your classifier when it predicts class c

• Recall: “coverage” with respect to the class c

• F1-score: harmonic mean between precision and recall

44/30

Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests?

45/30

Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? → recall

o Detection of suspicious activity on a credit card?

46/30

Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? → recall

o Detection of suspicious activity on a credit card? → recall

o Automated change of drug dosage for a hospital patient?

47/30

Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? → recall

o Detection of suspicious activity on a credit card? → recall

o Automated change of drug dosage for a hospital patient? → precision

o Detection of videos safe for kids?

48/30

Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? → recall

o Detection of suspicious activity on a credit card? → recall

o Automated change of drug dosage for a hospital patient? → precision

o Detection of videos safe for kids? → precision

49/30

Confidence thresholds and P-R curve

By changing your classifier’s
confidence threshold you can change
how conservative it should be in its
decisions (the more conservative, the
higher its precision and lower its recall)

You can plot precision and recall as
functions of the threshold value

50/30

Receiver Operating Characteristic (ROC)

• Specificity:

• False positive rate (FPR) / fall-out /

probability of false alarm =

(1– specificity)

• True positive rate (TPR) /

sensitivity / probability of detection =

recall
• Area under the curve (AUC) –

close to 1.0 for the perfect classifier

Performance measures

Specificity = TN
TN+FP

False positive rate (FPR) / fall-out / probability of false alarm

= (1� specificity)

True positive rate (TPR) / sensitivity / probability of detection = recall

E. Kochmar DSPNP: Lecture 3 13 November 26 / 29

51/30

Multiclass classification

• So far, we have been looking into binary classification (distinguishing between exactly

two classes)

• Some classifiers naturally allow for multiple classes, e.g. Naïve Bayes – simply output

the most probable class

• Linear classifiers are strictly binary classifiers, so how can they handle multiple classes?

52/30

Two strategies for linear classifiers

• One-vs-all (OvA) or one-vs-rest (OvR):

• One-vs-one (OvO):

o Train n binary classifiers to detect one
class each (e.g., 10 binary digit detectors)

o At test time, output the class with the
highest score

o Train binary class-vs-class
classifiers (e.g., 45 binary digit-vs-digit
classifiers)

o At test time, output the class that wins
most of the time

Multi-class classification

Directly classified with some algorithms: e.g., Naive Bayes – simply output
the most probable class

Linear classifiers: one of two strategies:
1 one-vs-all (OvA) / one-vs-rest (OvR): n binary classifiers trained to

detect one class each (e.g. 10 binary digit detectors); output the class
with the highest score

2 one-vs-one (OvO): N(N�1)
2 binary class-vs-class classifiers (e.g. 45

binary digit-vs-digit classifiers); output class that wins most

E. Kochmar DSPNP: Lecture 3 13 November 27 / 29

53/30

Error analysis for multiclass classification

Confusion matrix Confusion heatmap

54/30

Practical 2

55/30

Data

- Two datasets: iris flower dataset (150 samples, 3 classes, 4 features), and the hand-

written digits dataset (≈ 1.8K samples, 10 classes, 64 features)

56/30

Your task: Learning objectives

- Learn about binary and multiclass classification in practice

- Investigate whether data is linearly separable, and what to do when it is not

- Apply 3 classifiers discussed in this lecture

- Focus on evaluation of the classifiers

- One dataset is used to illustrate the ML techniques; your task is to implement the above

steps for the other one

57/30

Practical 2 Logistics

- Data and code for Practical 2 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical2)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline
(Thursday 12 November, 4pm)

https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical2

58/30

