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Data Science: Principles and Practice
Lecture 3: Classification

Ekaterina Kochmar
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to predict                            for all       in the test set   

such that                             for all 

Recap: Supervised Learning

Input features:

Known (desired)
outputs: 

Dataset:

Our goal: Learn the mapping 

Application: Learn the function on the training set, then use it   
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outputs: 
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Last time we looked into regression tasks, today – classification
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Recap: Regression vs. Classification
Regression tasks: the desired labels are continuous

Examples: House size, age, income → price
Weather conditions, time → number of rented bikes

Classification tasks: the desired labels are discrete

Examples: Pixel distribution in the image → digit label
Word distribution in movie reviews → sentiment 
(pos/neg/neut) label
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Data Science: Principles and Practice

Binary classification01

Data transformations02

Model evaluation03

Multi-class classification04

Practical 205
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Binary classification 

- Let’s start with a simpler case – binary classification (i.e. distinguishing between 2 
classes)

- Task: Sentiment analysis in movie reviews (Part IA CST Machine Learning and     
Real-world Data) 
- Data: m ╳ n matrix X with m reviews and n features (words)

- Labels: y ∊ (0, 1) with 0 for neg and 1 for pos
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Binary classification with Naïve Bayes

Naïve Bayes classifier:

• relies on probabilistic assumptions about the data

• makes “naïve” independence assumption about the features

• is fast and scalable compared to more sophisticated methods

• shows competitive results on a number of real-world tasks, despite its over-simplistic 

assumptions
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Binary classification with Naïve Bayes
Prediction:

where                                           is the i-th review         with its features   

Flipping conditions:

where:
• is the prior

• is likelihood

• is evidence (note that it’s irrelevant for the argmax estimation)

• is the posterior
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Binary classification with Naïve Bayes
Naïve independence assumption:

conditional independence assumption – features are independent of each other given the class 
(naïve ⇒ do you think it always holds?)

Revised estimation: we’ve started with 

⇒ This is equivalent to
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Practical notes on Naïve Bayes

• Probabilities                 and                         are estimated from the training data using 

maximum a posteriori (MAP) estimate

• Naïve Bayes models typically differ with respect to the assumptions about the 

distribution of features               . Commonly used models include Gaussian NB, 

Multinomial NB, and Bernoulli NB.1

Recommended reading: A. McCallum and K. Nigam (1998). A comparison of event models for Naïve Bayes text 
classification. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529

Binary classification with Naive Bayes

p(f (i)1 , ..., f (i)n |y) ⇡
Qn

k=1 p(f
(i)
k |y)

ŷ
(i) = argmaxc2(0,1)p(y = c)

Qn
k=1 p(f

(i)
k |y = c)
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Binary classification with Naive Bayes

ŷ
(i) =(
1, if p(y = 1)

Qn
k=1 p(f

(i)
k |y = 1) > p(y = 0)

Qn
k=1 p(f

(i)
k |y = 0))

0, otherwise

where probabilities can be estimated from the training data using
maximum a posteriori estimate

Naive Bayes models typically di↵er with respect to the assumptions
about the distribution of features p(x (i)|y). Commonly used models:
Gaussian NB, Multinomial NB, Bernoulli NB.1

1Recommended reading: A. McCallum and K. Nigam (1998). A comparison of event models
for Naive Bayes text classification.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
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Linearly separable data

• Linearly separable data is the data where classes 

can be separated with a single line (or a hyperplane

in a higher-dimensional Euclidean space)

• Linear classifiers, that try to learn a linear 

separation boundary between the classes, are well-

suited for such data

• Examples: Logistic Regression, Perceptron, 

Support Vector Machines
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Recap: Linear Regression

Controls 
the 

angle

Controls 
the 

intercept
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Logistic Regression vs Linear Regression

• Despite the similarity in name, Logistic Regression outputs a discrete value, i.e. it is 

used for classification

• Logistic Regression estimates whether the probability of an instance x(i) belonging 

to class c is greater than 0.5. If it is, the instance is classified as c; otherwise it is 

classified as ¬c.
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Logistic Regression

• First, estimate            as before, where w is the weight vector

• Next, apply a sigmoid function to the result                           where
= t
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Prediction step with Logistic Regression
Estimate whether the probability of an instance x(i) belonging to class c is greater than 0.5, i.e.:

⇒ ⇒
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Training Logistic Regression

• Learning objective: we need to learn the weights w such that

◦ has a high positive value for y = 1, and

◦ has a high negative value for y = 0

• The following cost function answers this objective:
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Training Logistic Regression

• Learning objective: we need to learn the weights w such that

◦ has a high positive value for y = 1, and

◦ has a high negative value for y = 0

• The following cost function answers this objective:

⇔
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Log-loss function

• Cost function over the whole training set:

• No closed form solution for w that minimises this cost function, but since the function 
is convex, Gradient Descent (see previous lecture) can be used to find optimal 
weights: e.g. partial derivative of the cost function wrt the j-th model parameter is

Logistic Regression

The following cost function answers this objective:

c(w) =

8
>>><

>>>:

�log(p̂) ! 0, if y = 1 and p̂ ! 1

�log(p̂) ! 1, if y = 1 and p̂ ! 0

�log(1� p̂) ! 0, if y = 0 and p̂ ! 0

�log(1� p̂) ! 1, if y = 0 and p̂ ! 1

Log-loss cost function: @
@✓j

J(✓) = 1
m

Pm
i=1(p̂

(i) � y
(i))x (i)j

= 1
m

Pm
i=1(�(✓

T · x (i))� y
(i))x (i)j

No closed form solution for w that minimises the cost function, but since
the function is convex, Gradient Descent (refer to the previous lecture) can
be used to find the optimal weights
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Recap: the Gradient

It may be more convenient to work with vector notation.

The gradient is a vector of all partial derivatives.

For a function                                 , the gradient is
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Single-layer perceptron

where:
• is the dot product of the weight vector w 

and the feature vector         for instance i , i.e.

• b is the bias term

Single-layer perceptron

ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term
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ŷ
(i) =

(
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x
(i) for the instance i ,

Pn
j=1 wjx

(i)
j ,

and b is the bias term

E. Kochmar DSPNP: Lecture 3 13 November 15 / 28

Single-layer perceptron

ŷ
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Single-layer perceptron training
Initialisation: Initialise the weights                                 and the bias term               to some value (e.g., 

0 or some other small value)

Single-layer perceptron

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ
(i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n )

3 Update for the weights at time (t + 1) for instance i and each

feature 0  j  n: wj(t + 1) = wj(t) + r(y (i) � ŷ
(i))x (i)j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold �, or after a predefined number of iterations t  T .
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ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n )

3 Update for the weights at time (t + 1) for instance i and each

feature 0  j  n: wj(t +1) = wj(t) + r(y (i) � ŷ
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ŷ
(i)(t) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n )

3 Update for the weights at time (t + 1) for instance i and each

feature 0  j  n: wj(t +1) = wj(t) + r(y (i) � ŷ
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Notes on single-layer perceptron

• If the data is linearly separable, the perceptron algorithm is guaranteed to converge

• If the data is not linearly separable, the perceptron will never be able to find a solution to 

separate the classes in the training data

• A single-layer perceptron is a simple linear classifier, often used to illustrate the simplest 

feedforward neural network.

• Multilayer perceptrons combine multiple layers and use non-linear activation functions, which 

makes them capable of classifying data that is not linearly separable (more on this in later 

lectures)
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Non-linearly separable data

Consider the following classic example of the XOR problem y = x1⊕ x2
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Non-linearly separable data
Actual (raw) data: two classes non-
linearly separable

Objective: transform the data using 
additional dimensions such that it becomes 
possible to separate the classes linearly
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Non-linearly separable data
Actual (raw) data: two classes non-
linearly separable

Objective: transform the data using 
additional dimensions such that it becomes 
possible to separate the classes linearly

Method: data transformations / feature maps that transform the data into higher dimensional 
space (e.g. kernel trick)
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Toy example
Suppose non-linearly separable 
classes 0 and 1 such that:
o x(0) = (0.5, 0.5) – blue dot
o x(1) = (-1, -1) – red dot

Consider using a square function:
o x(0) → x’ (0) = (0.25, 0.25)
o x(1) → x’ (1) = (1, 1)
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Kernel trick and feature maps

• With the new data representation, the instances of class 0 (blue) end up in the lower left 
corner, and the instances of class 1 (red) end up in the upper right corner

• Kernel trick and feature maps allow us to cast the original data into higher dimensional 
data: e.g., (x, y) → (x2, xy, y2)
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Performance measures: Accuracy

• Task: suppose you select a digit in the 
handwritten digit dataset (e.g., 5). You 
perform a binary classification task of 
detecting 5 vs ¬5 in a balanced dataset of 
10 digits

• Evaluation: the most straightforward way to 
evaluate the results is to calculate the 
proportion of correct predictions, i.e.:

Performance measures

Task: suppose you select a digit in the
handwritten digits dataset (e.g., 5), and
perform a binary classification task of detecting
5 vs. ¬5 in a balanced dataset of 10 digits

Evaluation: the most straightforward way to
evaluate is to calculate the proportion of
correct predictions:
ACC = num(ŷ==y)

num(ŷ==y)+num(ŷ !=y)

Results: suppose that you get an accuracy of
91%. Is this a good accuracy score?
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proportion of correct predictions, i.e.:

Performance measures

Task: suppose you select a digit in the
handwritten digits dataset (e.g., 5), and
perform a binary classification task of detecting
5 vs. ¬5 in a balanced dataset of 10 digits

Evaluation: the most straightforward way to
evaluate is to calculate the proportion of
correct predictions:
ACC = num(ŷ==y)

num(ŷ==y)+num(ŷ !=y)

Results: suppose that you get an accuracy of
91%. Is this a good accuracy score?
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Suppose you get an accuracy of 91%. Is this a good accuracy score?
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What accuracy score is missing

• Note that if the classifier always predicts ¬5 (i.e., essentially does nothing), on a 

balanced dataset with 10 digits its accuracy will be ACC=90%

• It is also unclear what exactly the classifier gets wrong
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What accuracy score is missing

• Note that if the classifier always predicts ¬5 (i.e., essentially does nothing), on a 

balanced dataset with 10 digits its accuracy will be ACC=90%

• It is also unclear what exactly the classifier gets wrong, e.g. all of the following 

classifiers get ACC=90%, yet their decisions (and errors) are very different:
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Confusion matrix
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Confusion matrix

• True negatives (TN) – actual instances of ¬5 correctly classified as ¬5 
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Confusion matrix

• True negatives (TN) – actual instances of ¬5 correctly classified as ¬5

• False negatives (FN) – actual instances of 5 missed by the classifier

• True positives (TP) – actual instances of 5 correctly classified as 5

• False positives (FP) – actual instances of ¬5 misclassified as 5 
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Performance measures

• Accuracy: proportion of correctly classified instances
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• Precision: “trustworthiness” of your classifier when it predicts class c
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Performance measures

• Accuracy: proportion of correctly classified instances

• Precision: “trustworthiness” of your classifier when it predicts class c

• Recall: “coverage” with respect to the class c

• F1-score: harmonic mean between precision and recall
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Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests?
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Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? → recall

o Detection of suspicious activity on a credit card? → recall

o Automated change of drug dosage for a hospital patient? → precision

o Detection of videos safe for kids? 
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Precision-recall trade-off
Most likely your classifier won’t show both perfect precision and recall:

o You can reach perfect precision by identifying a single instance of class c ⇒ low recall

o You can reach perfect recall by always predicting class c ⇒ low precision

Some tasks require higher recall and some higher precision, e.g.:

o Detection of a potentially cancerous case that needs further tests? → recall

o Detection of suspicious activity on a credit card? → recall

o Automated change of drug dosage for a hospital patient? → precision

o Detection of videos safe for kids? → precision
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Confidence thresholds and P-R curve

By changing your classifier’s 
confidence threshold you can change 
how conservative it should be in its 
decisions (the more conservative, the 
higher its precision and lower its recall)

You can plot precision and recall as 
functions of the threshold value
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Receiver Operating Characteristic (ROC)

• Specificity: 

• False positive rate (FPR) / fall-out / 

probability of false alarm =            

(1– specificity)

• True positive rate (TPR) / 

sensitivity / probability of detection = 

recall
• Area under the curve (AUC) –

close to 1.0 for the perfect classifier

Performance measures

Specificity = TN
TN+FP

False positive rate (FPR) / fall-out / probability of false alarm

= (1� specificity)

True positive rate (TPR) / sensitivity / probability of detection = recall

E. Kochmar DSPNP: Lecture 3 13 November 26 / 29



51/30

Multiclass classification

• So far, we have been looking into binary classification (distinguishing between exactly 

two classes)

• Some classifiers naturally allow for multiple classes, e.g. Naïve Bayes – simply output 

the most probable class

• Linear classifiers are strictly binary classifiers, so how can they handle multiple classes?
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Two strategies for linear classifiers 

• One-vs-all (OvA) or one-vs-rest (OvR):

• One-vs-one (OvO):

o Train n binary classifiers to detect one 
class each (e.g., 10 binary digit detectors)

o At test time, output the class with the 
highest score 

o Train binary class-vs-class 
classifiers (e.g., 45 binary digit-vs-digit 
classifiers)

o At test time, output the class that wins 
most of the time

Multi-class classification

Directly classified with some algorithms: e.g., Naive Bayes – simply output
the most probable class

Linear classifiers: one of two strategies:
1 one-vs-all (OvA) / one-vs-rest (OvR): n binary classifiers trained to

detect one class each (e.g. 10 binary digit detectors); output the class
with the highest score

2 one-vs-one (OvO): N(N�1)
2 binary class-vs-class classifiers (e.g. 45

binary digit-vs-digit classifiers); output class that wins most
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Error analysis for multiclass classification

Confusion matrix Confusion heatmap
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Practical 2
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Data

- Two datasets: iris flower dataset (150 samples, 3 classes, 4 features), and the hand-

written digits dataset (≈ 1.8K samples, 10 classes, 64 features)
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Your task: Learning objectives

- Learn about binary and multiclass classification in practice

- Investigate whether data is linearly separable, and what to do when it is not

- Apply 3 classifiers discussed in this lecture

- Focus on evaluation of the classifiers

- One dataset is used to illustrate the ML techniques; your task is to implement the above

steps for the other one
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Practical 2 Logistics

- Data and code for Practical 2 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical2)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the 
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline 
(Thursday 12 November, 4pm)

https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical2
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