3 Data Science (DJW)

A researcher has a dataset of \(n = 500 \) records, each record a pair \((x_i, y_i)\) where \(x_i \) is the predictor variable and \(y_i \in \mathbb{R} \) is the response variable. They trained two supervised learning algorithms, \(A \) and \(B \), to try to predict \(y_i \) given \(x_i \). Algorithm \(A \)'s prediction was closer in \(n_A = 260 \) cases, and \(B \)'s prediction was closer in \(n_B = 240 \) cases. They wish to know if there truly is any difference between the two, or if the result can be attributed to chance.

You advise the researcher that \(n_A \) should be modelled as a Bin\((n, \theta)\) random variable, with unknown parameter \(\theta \).

(a) Let \(\hat{\theta} \) be the maximum likelihood estimator for \(\theta \). Give an expression for \(\hat{\theta} \). [1 mark]

(b) Explain what is meant by “a 95% confidence interval for \(\hat{\theta} \)”. Give pseudocode to compute it. In your answer, you should explain whether a one-sided or a two-sided interval is more appropriate. [7 marks]

(c) Explain how to conduct a hypothesis test of the hypothesis “\(\theta = \frac{1}{2} \)”. Give pseudocode. In your answer, you should define \(p \)-value, and explain whether a one-sided or a two-sided test is more appropriate. [8 marks]

(d) A second researcher asks you if \(A \) is better than \(B \). Do you the same advice to this researcher as you gave in parts (b) and (c)? Explain why or why not. [4 marks]

[Bonus material: If the response variable we want to predict is discrete, then there are three possible outcomes for each case. Suppose \(A \)'s prediction was better in \(n_A = 70 \) cases, \(B \)'s prediction was better in \(n_B = 50 \) cases, and they were both equally good or bad in \(n_0 = 380 \) cases. We can model \((n_A, n_B, n_0)\) as drawn from a multinomial random variable with parameters \((\theta_A, \theta_B, 1 - \theta_A - \theta_B)\), and test the hypothesis “\(\theta_A = \theta_B \)”. A good choice of test statistic is \(n_A/(n_A + n_B) \). This test is discussed in Part IA/IB Machine Learning and Real World Data, though with the less powerful test statistic \(n_A + n_0/2 \).]