COMPUTER SCIENCE TRIPOS Part IB – mock – Paper 6

1 Foundations of Data Science (DJW)

(a) A 0/1 signal is being transmitted. The transmitted signal at timeslot $i \in \{1, \ldots, n\}$ is $x_i \in \{0, 1\}$, and we have been told that this signal starts at 0 and then flips to 1, i.e. there is a parameter $\theta \in \{1, \ldots, n-1\}$ such that

$$x_i = \begin{cases} 0 & \text{for } i \le \theta, \\ 1 & \text{for } i > \theta, \end{cases}$$

but the value of θ is unknown. The channel is noisy, and the received signal in timeslot i is

$$Y_i \sim x_i + \text{Normal}(0, \varepsilon^2)$$

where ε is known.

- (i) Given received signals (y_1, \ldots, y_n) , find an expression for the log likelihood, log $Pr(y_1, \ldots, y_n; \theta)$. [5 marks]
- (*ii*) Give pseudocode for finding the maximum likelihood estimator $\hat{\theta}$.

[3 marks]

- (b) The Gaussian Mixture Model with m components can be written as follows: first generate $K \in \{1, \ldots, m\}$, $\mathbb{P}(K = k) = p_k$, and then generate $X \sim \text{Normal}(\mu_K, \sigma_K^2)$. Here p_1, \ldots, p_m and μ_1, \ldots, μ_m and $\sigma_1, \ldots, \sigma_m$ are unknown parameters, with $p_k > 0$ and $\sigma_k > 0$ for all k, and $p_1 + \cdots + p_m = 1$. The number of components m is known.
 - (i) Give formulae for $\mathbb{P}(X \le x \mid K = k)$ and for $\mathbb{P}(X \le x)$. [3 marks]

You should leave your answers in terms of the cumulative distribution function for a Normal distribution, $\Phi_{\mu,\sigma}(x) = \mathbb{P}(\text{Normal}(\mu, \sigma^2) \leq x).$

- (*ii*) Calculate the density of X. [4 marks]
- (*iii*) Given a dataset (x_1, \ldots, x_n) , explain how to fit the unknown parameters using numerical optimization. [5 marks]