
Example sheet 4
Markov chains

Data Science—DJW—2020/2021

Question 1. For the Cambridge weather simulator, section 10.2 of lecture notes, show that

P(X3 = r |X0 = g) =
∑
x1,x2

Pgx1
Px1x2

Px2r.

Explain your reasoning carefully.

Question 2. Here is the state space diagram for a Markov chain. Find the stationary distribution.

a b

α

β

1− α 1− β

Question 3. For this Markov chain, draw the state space diagram, and give pseudocode to compute
the stationary distribution.

1 def rw():
2 MAX_STATE = 9
3 x = 0
4 while True:
5 yield x
6 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
7 x = min(MAX_STATE, max(0, x + d))

Question 4. Let Xn ∈ N be the number of infectious people on day n of an epidemic, and consider the
Markov chain model

Xn+1 = Xn + Poisson(rXn/d)− Bin(Xn, 1/d).

We would like to compute the probability that, starting from state X0 = x, the epidemic dies out i.e.
hits state 0. In order to solve this by computer, we’ll cut the state space down to {0, . . . , N}, for some
sufficiently large N , by amalgamating all the states with ≥ N infected and letting the transition from
state N back to itself have probability 1.
(a) Give pseudocode to compute the transition matrix. You should give your answer in terms of

binom.pmf and poisson.pmf, the likelihood functions for the two distributions in question.
(b) Give pseudocode to compute the probability that the epidemic dies out, starting from any initial

state x ∈ {0, . . . , N}. (For r = 1.1 and d = 14, for X0 = 50, the probability is 0.7%.)

Question 5. Here is the state space diagram for a Markov chain, with state space {0, 1, 2, . . . }. It is
parameterized by α and β, with 0 < α < β and α + β < 1. Let πn = (1− α/β)(α/β)n, n ≥ 0. Show that
π is a stationary distribution.

0 1 2 · · ·
α α α

ββ β

1− α

1− α− β 1− α− β

Question 6. [This question is about a handy trick called ‘detailed balance’ that can, if you’re lucky,
make it very easy to find the stationary distribution of a Markov chain. You’ll need it in Part II Machine
Learning and Bayesian Inference.]
(a) Consider a Markov chain with transition matrix P , and suppose π is a distribution that satisfies

πxPxy = πyPyx for all states x and y.

Such a distribution is said to be in detailed balance. Prove that π is a stationary distribution.

1

(b) We’re given a connected, undirected graph. Consider a random walk on the vertices of this graph,
that at each timestep follows one of the edges chosen at random, each edge from its current vertex
equally likely. Find the stationary distribution.

Question 7. Consider a moving object with noisy location readings. Let Xn be the location at timestep
n ≥ 0, and Yn the reading. Here’s the simulator.

1 def hmm():
2 MAX_STATE = 9
3 x = numpy.random.randint(low=0, high=MAX_STATE+1) # initial location X0

4 while True:
5 e = numpy.random.choice([−1,0,1])
6 y = min(MAX_STATE, max(0, x + e)) # noisy reading of location
7 yield y
8 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
9 x = min(MAX_STATE, max(0, x + d)) # new location at next timestep

We’d like to infer the location Xn, given readings y0, . . . , yn.
(a) Draw the causal diagram.
(b) Give justifications for the following three equations, which give an inductive solution. First the

base case,

Pr(x0 | y0) = const × Pr(x0)Pr(y0 | x0),

and next two equations for the induction step,

Pr(xn | h) =
∑
xn−1

Pr(xn−1 | h)Pr(xn | xn−1)

Pr(xn | h, yn) = const × Pr(xn | h)Pr(yn | xn).

In these two equations, h stands for (y0, . . . , yn−1), and we’ll assume we’ve already found Pr(xn−1|h).
(c) Give pseudocode for a function that takes as input a list of readings (y0, . . . , yn) and outputs the

probability vector [
π0, . . . , πMAX_STATE

]
, πx = P(Xn = x | y0, . . . , yn).

(d) If your code is given the input (3, 3, 4, 9), it should fail with a divide-by-zero error. Give an
interpretation of this failure.

[Note. In this exercise, the state space is {0, 1, . . . , MAX_STATE}, which is very small, so it’s practical to
compute the distributions exactly. When the state space is large, we need computational approximations.
You are encouraged to follow the notebook at https://github.com/damonjw/datasci/blob/master/
ex4.ipynb, in which you will be asked to implement a “particle filter” to solve this problem on a large
map.]

2

https://github.com/damonjw/datasci/blob/master/ex4.ipynb
https://github.com/damonjw/datasci/blob/master/ex4.ipynb

Hints and comments
Question 1. In section 10.3 we calculated P(X2 = r |X0 = g), using two tools: the memoryless property
of Markov chains, and ‘resetting the clock’. Use the same method here. Start by using the law of total
probability, conditioning on X1. Then condition on X2. (Or you can do X2 first, or you can do both
together.)
Question 2. The equations to solve are

πx =
∑
y

πyPyx for all x and
∑
x

πx = 1.

In section 11.1 we derived these, but for answering questions you should just remember them and apply
them. Also, in your aswer, you should mention irreducibility, as defined in the theorem in section 11.1.
You should end up with the answer

πa =
β

α+ β
πb =

α

α+ β
.

Question 3. First identify the state space, i.e. the set of possible values for x. Looking at the code,
we see that x can only ever be an integer in {0, 1, . . . , 9}, so this is the state space. Next, draw arrows
to indicate transitions between states. Make sure that at every node you draw, the probabilities on all
outgoing edges sum up to one. You don’t need to draw every state in your state space diagram: just
show typical states, and also edge cases, as in the diagram in section 11.

Your code should first of all create the transition matrix. Start with numpy.zeros((10,10)), and
then fill in the values according to your state space diagram. Then give the code from exercise 11.1.1
in lecture notes. For the exam you don’t need to remember the syntax, but you do need to be able to
describe it in enough detail for a first-year undergraduate to implement.
Question 4. This is a hitting probability question, just like example 10.3.2 from lecture notes. The only
tricky bit is working out the transition matrix. For the matrix

P(Xn+1 = j |Xn = i) = P(j = i+ I −R) = P(I = R+ j − i)

where I is the number of newly infected, and R is the number of recoveries. Use the law of total
probability, conditioning on R.

You should implement this in Python. Unless you implement it yourself, and do the sanity check that
the rows of your transition matrix sum to one, it’s very easy to make a mistake! For r = 1.1 and d = 14,
cutting the state space down to {0, . . . , 200} is sufficient.
Question 5. When a question asks “show that π is a stationary distribution”, you don’t have to set
about trying to solve the equations

πx =
∑
y

πyPyx for all x.

You just need to verify that the π you’re given does indeed solve these equations. For a simple state
space like the one in this question, for a given x, the transition probability Pyx is zero for most states y,
so it’s easy to verify. Write out one equation for π0, and then write out another equation for πx for a
generic x > 0.

You should also show that π is indeed a distribution! In this question, to show that
∑∞

n=0 πn = 1,
either remember the formula for a geometric series (

∑∞
n=0 ar

n = 1/(1 − r) for |r| < 1), or spot that πn

is the p.m.f. for a Geometric distribution and must necessarily sum to 1. (There are two flavours of the
Geometric distribution. Wikipedia lists both.)
Question 6. As for question 5, you don’t need to solve the stationarity equations, you just need to verify
that they are satisfied, in other words that πx =

∑
y πyPyx. Simply substitute in πy = πxPxy/Pyx, which

comes from detailed balance. (Then, adjust your reasoning to cope with pairs x, y where Pyx = 0.)
For the random walk: first write out the transition probability: Pxy = 0 if there’s no x ↔ y edge,

and Pxy = 1/nx otherwise, where nx is the number of edges incident at vertex x. In indicator notation,
Pxy = 1x↔y/nx. Then, see if you can spot a solution to the detailed balance equation.
Question 7. The causal diagram was discussed in section 10.1. It is

3

X0 X1 X2 · · ·

Y0 Y1 Y2

Part (b). Follow the strategy from section 10.4. The third equation takes some cleverness. Try a partial
expansion of the conditional probability, Pr(xn | h, yn) = Pr(xn, yn | h)/Pr(yn | h).

Part (c). Let π(n) be the probability vector at timestep n. Compute π(0) from the first equation. Then,
iteratively apply the next two equations, to compute π(n) from π(n−1). Your implementation should use
two matrices, Pij = P(Xn = j | Xn−1 = i) and Qxy = P(Yn = y | Xn = x). The first is the transition
matrix that we’re used to from Markov Chains, and the second is called the emission matrix.

4

Supplementary questions
These questions are not intended for supervision (unless your supervisor directs you otherwise).

Question 8. The code from question (d) can fail with a divide-by-zero error. This is undesirable in
production code! One way to fix the problem is to modify the Markov model to include a ‘random
teleport’—to express the idea ‘OK, our inference has gone wrong somewhere; let’s allow our location
estimate to reset itself’. We can achieve this mathematically with the following model: with probability 1−
ε generate the next state as per line 9, otherwise pick the next state uniformly from {0, 1, . . . , MAX_STATE}.
Modify your code from question (c) to reflect this new model, with ε = 0.01.

Alternatively, we could fix the problem by changing the model to express ‘OK, this reading is glitchy;
let’s allow the code to discard an impossible reading’. How might you change the Markov model to achieve
this?

Question 9. The Markov model for motion from question 3 is called a simple random walk (with
boundaries); it chooses a direction of travel independently at every timestep. This is not a good model
for human movement, since people tend to head in the same direction for a while before changing direction.
(a) Let Vn ∈ {−1, 0, 1} be a Markov chain: let Vn+1 = Vn with probability 0.9, and let Vn+1 be chosen

uniformly at random from {−1, 0, 1} with probability 0.1. Draw a state space diagram for this
Markov chain.

(b) Interpret Vn as the velocity of our moving object at timestep n, and let Xn+1 = max(0,min(9, Xn+
Vn)). Update your code from question 3 to reflect this model.

Question 10 (Google PageRank). Consider a directed acyclic graph representing the web, with one
vertex per webpage, and an edge v → w if page v links to page w. Consider a random web surfer who
goes from page to page according to the algorithm

1 d = 0.85
2 def next_page(v):
3 neighbours = list of pages w such that v → w
4 a = random.choice(['follow_link','teleport'], p=[d,1−d])
5 if a=='follow_link' and len(neighbours) > 0:
6 return random.choice(neighbours)
7 else:
8 V = list of all web pages
9 return random.choice(V)

This defines a Markov chain. Explain why the chain is irreducible. Show that the stationary distribution
π solves

πv =
1− d

|V |
+ d

∑
u:u→v

πu

|Γu|

where |V | is the total number of web pages in the graph, and |Γu| is the number of outgoing edges from
u.

Compute the stationary distribution for this random web surfer model, for the graph in lecture notes
Example 10.3.2. Repeat with d = 0.05. What do you expect as d → 0? What do you expect if d = 1?

The equation for πv defines a scaled version of PageRank, Google’s original method for ranking
websites.

Question 11 (Drift models). For a random model such as the epidemic in question 4, we can ap-
proximate it with a deterministic model (x0, x1, . . .) by simply taking the expectation:

xn+1 = E(Xn+1 |Xn = xn).

Write down a recurrence relation for xn, and solve it. Run the random simulator several times, each time
with initial state x0 = 100, and plot the outcomes. Also plot the solution to the deterministic model.
What do you notice?

Question 12 (Thompson sampling). In reinforcement learning, an agent typically has a choice be-
tween exploring possible moves versus exploiting the best moves that have been learnt so far. Here is a
concrete example:

A compulsive gambler has a choice of two machines to play. The first has probability θ1 of paying
out, the second has probability θ2, and all payouts are £10. The gambler doesn’t know the values of
θ1 and θ2, so treats them as unknown parameters, both with uniform prior distributions. The gambler
adopts the following strategy (known as Thompson sampling) for choosing which machine to play:
1. Find the posterior distribution of (Θ1,Θ2) given the number of wins and losses on each machine so

far;
2. Generate a single sample (θ1, θ2) from this distribution;
3. Play machine 1 if θ1 ≥ θ2, and play machine 2 otherwise;
4. Repeat.

After n plays, let w
(n)
1 be the number of wins on machine 1, ℓ(n)1 the number of losses, and w

(n)
2 and ℓ

(n)
2

likewise for machine 2.
(a) Find the posterior distribution of (Θ1,Θ2) given (w

(n)
1 , ℓ

(n)
1 , w

(n)
2 , ℓ

(n)
2).

(b) Let Xn = (w
(n)
1 , ℓ

(n)
1 , w

(n)
2 , ℓ

(n)
2). Explain why (X0, X1, . . .) is a Markov chain, and sketch the state

space diagram.
(c) Implement the Thompson sampling strategy, and simulate it for the case where the true values are

θ1 = 0.1 and θ2 = 0.05. Plot the posterior histograms for Θ1 and Θ2 after 1, 50, 100, 500, 1000
plays.

(d) Describe your findings. How does Thompson sampling resolve the explore/exploit tradeoff?

6

