Complexity Theory

Lecture 11

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1920/Complexity

Logarithmic Space Reductions

We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a *read-only* input tape and *write-only* output tape).

Note: We can compose \leq_L reductions. So,

if $A \leq_L B$ and $B \leq_L C$ then $A \leq_L C$

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if SAT $\leq_L A$ for some problem A in L then not only P = NP but also L = NP.

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .

There are problems that are complete for P with respect to *logarithmic space* reductions \leq_L . One example is CVP—the circuit value problem.

That is, for every language A in P,

 $A \leq_L CVP$

- If $CVP \in L$ then L = P.
- If $CVP \in NL$ then NL = P.

Circuits

A circuit is a directed graph G = (V, E), with $V = \{1, ..., n\}$ together with a labeling: $I : V \rightarrow \{\texttt{true}, \texttt{false}, \land, \lor, \neg\}$, satisfying:

- If there is an edge (i, j), then i < j;
- Every node in V has *indegree* at most 2.
- A node v has indegree 0 iff l(v) ∈ {true, false}; indegree 1 iff l(v) = ¬; indegree 2 iff l(v) ∈ {∨, ∧}

The value of the expression is given by the value at node n.

A circuit is a more compact way of representing a Boolean expression. Identical subexpressions need not be repeated.

CVP - the *circuit value problem* is, given a circuit, determine the value of the result node *n*.

CVP is solvable in polynomial time, by the algorithm which examines the nodes in increasing order, assigning a value true or false to each node.

Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete. For any language $A \in NL$, we have $A \leq_L Reachability$

L = NL if, and only if, Reachability $\in L$

Note: it is known that the reachability problem for *undirected* graphs is in L.

Provable Intractability

Our aim now is to show that there are languages (*or, equivalently, decision problems*) that we can prove are not in P.

This is done by showing that, for every *reasonable* function f, there is a language that is not in TIME(f).

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

Time Hierarchy Theorem

For any constructible function f, with $f(n) \ge n$, define the f-bounded halting language to be:

 $H_f = \{[M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$

where [M] is a description of M in some fixed encoding scheme. Then, we can show $H_f \in \mathsf{TIME}(f(n)^2)$ and $H_f \notin \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

Time Hierarchy Theorem

For any constructible function $f(n) \ge n$, TIME(f(n)) is properly contained in TIME $(f(2n + 1)^2)$.

Strong Hierarchy Theorems

For any constructible function $f(n) \ge n$, TIME(f(n)) is properly contained in TIME $(f(n)(\log f(n)))$.

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and $g \neq O(f)$, there is a language in SPACE(g(n)) that is not in SPACE(f(n)).

Similar results can be established for nondeterministic time and space classes.

- For each k, $TIME(n^k) \neq P$.
- $P \neq EXP$.
- $L \neq PSPACE$.
- Any language that is EXP-complete is not in P.
- There are no problems in P that are complete under linear time reductions.