Logarithmic Space Reductions

We write

\[A \leq_L B \]

if there is a reduction \(f \) of \(A \) to \(B \) that is computable by a deterministic Turing machine using \(O(\log n) \) workspace (with a read-only input tape and write-only output tape).

Note: We can compose \(\leq_L \) reductions. So,

if \(A \leq_L B \) and \(B \leq_L C \) then \(A \leq_L C \)
NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that \texttt{SAT} and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $\texttt{SAT} \leq_L A$ for some problem A in L then not only $P = NP$ but also $L = NP$.
P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P.

There are problems that are complete for P with respect to logarithmic space reductions \leq_L.
One example is CVP—the circuit value problem.

That is, for every language A in P,

$$A \leq_L CVP$$

- If $CVP \in L$ then $L = P$.
- If $CVP \in NL$ then $NL = P$.

Anuj Dawar Complexity Theory
Circuits

A circuit is a directed graph $G = (V, E)$, with $V = \{1, \ldots, n\}$ together with a labeling: $l : V \to \{\text{true}, \text{false}, \land, \lor, \neg\}$, satisfying:

- If there is an edge (i, j), then $i < j$;
- Every node in V has \textit{indegree} at most 2.
- A node v has
 - indegree 0 iff $l(v) \in \{\text{true}, \text{false}\}$;
 - indegree 1 iff $l(v) = \neg$;
 - indegree 2 iff $l(v) \in \{\lor, \land\}$

The value of the expression is given by the value at node n.
A circuit is a more compact way of representing a Boolean expression.

Identical subexpressions need not be repeated.

CVP - the *circuit value problem* is, given a circuit, determine the value of the result node n.

CVP is solvable in polynomial time, by the algorithm which examines the nodes in increasing order, assigning a value `true` or `false` to each node.
Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete. For any language $A \in NL$, we have $A \leq_L \text{Reachability}$

$L = NL$ if, and only if, Reachability $\in L$

Note: it is known that the reachability problem for undirected graphs is in L.

Anuj Dawar Complexity Theory
Our aim now is to show that there are languages (or, equivalently, decision problems) that we can prove are not in \(P \).

This is done by showing that, for every reasonable function \(f \), there is a language that is not in \(\text{TIME}(f) \).

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.
Time Hierarchy Theorem

For any constructible function f, with $f(n) \geq n$, define the f-bounded halting language to be:

$$H_f = \{[M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps}\}$$

where $[M]$ is a description of M in some fixed encoding scheme. Then, we can show $H_f \in \text{TIME}(f(n)^2)$ and $H_f \not\in \text{TIME}(f(\lfloor n/2 \rfloor))$.

Time Hierarchy Theorem
For any constructible function $f(n) \geq n$, $\text{TIME}(f(n))$ is properly contained in $\text{TIME}(f(2n + 1)^2)$.
Strong Hierarchy Theorems

For any constructible function \(f(n) \geq n \), \(\text{TIME}(f(n)) \) is properly contained in \(\text{TIME}(f(n)(\log f(n))) \).

Space Hierarchy Theorem
For any pair of constructible functions \(f \) and \(g \), with \(f = O(g) \) and \(g \neq O(f) \), there is a language in \(\text{SPACE}(g(n)) \) that is not in \(\text{SPACE}(f(n)) \).

Similar results can be established for nondeterministic time and space classes.
Consequences

• For each k, $\text{TIME}(n^k) \neq \text{P}$.

• $\text{P} \neq \text{EXP}$.

• $\text{L} \neq \text{PSPACE}$.

• Any language that is EXP-complete is not in P.

• There are no problems in P that are complete under linear time reductions.