CST 2021 Part IB
Computation Theory
Exercise Sheet

Exercise 1. Show that the following arithmetic functions are all register machine computable.
(a) First projection function p € IN?>~IN, where p(x,y) = x
(b) Constant function with value n € N, ¢ € N—IN, where c¢(x) £ n

x—y ify<x

(c) Truncated subtraction function, _ — _ € IN>-IN, where x —~ y £ _
0 ify >x

(d) Integer division function, _div_ € IN2-IN, where

xdivy 2 {;ntegerpart of x/y iz:g

(e) Integer remainder function, mod_ € IN>~IN, where x mody £ x ~ y(x divy)
(f) Exponentiation base 2, ¢ € N—~IN, where e(x) = 27,

greatest y such that 2 < x if x >0

(g) Logarithm base 2, log, € N-IN, where log,(x) = {0 y 0
if x =

Exercise 2. Let ¢, € IN—=IN denote the unary partial function from numbers to numbers
computed by the register machine with code e. Show that for any given register machine
computable unary partial function f € IN—IN, there are infinitely many numbers e such that
¢. = f. (Two partial functions are equal if they are equal as sets of ordered pairs; which is
equivalent to saying that for all numbers x € N, ¢.(x) is defined if and only if f(x) is, and
in that case they are equal numbers.)

Exercise 3. Consider the list of register machine instructions whose graphical representation
is shown below. Assuming that register Z holds 0 initially, describe what happens when the
code is executed (both in terms of the effect on registers A and S and whether the code halts
by jumping to the label EXIT or HALT).

O

START A S EXIT
ARl - Z~ —HALT
A* zZ s*

Exercise 4. Show that there is a register machine computable partial function f : N~IN
such that both {x € N | f(x)}} and {y € N | (3x € IN) f(x) = y} are register machine
undecidable.



Exercise 5. Suppose S; and S, are subsets of IN. Suppose f € IN—IN is register machine
computable function satisfying: for all x in IN, x is an element of S; if and only if f(x) is an
element of S;. Show that S; is register machine decidable if S, is.

Exercise 6. Show that the set of codes (e, ¢’) of pairs of numbers e and ¢’ satisfying ¢, = ¢
is undecidable.

Exercise 7. For the example Turing machine given on slide 64, give the register machine
program implementing (S, T, D) := 6(S, T), as described on slide 70. [Tedious!—maybe just
do a bit.]

Exercise 8. Show that the following functions are all primitive recursive.

(a) Exponentiation, exp € IN2-IN, where exp(x,y) = xV.

x—y ifx>y

(b) Truncated subtraction, minus € IN>~IN, where minus(x,y) = ]
0 ifx <y

£y —
(c) Conditional branch on zero, ifzero € IN3-IN, where ifzero(x, v, z) £ {y %f X 8
zZ x>

(d) Bounded summation: if f € N"*!-N is primitive recursive, then so is g € N"*!=IN
where
0 ifx=0
g(% %) = { f(%,0) ifx=1
f(x0)+---+f(X,x—1) ifx>1.

Exercise 9. Recall the definition of Ackermann’s function ack (slide 102). Sketch how to build
a register machine M that computes ack(x3, x2) in RO when started with x; in R1 and x; in
R2 and all other registers zero. [Hint: here’s one way; the next question steers you another
way to the computability of ack. Call a finite list L = [(x1,1,21), (2,2, 22), . ..] of triples of
numbers suitable if it satisfies

(i) if (0,y,z) € L,thenz =y +1
@) if (x+1,0,z) € L, then (x,1,z) € L
(iii) if (x+ 1,y +1,z) € L, then there is some u with (x +1,y,u) € L and (x,u,z) € L.

The idea is thatif (x,y,z) € Land L is suitable then z = ack(x,y) and L contains all the triples
(x',y,ack(x,y")) needed to calculate ack(x, y). Show how to code lists of triples of numbers
as numbers in such a way that we can (in principle, no need to do it explicitly!) build a
register machine that recognises whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x, y) by searching
for the code of a suitable list containing a triple with x and y in it’s first two components. ]

Exercise 10. For each n € IN, let g, be the function mapping mapping each y € IN to the
value ack(n, y) of Ackermann’s function at (1,y) € IN2.

(a) Show for all (1,y) € IN? that g,.1(y) = (g.)¥ (1), where h%)(z) is the result of k
repeated applications of the function / to initial argument z.



(b) Deduce that each g, is a primitive recursive function.
(c) Deduce that Ackermann’s function is total recursive.

Exercise 11. If you are still not fed up with Ackermann’s function ack € IN?>~IN, show that
the A-term ack = Ax.x (Afy.y f (f 1)) Succ represents ack (where Succ is as on slide 123).

Exercise 12. Let | be the A-term Ax. x. Show that nl =g | holds for every Church numeral 1.
Now consider

B2Afgx.gxl(f(gx))
Assuming the fact about normal order reduction mentioned on slide 115, show that if partial
functions f,g¢ € IN-IN are represented by closed A-terms F and G respectively, then their
composition (f o g)(x) = f(g(x)) is represented by B F G.



