Topic 6 – Applications

- Infrastructure Services (DNS)
 - Now with added security...
- Traditional Applications (web)
 - Now with added QUIC
- Multimedia Applications (SIP)
 - One day (more...)...
- P2P Networks
 - Every device serves

Client-server paradigm reminder

server:

- always-on host
- permanent IP address
- server farms for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Relationship Between Names&Addresses

- Addresses can change underneath
 - Move www.bbc.co.uk to 212.58.246.92
 - Humans/Apps should be unaffected
- Name could map to multiple IP addresses
 - www.bbc.co.uk to multiple replicas of the Web site
 - Enables
 - Load-balancing
 - Reducing latency by picking nearby servers
- Multiple names for the same address
 - E.g., aliases like www.bbc.co.uk and bbc.co.uk
 - Mnemonic stable name, and dynamic canonical name
 - Canonical name = actual name of host

Mapping from Names to Addresses

- Originally: per-host file /etc/hosts*
 - SRI (Menlo Park) kept master copy
 - Downloaded regularly
 - Flat namespace
- Single server not resilient, doesn't scale
 - Adopted a distributed hierarchical system
- Two intertwined hierarchies:
 - Infrastructure: hierarchy of DNS servers
 - Naming structure: www.bbc.co.uk

^{*}C:\Windows\System32\drivers\etc\hosts for recent windows

Domain Name System (DNS)

- Top of hierarchy: Root
 - Location hardwired into other servers
- Next Level: Top-level domain (TLD) servers
 - .com, .edu, etc.
 - uk, .au, .to, etc.
 - Managed professionally
- Bottom Level: Authoritative DNS servers
 - Actually do the mapping
 - Can be maintained locally or by a service provider

Distributed Hierarchical Database

DNS Root

- Located in Virginia, USA
- How do we make the root scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Does this scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Replication via any-casting (localized routing for addresses)

Using DNS

- Two components
 - Local DNS servers
 - Resolver software on hosts
- Local DNS server ("default name server")
 - Usually near the endhosts that use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn server via DHCP
- Client application
 - Extract server name (e.g., from the URL)
 - Do gethostbyname() to trigger resolver code

How Does Resolution Happen?

(Iterative example)

Host at cl.cam.ac.uk
wants IP address for
www.stanford.edu

local DNS server dns.cam.ac.uk

iterated query:

Host enquiry is delegated to local DNS server

- Consider transactions 2 – 7 only
- contacted server replies with name of next server to contact
- "I don't know this name, requesting host but ask this server"

root DNS server

www.stanford.

DNS name resolution recursive example

recursive query:

 puts burden of name resolution on contacted name server

heavy load?

Recursive and Iterative Queries - Hybrid case

Recursive query

- Ask server to get answer for you
- E.g., requests 1,2and responses9,10

Iterative query

- Ask server who to ask next
- E.g., all otherrequest-response pairs

DNS Caching

- Performing all these queries takes time
 - And all this before actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can greatly reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.bbc.co.uk) visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes cached entry after TTL expires

Negative Caching

- Remember things that don't work
 - Misspellings like bbcc.co.uk and www.bbc.com.uk
 - These can take a long time to fail the first time
 - Good to remember that they don't work
 - ... so the failure takes less time the next time around

- But: negative caching is optional
 - And not widely implemented

Reliability

- DNS servers are replicated (primary/secondary)
 - Name service available if at least one replica is up
 - Queries can be load-balanced between replicas
- Usually, UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Spec supports TCP too, but not always implemented
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Same identifier for all queries
 - Don't care which server responds

Invalid queries categories

From https://www.caida.org/publications/presentations/2008/wide castro root servers/wide castro root servers.pdf

- Unused query class:
 - Any class not in IN, CHAOS, HESIOD, NONE or ANY
- A-for-A: A-type query for a name is already a IPv4 Address
 - <IN, A, 192.16.3.0>
- Invalid TLD: a query for a name with an invalid TLD
 - <IN, MX, localhost.lan>
- Non-printable characters:
 - IN, A, www.ra^B.us.>
- Queries with '_':
 - <IN, SRV, _ldap._tcp.dc._msdcs.SK0530-K32-1.>
- RFC 1918 PTR:
 - <IN, PTR, 171.144.144.10.in-addr.arpa.>
- Identical queries:
 - a query with the same class, type, name and id (during the whole period)
- Repeated queries:
 - a query with the same class, type and name
- Referral-not-cached:
 - a query seen with a referral previously given.

Invalid TLD

From https://www.caida.org/publications/presentations/2008/wide castro root servers/wide castro root servers.pdf

- Queries for invalid TLD represent 22% of the total traffic at the roots
 - 20.6% during DITL 2007
- Top 10 invalid TLD represent 10.5% of the total traffic
- RFC 2606 reserves some TLD to avoid future conflicts
- We propose:
 - Include some of these TLD (local, lan, home, localdomain) to RFC 2606
 - Encourage cache implementations to answer queries for RFC 2606 TLDs locally (with data or error)

TLD	Percentage of total queries	
	2007	2008
local	5.018	5.098
belkin	0.436	0.781
localhost	2.205	0.710
lan	0.509	0.679
home	0.321	0.651
invalid	0.602	0.623
domain	0.778	0.550
localdomain	0.318	0.332
wpad	0.183	0.232
corp	0.150	0.231

awm22: at least WORKGROUP is no longer here!

It was the top in valid TLD for years...

Data flow through the DNS Where are the vulnerable points?

DNS and Security

- No way to verify answers
 - Opens up DNS to many potential attacks
 - DNSSEC fixes this
- Most obvious vulnerability: recursive resolution
 - Using recursive resolution, host must trust DNS server
 - When at Starbucks, server is under their control
 - And can return whatever values it wants
- More subtle attack: Cache poisoning
 - Those "additional" records can be anything!

DNSSEC protects all these end-to-end

- provides message authentication and integrity verification through cryptographic signatures
 - You know who provided the signature
 - No modifications between signing and validation
- It does not provide authorization
- It does not provide confidentiality
- It does not provide protection against DDOS

DNSSEC in practice

Scaling the key signing and key distribution
 Solution: Using the DNS to Distribute Keys

- Distributing keys through DNS hierarchy:
 - Use one trusted key to establish authenticity of other keys
 - Building chains of trust from the root down
 - Parents need to sign the keys of their children
- Only the root key needed in ideal world
 - Parents always delegate security to child

Why is the web so successful?

- What do the web, youtube, facebook, twitter, instagram, have in common?
 - The ability to self-publish
- Self-publishing that is easy, independent, free
- No interest in collaborative and idealistic endeavor
 - People aren't looking for Nirvana (or even Xanadu)
 - People also aren't looking for technical perfection
- Want to make their mark, and find something neat
 - Two sides of the same coin, creates synergy
 - "Performance" more important than dialogue....

Web Components

- Infrastructure:
 - Clients
 - Servers
 - Proxies
- Content:
 - Individual objects (files, etc.)
 - Web sites (coherent collection of objects)
- Implementation
 - HTML: formatting content
 - URL: naming content
 - HTTP: protocol for exchanging content Any content not just HTML!

HTML: HyperText Markup Language

- A Web page has:
 - Base HTML file
 - Referenced objects (e.g., images)

- HTML has several functions:
 - Format text
 - Reference images
 - Embed hyperlinks (HREF)

URL Syntax

protocol://hostname[:port]/directorypath/resource

protocol	http, ftp, https, smtp, rtsp, etc.
hostname	DNS name, IP address
port	Defaults to protocol's standard port e.g. http: 80 https: 443
directory path	Hierarchical, reflecting file system
resource	Identifies the desired resource
	Can also extend to program executions: http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4 0B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_289 17_3552_1289957100&Search=&Nhead=f&YY=31454∨ down&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

- Request-response protocol
- Reliance on a global namespace
- Resource metadata
- Stateless
- ASCII format (ok this changed....)

\$ telnet www.cl.cam.ac.uk 80 GET /win HTTP/1.0

<black line, i.e., CRLF>

Steps in HTTP Request

- HTTP Client initiates TCP connection to server
 - SYN
 - SYNACK
 - ACK
- Client sends HTTP request to server
 - Can be piggybacked on TCP's ACK
- HTTP Server responds to request
- Client receives the request, terminates connection
- TCP connection termination exchange

How many RTTs for a single request?

Client-Server Communication

- two types of HTTP messages: request, response
- HTTP request message: (GET POST HEAD)

Different Forms of Server Response

- Return a file
 - URL matches a file (e.g., /www/index.html)
 - Server returns file as the response
 - Server generates appropriate response header

- Generate response dynamically
 - URL triggers a program on the server
 - Server runs program and sends output to client

Return meta-data with no body

HTTP Resource Meta-Data

- Meta-data
 - Info about a resource, stored as a separate entity
- Examples:
 - Size of resource, last modification time, type of content
- Usage example: Conditional GET Request
 - Client requests object "If-modified-since"
 - If unchanged, "HTTP/1.1 304 Not Modified"
 - No body in the server's response, only a header

HTTP is Stateless

- Each request-response treated independently
 - Servers not required to retain state
- Good: Improves scalability on the server-side
 - Failure handling is easier
 - Can handle higher rate of requests
 - Order of requests doesn't matter
- Bad: Some applications need persistent state
 - Need to uniquely identify user or store temporary info
 - e.g., Shopping cart, user profiles, usage tracking, ...

State in a Stateless Protocol:

Cookies

- *Client-side* state maintenance
 - Client stores small⁽²⁾ state on behalf of server
 - Client sends state in future requests to the server
- Can provide authentication

HTTP Performance

- Most Web pages have multiple objects
 - e.g., HTML file and a bunch of embedded images

- How do you retrieve those objects (naively)?
 - One item at a time
- Put stuff in the optimal place?
 - Where is that precisely?
 - Enter the Web cache and the CDN

Fetch HTTP Items: Stop & Wait

Improving HTTP Performance:

Concurrent Requests & Responses

- Use multiple connections in parallel
- Does not necessarily maintain order of responses

- Client = 🙂
- Server = 🙂
- Network = Why?

Pipelined Requests & Responses

- Batch requests and responses
 - Reduce connection overhead
 - Multiple requests sent in a single batch
 - Maintains order of responses
 - Item 1 always arrives before item 2
- How is this different from concurrent requests/responses?
 - Single TCP connection

Persistent Connections

- Enables multiple transfers per connection
 - Maintain TCP connection across multiple requests
 - Including transfers subsequent to current page
 - Client or server can tear down connection
- Performance advantages:
 - Avoid overhead of connection set-up and tear-down
 - Allow TCP to learn more accurate RTT estimate
 - Allow TCP congestion window to increase
 - i.e., leverage previously discovered bandwidth
- Default in HTTP/1.1

HTTP evolution

- 1.0 one object per TCP: simple but slow
- Parallel connections multiple TCP, one object each: wastes b/w, may be svr limited, out of order
- 1.1 pipelining aggregate retrieval time: ordered, multiple objects sharing single TCP
- 1.1 persistent aggregate TCP overhead: lower overhead in time, increase overhead at ends (e.g., when should/do you close the connection?)

Scorecard: Getting n Small Objects

Time dominated by latency

- One-at-a-time: ~2n RTT
- Persistent: ~ (n+1)RTT
- M concurrent: ~2[n/m] RTT
- Pipelined: ~2 RTT
- Pipelined/Persistent: ~2 RTT first time, RTT later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

- One-at-a-time: ~ nF/B
- M concurrent: ~ [n/m] F/B
 - assuming shared with large population of users
- Pipelined and/or persistent: ~ nF/B
 - The only thing that helps is getting more bandwidth..

Caching

- Many clients transfer the same information
 - Generates redundant server and network load
 - Clients experience unnecessary latency

Caching: How

- Modifier to GET requests:
 - If-modified-since returns "not modified" if resource not modified since specified time
- Response header:
 - Expires how long it's safe to cache the resource
 - No-cache ignore all caches; always get resource directly from server

Caching: Why

- Motive for placing content closer to client:
 - User gets better response time
 - Content providers get happier users
 - Time is money, really!
 - Network gets reduced load
- Why does caching work?
 - Exploits locality of reference
- How well does caching work?
 - Very well, up to a limit
 - Large overlap in content
 - But many unique requests

Caching on the Client

Example: Conditional GET Request

Return resource only if it has changed at the server

- Save server resources!

```
GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT
<CRLF>
```

- How?
 - Client specifies "if-modified-since" time in request
 - Server compares this against "last modified" time of desired resource
 - Server returns "304 Not Modified" if resource has not changed
 - or a "200 OK" with the latest version otherwise

Caching with Reverse Proxies

Cache documents close to server

- → decrease server load
- Typically done by content providers

Caching with Forward Proxies

Cache documents close to clients

- > reduce network traffic and decrease latency
- Typically done by ISPs or corporate LANs

Caching w/ Content Distribution Networks

- Integrate forward and reverse caching functionality
 - One overlay network (usually) administered by one entity
 - *e.g.,* Akamai
- Provide document caching
 - Pull: Direct result of clients' requests
 - Push: Expectation of high access rate
- Also do some processing
 - Handle dynamic web pages
 - Transcoding
 - Maybe do some security function watermark IP

Improving HTTP Performance: Caching with CDNs (cont.)

CDN Example – Akamai

- Akamai creates new domain names for each client content provider.
 - e.g., a128.g.akamai.net
- The CDN's DNS servers are authoritative for the new domains
- The client content provider modifies its content so that embedded URLs reference the new domains.
 - "Akamaize" content
 - e.g.: http://www.bbc.co.uk/popular-image.jpg becomes http://a128.g.akamai.net/popular-image.jpg
- Requests now sent to CDN's infrastructure...

Hosting: Multiple Sites Per Machine

- Multiple Web sites on a single machine
 - Hosting company runs the Web server on behalf of multiple sites (e.g., www.foo.com and www.bar.com)
- Problem: GET /index.html
 - www.foo.com/index.html Or www.bar.com/index.html?
- Solutions:
 - Multiple server processes on the same machine
 - Have a separate IP address (or port) for each server
 - Include site name in HTTP request
 - Single Web server process with a single IP address
 - Client includes "Host" header (e.g., ноst: www.foo.com)
 - Required header with HTTP/1.1

Hosting: Multiple Machines Per Site

- Replicate popular Web site across many machines
 - Helps to handle the load
 - Places content closer to clients

- Helps when content isn't cacheable
- Problem: Want to direct client to particular replica
 - Balance load across server replicas
 - Pair clients with nearby servers

Multi-Hosting at Single Location

- Single IP address, multiple machines
 - Run multiple machines behind a single IP address

Multi-Hosting at Several Locations

- Multiple addresses, multiple machines
 - Same name but different addresses for all of the replicas

CDN examples round-up

CDN using DNS
 DNS has information on loading/distribution/location

 CDN using anycast same address from DNS name but local routes

CDN based on rewriting HTML URLs
 (akami example just covered – akami uses DNS too)

SPDY (speedy) and its moral successor HTTP/2

- Binary protocol
 - More efficient to parse
 - More compact on the wire
 - Much less error prone as compared
 - to textual protocols

SPDY (speedy) a

Binary protocc

Multiplexing

Interleaved

SPDY (speedy) and its moral successor HTTP/2

- Binary protocol
- Multiplexing
- Priority control over Frames
- Header Compression
- Server Push
 - Proactively push stuff to client that it will need

- Server Push
 - Proactively push stuff to client that it will need

SPDY (speedy) and its moral successor HTTP/2

- Binary protocol
- Multiplexing
- Priority control over Frames
- Header Compression
- Server Push

SPDY

- SPDY + HTTP/2: One single TCP connection instead of multiple
- Downside: Head of line blocking
- In TCP, packets need to be processed in

Add QUIC and stir... Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with TCP's reliability

- Very hard to make changes to TCP
- Faster to implement new protocol on top of UDP
- Roll out features in TCP if they prove theory QUIC:
- Reliable transport over UDP (seriously)
- Uses FEC
- Default crypto
- Restartable connections

3-Way Handshake

UDP

- Fire and forget
 - Less time spent to validate packets
 - Downside no reliability,
 this has to be built on top of UDP

QUIC

- UDP does NOT depend on order of arriving packets
- Lost packets will only impact an individual resource,
 e.g., CSS or JS file.
- QUIC is combining best parts of HTTP/2 over UDP:
 - Multiplexing on top of non-blocking transport protocol

QUIC – more than just UDP

 QUIC outshines TCP under poor network conditions, shaving a full second off the Google Search page load time for the slowest 1% of connections.

 These benefits are even more apparent for video services like YouTube. Users report 30% fewer rebuffers when watching videos over QUIC.

Why QUIC over UDP and not a new proto

- IP proto value for new transport layer
- Change the protocol risk the wraith of
 - Legacy code
 - Firewalls
 - Load-balancer
 - NATs (the high-priest of middlebox)

Same problem faces any significant TCP change

SIP – Session Initiation Protocol

Session?

Anyone smell an OSI / ISO standards document burning?

SIP - VoIP

Establishing communication through SIP proxies.

SIP?

- SIP bringing the fun/complexity of telephony to the Internet
 - User location
 - User availability
 - User capabilities
 - -Session setup
 - Session management
 - (e.g. "call forwarding")

H.323 – ITU

- Why have one standard when there are at least two....
- The full H.323 is hundreds of pages
 - The protocol is known for its complexity an ITU hallmark
- SIP is not much better
 - IETF grew up and became the ITU....

Multimedia Applications

Message flow for a basic SIP session

The (still?) missing piece: Resource Allocation for Multimedia Applications

I can 'differentiate' VoIP from data but...
I can only control data going into the Internet

Multimedia Applications Resource Allocation for Multimedia Applications

Admission control using session control protocol.

Resource Allocation for Multimedia Applications

So where does it happen?

Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?

Phone company **controls** the multiplexing on the line and throughout their own network too..... everywhere else is best if for

Every host is a server: Peer-2-Peer

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

Three topics:

- File distribution
- Searching for information
- Case Study: Skype

File Distribution: Server-Client vs P2P

<u>Question</u>: How much time to distribute file from one server to *N* peers?

File distribution time: server-client

- server sequentially sends N copies:
 - $-NF/u_s$ time
- client i takes F/d_i
 time to download


```
Time to distribute F to N clients using = d_{cs} = max \{ NF/u_s, F/min(d_i) \} client/server approach
```

increases linearly in N (for large N)

File distribution time: P2P

- server must send one copy: F/u_s time
- client i takes F/d_i time to download
- NF bits must be downloaded (aggregate)
 - r fastest possible upload rate: $u_s + \sum u_i$

$$d_{P2P} = \max \left\{ F/u_s, F/\min(d_i), NF/(u_s + \sum_i u_i) \right\}$$

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

File distribution: BitTorrent*

*rather old BitTorrent

r P2P file distribution

- peer joining torrent:
 - has no chunks, but will accumulate them over time
 - registers with tracker to get list of peers, connects to subset of peers ("neighbors")
- while downloading, peer uploads chunks to other peers.
- peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistically) remain

BitTorrent (2)

Pulling Chunks

- at any given time, different peers have different subsets of file chunks
- periodically, a peer (Alice)
 asks each neighbor for list
 of chunks that they have.
- Alice sends requests for her missing chunks
 - rarest first

Sending Chunks: tit-for-tat

- r Alice sends chunks to four neighbors currently sending her chunks at the highest rate
 - re-evaluate top 4 every 10 secs
- r every 30 secs: randomly select another peer, starts sending chunks
 - newly chosen peer may join top 4
 - "optimistically unchoke"

BitTorrent: Tit-for-tat

- (1) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Distributed Hash Table (DHT)

- DHT = distributed P2P database
- Database has (key, value) pairs;
 - key: ss number; value: human name
 - key: content type; value: IP address
- Peers query DB with key
 - DB returns values that match the key
- Peers can also insert (key, value) peers

Distributed Hash Table (DHT)

- DHT = distributed P2P database
- Database has (key, value) pairs;
 - key: ss number; value: human name
 - key: content type; value: IP address
- Peers query DB with key
 - DB returns values that match the key
- Peers can also insert (key, value) peers

DHT Identifiers

- Assign integer identifier to each peer in range [0,2ⁿ-1].
 - Each identifier can be represented by n bits.
- Require each key to be an integer in same range.
- To get integer keys, hash original key.
 - eg, key = h("Game of Thrones season 29")
 - This is why they call it a distributed "hash" table

How to assign keys to peers?

- Central issue:
 - Assigning (key, value) pairs to peers.
- Rule: assign key to the peer that has the closest ID.
- Convention in lecture: closest is the immediate successor of the key.
- Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 - key = 13, then successor peer = 14
 - key = 15, then successor peer = 1

Circular DHT (1)

- Each peer *only* aware of immediate successor and predecessor.
- "Overlay network" logical structure

Circle DHT (2)

O(N) messages on avg to resolve query, when there are N peers

Define <u>closest</u> as closest successor

Circular DHT with Shortcuts

- Each peer keeps track of IP addresses of predecessor, successor, short cuts.
- Reduced from 6 to 2 messages.
- Possible to design shortcuts so O(log N) neighbors, O(log N) messages in query

Peer Churn

- •To handle peer churn, require each peer to know the IP address of its two successors.
- Each peer periodically pings its two successors to see if they are still alive.

- Peer 5 abruptly leaves
- Peer 4 detects; makes 8 its immediate successor; asks 8 who its immediate successor is; makes 8's immediate successor its second successor.
- What if peer 13 wants to join?

P2P Case study: Skype (pre-Microsoft)

- inherently P2P: pairs of users communicate.
- proprietary applicationlayer protocol (inferred via reverse engineering)
- hierarchical overlay with SNs
- Index maps usernames to IP addresses; distributed over SNs

Peers as relays

- Problem when both Alice and Bob are behind "NATs".
 - NAT prevents an outside peer from initiating a call to insider peer

Solution:

- Using Alice's and Bob's SNs,
 Relay is chosen
- Each peer initiates session with relay.
- Peers can now communicate through NATs via relay

Summary.

- Applications have protocols too
- We covered examples from
 - Traditional Applications (web)
 - Scaling and Speeding the web (CDN/Cache tricks)
- Infrastructure Services (DNS)
 - Cache and Hierarchy
- Multimedia Applications (SIP)
 - Extremely hard to do better than worst-effort
- P2P Network examples