
Co
m

pu
te

r N
et

w
or

ki
ng

Sl
id

e
Se

t 3
An

dr
ew

 W
. M

oo
re

An
dr
ew

.M
oo

re
@
cl.
ca
m
.a
c.u

k

11

Topic 5 1

Topic 5 – Transport
Our goals:
• understand principles

behind transport layer
services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control
– congestion control
– buffers

• learn about transport layer
protocols in the Internet:
– UDP: connectionless transport
– TCP: connection-oriented

transport
– TCP congestion control
– TCP flow control

2

2

Transport Layer
• Commonly a layer at end-hosts, between the

application and network layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B
Router

3

3

Why a transport layer?

• IP packets are addressed to a host but end-to-

end communication is between application/

processes/tasks at hosts

– Need a way to decide which packets go to which
applications (more multiplexing)

4

4

Why a transport layer?

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host B 5

5

Why a transport layer?

Transport
Network
Datalink
Physical

Application

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m

edia

ftp

brow
ser

IP

many application
processes

Drivers
+NIC

Operating
System

6

6

Why a transport layer?

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m

edia

ftp

brow
ser

IP

many application
processes

Datalink
Physical

telnet

ftp

IP

H
TTP

server

Transport Transport

Communication
between hosts

(128.4.5.6 !"162.99.7.56)

Communication
between processes

at hosts

7

7

Topic 5 2

Why a transport layer?

• IP packets are addressed to a host but end-to-end
communication is between application processes
at hosts
– Need a way to decide which packets go to which

applications (mux/demux)

• IP provides a weak service model (best-effort)
– Packets can be corrupted, delayed, dropped,

reordered, duplicated
– No guidance on how much traffic to send and when
– Dealing with this is tedious for application developers

8

8

Role of the Transport Layer

• Communication between application processes

– Multiplexing between application processes
– Implemented using ports

9

9

Role of the Transport Layer

• Communication between application processes

• Provide common end-to-end services for app

layer [optional]

– Reliable, in-order data delivery
– Paced data delivery: flow and congestion-control

• too fast may overwhelm the network
• too slow is not efficient

(Just Like Computer Networking Lectures….)
10

10

Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app

layer [optional]

• TCP and UDP are the common transport

protocols

– also SCTP, MTCP, SST, RDP, DCCP, …

11

11

Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app

layer [optional]

• TCP and UDP are the common transport

protocols

• UDP is a minimalist, no-frills transport protocol

– only provides mux/demux capabilities

12

12

Role of the Transport Layer

• Communication between processes
• Provide common end-to-end services for app layer

[optional]
• TCP and UDP are the common transport protocols
• UDP is a minimalist, no-frills transport protocol
• TCP is the totus porcus protocol

– offers apps a reliable, in-order, byte-stream abstraction
– with congestion control
– but no performance (delay, bandwidth, ...) guarantees

13

13

Topic 5 3

Role of the Transport Layer

• Communication between processes

– mux/demux from and to application processes
– implemented using ports

14

14

Context: Applications and Sockets

• Socket: software abstraction by which an application process
exchanges network messages with the (transport layer in the)
operating system
– socketID = socket(…, socket.TYPE)
– socketID.sendto(message, …)
– socketID.recvfrom(…)

• Two important types of sockets
– UDP socket: TYPE is SOCK_DGRAM
– TCP socket: TYPE is SOCK_STREAM

15

15

Ports

• Problem: deciding which app (socket) gets which packets

– Solution: port as a transport layer identifier
• 16 bit identifier

– OS stores mapping between sockets and ports
– a packet carries a source and destination port number in its

transport layer header

• For UDP ports (SOCK_DGRAM)
– OS stores (local port, local IP address) !" socket

• For TCP ports (SOCK_STREAM)
– OS stores (local port, local IP, remote port, remote IP) !" socket

16

16

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

IP Payload

17

17

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Payload

18

18

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

6 = TCP

17 = UDP
16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

header and Payload
TCP or
UDP

19

19

Topic 5 4

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

6 = TCP

17 = UDP
16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

16-bit Source Port 16-bit Destination Port

More transport header fields ….

header and Payload
TCP or
UDP

20

20

Recap: Multiplexing and Demultiplexing

• Host receives IP packets
– Each IP header has source and destination IP

address
– Each Transport Layer header has source and

destination port number

• Host uses IP addresses and port numbers to direct the
message to appropriate socket

21

21

More on Ports

• Separate 16-bit port address space for UDP and TCP

• “Well known” ports (0-1023): everyone agrees which
services run on these ports
– e.g., ssh:22, http:80, https:443
– helps client know server’s port

• Ephemeral ports (most 1024-65535): dynamically selected: as the
source port for a client process

22

22

UDP: User Datagram Protocol

• Lightweight communication between processes
– Avoid overhead and delays of ordered, reliable delivery

• UDP described in RFC 768 – (1980!)
– Destination IP address and port to support demultiplexing
– Optional error checking on the packet contents

• (checksum field of 0 means “don’t verify checksum”) not in IPv6!
• ((this idea of optional checksum is removed in IPv6))

SRC port DST port

checksum length

DATA 23

23

Why a transport layer?

• IP packets are addressed to a host but end-to-

end communication is between application

processes at hosts

– Need a way to decide which packets go to which
applications (mux/demux)

• IP provides a weak service model (best-effort)

– Packets can be corrupted, delayed, dropped,
reordered, duplicated

24

24

25

Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

In a perfect world, reliable
transport is easy

But the Internet default is best-effort

All the bad things best-effort can
do
a packet is corrupted (bit errors)

a packet is lost

a packet is delayed (why?)

packets are reordered (why?)

a packet is duplicated (why?)

25

Topic 5 5

26

Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

26

27

Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

rdt_rcv(
)

udt_rcv()

27

28

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called by rdt to
deliver data to upper

rdt_rcv()

udt_rcv()

udt_rcv(): called when packet
arrives on rcv-side of channel

28

29

Reliable data transfer: getting started

We’ll:
• incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
• consider only unidirectional data transfer

– but control info will flow on both directions!

• use finite state machines (FSM) to specify sender,
receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely

determined by next
event

event

actions

29

30

KR state machines – a note.

Beware
Kurose and Ross has a confusing/confused attitude to

state-machines.
I’ve attempted to normalise the representation.
UPSHOT: these slides have differing information to the

KR book (from which the RDT example is taken.)
in KR “actions taken” appear wide-ranging, my

interpretation is more specific/relevant.

State
name

State
name

Relevant event causing state transition

Relevant action taken on state transitionstate: when in this “state”
next state uniquely

determined by next
event event

actions

30

31

Rdt1.0: reliable transfer over a reliable channel

• underlying channel perfectly reliable
– no bit errors
– no loss of packets

• separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver read data from underlying channel

IDLE udt_send(packet)

rdt_send(data)

rdt_rcv(data)IDLE
udt_rcv(packet)

sender receiver

Event

Action

31

Topic 5 6

32

Rdt2.0: channel with bit errors

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells sender that

packet received is OK
– negative acknowledgements (NAKs): receiver explicitly tells sender

that packet had errors
– sender retransmits packet on receipt of NAK

• new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection
– receiver feedback: control msgs (ACK,NAK) receiver->sender

32

Dealing with Packet Corruption

Time
Sender Receiver

1

2

.

.

.
2

$

%

ack

nack

33

33

34

rdt2.0: FSM specification

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet) &&
corrupt(packet)

Waiting
for reply

IDLE

sender

receiver
rdt_send(data)

L

Note: the sender holds a copy
of the packet being sent until
the delivery is acknowledged.

34

35

rdt2.0: operation with no errors

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet) &&
corrupt(packet)

rdt_send(data)

35

36

rdt2.0: error scenario

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet) &&
corrupt(packet)

rdt_send(data)

36

37

rdt2.0 has a fatal flaw!

What happens if ACK/NAK
corrupted?

• sender doesn’t know what
happened at receiver!

• can’t just retransmit: possible
duplicate

Handling duplicates:
• sender retransmits current

packet if ACK/NAK garbled
• sender adds sequence number

to each packet
• receiver discards (doesn’t

deliver) duplicate packet

Sender sends one packet,
then waits for receiver
response

stop and wait

37

Topic 5 7

Dealing with Packet Corruption

Time
Sender Receiver

1

1

$

%
ack(1)

ack(1)

What if the ACK/NACK is corrupted?

Packet
#1 or #2?

2 P(2)

P(1)

P(1)

Data and ACK packets carry sequence numbers
38

This is
packet #1

38

39

rdt2.1: sender, handles garbled ACK/NAKs

IDLE

sequence=0
udt_send(packet)

rdt_send(data)

Waiting
For reply

udt_send(packet)

udt_rcv(reply) &&
(corrupt(reply) ||
isNAK(reply))

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
(corrupt(reply) ||
isNAK(reply))

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply)

IDLE
Waiting
for reply

L
L

39

udt_rcv(packet) && corrupt(packet)

40

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

udt_send(NAK)

receive(packet) &&
not corrupt(packet) &&
has_seq0(packet)

udt_rcv(packet) && not corrupt(packet)
&& has_seq1(packet)

udt_send(ACK)
rdt_rcv(data)

Wait for
1 from
below

udt_rcv(packet) && not corrupt(packet)
&& has_seq0(packet)

udt_send(ACK)
rdt_rcv(data)

udt_send(ACK)

receive(packet) &&
not corrupt(packet) &&
has_seq1(packet)

receive(packet) && corrupt(packet)

udt_send(ACK)

udt_send(NAK)

40

41

rdt2.1: discussion

Sender:
• seq # added to pkt
• two seq. #’s (0,1) will

suffice. Why?
• must check if received

ACK/NAK corrupted
• twice as many states

– state must “remember”
whether “current” pkt has a

0 or 1 sequence number

Receiver:
• must check if received

packet is duplicate
– state indicates whether 0 or 1

is expected pkt seq #

• note: receiver can not know
if its last ACK/NAK received
OK at sender

41

42

rdt2.2: a NAK-free protocol

• same functionality as rdt2.1, using ACKs only
• instead of NAK, receiver sends ACK for last pkt received OK

– receiver must explicitly include seq # of pkt being ACKed

• duplicate ACK at sender results in same action as NAK:
retransmit current pkt

42

43

rdt2.2: sender, receiver fragments

Wait for call
0 from
above

sequence=0
udt_send(packet)

rdt_send(data)

udt_send(packet)

rdt_rcv(reply) &&
(corrupt(reply) ||

isACK1(reply))

udt_rcv(reply)
&& not corrupt(reply)
&& isACK0(reply)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

receive(packet) && not corrupt(packet)
&& has_seq1(packet)

send(ACK1)
rdt_rcv(data)

udt_rcv(packet) &&
(corrupt(packet) ||

has_seq1(packet))

udt_send(ACK1)

receiver FSM
fragment

L

43

Topic 5 8

44

rdt3.0: channels with errors and loss

New assumption: underlying
channel can also lose
packets (data or ACKs)
– checksum, seq. #, ACKs,

retransmissions will be of
help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

• retransmits if no ACK received in
this time

• if pkt (or ACK) just delayed (not
lost):
– retransmission will be

duplicate, but use of seq. #’s
already handles this

– receiver must specify seq # of
pkt being ACKed

• requires countdown timer

44

udt_rcv(reply) &&
(corrupt(reply) ||
isACK(reply,1))

45

rdt3.0 sender

sequence=0
udt_send(packet)

rdt_send(data)

Wait
for

ACK0

IDLE
state 1

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply,0)

udt_rcv(packet) &&
(corrupt(packet) ||
isACK(reply,0))

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply,1)

L
L

udt_send(packet)
timeout

udt_send(packet)
timeout

udt_rcv(reply)

IDLE
state 0

Wait
for

ACK1

L
udt_rcv(reply)

L
L

L

45

Dealing with Packet Loss

Time
Sender Receiver

1

1

%

ack(1)

P(1)

P(1)

Timer-driven loss detection
Set timer when packet is sent; retransmit on timeout

Timeout

P(2)

46

Dealing with Packet Loss

Time
Sender Receiver

1

1

%

ack(1)

P(1)

P(1)
Timeout

P(2)

duplicate!

47

47

Dealing with Packet Loss

Time
Sender Receiver

1

.

.

.

1

ack(1)

P(1)

P(1)

Timer-driven retx. can lead to duplicates

Timeout

P(2)

duplicate!

ack(1)

48

49

Performance of rdt3.0

• rdt3.0 works, but performance stinks
• ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

m U sender: utilization – fraction of time sender busy sending

m 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
m network protocol limits use of physical resources!

U
sender = .008

30.008
= 0.00027

microsec
onds

L / R
RTT + L / R

=

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans

49

Topic 5 9

50

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender = .008

30.008
= 0.00027

microsec
onds

L / R
RTT + L / R

=

Inefficient if
t << RTT

50

51

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver

51

A Sliding Packet Window

• window = set of adjacent sequence numbers
– The size of the set is the window size; assume window size is n

• General idea: send up to n packets at a time
– Sender can send packets in its window
– Receiver can accept packets in its window
– Window of acceptable packets “slides” on successful

reception/acknowledgement

52

52

A Sliding Packet Window

• Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, …, A+n}

• Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,…, B+n}

n
B

Received and ACK’d

Acceptable but not
yet received

Cannot be received

n
A

Already ACK’d

Sent but not ACK’d

Cannot be sent
sequence number "

53

53

Acknowledgements w/ Sliding Window

• Two common options

– cumulative ACKs: ACK carries next in-order
sequence number that the receiver expects

54

54

Cumulative Acknowledgements (1)

• At receiver
n

B
Received and ACK’d

Acceptable but not
yet received

Cannot be received

After receiving B+1, B+2
nBnew= B+2

Receiver sends ACK(Bnew+1)
55

55

Topic 5 10

Cumulative Acknowledgements (2)

• At receiver
n

B
Received and ACK’d

Acceptable but not
yet received

Cannot be received

After receiving B+4, B+5
nB

Receiver sends ACK(B+1)
56

How do we
recover?

56

Go-Back-N (GBN)

• Sender transmits up to n unacknowledged packets

• Receiver only accepts packets in order
– discards out-of-order packets (i.e., packets other than B+1)

• Receiver uses cumulative acknowledgements
– i.e., sequence# in ACK = next expected in-order sequence#

• Sender sets timer for 1st outstanding ack (A+1)
• If timeout, retransmit A+1, … , A+n

57

57

Sliding Window with GBN

• Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, …, A+n}

• Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,…, B+n}

n
A

Already ACK’d

Sent but not ACK’d

Cannot be sent

n
B

Received and ACK’d

Acceptable but not
yet received

Cannot be received

sequence number "

58

58

GBN Example w/o Errors

Time

Window size = 3 packets

Sender Receiver

1{1}
2{1, 2}
3{1, 2, 3}

4{2, 3, 4}
5{3, 4, 5}

Sender Window Receiver Window

6{4, 5, 6}
.
.
.

.

.

.

59

59

GBN Example with Errors
Window size = 3 packets

Sender Receiver

1
2
3
4
5
6Timeout

Packet 4

4
5
6

60

60

GBN Example with Errors -
ALTERNATIVE

Window size = 3 packets

Sender Receiver

1
2
3
4

Timeout
Packet 2

2
3
4

61

61

Topic 5 11

62

GBN: sender extended FSM

Wait
udt_send(packet[base])
udt_send(packet[base+1])
…
udt_send(packet[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
udt_send(packet[nextseqnum])
nextseqnum++
}

else
refuse_data(data) Block?

base = getacknum(reply)+1

udt_rcv(reply) &&
notcorrupt(reply)

base=1
nextseqnum=1

udt_rcv(reply)
&& corrupt(reply)

L

L

62

63

GBN: receiver extended FSM

ACK-only: always send an ACK for correctly-received packet with
the highest in-order seq #
– may generate duplicate ACKs
– need only remember expectedseqnum

• out-of-order packet:
– discard (don’t buffer) -> no receiver buffering!
– Re-ACK packet with highest in-order seq #

Wait

udt_send(reply)

L

udt_rcv(packet)
&& notcurrupt(packet)
&& hasseqnum(rcvpkt,expectedseqnum)

rdt_rcv(data)
udt_send(ACK)
expectedseqnum++

expectedseqnum=1

L

63

Acknowledgements w/ Sliding Window

• Two common options
– cumulative ACKs: ACK carries next in-order sequence

number the receiver expects
– selective ACKs: ACK individually acknowledges

correctly received packets

• Selective ACKs offer more precise information but
require more complicated book-keeping

• Many variants that differ in implementation
details

64

64

Selective Repeat (SR)

• Sender: transmit up to n unacknowledged packets

• Assume packet k is lost, k+1 is not

• Receiver: indicates packet k+1 correctly received

• Sender: retransmit only packet k on timeout

• Efficient in retransmissions but complex book-keeping
– need a timer per packet

65

65

SR Example with Errors

Time

Sender Receiver

1
2
3

4
5
6

4

7

ACK=5

Window size = 3 packets{1}
{1, 2}

{1, 2, 3}
{2, 3, 4}
{3, 4, 5}
{4, 5, 6}

{4,5,6}

{7, 8, 9}

ACK=6

{4,5,6}

Timeout
Packet 4

ACK=4

66

66

Observations

• With sliding windows, it is possible to fully utilize a
link, provided the window size (n) is large enough.
Throughput is ~ (n/RTT)
– Stop & Wait is like n = 1.

• Sender has to buffer all unacknowledged packets,
because they may require retransmission

• Receiver may be able to accept out-of-order
packets, but only up to its buffer limits

• Implementation complexity depends on protocol
details (GBN vs. SR)

67

67

Topic 5 12

Recap: components of a solution

• Checksums (for error detection)
• Timers (for loss detection)
• Acknowledgments

– cumulative
– selective

• Sequence numbers (duplicates, windows)
• Sliding Windows (for efficiency)

• Reliability protocols use the above to decide
when and what to retransmit or acknowledge

68

68

What does TCP do?

Most of our previous tricks + a few differences

• Sequence numbers are byte offsets
• Sender and receiver maintain a sliding window
• Receiver sends cumulative acknowledgements (like GBN)
• Sender maintains a single retx. timer
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit : optimization that uses duplicate

ACKs to trigger early retx
• Introduces timeout estimation algorithms

69

71

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux
and demux

71

What does TCP do?

Many of our previous ideas, but some key

differences

• Checksum

73

73

74

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed
over header
and data

74

What does TCP do?

Many of our previous ideas, but some key

differences

• Checksum
• Sequence numbers are byte offsets

75

Topic 5 13

TCP: Segments and
Sequence Numbers

76

76

TCP “Stream of Bytes” Service…

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B

B
yte 80

B
yte 80

77

77

… Provided Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Host A

Host B

Byte 80

TCP Data

TCP Data
Byte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out

78

78

TCP Segment

• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes with Ethernet

• TCP packet
– IP packet with a TCP header and data inside
– TCP header ³ 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream
– MSS = MTU – (IP header) – (TCP header)

IP Hdr

IP Data

TCP HdrTCP Data (segment)

79

79

Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number
= 1st byte in segment =

ISN + k

k bytes

80

80

Sequence Numbers

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ACK sequence number
= next expected byte

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number
= 1st byte in segment =

ISN + k

k

81

81

Topic 5 14

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte
offset of data
carried in this
segment

82

82

Sequence Numbers

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

Host A

83

Sequence number
Acknowledgment

Data
Sequence number

Acknowledgment

Sequence number
= 1st byte in segment =

ISN + k

ACK sequence number
= next expected byte

= seqno + length(data)

Host A- > B
DATA

Host B - > A
ACK

83

TCP Sequences and ACKS

84

TCP is full duplex by default
• two independently flows of sequence numbers

Sequence acknowledgement is given in terms of BYTES
(not packets); the window is in terms of bytes.

number of packets = window size (bytes) / Segment Size

Servers and Clients are not Source and Destination

Piggybacking increases efficiency but many flows may
only have data moving in one direction

84

What does TCP do?

Most of our previous tricks, but a few differences

• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)

85

ACKing and Sequence Numbers

• Sender sends packet
– Data starts with sequence number X
– Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK
– If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)
– If highest in-order byte received is Y s.t. (Y+1) < X

• ACK acknowledges Y+1
• Even if this has been ACKed before

86

86

Normal Pattern

• Sender: seqno=X, length=B
• Receiver: ACK=X+B
• Sender: seqno=X+B, length=B
• Receiver: ACK=X+2B
• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field

87

87

Topic 5 15

88

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment
gives seqno just
beyond highest
seqno received in
order
(“What Byte

is Next”)

88

What does TCP do?

Most of our previous tricks, but a few differences

• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers can buffer out-of-sequence packets (like SR)

89

89

Loss with cumulative ACKs

• Sender sends packets with 100B and seqnos.:

– 100, 200, 300, 400, 500, 600, 700, 800, 900, …

• Assume the fifth packet (seqno 500) is lost,
but no others

• Stream of ACKs will be:

– 200, 300, 400, 500, 500, 500, 500,…

90

90

What does TCP do?

Most of our previous tricks, but a few differences

• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers may not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission

91

91

Loss with cumulative ACKs

• “Duplicate ACKs” are a sign of an isolated loss
– The lack of ACK progress means 500 hasn’t been delivered
– Stream of ACKs means some packets are being delivered

• Therefore, could trigger resend upon receiving k
duplicate ACKs

• TCP uses k=3

• But response to loss is trickier….

92

92

Loss with cumulative ACKs

• Two choices:

– Send missing packet and increase W by the
number of dup ACKs

– Send missing packet, and wait for ACK to increase
W

• Which should TCP do?

93

93

Topic 5 16

What does TCP do?

Most of our previous tricks, but a few differences

• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and

retransmits on timeout

94

94

Retransmission Timeout

• If the sender hasn’t received an ACK by

timeout, retransmit the first packet in the

window

• How do we pick a timeout value?

95

95

Timing Illustration

1

1

Timeout too long " inefficient

1

1

Timeout too short "
duplicate packets

RTT

Timeout

Timeout

RTT

96

96

Retransmission Timeout

• If haven’t received ack by timeout, retransmit

the first packet in the window

• How to set timeout?

– Too long: connection has low throughput
– Too short: retransmit packet that was just delayed

• Solution: make timeout proportional to RTT

• But how do we measure RTT?

97

97

RTT Estimation

• Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime− SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)× SampleRTT
0 <α ≤1

Es
tim
at
ed
RT
T

Time

SampleRTT

98

98

Exponential Averaging Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT

Assume RTT is constant " SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)

99

99

Topic 5 17

Problem: Ambiguous Measurements

• How do we differentiate between the real ACK, and ACK of
the retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

ACK
Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

100

100

Karn/Partridge Algorithm

• Measure SampleRTT only for original transmissions
– Once a segment has been retransmitted, do not use it for any

further measurements
• Computes EstimatedRTT using α = 0.875

• Timeout value (RTO) = 2 × EstimatedRTT
• Employs exponential backoff

– Every time RTO timer expires, set RTO ¬ 2·RTO
– (Up to maximum ³ 60 sec)
– Every time new measurement comes in (= successful original

transmission), collapse RTO back to 2 × EstimatedRTT

101

101

Karn/Partridge in action

from Jacobson and Karels, SIGCOMM 1988 102

102

Jacobson/Karels Algorithm

• Problem: need to better capture variability in
RTT
–Directly measure deviation

• Deviation = | SampleRTT – EstimatedRTT |
• EstimatedDeviation: exponential average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation

103

103

With Jacobson/Karels

104

104

What does TCP do?

Most of our previous ideas, but some key
differences
• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and

retransmits on timeout

105

105

Topic 5 18

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte
words in TCP
header;
5 = no options

106

106

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG
flag to indicate
urgent data (not
discussed further)

107

107

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

108

108

TCP Connection Establishment and
Initial Sequence Numbers

109

109

Initial Sequence Number (ISN)
• Sequence number for the very first byte
• Why not just use ISN = 0?
• Practical issue

– IP addresses and port #s uniquely identify a connection
– Eventually, though, these port #s do get used again
– … small chance an old packet is still in flight

• TCP therefore requires changing ISN
• Hosts exchange ISNs when they establish a connection

110

110

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open; “synchronize sequence numbers”) to

host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells
its ISN to the
other host.

111

111

Topic 5 19

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG

112

112

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

113

113

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags

114

114

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data 115

115

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()
listen()

116

116

What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
– Packet is lost inside the network, or:
– Server discards the packet (e.g., it’s too busy)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and waits for the SYN-ACK
– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is
– Hard to guess a reasonable length of time to wait
– SHOULD (RFCs 1122 & 2988) use default of 3 seconds

• Some implementations instead use 6 seconds

117

117

Topic 5 20

Tearing Down the Connection

118

118

Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one byte in the sequence space

• Other host acks the byte to confirm
• Closes A’s side of the connection, but not B’s

– Until B likewise sends a FIN
– Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

TIME_WAIT:

Avoid reincarnation

B will retransmit FIN
if ACK is lost

Connection

now half-closed

Connection

now closed

119

119

Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection

now closed

TIME_WAIT:

Avoid reincarnation

Can retransmit
FIN ACK if ACK lost

120

120

Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because application process on A crashed

• That’s it
– B does not ack the RST
– Thus, RST is not delivered reliably
– And: any data in flight is lost
– But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T
121

121

TCP State Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK
exchanges
are in here

122

122

An Simpler View of the Client Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

SYN (Send)

Rcv. SYN+ACK,

Send ACK

Send FINRcv. ACK,

Send Nothing

Rcv. FIN,

Send ACK

123

123

Topic 5 21

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

124

124

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

125

125

Recap: Sliding Window (so far)

• Both sender & receiver maintain a window

• Left edge of window:
– Sender: beginning of unacknowledged data
– Receiver: beginning of undelivered data

• Right edge: Left edge + constant
– constant only limited by buffer size in the

transport layer
126

126

Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte
can send

TCP
Last byte writtenPreviously

ACKed bytes

Buffer size (B)

127

127

Sliding Window at Receiver (so far)

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Received and
ACKed

Buffer size (B)

Sender might overrun
the receiver’s buffer

128

128

Solution: Advertised Window (Flow
Control)

• Receiver uses an “Advertised Window” (W)
to prevent sender from overflowing its
window
– Receiver indicates value of W in ACKs
– Sender limits number of bytes it can have in

flight <= W

129

129

Topic 5 22

Sliding Window at Receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Buffer size (B)

W= B - (LastByteReceived - LastByteRead)

130

130

Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte
can send

TCP

Last byte written
W

131

131

Sliding Window w/ Flow Control

• Sender: window advances when new data
ack’d

• Receiver: window advances as receiving
process consumes data

• Receiver advertises to the sender where
the receiver window currently ends
(“righthand edge”)
– Sender agrees not to exceed this amount

132

132

Advertised Window Limits Rate
• Sender can send no faster than W/RTT

bytes/sec

• Receiver only advertises more space when it
has consumed old arriving data

• In original TCP design, that was the sole
protocol mechanism controlling sender’s rate

• What’s missing?

133

133

TCP

• The concepts underlying TCP are simple

– acknowledgments (feedback)
– timers
– sliding windows
– buffer management
– sequence numbers

134

134

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

136

136

Topic 5 23

We have seen:
– Flow control: adjusting the sending rate to

keep from overwhelming a slow receiver

Now lets attend…
– Congestion control: adjusting the sending rate

to keep from overloading the network

137

137

• If two packets arrive at the same time
– A router can only transmit one
– … and either buffers or drops the other

• If many packets arrive in a short period of time
– The router cannot keep up with the arriving traffic
– … delays traffic, and the buffer may eventually overflow

• Internet traffic is bursty

Statistical Multiplexing " Congestion

138

138

Congestion is undesirable

Average
Packet delay

Load

Typical queuing system with bursty arrivals

Must balance utilization versus delay and loss

Average
Packet loss

Load

139

139

Who Takes Care of Congestion?

• Network? End hosts? Both?

• TCP’s approach:

– End hosts adjust sending rate
– Based on implicit feedback from network

• Not the only approach

– A consequence of history rather than planning
140

140

Some History: TCP in the 1980s

• Sending rate only limited by flow control
– Packet drops " senders (repeatedly!) retransmit a full

window’s worth of packets

• Led to “congestion collapse” starting Oct. 1986
– Throughput on the NSF network dropped from

32Kbits/s to 40bits/sec

• “Fixed” by Van Jacobson’s development of TCP’s
congestion control (CC) algorithms

141

141

Jacobson’s Approach

• Extend TCP’s existing window-based protocol but adapt the
window size in response to congestion
– required no upgrades to routers or applications!
– patch of a few lines of code to TCP implementations

• A pragmatic and effective solution
– but many other approaches exist

• Extensively improved on since
– topic now sees less activity in ISP contexts
– but is making a comeback in datacenter environments

142

142

Topic 5 24

Three Issues to Consider

• Discovering the available (bottleneck)

bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows

143

143

Abstract View

• Ignore internal structure of router and model it as
having a single queue for a particular input-
output pair

Sending Host Buffer in Router Receiving Host

A B

144

144

Discovering available bandwidth

• Pick sending rate to match bottleneck bandwidth
– Without any a priori knowledge
– Could be gigabit link, could be a modem

A B100 Mbps

145

145

Adjusting to variations in bandwidth

• Adjust rate to match instantaneous bandwidth

– Assuming you have rough idea of bandwidth

A B
BW(t)

146

146

Multiple flows and sharing bandwidth

Two Issues:

• Adjust total sending rate to match bandwidth

• Allocation of bandwidth between flows

A2 B2BW(t)

A1

A3 B3

B1

147

147

Reality

Congestion control is a resource allocation problem involving many flows,
many links, and complicated global dynamics

148

148

Topic 5 25

View from a single flow

• Knee – point after which
– Throughput increases slowly
– Delay increases fast

• Cliff – point after which
– Throughput starts to drop to zero

(congestion collapse)
– Delay approaches infinity

Load

Load

Th
ro

ug
hp

ut
De

la
y

knee cliff

congestion
collapse

packet
loss

149

149

General Approaches

(0) Send without care

– Many packet drops

150

150

General Approaches

(0) Send without care

(1) Reservations

– Pre-arrange bandwidth allocations
– Requires negotiation before sending packets
– Low utilization

151

151

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

– Don’t drop packets for the high-bidders
– Requires payment model

152

152

General Approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

– Hosts probe network; infer level of congestion; adjust

– Network reports congestion level to hosts; hosts adjust
– Combinations of the above

– Simple to implement but suboptimal, messy dynamics

153

153

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

(3) Dynamic Adjustment

All three techniques have their place
• Generality of dynamic adjustment has proven powerful
• Doesn’t presume business model, traffic characteristics,

application requirements; does assume good citizenship

154

154

Topic 5 26

TCP’s Approach in a Nutshell

• TCP connection has window

– Controls number of packets in flight

• Sending rate: ~Window/RTT

• Vary window size to control sending rate

155

155

Windows, Buffers, and TCP

156

156

Windows, Buffers, and TCP

• TCP connection has a window

– Controls number of packets in flight;
filling a channel to improve throughput, and
vary window size to control sending rate

• Buffers adapt mis-matched channels

– Buffers smooth bursts
– Adapt (re-time) arrivals for multiplexing

157

157

Windows, Buffers, and TCP

Buffers & TCP can make link utilization 100%

but

Buffers add delay, variable delay

158

158

Sizing Buffers in Routers

159

– Packet loss
• Queue overload, and subsequent packet loss

– End-to-end delay
• Transmission, propagation, and queueing delay
• The only variable part is queueing delay

– Router architecture
• Board space, power consumption, and cost
• On chip buffers: higher density, higher capacity

159

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW)

160

160

Topic 5 27

161

161

162

162

Rule-of-thumb – Intuition
Rule for adjusting W
& If an ACK is received: W ← W+1/W
& If a packet is lost: W ← W/2

Only W packets
may be outstanding

Source Dest

t

Window size

163

163

Buffers in Routers
So how large should the buffers be?

164

Buffer size matters

•
– End-to-end delay

• Transmission, propagation, and queueing delay
• The only variable part is queueing delay

164

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW)

165

165

Buffers in Routers
So how large should the buffers be?

166

Buffer size matters

•

•
•

– Router architecture
• Board space, power consumption, and cost
• On chip buffers: higher density, higher capacity

166

Topic 5 28

Synchronized Flows Many TCP Flows
• Aggregate window has same

dynamics
• Therefore buffer occupancy has

same dynamics
• Rule-of-thumb still holds.

• Independent, desynchronized
• Central limit theorem says the

aggregate becomes Gaussian
• Variance (buffer size)

decreases as N increases

Small Buffers – Intuition

Probability
Distribution

t

Buffer Size

t
167

167

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW)

168

What size do we make the buffer?

Well it depends…

One TCP connection?

Many Synchronized TCP connections?

Just TCP – what about other applications?

Small BDP link?

Large BDP link?

How many devices?

W of flows?

How many flows?

How much do you know about your traffic?

What is best for your traffic?

168

TCP’s Approach in a Nutshell

• TCP connection has window

– Controls number of packets in flight

• Sending rate: ~Window/RTT

• Vary window size to control sending rate

169

169

All These Windows…

• Congestion Window: CWND
– How many bytes can be sent without overflowing routers
– Computed by the sender using congestion control algorithm

• Flow control window: AdvertisedWindow (RWND)
– How many bytes can be sent without overflowing receiver’s buffers
– Determined by the receiver and reported to the sender

• Sender-side window = minimum{CWND,RWND}
• Assume for this material that RWND >> CWND

170

170

Note

• This lecture will talk about CWND in units of

MSS

– (Recall MSS: Maximum Segment Size, the amount of
payload data in a TCP packet)

– This is only for pedagogical purposes

• In reality this is a LIE: Real implementations

maintain CWND in bytes

171

171

Two Basic Questions

• How does the sender detect congestion?

• How does the sender adjust its sending rate?

– To address three issues
• Finding available bottleneck bandwidth
• Adjusting to bandwidth variations
• Sharing bandwidth

172

172

Topic 5 29

Detecting Congestion
• Packet delays

– Tricky: noisy signal (delay often varies considerably)

• Router tell end-hosts they’re congested

• Packet loss
– Fail-safe signal that TCP already has to detect
– Complication: non-congestive loss (checksum errors)

• Two indicators of packet loss
– No ACK after certain time interval: timeout
– Multiple duplicate ACKs

173

173

Not All Losses the Same

• Duplicate ACKs: isolated loss
– Still getting ACKs

• Timeout: much more serious
– Not enough packets in progress to trigger

duplicate-acks, OR
– Suffered several losses

• We will adjust rate differently for each case

174

174

Rate Adjustment

• Basic structure:

– Upon receipt of ACK (of new data): increase rate
– Upon detection of loss: decrease rate

• How we increase/decrease the rate depends on

the phase of congestion control we’re in:

– Discovering available bottleneck bandwidth vs.
– Adjusting to bandwidth variations

175

175

Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth
– start slow (for safety)
– but ramp up quickly (for efficiency)

• Consider
– RTT = 100ms, MSS=1000bytes
– Window size to fill 1Mbps of BW = 12.5 packets
– Window size to fill 1Gbps = 12,500 packets
– Either is possible!

176

176

“Slow Start” Phase
• Sender starts at a slow rate but increases

exponentially until first loss

• Start with a small congestion window
– Initially, CWND = 1
– So, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss

177

177

Slow Start in Action

• For each RTT: double CWND

• Simpler implementation: for each ACK, CWND += 1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8

178

178

Topic 5 30

Adjusting to Varying Bandwidth

• Slow start gave an estimate of available bandwidth

• Now, want to track variations in this available
bandwidth, oscillating around its current value
– Repeated probing (rate increase) and backoff (rate

decrease)

• TCP uses: “Additive Increase Multiplicative
Decrease” (AIMD)

– We’ll see why shortly…
179

179

AIMD

• Additive increase
– Window grows by one MSS for every RTT with no

loss
– For each successful RTT, CWND = CWND + 1
– Simple implementation:

• for each ACK, CWND = CWND+ 1/CWND

• Multiplicative decrease
– On loss of packet, divide congestion window in half
– On loss, CWND = CWND/2

180

180

Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Window

181

181

Slow-Start vs. AIMD

• When does a sender stop Slow-Start and start
Additive Increase?

• Introduce a “slow start threshold” (ssthresh)
– Initialized to a large value
– On timeout, ssthresh = CWND/2

• When CWND = ssthresh, sender switches from
slow-start to AIMD-style increase

182
182

182

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD

183

183

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD, Fast-Recovery

184

184

Topic 5 31

One Final Phase: Fast Recovery

• The problem: congestion avoidance too slow

in recovering from an isolated loss

185

185

Example (in units of MSS, not bytes)

• Consider a TCP connection with:

– CWND=10 packets
– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight

– Packet 101 is dropped
– What ACKs do they generate?
– And how does the sender respond?

186

186

The problem – A timeline

• ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
• ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
• ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
• RETRANSMIT 101 ssthresh=5 cwnd= 5
• ACK 101 (due to 105) cwnd=5 + 1/5 (no xmit)
• ACK 101 (due to 106) cwnd=5 + 2/5 (no xmit)
• ACK 101 (due to 107) cwnd=5 + 3/5 (no xmit)
• ACK 101 (due to 108) cwnd=5 + 4/5 (no xmit)
• ACK 101 (due to 109) cwnd=5 + 5/5 (no xmit)
• ACK 101 (due to 110) cwnd=6 + 1/5 (no xmit)
• ACK 111 (due to 101) ' only now can we transmit new packets
• Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for

another RTT

187

187

Solution: Fast Recovery

Idea: Grant the sender temporary “credit” for each dupACK so as
to keep packets in flight

• If dupACKcount = 3
– ssthresh = cwnd/2
– cwnd = ssthresh + 3

• While in fast recovery
– cwnd = cwnd + 1 for each additional duplicate ACK

• Exit fast recovery after receiving new ACK
– set cwnd = ssthresh

188

188

Example

• Consider a TCP connection with:

– CWND=10 packets
– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight

– Packet 101 is dropped

189

189

Timeline

• ACK 101 (due to 102) cwnd=10 dup#1
• ACK 101 (due to 103) cwnd=10 dup#2
• ACK 101 (due to 104) cwnd=10 dup#3
• REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
• ACK 101 (due to 105) cwnd= 9 (no xmit)
• ACK 101 (due to 106) cwnd=10 (no xmit)
• ACK 101 (due to 107) cwnd=11 (xmit 111)
• ACK 101 (due to 108) cwnd=12 (xmit 112)
• ACK 101 (due to 109) cwnd=13 (xmit 113)
• ACK 101 (due to 110) cwnd=14 (xmit 114)
• ACK 111 (due to 101) cwnd = 5 (xmit 115) ' exiting fast recovery
• Packets 111-114 already in flight
• ACK 112 (due to 111) cwnd = 5 + 1/5 ! back in congestion avoidance

190

Topic 5 32

Putting it all together:

The TCP State Machine (partial)

• How are ssthresh, CWND and dupACKcount updated for each
event that causes a state transition?

slow
start

congstn.
avoid.

fast
recovery

cwnd > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout new
ACK

191

TCP Flavors

• TCP-Tahoe
– cwnd =1 on triple dupACK

• TCP-Reno
– cwnd =1 on timeout
– cwnd = cwnd/2 on triple dupack

• TCP-newReno
– TCP-Reno + improved fast recovery

• TCP-SACK
– incorporates selective acknowledgements

192

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD, Fast-Recovery, Throughput

193

193

TCP Flavors

• TCP-Tahoe
– CWND =1 on triple dupACK

• TCP-Reno
– CWND =1 on timeout
– CWND = CWND/2 on triple dupack

• TCP-newReno
– TCP-Reno + improved fast recovery

• TCP-SACK
– incorporates selective acknowledgements

Our default
assumption

194

194

Interoperability

• How can all these algorithms coexist? Don’t

we need a single, uniform standard?

• What happens if I’m using Reno and you are

using Tahoe, and we try to communicate?

195

195

TCP Throughput Equation

196

196

Topic 5 33

A

A Simple Model for TCP Throughput

Loss

t

cwnd

1

RTT

maxW

2
maxW

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTTs
197

197

A

A Simple Model for TCP Throughput

Loss

t

cwnd

maxW

2
maxW

Packet drop rate, p =1/ A, where A = 3
8
Wmax

2

Throughput, B = A
Wmax

2
!

"
#

$

%
&RTT

=
3
2

1
RTT p

198

198

Implications (1): Different RTTs

• Flows get throughput inversely proportional to RTT
• TCP unfair in the face of heterogeneous RTTs!

Throughput = 3
2

1
RTT p

A1

A2 B2

B1

bottleneck
link

100ms

200ms

199

199

Implications (2): High Speed TCP

• Assume RTT = 100ms, MSS=1500bytes

• What value of p is required to reach 100Gbps throughput
– ~ 2 x 10-12

• How long between drops?
– ~ 16.6 hours

• How much data has been sent in this time?
– ~ 6 petabits

• These are not practical numbers!

Throughput = 3
2

1
RTT p

200

200

Adapting TCP to High Speed

– Once past a threshold speed, increase CWND faster
– A proposed standard [Floyd’03]: once speed is past some threshold,

change equation to p-.8 rather than p-.5

– Let the additive constant in AIMD depend on CWND

• Other approaches?

– Multiple simultaneous connections (hacky but works
today)

– Router-assisted approaches (will see shortly)

201

201

Implications (3): Rate-based CC

• TCP throughput is “choppy”
– repeated swings between W/2 to W

• Some apps would prefer sending at a steady rate
– e.g., streaming apps

• A solution: “Equation-Based Congestion Control”
– ditch TCP’s increase/decrease rules and just follow the equation
– measure drop percentage p, and set rate accordingly

• Following the TCP equation ensures we’re “TCP friendly”
– i.e., use no more than TCP does in similar setting

Throughput = 3
2

1
RTT p

202

202

Topic 5 34

203

203

New world of fairness….

204

204

205

205

Recap: TCP problems

• Misled by non-congestion losses
• Fills up queues leading to high delays
• Short flows complete before discovering available capacity
• AIMD impractical for high speed links
• Sawtooth discovery too choppy for some apps
• Unfair under heterogeneous RTTs
• Tight coupling with reliability mechanisms
• Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endpoints
if they’re congested

Routers tell
endpoints what
rate to send at

Routers enforce
fair sharing

206

206

Router-Assisted Congestion Control

• Three tasks for CC:

– Isolation/fairness
– Adjustment*
– Detecting congestion

* This may be automatic eg loss-response of TCP

207

207

How can routers ensure each flow gets its “fair

share”?

208

208

Topic 5 35

Fairness: General Approach

• Routers classify packets into “flows”
– (For now) flows are packets between same source/destination

• Each flow has its own FIFO queue in router

• Router services flows in a fair fashion
– When line becomes free, take packet from next flow in a fair order

• What does “fair” mean exactly?

209

209

Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth

C, max-min bandwidth allocations are:
ai = min(f, ri)

where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s

210

210

Example
• C = 10; r1 = 8, r2 = 6, r3 = 2; N = 3
• C/3 = 3.33 ®

– Can service all of r3

– Remove r3 from the accounting: C = C – r3 = 8; N = 2

• C/2 = 4 ®
– Can’t service all of r1 or r2

– So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

211

211

Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth

C, max-min bandwidth allocations are:
ai = min(f, ri)

• where f is the unique value such that Sum(ai) = C

• Property:
– If you don’t get full demand, no one gets more than you

• This is what round-robin service gives if all packets are
the same size

212

212

How do we deal with packets of
different sizes?

• Mental model: Bit-by-bit round robin (“fluid
flow”)

• Can you do this in practice?

• No, packets cannot be preempted

• But we can approximate it
– This is what “fair queuing” routers do

213

213

Fair Queuing (FQ)

• For each packet, compute the time at which

the last bit of a packet would have left the

router if flows are served bit-by-bit

• Then serve packets in the increasing order of

their deadlines

214

214

Topic 5 36

Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow

system

FQ
Packet
system

time

time

time

time

215

215

Fair Queuing (FQ)

• Think of it as an implementation of round-robin generalized
to the case where not all packets are equal sized

• Weighted fair queuing (WFQ): assign different flows
different shares

• Today, some form of WFQ implemented in almost all routers
– Not the case in the 1980-90s, when CC was being developed
– Mostly used to isolate traffic at larger granularities (e.g., per-prefix)

216

216

FQ vs. FIFO

• FQ advantages:

– Isolation: cheating flows don’t benefit
– Bandwidth share does not depend on RTT
– Flows can pick any rate adjustment scheme they

want

• Disadvantages:

– More complex than FIFO: per flow queue/state,
additional per-packet book-keeping

217

FQ in the big picture

• FQ does not eliminate congestion " it just
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
0.5Gbps; any excess

will be dropped

Will drop an additional
400Mbps from
the green flow

If the green flow doesn’t drop its sending rate to
100Mbps, we’re wasting 400Mbps that could be

usefully given to the blue flow

218

FQ in the big picture

• FQ does not eliminate congestion " it just
manages the congestion
– robust to cheating, variations in RTT, details of delay,

reordering, retransmission, etc.

• But congestion (and packet drops) still occurs

• And we still want end-hosts to discover/adapt to
their fair share!

• What would the end-to-end argument say w.r.t.
congestion control?

219

Fairness is a controversial goal

• What if you have 8 flows, and I have 4?
– Why should you get twice the bandwidth

• What if your flow goes over 4 congested hops, and mine only
goes over 1?
– Why shouldn’t you be penalized for using more scarce bandwidth?

• And what is a flow anyway?
– TCP connection
– Source-Destination pair?
– Source?

220

Topic 5 37

Explicit Congestion Notification (ECN)

• Single bit in packet header; set by congested routers
– If data packet has bit set, then ACK has ECN bit set

• Many options for when routers set the bit
– tradeoff between (link) utilization and (packet) delay

• Congestion semantics can be exactly like that of drop
– I.e., endhost reacts as though it saw a drop

• Advantages:
– Don’t confuse corruption with congestion; recovery w/ rate adjustment
– Can serve as an early indicator of congestion to avoid delays
– Easy (easier) to incrementally deploy

• defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)

221

221

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD, Fast-Recovery, Throughput
• Limitations of TCP Congestion Control

• Router-assisted Congestion Control (eg ECN)

222

TCP in detail

222

Transport Recap

A “big bag”:
Multiplexing, reliability, error-detection, error-recovery,

flow and congestion control, ….

• UDP:
– Minimalist - multiplexing and error detection

• TCP:
– somewhat hacky
– but practical/deployable
– good enough to have raised the bar for the deployment of new, more optimal,

approaches
– though the needs of datacenters might change the status quos

• Beyond TCP (discussed in Topic 6):
– QUIC / application-aware transport layers

223

223

19/02/2021

Topic 6 1

Topic 6 – Applications

• Infrastructure Services (DNS)
– Now with added security…

• Traditional Applications (web)
– Now with added QUIC

• Multimedia Applications (SIP)
– One day (more…)…

• P2P Networks
– Every device serves

1

1

2

Client-server paradigm reminder
server:

– always-on host

– permanent IP address

– server farms for scaling
clients:

– communicate with server
– may be intermittently connected
– may have dynamic IP addresses
– do not communicate directly

with each other

client/server

2

3

Relationship Between
Names&Addresses

• Addresses can change underneath
– Move www.bbc.co.uk to 212.58.246.92
– Humans/Apps should be unaffected

• Name could map to multiple IP addresses
– www.bbc.co.uk to multiple replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers

• Multiple names for the same address
– E.g., aliases like www.bbc.co.uk and bbc.co.uk
– Mnemonic stable name, and dynamic canonical name

• Canonical name = actual name of host

3

Mapping from Names to Addresses
• Originally: per-host file /etc/hosts*

– SRI (Menlo Park) kept master copy
– Downloaded regularly
– Flat namespace

• Single server not resilient, doesn’t scale
– Adopted a distributed hierarchical system

• Two intertwined hierarchies:
– Infrastructure: hierarchy of DNS servers
– Naming structure: www.bbc.co.uk

*C:\Windows\System32\drivers\etc\hosts for recent windows

4

4

5

Domain Name System (DNS)
• Top of hierarchy: Root
– Location hardwired into other servers

• Next Level: Top-level domain (TLD) servers
– .com, .edu, etc.
– .uk, .au, .to, etc.
– Managed professionally

• Bottom Level: Authoritative DNS servers
– Actually do the mapping
– Can be maintained locally or by a service provider

5

6

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

cl

in-
addr

generic domains country domains

my.east.bar.edu cl.cam.ac.uk

Top-Level Domains (TLDs)

6

19/02/2021

Topic 6 2

7

DNS Root
• Located in Virginia, USA
• How do we make the root scale?

Verisign, Dulles, VA

7

8

DNS Root Servers
• 13 root servers (see http://www.root-servers.org/)

– Labeled A through M
• Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software

Consortium
Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

8

9

DNS Root Servers
• 13 root servers (see http://www.root-servers.org/)

– Labeled A through M
• Replication via any-casting (localized routing for addresses)

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software

Consortium,
Palo Alto, CA

(and 37 other locations)

I Autonomica, Stockholm (plus
29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
plus Seoul, Paris,
San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

9

10

Using DNS
• Two components
– Local DNS servers
– Resolver software on hosts

• Local DNS server (“default name server”)
– Usually near the endhosts that use it
– Local hosts configured with local server (e.g.,

/etc/resolv.conf) or learn server via DHCP

• Client application
– Extract server name (e.g., from the URL)
– Do gethostbyname() to trigger resolver code

10

local DNS server
dns.cam.ac.uk

11

requesting host
cl.cam.ac.uk www.stanford.edu

root DNS server

1

2
3

4

5

6

authoritative DNS server
dns.stanford.edu

7
8

TLD DNS server

How Does Resolution Happen?
(Iterative example)

Host at cl.cam.ac.uk
wants IP address for
www.stanford.edu

iterated query:
• Host enquiry is delegated

to local DNS server
• Consider

transactions 2 – 7 only
• contacted server replies

with name of next server
to contact

• “I don’t know this name,
but ask this server”

11

12

requesting host
cl.cam.ac.uk

www.stanford.edu

root DNS server

local DNS server
dns.cam.ac.uk

1

2

45

6

authoritative DNS server
dns.stanford.edu

7

8

TLD DNS server

3recursive query:
• puts burden of name

resolution on contacted
name server

• heavy load?

DNS name resolution recursive example

12

19/02/2021

Topic 6 3

13

Recursive and Iterative Queries - Hybrid case
• Recursive query
– Ask server to get

answer for you
– E.g., requests 1,2

and responses
9,10

• Iterative query

– Ask server who
to ask next

– E.g., all other
request-
response pairs

requesting host
my-host.cl.cam.ac.uk

root DNS server

3
4

5

6

7

authoritative DNS server
dns.stanford.edu

8

TLD DNS server

Site DNS server
dns.cam.ac.uk

2 9

1 10

Site DNS server
dns.cl.cam.ac.uk

13

14

DNS Caching
• Performing all these queries takes time
– And all this before actual communication takes place
– E.g., 1-second latency before starting Web download

• Caching can greatly reduce overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.bbc.co.uk) visited often
– Local DNS server often has the information cached

• How DNS caching works
– DNS servers cache responses to queries
– Responses include a “time to live” (TTL) field
– Server deletes cached entry after TTL expires

14

15

Negative Caching

• Remember things that don’t work
– Misspellings like bbcc.co.uk and www.bbc.com.uk
– These can take a long time to fail the first time
– Good to remember that they don’t work
– … so the failure takes less time the next time around

• But: negative caching is optional

– And not widely implemented

15

16

Reliability
• DNS servers are replicated (primary/secondary)

– Name service available if at least one replica is up
– Queries can be load-balanced between replicas

• Usually, UDP used for queries

– Need reliability: must implement this on top of UDP
– Spec supports TCP too, but not always implemented

• Try alternate servers on timeout

– Exponential backoff when retrying same server
• Same identifier for all queries

– Don’t care which server responds

16

17

From https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

11

Invalid queries categories

• Unused query class:
• Any class not in IN, CHAOS, HESIOD, NONE or ANY

• A-for-A: A-type query for a name is already a IPv4 Address
• <IN, A, 192.16.3.0>

• Invalid TLD: a query for a name with an invalid TLD
• <IN, MX, localhost.lan>

• Non-printable characters:
• <IN, A, www.ra^B.us.>

• Queries with ‘_’:
• <IN, SRV, _ldap._tcp.dc._msdcs.SK0530-K32-1.>

• RFC 1918 PTR:
• <IN, PTR, 171.144.144.10.in-addr.arpa.>

• Identical queries:
• a query with the same class, type, name and id (during the whole period)

• Repeated queries:
• a query with the same class, type and name

• Referral-not-cached:
• a query seen with a referral previously given.

17

19

Invalid TLD

• Queries for invalid TLD
represent 22% of the total traffic
at the roots
– 20.6% during DITL 2007

• Top 10 invalid TLD represent
10.5% of the total traffic

• RFC 2606 reserves some TLD
to avoid future conflicts

• We propose:
– Include some of these TLD

(local, lan, home, localdomain)
to RFC 2606

– Encourage cache
implementations to answer
queries for RFC 2606 TLDs
locally (with data or error)

Percentage of total
queriesTLD

2007 2008
local 5.018 5.098
belkin 0.436 0.781
localhost 2.205 0.710
lan 0.509 0.679
home 0.321 0.651
invalid 0.602 0.623
domain 0.778 0.550
localdomain 0.318 0.332
wpad 0.183 0.232
corp 0.150 0.231

18

From https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

awm22: at least WORKGROUP is no
longer here!
It was the top in valid TLD for years…

18

https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf
https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

19/02/2021

Topic 6 4

Secondary
DNS

primary
DNS

Registrars
& Registrants

Registry

Secondary
DNS

Data flow through the DNS
Where are the vulnerable
points?

Server vulnerability

Man in the Middle

spoofing
&

Man in the Middle

19

DNS and Security
• No way to verify answers
– Opens up DNS to many potential attacks
– DNSSEC fixes this

• Most obvious vulnerability: recursive resolution
– Using recursive resolution, host must trust DNS server
– When at Starbucks, server is under their control
– And can return whatever values it wants

• More subtle attack: Cache poisoning
– Those “additional” records can be anything!

20

20

DNSSEC protects all these end-to-end

• provides message authentication and integrity verification through
cryptographic signatures
– You know who provided the signature
– No modifications between signing and validation

• It does not provide authorization
• It does not provide confidentiality
• It does not provide protection against DDOS

21

DNSSEC in practice

• Scaling the key signing and key distribution

Solution: Using the DNS to Distribute Keys

• Distributing keys through DNS hierarchy:
– Use one trusted key to establish authenticity of other keys
– Building chains of trust from the root down
– Parents need to sign the keys of their children

• Only the root key needed in ideal world
– Parents always delegate security to child

22

22

Why is the web so
successful?

• What do the web, youtube, facebook, twitter, instagram, …..
have in common?
– The ability to self-publish

• Self-publishing that is easy, independent, free

• No interest in collaborative and idealistic endeavor
– People aren’t looking for Nirvana (or even Xanadu)
– People also aren’t looking for technical perfection

• Want to make their mark, and find something neat
– Two sides of the same coin, creates synergy
– “Performance” more important than dialogue….

23

23

24

Web Components
• Infrastructure:
– Clients
– Servers
– Proxies

• Content:
– Individual objects (files, etc.)
– Web sites (coherent collection of objects)

• Implementation
– HTML: formatting content
– URL: naming content
– HTTP: protocol for exchanging content

Any content not just HTML!

24

19/02/2021

Topic 6 5

25

HTML: HyperText Markup Language

• A Web page has:

– Base HTML file

– Referenced objects (e.g., images)

• HTML has several functions:

– Format text

– Reference images

– Embed hyperlinks (HREF)

25

26

URL Syntax
protocol://hostname[:port]/directorypath/resource

protocol http, ftp, https, smtp, rtsp, etc.

hostname DNS name, IP address

port Defaults to protocol’s standard port
e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4
0B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_289
17_3552_1289957100&Search=&Nhead=f&YY=31454&order=
down&sort=date&pos=0&view=a&head=b

26

27

HyperText Transfer Protocol (HTTP)

• Request-response protocol

• Reliance on a global namespace

• Resource metadata
• Stateless
• ASCII format (ok this changed….)

$ telnet www.cl.cam.ac.uk 80
GET /win HTTP/1.0
<blank line, i.e., CRLF>

27

Steps in HTTP Request
• HTTP Client initiates TCP connection to server
– SYN
– SYNACK
– ACK

• Client sends HTTP request to server
– Can be piggybacked on TCP’s ACK

• HTTP Server responds to request
• Client receives the request, terminates connection
• TCP connection termination exchange

How many RTTs for a single request?

28

28

29

Client-Server Communication

• two types of HTTP messages: request, response
• HTTP request message: (GET POST HEAD ….)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP response message

29

30

Different Forms of Server
Response

• Return a file

– URL matches a file (e.g., /www/index.html)

– Server returns file as the response

– Server generates appropriate response header

• Generate response dynamically

– URL triggers a program on the server

– Server runs program and sends output to client

• Return meta-data with no body

30

19/02/2021

Topic 6 6

31

HTTP Resource Meta-Data
• Meta-data

– Info about a resource, stored as a separate entity

• Examples:

– Size of resource, last modification time, type of
content

• Usage example: Conditional GET Request

– Client requests object “If-modified-since”
– If unchanged, “HTTP/1.1 304 Not Modified”
– No body in the server’s response, only a header

31

32

HTTP is Stateless

• Each request-response treated independently
– Servers not required to retain state

• Good: Improves scalability on the server-side
– Failure handling is easier
– Can handle higher rate of requests
– Order of requests doesn‘t matter

• Bad: Some applications need persistent state
– Need to uniquely identify user or store temporary info
– e.g., Shopping cart, user profiles, usage tracking, …

32

33

State in a Stateless Protocol:

Cookies
• Client-side state maintenance

– Client stores small(?) state on behalf of server
– Client sends state in future requests to the server

• Can provide authentication

Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

33

34

HTTP Performance
• Most Web pages have multiple objects

– e.g., HTML file and a bunch of embedded images

• How do you retrieve those objects (naively)?

– One item at a time

• Put stuff in the optimal place?

–Where is that precisely?
• Enter the Web cache and the CDN

34

35

Fetch HTTP Items: Stop & Wait
Client Server

Request item 1

Transfer item 1

Request item 2

Transfer item 2

Request item 3

Transfer item 3

Finish; display
page

Start fetching
page Tim

e

≥2 RTTs
per
object

35

36

Improving HTTP Performance:

Concurrent Requests & Responses

• Use multiple connections in
parallel

• Does not necessarily maintain
order of responses

• Client = !

• Server = !

• Network = " Why?

R1
R2 R3

T1

T2 T3

36

19/02/2021

Topic 6 7

37

Improving HTTP Performance:

Pipelined Requests & Responses

• Batch requests and responses
– Reduce connection overhead
– Multiple requests sent in a single

batch
– Maintains order of responses
– Item 1 always arrives before item 2

• How is this different from
concurrent requests/responses?
– Single TCP connection

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

37

Improving HTTP Performance:

Persistent Connections

• Enables multiple transfers per connection
– Maintain TCP connection across multiple requests
– Including transfers subsequent to current page
– Client or server can tear down connection

• Performance advantages:
– Avoid overhead of connection set-up and tear-down
– Allow TCP to learn more accurate RTT estimate
– Allow TCP congestion window to increase
– i.e., leverage previously discovered bandwidth

• Default in HTTP/1.1

38

38

HTTP evolution

• 1.0 – one object per TCP: simple but slow

• Parallel connections - multiple TCP, one object

each: wastes b/w, may be svr limited, out of order

• 1.1 pipelining – aggregate retrieval time: ordered,

multiple objects sharing single TCP

• 1.1 persistent – aggregate TCP overhead: lower

overhead in time, increase overhead at ends (e.g.,

when should/do you close the connection?)

39

39

Scorecard: Getting n Small Objects

Time dominated by latency

• One-at-a-time: ~2n RTT

• Persistent: ~ (n+1)RTT

• M concurrent: ~2[n/m] RTT

• Pipelined: ~2 RTT

• Pipelined/Persistent: ~2 RTT first time, RTT

later

40

40

Scorecard: Getting n Large Objects

Time dominated by bandwidth

• One-at-a-time: ~ nF/B

• M concurrent: ~ [n/m] F/B

– assuming shared with large population of users

• Pipelined and/or persistent: ~ nF/B

– The only thing that helps is getting more

bandwidth..

41

41

42

Improving HTTP Performance:

Caching
• Many clients transfer the same information

– Generates redundant server and network load
– Clients experience unnecessary latency

Server

Clients

Backbone ISP

ISP-1 ISP-2

42

19/02/2021

Topic 6 8

43

Improving HTTP Performance:

Caching: How

•Modifier to GET requests:

– If-modified-since – returns “not modified” if

resource not modified since specified time

• Response header:

– Expires – how long it’s safe to cache the resource

– No-cache – ignore all caches; always get resource

directly from server

43

44

Improving HTTP Performance:

Caching: Why

• Motive for placing content closer to client:
–User gets better response time
– Content providers get happier users

• Time is money, really!
–Network gets reduced load

• Why does caching work?
– Exploits locality of reference

• How well does caching work?
– Very well, up to a limit
– Large overlap in content
– But many unique requests

44

45

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request
• Return resource only if it has changed at the server

– Save server resources!

• How?
– Client specifies “if-modified-since” time in request
– Server compares this against “last modified” time of desired resource
– Server returns “304 Not Modified” if resource has not changed
– …. or a “200 OK” with the latest version otherwise

GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT
<CRLF>

Request from client to server:

45

46

Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server
decrease server load

• Typically done by content providers

• Only works for static(*) content
(*) static can also be snapshots
of dynamic content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

46

47

Improving HTTP Performance:

Caching with Forward Proxies
Cache documents close to clients

reduce network traffic and decrease latency
• Typically done by ISPs or corporate LANs

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

47

48

Improving HTTP Performance:

Caching w/ Content Distribution Networks

• Integrate forward and reverse caching functionality
– One overlay network (usually) administered by one entity
– e.g., Akamai

• Provide document caching
– Pull: Direct result of clients’ requests
– Push: Expectation of high access rate

• Also do some processing
– Handle dynamic web pages
– Transcoding
– Maybe do some security function – watermark IP

48

19/02/2021

Topic 6 9

49

Improving HTTP Performance:

Caching with CDNs (cont.)

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

49

50

Improving HTTP Performance:

CDN Example – Akamai

• Akamai creates new domain names for each client

content provider.

– e.g., a128.g.akamai.net

• The CDN’s DNS servers are authoritative for the new

domains

• The client content provider modifies its content so

that embedded URLs reference the new domains.

– “Akamaize” content
– e.g.: http://www.bbc.co.uk/popular-image.jpg becomes

http://a128.g.akamai.net/popular-image.jpg

• Requests now sent to CDN’s infrastructure…

50

51

Hosting: Multiple Sites Per
Machine

• Multiple Web sites on a single machine
– Hosting company runs the Web server on behalf of

multiple sites (e.g., www.foo.com and www.bar.com)
• Problem: GET /index.html

– www.foo.com/index.html or www.bar.com/index.html?
• Solutions:
– Multiple server processes on the same machine

• Have a separate IP address (or port) for each server
– Include site name in HTTP request

• Single Web server process with a single IP address
• Client includes “Host” header (e.g., Host: www.foo.com)
• Required header with HTTP/1.1

51

52

Hosting: Multiple Machines Per Site

• Replicate popular Web site across many machines

– Helps to handle the load
– Places content closer to clients

• Helps when content isn’t cacheable

• Problem: Want to direct client to particular replica

– Balance load across server replicas
– Pair clients with nearby servers

52

53

Multi-Hosting at Single Location
• Single IP address, multiple machines
– Run multiple machines behind a single IP address

– Ensure all packets from a single
TCP connection go to the same replica

Load Balancer
64.236.16.20

53

54

Multi-Hosting at Several Locations

• Multiple addresses, multiple machines
– Same name but different addresses for all of the replicas
– Configure DNS server to return closest address

Internet
64.236.16.20

173.72.54.131

12.1.1.1

54

19/02/2021

Topic 6 10

CDN examples round-up

• CDN using DNS

DNS has information on loading/distribution/location

• CDN using anycast

same address from DNS name but local routes

• CDN based on rewriting HTML URLs

(akami example just covered – akami uses DNS too)

55

55

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

–More efficient to parse

–More compact on the wire

–Much less error prone as compared

– to textual protocols

56

56

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

– Interleaved

57

57

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

• Priority control over Frames

• Header Compression

• Server Push

– Proactively push stuff to client that it will need

58

58

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

• Priority control over Frames

• Header Compression

• Server Push

– Proactively push stuff to client that it will need

59

59

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

• Priority control over Frames

• Header Compression

• Server Push

60

60

19/02/2021

Topic 6 11

SPDY

• SPDY + HTTP/2: One single TCP connection

instead of multiple

• Downside: Head of line blocking

• In TCP, packets need to be processed in

correct order

61

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with
TCP’s reliability

• Very hard to make changes to TCP

• Faster to implement new protocol on top of UDP
• Roll out features in TCP if they prove theory

QUIC:

• Reliable transport over UDP (seriously)

• Uses FEC

• Default crypto

• Restartable connections

62

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with
TCP’s reliability
• Very hard to make changes to TCP
• Faster to implement new protocol on top of UDP
• Roll out features in TCP if they prove theory
QUIC:
• Reliable transport over UDP (seriously)
• Uses FEC
• Default crypto
• Restartable connections

73

62

3-Way Handshake

Without TLS With TLS

63

UDP

• Fire and forget

– Less time spent to
validate packets

– Downside - no reliability,
this has to be built on top
of UDP

64

QUIC

• UDP does NOT depend on order of arriving packets

• Lost packets will only impact an individual resource,

e.g., CSS or JS file.

• QUIC is combining best parts of HTTP/2 over UDP:

– Multiplexing on top of non-blocking transport protocol

65

QUIC – more than just UDP

• QUIC outshines TCP under poor network

conditions, shaving a full second off the

Google Search page load time for the slowest

1% of connections.

• These benefits are even more apparent for

video services like YouTube. Users report 30%

fewer rebuffers when watching videos over

QUIC.

66

66

19/02/2021

Topic 6 12

Why QUIC over UDP and not a new
proto

• IP proto value for new transport layer

• Change the protocol – risk the wraith of

– Legacy code

– Firewalls

– Load-balancer

– NATs (the high-priest of middlebox)

• Same problem faces any significant TCP change

67Honda M. et al. “Is it still possible to extend TCP?”, IMC’11
https://dl.acm.org/doi/abs/10.1145/2068816.2068834

67

SIP – Session Initiation Protocol

68

Session?

Anyone smell an OSI / ISO standards document burning?

68

SIP - VoIP

Establishing communication
through SIP proxies.

69

69

SIP?
• SIP – bringing the fun/complexity of

telephony to the Internet
–User location

–User availability

–User capabilities

– Session setup

– Session management

• (e.g. “call forwarding”)

70

70

H.323 – ITU

• Why have one standard when there are at least two….

• The full H.323 is hundreds of pages
– The protocol is known for its complexity – an ITU hallmark

• SIP is not much better

– IETF grew up and became the ITU….

71

71

Multimedia Applications

Message flow for a basic SIP session

72

72

19/02/2021

Topic 6 13

The (still?) missing piece:
Resource Allocation for Multimedia Applications

I can ‘differentiate’ VoIP from data but…
I can only control data going into the Internet

73

73

Multimedia Applications
• Resource Allocation for Multimedia Applications

Admission control using session control protocol.

74

74

Resource Allocation for Multimedia Applications

So where does it happen?
Inside single institutions or domains of control…..

(Universities, Hospitals, big corp…)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line

and throughout their own network too…… everywhere else is best-effort

Co-ordination of SIP signaling and
resource reservation.

Coming soon… 1995
2000

2010
2020
who are we kidding??

75

75

Every host is a server:
Peer-2-Peer

76

76

77

Pure P2P architecture

• no always-on server
• arbitrary end systems

directly communicate
• peers are intermittently

connected and change IP
addresses

• Three topics:
– File distribution
– Searching for information
– Case Study: Skype

peer-peer

77

78

File Distribution: Server-Client vs P2P
Question : How much time to distribute file from

one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth

ui: peer i upload
bandwidth

di: peer i download
bandwidth

78

19/02/2021

Topic 6 14

79

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F• server sequentially

sends N copies:

– NF/us time

• client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

79

80

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F• server must send one copy:
F/us time

• client i takes F/di time to
download

• NF bits must be
downloaded (aggregate)
r fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }
i

80

81

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

81

82

File distribution: BitTorrent*
*rather old BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

r P2P file distribution

82

83

BitTorrent (1)
• file divided into 256KB chunks.
• peer joining torrent:
– has no chunks, but will accumulate them over time
– registers with tracker to get list of peers, connects to

subset of peers (“neighbors”)
• while downloading, peer uploads chunks to other peers.
• peers may come and go
• once peer has entire file, it may (selfishly) leave or

(altruistically) remain

83

84

BitTorrent (2)
Pulling Chunks
• at any given time, different

peers have different
subsets of file chunks

• periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

• Alice sends requests for her
missing chunks
– rarest first

Sending Chunks: tit-for-tat
r Alice sends chunks to four neighbors

currently sending her chunks at the
highest rate
$ re-evaluate top 4 every 10 secs

r every 30 secs: randomly select another
peer, starts sending chunks
$ newly chosen peer may join top 4
$ “optimistically unchoke”

84

19/02/2021

Topic 6 15

85

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

85

Distributed Hash Table (DHT)

• DHT = distributed P2P database

• Database has (key, value) pairs;

– key: ss number; value: human name

– key: content type; value: IP address

• Peers query DB with key

– DB returns values that match the key

• Peers can also insert (key, value) peers

86

86

Distributed Hash Table (DHT)

• DHT = distributed P2P database

• Database has (key, value) pairs;

– key: ss number; value: human name

– key: content type; value: IP address

• Peers query DB with key

– DB returns values that match the key

• Peers can also insert (key, value) peers

87

87

DHT Identifiers

• Assign integer identifier to each peer in range

[0,2n-1].

– Each identifier can be represented by n bits.

• Require each key to be an integer in same range.

• To get integer keys, hash original key.

– eg, key = h(“Game of Thrones season 29”)

– This is why they call it a distributed “hash” table

88

How to assign keys to peers?

• Central issue:

– Assigning (key, value) pairs to peers.

• Rule: assign key to the peer that has the

closest ID.

• Convention in lecture: closest is the

immediate successor of the key.

• Ex: n=4; peers: 1,3,4,5,8,10,12,14;

– key = 13, then successor peer = 14

– key = 15, then successor peer = 1

89

1

3

4

5

8
10

12

15

Circular DHT (1)

• Each peer only aware of immediate successor

and predecessor.

• “Overlay network” – logical structure

90

19/02/2021

Topic 6 16

Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

91

Circular DHT with Shortcuts

• Each peer keeps track of IP addresses of predecessor, successor,
short cuts.

• Reduced from 6 to 2 messages.
• Possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3

4

5

8
10

12

15

Who’s resp
for key 1110?

92

Peer Churn

• Peer 5 abruptly leaves
• Peer 4 detects; makes 8 its immediate successor; asks 8

who its immediate successor is; makes 8’s immediate
successor its second successor.

• What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require
each peer to know the IP address
of its two successors.
• Each peer periodically pings its
two successors to see if they
are still alive.

93

94

P2P Case study: Skype (pre-Microsoft)

• inherently P2P: pairs of
users communicate.

• proprietary application-
layer protocol (inferred
via reverse engineering)

• hierarchical overlay with
SNs

• Index maps usernames to
IP addresses; distributed
over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

94

95

Peers as relays
• Problem when both Alice

and Bob are behind
“NATs”.
– NAT prevents an outside peer

from initiating a call to
insider peer

• Solution:
– Using Alice’s and Bob’s SNs,

Relay is chosen
– Each peer initiates session

with relay.
– Peers can now communicate

through NATs via relay

95

Summary.
• Applications have protocols too

• We covered examples from
– Traditional Applications (web)
– Scaling and Speeding the web (CDN/Cache tricks)

• Infrastructure Services (DNS)
– Cache and Hierarchy

• Multimedia Applications (SIP)
– Extremely hard to do better than worst-effort

• P2P Network examples
96

96

