
Compiler Construction : Exercises on Lexing and

Parsing

Timothy G. Griffin

January 31, 2021

1 Regular language review

First, let’s recall the NFA to DFA transformation.
Here is an NFA for (a+ b)∗abb. I used ε to connect NFAs in concatenation

rather that smashing together final and start state, simply because it was easier
to draw. (Here ε is represented as “epsilon” because I’m having trouble getting
graphviz to digest latex.) The start state is state 6.

137 8epsilon 9a6

epsilon

4

epsilon 0epsilon

2
epsilon 5

epsilon

epsilon

1a

3b

epsilon

epsilon

10epsilon 11b 12epsilon b

This can be transformed into the following DFA using the subset method.
Here the start state is state 0.

4

1

a

2

b

0 a

b

a 3
b

a
b

b

a

1

I can be easier to understand how the DFA was constructed if we label each
state with the set of all NFA states used in the subset construction method:

4 : 0,2,3,4,5,7,8,13

1 : 0,1,2,4,5,7,8,9,10

a

2 : 0,2,3,4,5,7,8

b

0 : 0,2,4,6,7,8

a

b

a

3 : 0,2,3,4,5,7,8,11,12
b

a

b

b

a

For example, let δ be the NFA transition function and δ′ the derived DFA
transition function. Then

q′0 = ε− closure({6}) = {0, 2, 4, 6, 7, 8}
δ′(q′0, b) = ε− closure({q ∈ δ(q′, b)|q′ ∈ q′0}) = {0, 2, 3, 4, 5, 7, 8}

Here is another example. The NFA for (a+ b)∗(c+ d)∗:

15

7 14epsilon
epsilon

12

epsilon
6

epsilon

4

epsilon 0epsilon

2
epsilon 5

epsilon

epsilon

1a

3b

epsilon

epsilon
8epsilon

10
epsilon 13

epsilon

epsilon

9c

11d

epsilon

epsilon

Here is the resulting DFA:

2

3

c

4

d

0

c

1

a

2

b

d

c

a

b

d

c

a

b

d

c
d

1.1 Exercises

For each of these regular expressions

b(a+ b)∗a
((ε+ a)b∗)∗

1.1 construct an NFA accepting the regular language.

1.2 construct a corresponding DFA.

1.3 Given any regular expression, can you produce a CFG that generates the
same language? Can you do this for the above regular expressions?

2 Context-Free Grammars

Consider the following Context Free Grammar G1 (taken from 2020 paper 4,
question 4):

S → Aa | BAb

A → BB | c

B → Sd | e

where {a, b, c, d, e} is the set of terminal symbols.

3

Here is a left-most derivation of ecadeb,

S ⇒ BAb
⇒ eAb
⇒ eBBb
⇒ eSdBb
⇒ eAadBb
⇒ ecadBb
⇒ ecadeb

and a right-most derivation of ecadeb.

S ⇒ BAb
⇒ BBBb
⇒ BBeb
⇒ BSdeb
⇒ BAadeb
⇒ Bcadeb
⇒ ecadeb

If you draw the trees associated with these two derivations you will see they are
the same. In fact, the grammar is not ambiguous, so this will always be the
case.

2.1 Exercises

Consider the grammar
T → R

| aTc
R → ε

| RbR

2.1 Give a leftmost derivation of aabbbcc.

2.2 Give a rightmost derivation of aabbbcc.

2.3 Is the grammar ambiguous? Justify your answer.

3 FIRST and FOLLOW

Given a context-free grammar G we may want to automatically generate a top-
down parser for G. This is not always possible, but for many simple grammars
it is. Consider again grammar G1.

Next we calculate FIRST (α) (for any α ∈ (N ∪T)∗) and FOLLOW (A) for
any non-terminal A that is not S′. Recall that

FIRST (α) = {a ∈ T |∃β ∈ (N ∪ T)∗, α⇒∗ aβ} ∪ {ε|α⇒∗ ε}
FOLLOW (A) = {a ∈ T |∃α, β ∈ (N ∪ T)∗, S′ ⇒∗ αAaβ}

4

Often with simple grammars, likeG1, we can easily derive FIRST and FOLLOW
by inspection. For example,

FIRST (S) = {id, (}
FOLLOW (S) = {+, $}

Notice that if there are no ε productions (as is the case here), then the calculation
of FIRST and FOLLOW can be simplified to the following.

FIRST: We first initialize the sets as follows.

1. For each terminal X set FIRST(X) = {X}.

2. For each production X → aα where a is a terminal, add a to the set
FIRST(X).

We then repeat this step until no more changes can be made:

• For each production X → Y α where Y is a nonterminal, add all elements
of FIRST(Y) to the set FIRST(X).

FOLLOW: We first initialize the sets as follows.

1. FOLLOW(S) = {$}.

2. For each production X → αY β where Y is a nonterminal and β 6= ε, add
all elements of FIRST(Y ′) to the set FOLLOW(Y), where Y ′ is the first
symbol of β.

We then repeat this step until no more changes can be made:

• For each production X → αY where Y is a nonterminal, add all elements
of FOLLOW(Y) to the set FOLLOW(X).

Assume that we have added a new start production S′ → S$ to the grammar.
We can then calculate

FIRST(S) = {c, e}
FIRST(A) = {c, e}
FIRST(B) = {c, e}

FOLLOW(S) = {$, d}
FOLLOW(A) = {a, b}
FOLLOW(B) = {a, b, c, e}(Note this is corrected from the original solution notes for this question)

3.1 Exercises

Consider this grammar G2:

S → id
| (S + id)

3.1 Compute FIRST for the non-terminals of this grammar.

3.2 Compute FOLLOW for the non-terminals of this grammar.

5

4 LL(1) Parsing

Given a context-free grammar G we may want to automatically generate a top-
down parser for G. This is not always possible, but for many simple grammars
it is.

Consider again grammar G1. The grammar itself does not admit the top-
down approach since it contains (indirect) left recursion:

S → BAb→ SdAb.

and
S → Aa→ BBa→ SdBa.

Note that this type of “indirect” left recursion was not discussed in lecture. In
general, it is more difficult eliminating this type of left recursion and we will
not go into this topic. Our conclusion is that the grammar G1 cannot be parsed
using the LL(1) approach (however, the language generated by G1 might be if
we could eliminate the left recursion).

Consider the grammar of slide 22 of lecture 3:

S ::= if E then S else S

| begin S L

| print E

E ::= NUM = NUM

L ::= end

| ; S L

First, let’s translate this into more a more abstract specification:

S → iEtSeS
| bSL
| pE

E → n = n
L → t

| ;SL

We can then compute FIRST and FOLLOW :

FIRST(S′) = {p, b, i}
FIRST(S) = {p, b, i}
FIRST(E) = {n}
FIRST(L) = {; , t}

FOLLOW(S) = {$, ; , t, e}
FOLLOW(E) = {$, ; , t, e}
FOLLOW(L) = {$, ; , t, e}

The LL(1) parsing table M is computed as follows.

6

for all A ∈ N, a ∈ T, M [A, a]←
for each A ∈ N

for each production A→ α
if a ∈ FIRST (α) and a 6= ε
then M [A, a]←M [A, a] ∪ {A→ α}
else if ε ∈ FIRST (α)

then for each b ∈ FOLLOW (A)
M [A, b]←M [A, b] ∪ {A→ α}

Here are the non-empty entries in table M for our example grammar:

M [S, i] = {S → iEtSeS}
M [S, p] = {S → pE}
M [S, b] = {S → bSL}
M [E,n] = {E → n = n}
M [L, t] = {L→ t}
M [L, ;] = {L→;SL}

Suppose we are going to parse the following program fragment.

begin print 9=17; if 3=2 then print 4=3 else print 2=1 end

First, let’s translated this into an abstract string looks more like a sequence
of tokens produced by a lexer (for example, b for begin and n for an integer
constant):

w = bpn = n; in = ntpn = nepn = nt

7

Now, using M we can now parse w:

input stack action
bpn = n; in = ntpn = nepn = nt$ S′ M [S′, b] = {S′ → S$}
bpn = n; in = ntpn = nepn = nt$ S$ M [S, b] = {S → bSL}
bpn = n; in = ntpn = nepn = nt$ bSL$ match
pn = n; in = ntpn = nepn = nt$ SL$ M [S, p] = {S → pE}
pn = n; in = ntpn = nepn = nt$ pEL match
n = n; in = ntpn = nepn = nt$ EL$ M [E,n] = {E → n = n}
n = n; in = ntpn = nepn = nt$ n = nL$ match

= n; in = ntpn = nepn = nt$ = nL$ match
n; in = ntpn = nepn = nt$ nL$ match

; in = ntpn = nepn = nt$ L$ M [L, ;] = {L→;SL}
; in = ntpn = nepn = nt$;SL$ match
in = ntpn = nepn = nt$ SL$ M [S, b] = {S → iEtSeS}
in = ntpn = nepn = nt$ iEtSeSL$ match
n = ntpn = nepn = nt$ EtSeSL$ M [E,n] = {E → n = n}
n = ntpn = nepn = nt$ n = ntSeSL$ match

= ntpn = nepn = nt$ = ntSeSL$ match
ntpn = nepn = nt$ ntSeSL$ match
tpn = nepn = nt$ tSeSL$ match
pn = nepn = nt$ SeSL$ M [S, p] = {S → pE}
pn = nepn = nt$ pEeSL$ match
n = nepn = nt$ EeSL$ M [E,n] = {E → n = n}
n = nepn = nt$ n = neSL$ match

= nepn = nt$ = neSL$ match
nepn = nt$ neSL$ match
epn = nt$ eSL$ match
pn = nt$ SL$ M [S, p] = {S → pE}
pn = nt$ pEL$ match
n = nt$ EL$ M [E,n] = {E → n = n}
n = nt$ n = nL$ match

= nt$ = nL$ match
nt$ nL$ match
t$ L$ M [L, t] = {L→ t}
t$ t$ match
$ $ accept!

4.1 Exercises

Consider again the grammar G2:

S → id
| (S + id)

4.1 Construct the predictive parsing table using FIRST and FOLLOW.

4.2 Trace a parsing of (((z + u) + y) + x).

8

5 SLR(1) Parsing

Consider the grammar G3 for balanced parenthesis:

S → ()
| (S)
| SS

We can compute FIRST and FOLLOW for the (augmented) grammar as

FIRST(S′) = {(}
FIRST(S) = {(}

FOLLOW(S) = {$, (,)}

From this we can see that the LL(1) table M has a reduce-reduce-reduce
conflict!

M [S, (] = {S → (), S → (S), S → SS}

(This is left as an exercise.) So, top-down parsing won’t work here.
Let’s try SLR(1) parsing! Here are the steps in constructing a parser:

• Construct the NFA of LR(0) items.

• Convert the NFA into a DFA.

• Construct the SLR(1) ACTION table (check for possible conflicts!).

• Construct the SLR(1) GOTO table.

• Use the ACTION and GOTO tables to drive the generic LR(1) parser.

The DFA for this grammar is

9

2 :
14 : S-->.SS
13 : S-->S.S
11 : S-->.(S)
7 : S-->.()
1 : S'-->S. 1 :

14 : S-->.SS
11 : S-->.(S)
10 : S-->(.S)

7 : S-->.()
6 : S-->(.)

(

3 :
14 : S-->.SS
13 : S-->S.S
12 : S-->SS.
11 : S-->.(S)

7 : S-->.()

S

0 :
14 : S-->.SS
11 : S-->.(S)
7 : S-->.()
0 : S'-->.S

S

(

(

4 :
5 : S-->().

)

5 :
14 : S-->.SS
13 : S-->S.S
11 : S-->.(S)
9 : S-->(S.)
7 : S-->.()

S

(

S

(

S

6 :
8 : S-->(S).

)

The ACTION table is computed as

If A→ α • aβ ∈ Ii and δ′(Ii, a) = Ij
then ACTION [i, a] = shift j

If A→ α• ∈ Ii and A 6= S′

then for all a ∈ FOLLOW (A)
ACTION [i, a] = reduce A→ α

and the GOTO table as GOTO(i, A) = j whenever δ′(Ii, A) = Ij .
When we compute the ACTION table for G3 (left as an exercises) we see

a problem: ACTION [3, ”(”]′ can be shift 1 or reduce S → SS. So, we are
confronted with a shift-reduce conflict! This is correct, since when seeing a left
parenthesis we don’t know which item to use as a guide: S → •(S) or S → •SS.

It turns out that in this case it is the grammar that needs to be changed!
We can write the grammar for balanced parenthesis as G4:

S → ε
| S(S)

The language of this G4 is the same as that of G3 but in this case it can be
parsed using the SLR(1) approach.

The corresponding DFA for G4 is

10

1 :
9 : S-->S.(S)
1 : S'-->S.

2 :
10 : S-->.S(S)
8 : S-->S(.S)

5 : S-->.

(
0 :

10 : S-->.S(S)
5 : S-->.

0 : S'-->.S

S 3 :
9 : S-->S.(S)
7 : S-->S(S.)

S
(

4 :
6 : S-->S(S).

)

Here is the ACTION table for G4

$ ()
0 reduce S → ε reduce S → ε reduce S → ε
1 accept shift 2
2 reduce S → ε reduce S → ε reduce S → ε
3 shift 2 shift 4
4 reduce S → S(S) reduce S → S(S) reduce S → S(S)

The GOTO function can be read right from the DFA.
We are now ready to use the generic LR(1) parsing algorithm:

a← first symbol of input w
while(true)
s← the state at top of stack
if ACTION [s, a] = shift t
then push t on stack

a← next symbol of input
else if ACTION [s, a] = reduce A→ β

then pop |β| states off the stack
t = state at top of stack
push GOTO[t, A] onto the stack

else if ACTION [s, a] = accept
then accept and exit
else ERROR

11

Here is a parse of w = ((())()). I’ve made the GOTO steps explicit.

symbol stack state stack input action
$ 0 ((())())$ reduce S → ε
$S 0 ((())())$ push GOTO[0, S] = 1
$S 0, 1 ((())())$ shift 2
$S(0, 1, 2 (())())$ reduce S → ε
$S(S 0, 1, 2 (())())$ push GOTO[2, S] = 3
$S(S 0, 1, 2, 3 (())())$ shift 2
$S(S(0, 1, 2, 3, 2 ())())$ reduce S → ε
$S(S(S 0, 1, 2, 3, 2 ())())$ push GOTO[2, S] = 3
$S(S(S 0, 1, 2, 3, 2, 3 ())())$ shift 2
$S(S(S(0, 1, 2, 3, 2, 3, 2))())$ reduce S → ε
$S(S(S(S 0, 1, 2, 3, 2, 3, 2))())$ push GOTO[2, S] = 3
$S(S(S(S 0, 1, 2, 3, 2, 3, 2, 3))())$ shift 4
$S(S(S(S) 0, 1, 2, 3, 2, 3, 2, 3, 4)())$ reduce S → S(S)
$S(S(S 0, 1, 2, 3, 2)())$ push GOTO[2, S] = 3
$S(S(S 0, 1, 2, 3, 2, 3)())$ shift 4
$S(S(S) 0, 1, 2, 3, 2, 3, 4 ())$ reduce S → S(S)
$S(S 0, 1, 2 ())$ reduce S → S(S)
$S(S 0, 1, 2 ())$ push GOTO[2, S] = 3
$S(S 0, 1, 2, 3 ())$ shift 2
$S(S(0, 1, 2, 3, 2))$ Reduce S → ε
$S(S(S 0, 1, 2, 3, 2))$ push GOTO[2, S] = 3
$S(S(S 0, 1, 2, 3, 2, 3))$ Shift 4
$S(S(S) 0, 1, 2, 3, 2, 3, 4)$ Reduce S → S(S)
$S(S 0, 1, 2)$ push GOTO[2, S] = 3
$S(S 0, 1, 2, 3)$ Shift 4
$S(S) 0, 1, 2, 3, 4 $ reduce S → S(S)
$S 0 $ push GOTO[0, S] = 1
$S 0, 1 $ Accept

5.1 Exercises

Consider the grammar G5:
S → (S)|()

4.1 Construct the LR(0) items for this grammar.

4.2 Construct the NFA with LR(0) items as states.

4.3 Construct the corresponding DFA.

4.4 Compute FIRST and FOLLOW for this grammar.

4.5 Construct the SLR(1) versions of ACTION and GOTO.

4.6 Trace the parsing of ((())).

12

