Compiler Construction Lent Term 2021 Lecture 5 : Theoretical foundations of Bottom-up (LR) parsing

- 1. This lecture develops a general theory for non-deterministic bottom-up parsing
- 2. Next lecture will present two techniques for imposing determinism --- SLR(1) parsing and LR(1) parsing.

Timothy G. Griffin tgg22@cam.ac.uk Computer Laboratory University of Cambridge

This grammar will be our running example

$$G_2 = (N_2, T_1, P_2, E')$$

$$N_2 = \{E', E, T, F\} \qquad T_1 = \{+, *, (,), id\}$$

 $P_2: \mathbf{E'} \to \mathbf{E}$

- $E \rightarrow E + T | T$ (expressions)
 - $T \rightarrow T * F | F$ (terms)
 - $F \rightarrow (E) \mid id$ (factors)

Note: E' was added for convenience to ensure that there is a single starting production. 2

$w \in T^*$ $\alpha, \beta \in (N \cup T)^*$ Given : αAw and a production $A \to \beta$ a rightmost derivation step is written as $\alpha Aw \Rightarrow_{rm} \alpha \beta w$

A rightmost derivation of (x+y)

$$E' \Rightarrow_{rm} E$$

$$\Rightarrow_{rm} T$$

$$\Rightarrow_{rm} F$$

$$\Rightarrow_{rm} (E)$$

$$\Rightarrow_{rm} (E+T)$$

$$\Rightarrow_{rm} (E+F)$$

$$\Rightarrow_{rm} (E+y)$$

$$\Rightarrow_{rm} (T+y)$$

$$\Rightarrow_{rm} (F+y)$$

$$\Rightarrow_{rm} (x+y)$$

Top-down (LL) parsing is based on <u>left-most</u> derivations.

Bottom-up (LR) parsing is based on <u>right-mos</u>t derivations.

But Bottom-up parsers perform the derivation in reverse!

Let's try to formalize such a parser

An LR parser configuration has the form

$$\alpha, x$$

(α is the stack, x the remaining input)

The configuration is <u>valid</u> when there exists a right-most derivation of the form

$$S \Longrightarrow_{rm}^* \alpha x$$

Let's try to formalize our (nondeterministic) parser

Suppose

$$\alpha Ax \Longrightarrow_{rm} \alpha \beta Bzx$$

Our "backwards" parser MIGHT move

from one configurat ion to another like so:

$$\$\alpha\beta Bz, x\$ \xrightarrow{reduce} \$\alpha A, x\$$$

This action is called a reduction

using production $A \rightarrow \beta Bz$

Are reduction actions sufficient?

Suppose we have the derivation

$$\alpha Ax \Rightarrow_{rm} \alpha \beta Bzx \Rightarrow_{rm} \alpha \beta \gamma zx$$

using $A \rightarrow \beta Bz$ and then $B \rightarrow \gamma$.

Simulating this in reverse, our parser gets stuck :

 $\alpha\beta\gamma$, zx\$

 $\xrightarrow{reduce} \$\alpha\beta B, zx\$$

We want βBz on top of the stack! 9

We need an action that <u>shifts</u> a terminal onto the stack!

 $\alpha Ax \Rightarrow_{rm} \alpha \beta Bzx \Rightarrow_{rm} \alpha \beta \gamma zx$

 $\alpha\beta\gamma, zx$ How do we $\xrightarrow{reduce} \$\alpha\beta B, zx\$$ know when to stop shifting? $\xrightarrow{shift(s)} \$\alpha\beta Bz, x\$$ Here we don't want to gobble \xrightarrow{reduce} \$ αA , x\$ up *x*!

Sanity check.

Let's make sure that this can work when B does not appear in the right - hand side of A's production,

$$\alpha BxAz \Rightarrow_{rm} \alpha Bxyz \Rightarrow_{rm} \alpha \gamma xyz$$

using production $A \rightarrow y$, then $B \rightarrow \gamma$.

Our parser's possible actions :

 $\alpha\gamma, xyz$

$$\xrightarrow{reduce}$$
 \Rightarrow $\otimes \alpha B, xyz$

$$\xrightarrow{shift(s)} \$ \alpha B x y, z \$$$

 \xrightarrow{reduce} \Rightarrow $\alpha BxA, z$

All good! But again, how do we know when to reduce and when to stop shifting? 11

Shift and reduce are sufficient.

The previous two slides demonstrate that if we have a derivation

$$\mathbf{S} \Rightarrow^*_{\mathrm{rm}} w$$

Then we can always "replay it" in reverse using shift/redu ce actions

 $, w \rightarrow S, S,$

This tells us that shift and reduce are sufficient . However, when we are parsing a *w* we won't have access to a derivation to replay! So our parser will be non - determinis tic and GUESS what the future holds!

Replay parsing of (*x*+*y*) **using shift/reduce actions**. **X=top-of-stack, a = next input token**

stack	input	action[X, a]
\$	(x + y)\$	shift
\$((x + y)\$	shift
\$(<i>x</i>	+ y)\$	reduce $F \rightarrow id$
\$(<i>F</i>	+ y)\$	reduce $T \to F$
\$(<i>T</i>	+ y)\$	reduce $E \rightarrow T$
\$(<i>E</i>	+ y)\$	shift
(E +	y)\$	shift 13

... informal shift/reduce parse continued

stack	input	action[X, a]	
(E+y))\$	reduce $F \rightarrow id$	
(E+F))\$	reduce $T \to F$	
(E+T))\$	reduce $E \rightarrow E + T$	
\$(<i>E</i>)\$	shift	
(E)	\$	reduce $F \rightarrow (E)$	
F	\$	reduce $T \rightarrow F$	
T	\$	reduce $F \rightarrow E$	
E	\$	reduce $S \rightarrow E$	
\$ <i>E</i> '	\$	accept!	14

How do we decide when to shift and when to reduce?

Suppose $A \rightarrow \beta \gamma$ is a production. When our parser is in the configurat ion

 $(\alpha\beta\gamma, x)$

we MIGHT want to reduce with $A \rightarrow \beta \gamma$.

However, if we have

 $\alpha\beta, x$

we MIGHT want to continue parsing with the hope of eventually getting $\beta\gamma$ on top of the stack so that we can then reduce to *A*. 15

LR(0) items record how much of a production's right-hand side we have already parsed

For every grammar production

 $A \rightarrow \beta \gamma \qquad (\beta, \gamma \in (N \cup T)^*)$

produce the LR(0) item

$$\mathbf{A} \to \boldsymbol{\beta} \bullet \boldsymbol{\gamma}$$

Interpretation of $A \rightarrow \beta \bullet \gamma$: we have already parsed some input *x* derivable from $\beta \ (\beta \Rightarrow_{rm}^* x)$ and we MIGHT next see some input derivable from γ .

LR(0) items for grammar G_2

 $E' \rightarrow \bullet E$ $E' \rightarrow E \bullet$

 $E \rightarrow E \bullet + T$

 $E \rightarrow E + \bullet T$

 $E \rightarrow E + T \bullet$

 $E \rightarrow \bullet T$

 $E \rightarrow T \bullet$

- $E \rightarrow \bullet E + T$ $T \rightarrow \bullet T * T$
 - $T \rightarrow T \bullet *F$
 - $T \rightarrow T^* \bullet F$
 - $T \rightarrow T * F \bullet$
 - $T \rightarrow \bullet F$

 $T \rightarrow F \bullet$

- $F \rightarrow (E) \bullet$ $F \rightarrow \bullet id$
 - $F \rightarrow id \bullet$

 $F \rightarrow \bullet(E)$

 $F \rightarrow (\bullet E)$

 $F \rightarrow (E \bullet)$

Valid LR(0) items

Definition . Item $A \to \beta \bullet \gamma$ is valid for $\phi \beta$ if there exists a derivation $S \Rightarrow_{rm}^{*} \phi Ax \Rightarrow_{rm} \phi \beta \gamma x$

If item $A \rightarrow \beta \bullet \gamma$ is valid for $\phi \beta$ then our parser could use the item as a guide when in configurat ion $\$\phi\beta, z\$.$

Suppose $A \rightarrow \beta B \gamma$ and $B \rightarrow \alpha_1 | \alpha_2 | \cdots | \alpha_k$. Consider the ways in which items for these production s might be used as parsing guides.

Derivation	Parse	Possible guides
S	S, S^{*}	
$\Rightarrow_{rm}^{*} \phi Ax$	* $\leftarrow $ \$ ϕA , x\$	
$\Rightarrow_{rm} \phi \beta B \gamma x$	$\leftarrow \$\phi\beta B\gamma, x\$$	$A \to \beta B \gamma \bullet$
$\Rightarrow_{rm}^* \phi \beta Bzx$	* $\leftarrow \$\phi\beta B, zx\$$	$A \to \beta B \bullet \gamma$
$\Rightarrow_{rm} \phi \beta \alpha_i z x$	$\leftarrow \$\phi\beta\alpha_i, zx\$$	$B \rightarrow \alpha_i \bullet$
$\Rightarrow^*_{rm} \phi \beta uzx$	* $\leftarrow \$\phi\beta, uzx\$$	$A \to \beta \bullet B\gamma, B \to \bullet \alpha_i$

Using items as parsing guides

Suppose our parser is in the config $\$\phi\beta, cz\$$ and $A \to \beta \bullet c\gamma$ is valid for $\phi\beta$. Then we MIGHT shift c onto the stack : $\$\phi\beta, cz\$ \xrightarrow{shift} \$\phi\betac, z\$$

Suppose our parser is in the config $\$\phi\beta, z\$$ and $A \to \beta \bullet$ is valid for $\phi\beta$. Then we MIGHT perform a reduction : $\$\phi\beta, z\$ \xrightarrow{reduce} \$\phi A, z\$$

Using items as parsing guides

Suppose our parser is in the config $\$\phi\beta, z\$$

which we will assume is valid, so $S \Rightarrow_{rm}^{*} \phi \beta z$. Suppose $A \rightarrow \beta \bullet \gamma$ is valid for $\phi \beta$. Then γ MIGHT capture the future of our parse (the past of that derivation). That is, it MIGHT be that

$$S \Rightarrow_{rm}^{*} \phi Ax \Rightarrow_{rm} \phi \beta \gamma x \Rightarrow_{rm}^{*} \phi \beta \gamma x = \phi \beta z$$

If so, our parser MIGHT proceed like so:

$$\phi\beta, z\$ = \$\phi\beta, yx\$ \rightarrow^* \$\phi\beta\gamma, x\$ \xrightarrow{reduce} \$\phiA, x\$.$$

That is, our parser could guess that γ will derive a prefix of the remaining input z.

The KEY idea in LR parsing

Augment our shift/reduce parser in such a way that in every configuration it can derive the set of all items valid for the contents of the current stack.

Then at each step the parser can (non - deterministically) select an item from this set to use as a guide.

Defined a NFA with LR(0) items as states!

The initial state q_0 is this item constructed from the unique starting production $E' \rightarrow \bullet E$ (for example) and every item (state) is a final state. Let δ_G be the transition function of this NFA.

Main LR parsing theorem

Theorem.
$$A \to \beta \bullet \gamma \in \delta_G(q_0, \phi\beta)$$
 if and only if $A \to \beta \bullet \gamma$ is valid for $\phi\beta$.

Amazing fact : the

language of the stack

is regular!

See proof (not examinable) in Introduction to Automata Theory, Languages, and Computation. Hopcroft and Ullman. γ

A few NFA transitions for grammar G_2

A non-deterministic LR parsing algorithm

c := first symbol of input w\$ while(true)

 $\alpha :=$ the stack if $A \to \beta \bullet c\gamma \in \delta_G(q_0, \alpha)$ then shift *c* onto the stack c := next input token;if $A \to \beta \bullet \in \delta_G(q_0, \alpha)$ then reduce: pop β off the stack and then push A onto the stack; if $S \to \beta \bullet \in \delta_G(q_0, \alpha)$ then accept and exit if no more input;

if none of the above then ERROR

This is non-deterministic since multiple conditions can be true and multiple items can match any condition.

How can we make the algorithm deterministic?

- 1. The easy part: convert the NFA to a DFA
- 2. When there are shift/reduce or reduce/reduce conflicts, find some way of making a deterministic choice.
- 3. For (2), peek into the input buffer.
- 4. For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be non-ambiguous grammars for which our deterministic parser will fail.

Next lecture : we will look at two popular approaches, 27 SLR(1) and LR(1).