Compiler Construction
Lent Term 2021
Lecture 5 : Theoretical foundations of
Bottom-up (LR) parsing

1. This lecture develops a general theory for
non-deterministic bottom-up parsing

2. Next lecture will present two techniques for
Imposing determinism --- SLR(1) parsing and
LR(1) parsing.

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

This grammar will be our running example
Gz — (N21T1’ P2’ E')
N,={E ,ET,F} T ={+%*(),1d}
P,.E'—>E
E—->E+T|T (expressio ns)
To>T*F|F (terms)
F— (E)|Id (factors)

Note: E’ was added for convenience to ensure
that there Is a single starting production. 2

Rightmost derivations

weT a,Be(NUT)
Given :cAwand a production A— S
a rightmost derivation step iIs written as
AW = a iV

A rightmost derivation of (x+y)

E'= E
=
= F
=m (E)
= (E+T)
= . (E+F)
=m (E+Y)
=m (T +Y)
=>m (F+Y)

= (X+Y)

Top-down (LL) parsing Is
based on
left-most derivations.

Bottom-up (LR) parsing Is
based on
right-most derivations.

But Bottom-up parsers perform the
derivation in reverse!

=m E (X+Y) < Start parse
= m T A (F+y) < i

= F FLIPL (T+y) <

= m (E) (E+y)<:

= (E+T) (E+F) <

=m (E+F) (E+T) <

=m (E+Y) (E) <

—~rm (T + Y) F «—

—rm (F T Y) T <

= (X+Y) E<E' Finish

5

Can we transform a backwards
derivation into
an execution of a stack machine?

(X+Y) <=
(F+y) <
(T+y)<=
(E+Yy) <
(E+F) <
(E+T) <

(E) <

F <

T <«
E <

View the reversed
derivation asa
stack machine (use
$ as stack bottom
and end - of - input).

Can we make
= this work?

stack Input
$ (X+Y)$
$(F +y)$
$(T +V)$
$(E +V)$
$(E+F)%
$(E+T)$
$(E) $
$F $
$T $
$E $
$E' $

Let’s try to formalize such a parser

An LR parser configuration has the form

a, x
(¢ Is the stack, x the remaining Input)

The configuration is valid when there exists
a right-most derivation of the form

S =, aX

Let’s try to formalize our (non-
deterministic) parser

Suppose
aAX =, o BzX
Our "backwards" parser MIGHT move
from one configurat ion to another like so :
$a Bz, x$ —= 5 aA, x
This action Is called a reduction
using production A — [Bz

Are reduction actions sufficient?

Suppose we have the derivation
oaAX = = aBIX = af7ZX
using A— Bz and then B — .
Simulating this In reverse, our parser gets stuck :

$a By, 7x$
reduce)$0[,BB, ZX$
77 5277

We want Bz on top of the stack! 9

We need an action that shifts a terminal
onto the stack!

oAX = afBIX = = af7ZX

Safy, x$ How do we

reduce)OC,BB, zx | know when to
stop shifting?

shift(s))$0[,BBZ, X$ Heret ;Ne dggalt
want to gobble

reduce saA, x upx!

10

Sanity check.
Let's make sure that this can work when B does
not appear in the right - hand side of A's production,
oBXAZ = aBXyz = = aXyz
using production A—y, then B — v.
Our parser's possible actions :

ay, xyz All good! But
again, how do

>aB, Xyz \we know when to

reduce and when
>$aBxy, 73 to stop shifting?

reduce)$0[BXA, Z$ 11

reduce

shift(s)

Shift and reduce are sufficient.
The previous two slides demonstrat e that if
we have a derivation
S= _w
Then we can always "replay it" in reverse using
shift/redu ce actions

$,w$ - $S,$
This tells us that shift and reduce are sufficient .
However, when we are parsing a w we won' t
nave access to a derivation to replay! So our
parser wil | be non - determinis tic and GUESS what
the future holds!

12

Replay parsing of (x+y) using shift/reduce actions.
X=top-of-stack,

a = next input token

stack Input action| X, a

$ (X+y)$ shift

$(X+ Y)$ shift

$(x +VY)$ reduce F — id
$(F +VY)$ reduce T -> F
$(T +V)$ reduce E > T
$(E +y)$ shift

$(E y)$ shift 13

... informal shift/reduce parse continued

stack Input action[X, aj

$(E+y)$ reduce F —id

$(E+F)$ reduce T —» F

$(E+T)$ reduce E > E+T

(E) shift

$(E) $ reduce F — (E)

$F $ reduceT > F

$T $ reduce F > E

$E $ reduceS—E

$E' $ accept! 14

How do we decide when to shift and
when to reduce?

Suppose A — By is a production . When
our parser Is inthe configurat ion
$a By, x$
we MIGHT want to reduce with A — fy.
However, if we have
ap, x
we MIGHT want to continue parsing with the hope
of eventually getting £y ontop of the stack so
that we can then reduce to A 15

LR(0) items record how much of a
production’s right-hand side we have
already parsed

For every grammar production

A= By (Bye(NUT))
produce the LR(0) item

A—> [ey
Interpretation of A— fey :we have already
parsed some input x derivable from B (8 =_ x)and
we MIGHT next see some Input derivable from y.

16

LR(0) tems for grammar G,

E'—> oF F' 5> Fe
E SeE+T T—oeT*T F—e(E

E>Ee+T T-—o>Te*F F—(eE)
E>E+eT T-—>T*eF F—(Ee)
E>E+Te T—o>T*Fe F—>(E)e
E_SeT T > oF F — e(d

E>Te T—>Fe F—>ide

17

Valid LR(0) items

Definition . ltem A— Seyis valid for ¢f
If there exists a derivation

S :>tm ¢AX :>rm ¢ﬂ7x

If tem A— Seyis valid for ¢f
then our parser could use the item
as a guide when in configurat ion

$08, $.

18

Suppose A— fByand B—- o, |a, |-+ | «,.
Consider t he ways In which rtems for these
production s might be used as parsing guides.

Derivation Parse Possible guides

S $S,$
=m X T gA, x
= m OPBIX | «—$pMBy, Xx$ | A— By e
= OBIX | T« $pB, 2x$| A— fBey
= PPAIX| 3PP, X3 B> ;@
= PIX | T gB,ux| A—> feBy, B e,

Using items as parsing guides

Suppose our parser is in the config
$¢, cz$
and A— fecyis valid for ¢f.
Then we MIGHT shift ¢ onto the stack :

$¢ﬂ; CZ$ shift)$¢ﬂ:’ Z$

Suppose our parser Is in the config

$40, 2%
and A— S eis valid for ¢p.

Thenwe MIGHT perform a reduction
$¢ﬂ, Z$ reduce)$¢A, Z$ 20

Using items as parsing guides
Suppose our parser is in the config
$pp, 2%
which we will assume is valid, so S =, ¢/.
Suppose A— feyis valid for ¢p.
Then ¥ MIGHT capture the future of our parse (the
past of that derivation). That is, it MIGHT be that

S =i PAX = BB =1, BPYX = P

If so, our parser MIGHT proceed like so:

$03, 2$ =508, yx$ = PLy, x—UC 5 oA, x.

That Is, our parser could guess that » will derive
a prefix of the remaining Input z.

21

The KEY idea in LR parsing

Augment our shift/reduce parser in such

a way t

nat in every configuration it can

derivet

ne set of all items valid for the

contents of the current stack.

Then at

each step the parser can

(non - deterministically) selectan item
from this set to use as a guide.

22

Defined a NFA with LR(O) items as
states!

A—> pfeCy| ———— | A—> [Coy

A—> peBy| m———— |A—> [Bey

A— feBy | —— | B> eq,

The Inttial state g, Is this tem constructe d
from the unique starting production
E'—>eE (for example)
and every item (state) Is a final state.
Let &, be the transitio n function of this NFA. 23

Main LR parsing theorem

Theorem. A— Sey eo.(q,,¢p)If and only If
A— peyis vald for ¢f.

Amazing fact :the
language of the stack <§ 00

is reqular! -

See proof (not examinable) in Introduction to Automata Theory, Languages, and
Computation. Hopcroft and Ullman. 4

A few NFA transitions for grammar G,

Eo>Ee+T

L>E—>E+0T

-

F — o(E)

———IT >eF

K

F — (eE)

| &

F— eid

25

A non-deterministic LR parsing

algorithm
¢ .= first symbol of input w$
while(true)
a =the stack

If A> fecyed;(q,,a)
then shift ¢ onto the stack
C = next input token;

ifA—),BOEéG(qo,Ol) —

then reduce : pop S off the stack

and then push Aonto the stack;
If S— feecd,;(q,,a)
then accept and exit if no moreinfﬁ;
If none of the above then ERROR

This is non-deterministic

since multiple conditions

can be true and multiple

items can match any
condition.

20

How can we make the algorithm
deterministic?

N =

3. For (2), peek into the input buffer.
4,

The easy part: convert the NFA to a DFA

When there are shift/reduce or
reduce/reduce conflicts, find some way of
making a deterministic choice.

For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be
non-ambiguous grammars for which our deterministic
parser will falil.

Next lecture : we will look at two popular approaches,
SLR(1) and LR(1). 217

