
1

Compiler Construction

Lent Term 2021

Lecture 5 : Theoretical foundations of

Bottom-up (LR) parsing

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

1. This lecture develops a general theory for
non-deterministic bottom-up parsing

2. Next lecture will present two techniques for
imposing determinism --- SLR(1) parsing and
LR(1) parsing.

This grammar will be our running example

)',,,(2122 EPTNG

F}T,E,,{E'2 N id}),(,,*,{1 T

(factors) id|(E)F

(terms)F|F*TT

ns)(expressioT|TEE

EE' :2

P

2
Note: E’ was added for convenience to ensure

that there is a single starting production.

Rightmost derivations

wAw

AAw

TNTw

rm

 as written is step derivationrightmost a

 production a and :Given

)(, **

3

A rightmost derivation of (x+y)

)(

)(

)(

)(

)(

)(

)(

'

yx

yF

yT

yE

FE

TE

E

F

T

EE

rm

rm

rm

rm

rm

rm

rm

rm

rm

rm

4

Top-down (LL) parsing is

based on

left-most derivations.

Bottom-up (LR) parsing is

based on

right-most derivations.

But Bottom-up parsers perform the

derivation in reverse!

'

)(

)(

)(

)(

)(

)(

)(

EE

T

F

E

TE

FE

yE

yT

yF

yx

FLIP!

5)(

)(

)(

)(

)(

)(

)(

yx

yF

yT

yE

FE

TE

E

F

T

ES

rm

rm

rm

rm

rm

rm

rm

rm

rm

rm

 Start parse

Finish

Can we transform a backwards

derivation into

an execution of a stack machine?

$'$

$$

$$

$$

$)$(

)$$(

)$$(

)$$(

)$$(

)$$(

)$($

E

E

T

F

E

TE

FE

yE

yT

yF

yx

 work?this

 make Can we

 input).-of-end and

 bottomstack as $

(use machinestack

 a as derivation

reversed theView

inputstack

'

)(

)(

)(

)(

)(

)(

)(

EE

T

F

E

TE

FE

yE

yT

yF

yx

Let’s try to formalize such a parser

7

input) remaining the stack, theis (

$,$

x

x

An LR parser configuration has the form

The configuration is valid when there exists

a right-most derivation of the form

xS rm
*

Let’s try to formalize our (non-

deterministic) parser

8
BzA

xAxBz

BzxAx

reduce

rm

 production using

reduction a called isaction This

$,$$,$

 :so likeanother ion toconfigurat one from

 move MIGHTparser backwards""Our

 Suppose

Are reduction actions sufficient?

9 stack! theof on top want We

???

$,$

$,$

???

Bz

zxB

zx

reduce

 :stuck getsparser our reverse,in thisSimulating

. then and using

derivation thehave weSuppose

BBzA

zxBzxAx rmrm

We need an action that shifts a terminal

onto the stack!

10
$,$

$,$

$,$

$,$

)(

xA

xBz

zxB

zx

reduce

sshift

reduce

zxBzxAx rmrm

How do we

know when to

stop shifting?

Here we don’t

want to gobble

up x!

Sanity check.

11$,$

$,$

$,$

$,$

)(

zBxA

zBxy

xyzB

xyz

reduce

sshift

reduce

:actions possible sparser'Our

. then, production using

,production s' of side hand-right in theappear not

does hen can work w that thissure make sLet'

ByA

xyzBxyzBxAz

A

B

rmrm

All good! But

again, how do

we know when to

reduce and when

to stop shifting?

Shift and reduce are sufficient.

12 holds! future the

 whatGUESS and ticdeterminis-non be lparser wil

our So replay! toderivation a toaccess have

t won' we a parsing are when weHowever,

.sufficient are reduce andshift that us tellsThis

$,$$$,

 actions ceshift/redu

 using reversein it"replay " alwayscan Then we

S

derivation a have we

if that edemonstrat slides twoprevious The

*

*

rm

w

Sw

w

Replay parsing of (x+y) using shift/reduce actions.

X=top-of-stack, a = next input token

shift)$$(

shift)$$(

 reduce)$$(

 reduce)$$(

 reduce)$$(

shift)$$(

shift)$($

 a]action[X,inputstack

yE

yE

TEyT

FTyF

idFyx

yx

yx

13

… informal shift/reduce parse continued

accept!$'$

ES reduce$$

 reduce$$

 reduce$$

)(reduce$)$(

shift)$$(

 reduce)$$(

 reduce)$$(

 reduce)$$(

 a]action[X,inputstack

E

E

EFT

FTF

EFE

E

TEETE

FTFE

idFyE

14

How do we decide when to shift and

when to reduce?

 . toreducecan then that we

 sostack theof on top getting eventually of

 hope with theparsing continue want toMIGHT we

,

 have weif However,

. with reduce want toMIGHT we

,

ion configurat in the isparser our

 When.production a is Suppose

A

x$$

A

x$$

A

15

LR(0) items record how much of a

production’s right-hand side we have

already parsed

. from derivableinput some seenext MIGHT we

 and from derivable input some parsed

already have we: oftion Interpreta

A

 item LR(0) theproduce

))(,(A

productiongrammar every For

*

*

x)(x

A

TN

rm

16

2grammar for items)0(GLR

TE

TE

TEE

TEE

TEE

TEE

FT

FT

F*TT

F*TT

F*TT

T*TT

idF

idF

(E)F

)(EF

E)(F

(E)F

 EE'EE'

17

Valid LR(0) items

xAxS

A

rmrm

*

 derivation a exists thereif

 for validis Item .Definition

18

$.,$

ion configuratin when guide a as

 item theuse couldparser our then

 for validis item If

z

A

uzx

zx

Bzx

xB

Ax

S

rm

irm

rm

rm

rm

*

*

*

$,$

$,$

$,$

$,$

$,$

$,$

*

*

*

*

uzx

zx

zxB

xB

xA

S

i

i

i

BBA

B

BA

BA

,

Derivation Parse Possible guides

guides. parsing as used bemight sproduction

 for these itemsin which waysheConsider t

 .||| and Suppose 21 kBBA

$,$$,$

 :reduction a perform MIGHT Then we

 .for validis and

$,$

 config in the isparser our Suppose

$,$$,$

 :stack theonto cshift MIGHT Then we

 .for validis and

$,$

 config in the isparser our Suppose

zAz

A

z

zccz

cA

cz

reduce

shift

20

Using items as parsing guides

 z.input remaining theofprefix a

derive will that guess couldparser our is,That

$.,$$,$$,$$,$

 :so like proceed MIGHTparser our so, If

 that be MIGHTit is,That).derivation that ofpast

 (the parseour of future thecapture MIGHT Then

 .for validis Suppose

. so valid,is assume willwhich we

$,$

 config in the isparser our Suppose

*

**

xAxyxz

zyxxAxS

A

zS

z

reduce

rmrmrm

*

rm

21

Using items as parsing guides

The KEY idea in LR parsing

22

 stack.current theof contents

 for the validitems all ofset thederive

can it ion configuratevery in way that a

such in parser ceshift/reduour Augment

 guide. a as use set to thisfrom

 iteman select tically)determinis-(non

can parser thestepeach at Then

Defined a NFA with LR(0) items as

states!

 cA cA
c

 BA iB

23 NFA. thisoffunction n transitio thebe Let

 state. final a is (state) itemevery and

 example)(for EE'

 production starting unique thefrom

dconstructe item thisis state initial The

G

0

q

 BA BAB

Main LR parsing theorem

.for validis

ifonly and if),(Theorem. 0

A

qA G

regular! is

stack theof language

 the:fact Amazing

24
See proof (not examinable) in Introduction to Automata Theory, Languages, and

Computation. Hopcroft and Ullman.

2grammar for tionsNFA transi fewA G

FT (E)F

TEE

TEE

idF

E)(F

(

25

A non-deterministic LR parsing

algorithm

ERROR then above theof none if

input; more no ifexit andaccept then

),(S if

stack; theonto push then and

stack theoff pop :reducethen

),(A if

n;input tokenext : c

stack theonto shift then

),(if

stack the:

)while(true

input w$ of symbolfirst : c

0

0

0

q

A

q

c

qcA

G

G

G

26

This is non-deterministic

since multiple conditions

can be true and multiple

items can match any

condition.

How can we make the algorithm

deterministic?

27

1. The easy part: convert the NFA to a DFA
2. When there are shift/reduce or

reduce/reduce conflicts, find some way of
making a deterministic choice.

3. For (2), peek into the input buffer.
4. For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be

non-ambiguous grammars for which our deterministic

parser will fail.

Next lecture : we will look at two popular approaches,

SLR(1) and LR(1).

