
1

Compiler Construction

Lent Term 2021

Lecture 5 : Theoretical foundations of 

Bottom-up (LR) parsing 

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge  

1. This lecture develops a general theory for 
non-deterministic bottom-up parsing 

2. Next lecture will present two techniques for 
imposing determinism --- SLR(1) parsing and 
LR(1) parsing. 



This grammar will be our running example
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Note: E’ was added for convenience to ensure 

that there is a single starting production. 



Rightmost derivations 
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A rightmost derivation of (x+y)
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Top-down (LL) parsing is 

based on 

left-most derivations.

Bottom-up (LR) parsing is 

based on

right-most derivations. 



But Bottom-up parsers perform the 

derivation in reverse!
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FLIP!
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 Start parse

Finish



Can we transform a backwards 

derivation into 

an execution of a stack machine? 
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Let’s try to formalize such a parser
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An LR parser configuration has the form 

The configuration is valid when there exists

a right-most derivation of the form 

xS rm 
*



Let’s try to formalize our (non-

deterministic) parser
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reduction  a called isaction  This
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Are reduction actions sufficient?
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We need an action that shifts a terminal 

onto the stack!

10
$,$

$,$

$,$

$,$

)(

xA

xBz

zxB

zx

reduce

sshift

reduce









 

 

 

zxBzxAx rmrm  

How do we

know when to 

stop shifting?

Here we don’t 

want to gobble

up x!



Sanity check. 
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All good! But 

again, how do 

we know when to 

reduce and when

to stop shifting?



Shift and reduce are sufficient.
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Replay parsing of (x+y) using shift/reduce actions.

X=top-of-stack,       a = next input token
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… informal shift/reduce parse continued    
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How do we decide when to shift and 

when to reduce?    
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LR(0) items record how much of a 

production’s right-hand side we have 

already parsed
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2grammar for  items )0( GLR
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Valid LR(0) items
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Using items as parsing guides
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Using items as parsing guides



The KEY idea in LR parsing
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Main LR parsing theorem
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See proof (not examinable) in Introduction to Automata Theory, Languages, and

Computation.  Hopcroft and Ullman.
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A non-deterministic LR parsing 

algorithm
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This is non-deterministic

since multiple conditions 

can be true and multiple 

items can match any 

condition.



How can we make the algorithm 

deterministic? 
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1. The easy part: convert the NFA to a DFA
2. When there are shift/reduce or 

reduce/reduce conflicts, find some way of 
making a deterministic choice. 

3. For (2), peek into the input buffer.
4. For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be 

non-ambiguous grammars for which our deterministic 

parser will fail. 

Next lecture : we will look at two popular approaches, 

SLR(1) and LR(1). 


