LECTURE 7
 Slang front end and interpreter 0

- Slang (= Simple LANGuage)
- A subset of L3 from Semantics ...
- ... with very ugly concrete syntax
- You are invited to experiment with improvements to this concrete syntax.
- Slang : concrete syntax, types
- Abstract Syntax Trees (ASTs)
- The Front End
- Interpreter 0 : The high-level "definitional" interpreter

1. Slang/L3 values represented directly as OCaml values
2. Recursive interpreter implements a denotational semantics
3. The interpreter implicitly uses OCaml's runtime stack and heap

The Slang compiler

- The compiler is available from the course web site.
- It is written in Ocaml
- Slang = Simple Language. Based on L3 from Semantics of Programming Languages, Part 1B.
- The best way to learn about compilers is to modify one.
- There are several suggested improvements listed on the course web site. I hope that some of you will implement these. If they work, l'll let you commit your changes to the repository. Fame! Fortune!

Bridging the Gap?

Low-level, stack-based code for the Jargon Virtual Machine

Question : How do we leap from the mathematical semantics of L3 to a low-level stack machine?

Answer : We will start with a high-level interpreter based on semantics, and then derive the stack machine by a sequence of semantics preserving transformations!

Lectures 7-11: the derivation

Note : this is not the traditional way of teaching compilers! Many textbooks will start with a stack machine and bridge the gap informally. We will develop a deeper understanding!

Interpreter 0

Explicit stack via CPS+DFS

Split stack into two, refactor

Linearise code

Low-level addressable stack
Interpreter 1
Interpreter 2

Interpreter 3

Jargon VM

Clunky Slang Syntax (informal)

uop := - | ~

$$
\text { bop }::=+\left|-\left.\right|^{*}\right|<|=|\& \&|| \mid
$$

$$
t::=\text { bool | int } \mid \text { unit }|(t)| t * t|t| t->t \mid t \text { ref }
$$

$$
\mathrm{e}::=()|\mathrm{n}| \text { true | false }|x|(e)|?|
$$

e bop e| uop e|
if e then else e end
e e|fun (x:t) -> e end |
let $x: t=e$ in e end \mid let $f(x: t): t=e$ in e end \mid
!e | ref e |e $:=\mathrm{e} \mid$ while e do e end |
begin e; e; ... e end |
(e, e) | snd e | fst e |
inlte|inrte|
case e of $\operatorname{inl}(x: t)->e \mid \operatorname{inr}(x: t)->e$ end
(\sim is boolean negation)
(? requests an integer input from terminal)
(notice type annotation on inl and inr constructs)

From slang/examples

let fib(m : int) : int =
if $m=0$
then 1
else if $m=1$
then 1
else fib (m-1) + fib (m-2)
end
end
in
fib(?)
end

```
let \(\operatorname{gcd}(\mathrm{p}:\) int *int) \(:\) int =
    let \(m\) : int = fst \(p\)
    in let \(n\) : int \(=s n d p\)
    in if \(m=n\)
        then m
        else if \(m<n\)
                            then \(\operatorname{gcd}(m, n-m)\)
                        else \(\operatorname{gcd}(m-n, n)\)
                        end
            end
        end
    end
in \(\operatorname{gcd}(?\), ?) end
```


Slang Front End

Input file foosslang

Parse (we use Ocaml versions of LEX and YACC, covered in Lectures 3 --- 6)

Parsed AST (Past.expr)

Static analysis : check types, and contextsensitive rules, resolve overloaded operators

Parsed AST (Past.expr)

Remove "syntactic sugar", file location information, and most type information
Intermediate AST (Ast.expr)

Parsed AST (past.ml)

```
type var = string
type loc = Lexing.position
type type_expr =
    | TEint
    | TEbool
    | TEunit
    | TEref of type_expr
    | TEarrow of type_expr * type_expr
    | TEproduct of type_expr * type_expr
    | TEunion of type_expr * type_expr
type oper = ADD | MUL | SUB | LT |
    AND | OR | EQ|EQB | EQ|
```

type unary_oper = NEG | NOT

> Locations (loc) are used in generating error messages.
type expr =
| Unit of loc
| What of loc
| Var of loc * var
| Integer of loc *int
| Boolean of loc * bool
| UnaryOp of loc * unary_oper * expr
| Op of loc * expr * oper * expr
| If of loc * expr * expr * expr
| Pair of loc * expr * expr
| Fst of loc * expr
| Snd of loc * expr
| Inl of loc * type_expr * expr
| Inr of loc * type_expr * expr
| Case of loc * expr * lambda * lambda
| While of loc * expr * expr
Seq of loc * (expr list)
| Ref of loc * expr
| Deref of loc * expr
| Assign of loc * expr * expr | Lambda of loc * lambda
| App of loc * expr * expr
| Let of loc * var * type_expr * expr * expr
| LetFun of loc * var * lambda

* type_expr * expr
| LetRecFun of loc * var * lambda
* type_expr * expr

static.mli, static.ml

val infer : (Past.var * Past.type_expr) list
-> (Past.expr * Past.type_expr)
val check : Past.expr -> Past.expr (* infer on empty environment *)

- Check type correctness
- Rewrite expressions to resolve EQ to EQI (for integers) or EQB (for bools).
- Only LetFun is returned by parser. Rewrite to LetRecFun when function is actually recursive.

Lesson : while enforcing "context-sensitive rules" we can resolve ambiguities that cannot be specified in context-free grammars.

Internal AST (ast.ml)
type var = string
type oper = ADD | MUL | SUB | LT | AND | OR | EQB | EQI
type unary_oper = NEG | NOT | READ

No locations, types. No Let, EQ.
type expr =
| Unit
| Var of var
| Integer of int
| Boolean of bool
| UnaryOp of unary_oper * expr
| Op of expr * oper * expr
| If of expr * expr * expr
| Pair of expr * expr
| Fst of expr
| Snd of expr
| Inl of expr
| Inr of expr
| Case of expr * lambda * lambda
| While of expr * expr
| Seq of (expr list)
| Ref of expr
| Deref of expr
| Assign of expr * expr
| Lambda of lambda
| App of expr * expr
| LetFun of var * lambda * expr
| LetRecFun of var * lambda * expr
and lambda = var * expr

past_to_ast.ml

val translate_expr : Past.expr -> Ast.expr

$$
\text { let } x: t=e 1 \text { in e2 end }
$$

(fun (x : t) -> e2 end) e1

This is done to simplify some of our code. Is it a good idea? Perhaps not!

Approaches to Mathematical Semantics

- Axiomatic: Meaning defined through logical specifications of behaviour.
- Hoare Logic (Part II)
- Separation Logic
- Operational: Meaning defined in terms of transition relations on states in an abstract machine.
- Semantics (Part 1B)
- Denotational: Meaning is defined in terms of mathematical objects such as functions.
- Denotational Semantics (Part II)

A denotational semantics for L3?

$\mathbf{N}=$ set of integers
I = set of identifiers
$\mathbf{B}=$ set of booleans $\quad \mathbf{A}=$ set of addresses
Expr = set of L3 expressions
$\mathbf{E}=$ set of environments $=\mathbf{I} \rightarrow \mathbf{V} \quad \mathbf{S}=$ set of stores $=\mathbf{A} \rightarrow \mathbf{V}$
$\mathbf{V}=$ set of value
$\approx \mathbf{A}$
$+\mathbf{N}$
$+\mathbf{B}$
$+\{()\}$
$+\mathbf{V} \times \mathbf{V}$
$+(\mathbf{V}+\mathbf{V})$
$+(\mathbf{V} \times \mathbf{S}) \rightarrow(\mathbf{V} \times \mathbf{S})$

$\mathbf{M}=$ the meaning function
$\mathbf{M}:(E x p r \times \mathbf{E} \times \mathbf{S}) \rightarrow(\mathbf{V} \times \mathbf{S})$

Interpreter 0: An OCaml approximation

$\mathbf{A}=$ set of addresses
$\mathbf{S}=$ set of stores $=\mathbf{A} \rightarrow \mathbf{V}$
$\mathbf{V}=$ set of value
$\approx \mathbf{A}$
$+\mathbf{N}$
$+\mathbf{B}$
$+\{()\}$
$+\mathbf{V} \times \mathbf{V}$
$+(\mathbf{V}+\mathbf{V})$
$+(\mathbf{V} \times \mathbf{S}) \rightarrow(\mathbf{V} \times \mathbf{S})$
$\mathbf{E}=$ set of environments $=\mathbf{A} \rightarrow \mathbf{V}$
$\mathbf{M}=$ the meaning function
$\mathbf{M}:(E x p r \times \mathbf{E} \times \mathbf{S}) \rightarrow(\mathbf{V} \times \mathbf{S})$

type address

type store = address -> value
and value $=$
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| FUN of ((value * store)
-> (value * store))
type env = Ast.var -> value
val interpret :

$$
\begin{aligned}
& \text { Ast.expr * env * store } \\
& \qquad->\text { (value * store) }
\end{aligned}
$$

Most of the code is obvious!

let rec interpret (e, env, store) =

match e with

```
| lf(e1, e2, e3) ->
    let (v, store') = interpret(e1, env, store) in
            (match v with
            | BOOL true -> interpret(e2, env, store')
            BOOL false -> interpret(e3, env, store')
            v -> complain "runtime error. Expecting a boolean!")
| Pair(e1, e2) ->
    let (v1, store1) = interpret(e1, env, store) in
    let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)
    | Fst e ->
    (match interpret(e, env, store) with
    | (PAIR (v1, _), store') -> (v1, store')
    | (v,_) -> complain "runtime error. Expecting a pair!")
    | Snd e ->
    (match interpret(e, env, store) with
    | (PAIR (_, v2), store') -> (v2, store')
    | (v, _) -> complain "runtime error. Expecting a pair!")
Inl e -> let (v, store') = interpret(e, env, store) in (INL v, store')
Inr e -> let (v, store') = interpret(e, env, store) in (INR v, store')
```


let rec interpret (e, env, store) =

 match e with```
:
-
 Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)
 App(e1, e2) -> (* I chose to evaluate argument first! *)
 let (v2, store1) = interpret(e2, env, store) in
 let (v1, store2) = interpret(e1, env, store1) in
 (match v1 with
 | FUN f -> f (v2, store2)
 | v -> complain "runtime error. Expecting a function!")
 LetFun(f, (x, body), e) ->
 let new_env =
 update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (x, v)), s))))
 in interpret(e, new_env, store)
 LetRecFun(f, (x, body), e) ->
 let rec new_env g = (* a recursive environment!!! *)
 if g=f then FUN (fun (v, s) -> interpret(body, update(new_env, (x, v)), s))
 else env g
 in interpret(e, new_env, store)
```


## Interpreter 0 is using OCaml's runtime stack. How can we move toward the Jargon VM?

```
let fun f(x)=x +1
 fun g(y) =f(y+2)+2
 fun h(w) = g(w+1)+3
in
 h(h(17))
end
```

The run-time data structure is the call stack containing an activation record for each function invocation.


## Recall tail recursion : fold_left vs fold_right

From ocaml-4.01.0/stdlib/list.ml :

```
(* fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
 fold_left fa[b1; ...;bn]] = f(... (f (f a b1) b2) ...) bn
*)
let rec fold_left fal =
 match I with
 | [] \(\quad->\) a
 | b :: rest -> fold_left f (f a b) rest
(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
 fold_right \(\mathrm{f}[\mathrm{a} 1 ; \ldots ; \mathrm{an}] \mathrm{b}=\mathrm{f}\) a1 (f a2 (... (f an b) ...))
*)
let rec fold_right flb=
 match I with
 | [] \(\quad->b\)
 | a::rest -> fa (fold_right frest b)
```

This is tail recursive

This is NOT tail recursive

## Convert tail-recursion to iteration

```
(* gcd : int * int -> int *)
let rec gcd(m,n)=
 if m=n
 then m
 else if m < n
 then gcd(m, n-m)
 else gcd(m-n, n)
Here we have illustrated tail-recursion elimination as a source-to-source transformation. However, the OCaml compiler will do something similar to a lower-level intermediate representation. Upshot : we will consider all tail-recursive OCaml functions as representing iterative programs.
```


# Question: can we transform any recursive function (such as interpreter 0 ) into a tail recursive function? 

## The answer is YES!

- We add an extra argument, called a continuation, that represents "the rest of the computation"
- This is called the Continuation Passing Style (CPS) transformation.
- We will then "defunctionalize" (DFC) these continuations and represent them with a stack.
- Finally, we obtain a tail recursive function that carries its own stack as an extra argument!

We will apply this kind of
transformation to the code of interpreter 0 as the first steps towards deriving interpreter 1.

## LECTURES 8 \& 9 <br> Derivation of Interpreters 1 \& 2

- Continuation Passing Style (CPS) : transform any recursive function to a tail-recursive function
- "Defunctionalisation" (DFC) : replace higher-order functions with a data structure
- Putting it all together:
- Derive the Fibonacci Machine
- Derive the Expression Machine, and "compiler"!
- This provides a roadmap for the interp_0 $\rightarrow$ interp_1 $\rightarrow$ interp_2 derivations.


## (CPS) transformation of fib

```
(* fib: int -> int *)
let rec fib m =
 if m=0
 then 1
 else if m=1
 then 1
 else fib(m-1) + fib (m-2)
(* fib_cps : int * (int -> int) -> int *)
let rec fib_cps (m, cnt) =
 if m}=
 then cnt 1
 else if m=1
 then cnt 1
 else fib_cps(m-1, fun a -> fib_cps(m-2, fun b -> cnt (a + b)))
```


## A closer look

The rest of the computation after computing "fib(m)". That is, cnt is a function expecting the result of "fib(m)" as its argument.
let rec fib_cps $(\mathrm{m}, \mathrm{cnt})=$
if $m=0$
then cnt 1
else if $\mathrm{m}=1$
then cnt 1
else fib_cps(m-1, fun $\mathrm{a}->$ fib_cps( $\mathrm{m}-2$, fun $\mathrm{b}->\mathrm{cnt}(\mathrm{a}+\mathrm{b}))$ )
This makes explicit the order of evaluation that is implicit in the original "fib(m-1) + fib(m-2)" :

The computation waiting for the result of "fib(m-2)"
-- first compute fib(m-1)
-- then compute fib(m-2)
-- then add results together
-- then return

## Expressed with "let" rather than "fun"

```
(* fib_cps_v2 : (int -> int) * int -> int *)
let rec fib_cps_v2 (m, cnt) =
 if \(m=0\)
 then cnt 1
 else if \(\mathrm{m}=1\)
 then cnt 1
 else let cnt2 \(a b=\operatorname{cnt}(a+b)\)
 in let cnt1 a = fib_cps_v2(m-2, cnt2 a)
 in fib_cps_v2(m-1, cnt1)
```

Some prefer writing CPS forms without explicit funs ....

## Use the identity continuation

```
(* fib_cps : int * (int -> int) -> int *)
let rec fib_cps \((\mathrm{m}, \mathrm{cnt})=\)
 if \(\mathrm{m}=0\)
 then cnt 1
 else if \(\mathrm{m}=1\)
 then cnt 1
 else fib_cps(m-1, fun \(\mathrm{a}->\) fib_cps(\(\mathrm{m}-2\), fun \(\mathrm{b}->\mathrm{cnt}(\mathrm{a}+\mathrm{b}))\))
```

let id $(x:$ int $)=x$
let fib_1 $x=$ fib_cps $(x, i d)$
List.map fib_1 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;
$=[1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; 55 ; 89]$

## Correctness?

For all c : int -> int, for all $\mathrm{m}, 0<=\mathrm{m}$, we have, $c($ fib $m)=f i b \_c p s(m, c)$.

Proof: assume c : int -> int. By Induction on m . Base case : $\mathrm{m}=0$ :

$$
\text { fib_cps }(0, c)=c(1)=c(f i b(0) .
$$

NB: This proof pretends that we can treat OCaml functions as ideal mathematical functions, which of course we cannot. OCaml functions might raise exceptions like "stack overflow" or "you burned my toast", and so on. But this is a convenient fiction as long as we remember to be careful.

Induction step: Assume for all $\mathrm{n}<\mathrm{m}, \mathrm{c}(\mathrm{fib} \mathrm{n})=$ fib_cps( $\mathrm{n}, \mathrm{c}$ ).
(That is, we need course-of-values induction!)

```
 fib_cps(\(m+1\), \(c\))
 \(=\) if \(\mathrm{m}+1=1\)
 then c 1
 else fib_cps((m+1)-1, fun a -> fib_cps((\(m+1\)) -2 , fun \(b->c(a+b)))\)
 \(=\) if \(\mathrm{m}+1=1\)
 then c 1
 else fib_cps(m, fun a -> fib_cps(m-1, fun b -> c (a +b\()\)))
\(=\) (by induction)
 if \(m+1=1\)
 then c 1
 else (fun a -> fib_cps(m-1, fun b -> c (a+b))) (fib m)
```


## Correctness?

```
= if \(m+1=1\)
 then c 1
 else fib_cps(m-1, fun b -> c \(((f i b m)+b))\)
\(=\) (by induction)
 if \(m+1=1\)
 then c 1
 else (fun b->c ((fib m) + b)) (fib (m-1))
\(=\) if \(m+1=1\)
 then c 1
 else c \(((\) fib \(m)+(f i b(m-1)))\)
\(=c\) (if \(m+1=1\)
 then 1
 else \(((\) fib \(m)+(f i b(m-1))))\)
\(=c\) (if \(m+1=1\)
 then 1
 else fib \(((m+1)-1)+\) fib \(((m+1)-2))\)
\(=c(f i b(m+1))\)
```

Can with express fib_cps without a functional argument?

```
(* fib_cps_v2 : (int -> int) * int -> int *)
```

let rec fib_cps_v2 (m, cnt) =
if $m=0$
then ent 1
else if $\mathrm{m}=1$
then cnt 1
else let cnt2 $a b=c n t(a+b)$
in let cnt1 a = fib_cps_v2(m-2, cnt2 a)
in fib_cps_v2(m-1, cnt1)

Idea of "defunctonalisation" (DFC): replace id, cnt1 and cnt2 with instances of a new data type:
type cnt $=$ ID | CNT1 of int * cnt | CNT2 of int * cnt
Now we need an "apply" function of type cnt * int -> int

## "Defunctionalised" version of fib_cps

(* datatype to represent continuations *)
type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt
(* apply_cnt : cnt * int -> int *)
let rec apply_cnt = function
| (ID, a) $\quad->$ a
(CNT1 (m, cnt), a) -> fib_cps_dfc(m-2, CNT2 (a, cnt))
(CNT2 (a, cnt), b) -> apply_cnt (cnt, a + b)
(* fib_cps_dfc : (cnt * int) -> int *)
and fib_cps_dfc (m, cnt) $=$
if $\mathrm{m}=0$
then apply_cnt(cnt, 1)
else if $m=1$
then apply_cnt(cnt, 1)
else fib_cps_dfc(m-1, CNT1(m, cnt))
(* fib_2 : int -> int *)
let fib_2 m = fib_cps_dfc(m, ID)

## Correctness?

Let < c > be of type cnt representing a continuation $\mathrm{c}:$ int $->$ int constructed by fib_cps.

## Then

apply_cnt(<c >, m) $=\mathrm{c}(\mathrm{m})$ and
fib_cps(n, c) = fib_cps_dfc(n, < c >).

Representation < c >
CNT1(m, < cnt >)
CNT2(a, < cnt >)
ID

## Eureka! Continuations are just lists (used like a stack)

type int_list = NIL | CONS of int * int_list
type cnt $=$ ID | CNT1 of int * cnt | CNT2 of int * cnt


Replace the above continuations with lists! (I've selected more suggestive names for the constructors.)

$$
\begin{aligned}
& \text { type tag = SUB2 of int | PLUS of int } \\
& \text { type tag_list_cnt = tag list }
\end{aligned}
$$

## The continuation lists are used like a stack!

type tag = SUB2 of int | PLUS of int
type tag_list_cnt = tag list
(* apply_tag_list_cnt : tag_list_cnt * int -> int *)
let rec apply_tag_list_cnt = function
| ([], a) -> a
| ((SUB2 m) :: cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)
| ((PLUS a) :: cnt, b) -> apply_tag_list_cnt (cnt, a + b)
(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *)
and fib_cps_dfc_tags ( $\mathrm{m}, \mathrm{cnt}$ ) =
if $\mathrm{m}=0$
then apply_tag_list_cnt(cnt, 1)
else if $m=1$
then apply_tag_list_cnt(cnt, 1)
else fib_cps_dfc_tags(m-1, (SUB2 m) :: cnt)
(* fib_3 : int -> int *)
let fib_3 $\mathrm{m}=$ fib_cps_dfc_tags( $\mathrm{m},[\mathrm{l}$ )

## Combine Mutually tail-recursive functions into a single function

## type state_type =

| SUB1 (* for right-hand-sides starting with fib_ *)
| APPL (* for right-hand-sides starting with apply_ *)
type state $=($ state_type * int * tag_list_cnt) $->$ int
(* eval : state -> int A two-state transition function*)
let rec eval = function
| (SUB1, 0,
(SUB1, 1, cnt) -> eval (APPL, 1,
cnt)
(SUB1, $1, \quad \mathrm{cnt})$-> eval (APPL, 1, cnt)
(SUB1, m, cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt)
| (APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt)
| (APPL, b, (PLUS a) :: cnt) -> eval (APPL, (a+b), cnt)
| (APPL, a, []) -> a
(* fib_4 : int -> int *)
let fib_4 $\mathrm{m}=\mathrm{eval}$ (SUB1, $\mathrm{m},[\mathrm{[ }$ )
(* step : state -> state *)
let step = function
| (SUB1, 0, cnt) -> (APPL, 1, (SUB1, 1, cnt) $->$ (APPL, 1,
cnt)
cnt)
(SUB1, m, cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt)
| (APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2), (PLUS a) :: cnt)
| (APPL, b, (PLUS a) :: cnt) -> (APPL, (a+b),
cnt)
| _ -> failwith "step : runtime error!"
(* clearly TAIL RECURSIVE! *)
let rec driver state = function
| (APPL, a, []) -> a
state -> driver (step state)

In this version we have simply made the tail-recursive structure very explicit.
(* fib_5 : int -> int *)
let fib_5 m = driver (SUB1, m, [])

## Here is a trace of fib_5 6.

```
1 SUB1 || 6 || []
2 SUB1 || 5 || [SUB2 6]
3 SUB1 || 4 || [SUB2 6, SUB2 5]
4 SUB1 || 3 || [SUB2 6, SUB2 5, SUB2 4]
5 SUB1 || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]
6 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]
7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]
8 SUB1 || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]
9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]
10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]
11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]
12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]
13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]
14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]
15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]
16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]
17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]
18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]
19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]
20 APPL || 5 || [SUB2 6, SUB2 5]
21 SUB1 || 3 || [SUB2 6, PLUS 5]
22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]
23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]
24 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]
25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]
```

26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1] 27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3] 28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2] 29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2] 30 APPL || 3 || [SUB2 6, PLUS 5] 31 APPL || 8 || [SUB2 6] 32 SUB1 || 4 || [PLUS 8] 33 SUB1 || 3 || [PLUS 8, SUB2 4] 34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3] 35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2] 36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2] 37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1] 38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1] 39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3] 40 SUB1 || 1 || [PLUS 8, SUB2 4, PLUS 2] 41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2] 42 APPL || 3 || [PLUS 8, SUB2 4] 43 SUB1 || 2 || [PLUS 8, PLUS 3] 44 SUB1 || 1 || [PLUS 8, PLUS 3, SUB2 2] 45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2] 46 SUB1 || 0 || [PLUS 8, PLUS 3, PLUS 1] 47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1] 48 APPL || 2 || [PLUS 8, PLUS 3] 49 APPL || 5 || [PLUS 8] 50 APPL ||13|| []

> The OCaml file in basic_transformations/fibonacci_machine.ml contains some code for pretty printing such traces....

## Pause to reflect

- What have we accomplished?
- We have taken a recursive function and turned it into an iterative function that does not require "stack space" for its evaluation (in OCaml)
- However, this function now carries its own evaluation stack as an extra argument!
- We have derived this iterative function in a step-by-step manner where each tiny step is easily proved correct.
- Wow!


## That was fun! Let's do it again!

type expr =
| INT of int
PLUS of expr * expr SUBT of expr * expr MULT of expr * expr

This time we will derive a stack-machine AND a "compiler" that translates expressions into a list of instructions for the machine.
(* eval : expr -> int
a simple recusive evaluator for expressions *)
let rec eval = function
| INT a
$->a$
| PLUS(e1, e2) -> (eval e1) + (eval e2)
| SUBT(e1, e2) -> (eval e1) - (eval e2)
| MULT(e1, e2) -> (eval e1) * (eval e2)

## Here we go again : CPS

type cnt_2 = int -> int
type state_2 = expr * cnt_2
(* eval_aux_2 : state_2 -> int *)
let rec eval_aux_2 (e, cnt) =
match e with
| INT a $\quad->$ cnt a
| PLUS(e1, e2) ->
eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 + v2))) | SUBT(e1, e2) ->
eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))
| MULT(e1, e2) ->
eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 * v2)))
(* id_cnt : cnt_2 *)
let id_cnt $(x:$ int $)=x$
(* eval_2 : expr -> int *)
let eval_2 e = eval_aux_2(e, id_cnt)

## Defunctionalise!

type cnt_3 =

## | ID

| OUTER_PLUS of expr * cnt_3
OUTER_SUBT of expr * cnt_3
OUTER_MULT of expr * cnt_3
INNER_PLUS of int * cnt_3
INNER_SUBT of int * cnt_3
| INNER_MULT of int * cnt_3
type state_3 = expr * cnt_3
(* apply_3 : cnt_3 * int -> int *)
let rec apply_3 = function
| (ID, v) ->v
| (OUTER_PLUS(e2, cnt), v1) -> eval_aux_3(e2, INNER_PLUS(v1, cnt))
| (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))
| (OUTER_MULT(e2, cnt), v1) -> eval_aux_3(e2, INNER_MULT(v1, cnt))
| (INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2)
| (INNER_SUBT(v1, cnt), v2) -> apply_3(cnt, v1 - v2)
| (INNER_MULT(v1, cnt), v2) -> apply_3(cnt, v1 * v2)

## Defunctionalise!

(* eval_aux_2 : state_3 -> int *)
and eval_aux_3 (e, cnt) =
match e with
| INT a -> apply_3(cnt, a)
| PLUS(e1, e2) -> eval_aux_3(e1, OUTER_PLUS(e2, cnt))
| SUBT(e1, e2) -> eval_aux_3(e1, OUTER_SUBT(e2, cnt))
| MULT(e1, e2) -> eval_aux_3(e1, OUTER_MULT(e2, cnt))
(* eval_3 : expr -> int *)
let eval_3e = eval_aux_3(e, ID)

## Eureka! Again we have a stack!

type tag =
| O_PLUS of expr
| I_PLUS of int
O_SUBT of expr
I_SUBT of int
| O_MULT of expr
| I_MULT of int
type cnt_4 = tag list
type state_4 = expr * cnt_4

```
(* apply_4 : cnt_4 * int -> int *)
let rec apply_4 = function
| ([], v) -> v
 ((O_PLUS e2) :: cnt, v1) -> eval_aux_4(e2, (I_PLUS v1) :: cnt)
 ((O_SUBT e2) :: cnt, v1) -> eval_aux_4(e2, (I_SUBT v1) :: cnt)
 ((O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT v1) :: cnt)
 ((I_PLUS v1) :: cnt, v2) -> apply_4(cnt, v1 + v2)
 ((I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)
 ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)
```


## Eureka! Again we have a stack!

(* eval_aux_4 : state_4 -> int *)
and eval_aux_4 (e, cnt) =
match e with
| INT a $\quad->$ apply_4(cnt, a)
| PLUS(e1, e2) -> eval_aux_4(e1, O_PLUS(e2) :: cnt)
| SUBT(e1, e2) -> eval_aux_4(e1, O_SUBT(e2) :: cnt)
| MULT(e1, e2) -> eval_aux_4(e1, O_MULT(e2) :: cnt)
(* eval_4 : expr -> int *)
let eval_4e = eval_aux_4(e, [])

## Eureka! Can combine apply_4 and eval_aux_4

type acc =
| A_INT of int | A_EXP of expr
type cnt_5 = cnt_4
type state_5 = cnt_5 * acc
val : step : state_5 -> state_5
val driver : state_5 -> int
val eval_5 : expr -> int

Type of an "accumulator" that contains either an int or an expression.

The driver will be clearly tail-recursive ...

## Rewrite to use driver, accumulator

let step_5 = function

let rec driver_5 = function

| $\mid\left([], A \_I N T ~ v\right)$ | $->v$ |
| :--- | :--- |
| $\mid$ state | $->$ |
| driver_5 | (step_5 state) |

let eval_5 e = driver_5([], A_EXP e)

# Eureka! There are really two independent stacks here --- one for "expressions" and one for values 

type directive =
| E of expr
| DO_PLUS
| DO_SUBT
| DO_MULT
type directive_stack = directive list
type value_stack = int list
type state_6 = directive_stack * value_stack
val step_6 : state_6 -> state_6

The state is now two stacks!
val driver_6 : state_6 -> int
val exp_6 : expr -> int

## Split into two stacks

let step_6 = function
| (E(INT v) :: ds, vs) -> (ds, v :: vs)
| (E(PLUS(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_PLUS :: ds, vs)
(E(SUBT(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_SUBT :: ds, vs)
| (E(MULT(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_MULT :: ds, vs)
| (DO_PLUS :: ds, v2 :: v1 :: vs) -> (ds, (v1 + v2) :: vs)
(DO_SUBT :: ds, v2 :: v1 :: vs) -> (ds, (v1 - v2) :: vs)
| (DO_MULT :: ds, v2 :: v1 :: vs) -> (ds, (v1 * v2) :: vs)
| _ -> failwith "eval : runtime error!"
let rec driver_6 = function
| ([], [v]) ->v
| state -> driver_6 (step_6 state)
let eval_6 e = driver_6 ([E e], [])

## An eval_6 trace

e = PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4))


## Key insight

This evaluator is interleaving two distinct computations:
(1) decomposition of the input expression into sub-expressions
(2) the computation of,+- , and *.

Idea: why not do the decomposition BEFORE the computation?
Key insight: An interpreter can (usually) be refactored into a translation (compilation!) followed by a lower-level interpreter.

## Interpret_higher (e) = interpret_lower(compile(e))

## Refactor --- compile!

(* low-level instructions *)

## type instr =

| Ipush of int
Iplus
Isubt
| Imult

## type code $=$ instr list

type state_7 = code * value_stack
(* compile : expr -> code *)
let rec compile $=$ function
| INT a $\quad->$ [lpush a]
PLUS(e1, e2) -> (compile e1) @ (compile e2) @ [lplus]
SUBT(e1, e2) -> (compile e1) @ (compile e2) @ [Isubt]
| MULT(e1, e2) -> (compile e1) @ (compile e2) @ [Imult]

## Evaluate compiled code.

(* step_7 : state_7 -> state_7 *)
let step_7 = function
| (lpush v :: is, vs) -> (is, v :: vs)
| (Iplus :: is, v2::v1::vs) -> (is, (v1 + v2) :: vs)
| (Isubt :: is, v2::v1::vs) -> (is, (v1-v2) :: vs)
| (Imult :: is, v2::v1::vs) -> (is, (v1 * v2) :: vs)
| _ -> failwith "eval : runtime error!"
let rec driver_7 = function
| ([], [v]) -> v
| _ -> driver_7 (step_7 state)
let eval_7e=driver_7 (compile e, []) ।

## An eval_7 trace

compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4)))
= [push 89; push 2; mult; push 10; push 4; subt; plus]

```
state 1 IS = [add; sub; push 4; push 10; mul; push 2; push 89] VS = []
state 2 IS = [add; sub; push 4; push 10; mul; push 2]
VS = [89]
state 3 IS = [add; sub; push 4; push 10; mul]
VS = [89; 2]
state 4 IS = [add; sub; push 4; push 10]
VS = [178]
state 5 IS = [add; sub; push 4]
VS = [178; 10]
state 6 IS = [add; sub]
VS = [178; 10; 4]
state 7 IS = [add] VS = [178; 6]
state 8 IS = []
VS = [184]
```


## Top of each stack is on the right

## interpret is implicitly using Ocaml's runtime stack

```
let rec interpret (e, env, store) =
 match e with
 | Integer n -> (INT n, store)
 | Op(e1, op, e2) ->
 let (v1, store1) = interpret(e1, env, store) in
 let (v2, store2) = interpret(e2, env, store1) in
 (do_oper(op, v1, v2), store2)
```

    \(:\)
    - Every invocation of interpret is building an activation record on Ocaml's runtime stack.
- We will now define interpreter 2 which makes this stack explicit


## Interp_0.ml $\rightarrow$ interp_1.ml $\rightarrow$ interp_2.ml

The derivation from eval to compile+eval_7 can be used as a guide to a derivation from Interpreter 0 to interpreter 2.

1. Apply CPS to the code of Interpreter 0
2. Defunctionalise
3. Arrive at interpreter 1, which has a single continuation stack containing expressions, values and environments (analogous to eval_6)
4. Spit this stack into two stacks : one for instructions and the other for values and environments
5. Refactor into compiler + lower-level interpreter
6. Arrive at interpreter 2. (analogous to eval_7)

## Interpreter $0 \rightarrow$ Interpreter 2

Interpreter 2: A high-level stack-oriented machine

1. Makes the Ocaml runtime stack explicit
2. Complex values pushed onto stacks
3. One stack for values and environments
4. One stack for instructions
5. Heap used only for references
6. Instructions have tree-like structure
(we will not look at the details of interpreter $1 \ldots$.

## Inpterp_2 data types

type address
type store = address -> value
and value =
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| FUN of ((value * store)
-> (value * store))
type env = Ast.var -> value
type address = int
type value =
| REF of address
| INT of int
| BOOL of bool
| UNIT
PAIR of value * value
INL of value
| INR of value
| CLOSURE of bool *
closure
and closure = code * env

Interp_2
and instruction $=$
| PUSH of value
| LOOKUP of var
| UNARY of unary_oper
| OPER of oper
| ASSIGN
| SWAP
| POP
| BIND of var
| FST
| SND
| DEREF
| APPLY
| MK_PAIR
| MK_INL
| MK_INR
| MK_REF
| MK_CLOSURE of code
| MK_REC of var * code
| TEST of code * code
| CASE of code * code
| WHILE of code * code
| PUSH of value
| LOOKUP of var
UNARY of unary_oper
OPER of oper
| ASSIGN
SWAP
POP
BIND of var
FST
SND
DEREF
APPLY
MK_PAIR
MK_INL
MK_INR
MK_REF
MK_CLOSURE of code
MK_REC of var * code
TEST of code * code
CASE of code * code
WHILE of code * code

## Interp_2.ml : The Abstract Machine

and code $=$ instruction list
and binding = var * value
and env = binding list
type env_or_value = EV of env | V of value
type env_value_stack = env_or_value list
type state = code * env_value_stack
val step : state -> state
val driver : state -> value
val compile : expr -> code
val interpret : expr -> value

The state is actually comprised of a heap --- a global array of values --- a pair of the form
(code, evn_value_stack)

## Interpreter 2: The Abstract Machine

type state = code * env_value_stack
val step : state -> state

## The state transition function.

```
let step = function
(* (code stack,
((PUSH v) :: ds,
(POP :: ds,
(SWAP : : ds,
((\operatorname{BIND x) : : ds,}
((UNARY op) :: ds,
((OPER op) :: ds,
(MK_PAIR :: ds,
(FST}:: ds
(SND : : ds,
(MK_INL : : ds,
```



```
(CASE (c1, , -): ds, V(INL v)::evs) -> (c1 @ ds, (V v) : (O evs)
((TEST(c\overline{1}, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
(ASSIGN :: ds, (V v) :: (V (REF a)) :: evs) -> (heap. (a) <- v; (ds, V(UNIT) :: evs))
(DEREF :: ds, (V (REF a)) : : evs) -> (ds, V(heap. (a)) : : evs)
(MK_REF :: ds, (V v) : : evs) -> let a = allocate () in (heap.(a) <- v;
(ds, V(REF a) :: evs))
| (WHILE(c1, c2)) :: ds,V(BOOL false) :: evs) -> (ds, evs)
((WHILE (c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1@ [WHILE(c1, c2)] @ ds, evs)
((MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)
(MK_\overline{REC}(f, c) : : ds, evs) -> (ds, v(mk_rec(f, c, evs_to_env evs)) :: evs)
(APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)
 -> (c @ ds, (V v) :: (EV env) :: evs)
| state -> complain ("step : bad state = " ^ (string_of_state state) ^ "\n")
```


## The driver. Correctness

(* val driver : state -> value *)
let rec driver state = match state with
([], [V v]) -> v
-> driver (step state)
val compile : expr -> code
The idea: if e passes the frond-end and Interp_0.interpret $\mathrm{e}=\mathrm{v}$
then
driver (compile e, []) = v' where v ' (somehow) represents v .

## Implement inter_0 in interp_2

```
let rec interpret (e, env, store) =
 match e with
 interp_0.ml
| Pair(e1, e2) ->
 let (v1, store1) = interpret(e1, env, store) in
 let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)
 | Fst e ->
 (match interpret(e, env, store) with
 | (PAIR (v1, _), store') -> (v1, store')
 | (v, _) -> complain "runtime error. Expecting a pair!")
```

```
let step = function
 (MK_PAIR :: ds, (V v2) :: (V v1) :: evs) -> (ds, V(PAIR(v1, v2)) :: evs)
 (FST :: ds, V(PAIR (v,_)) :: evs) -> (ds, (V v) :: evs)
:
let rec compile = function
 Pair(e1, e2) -> (compile e1) @ (compile e2) @ [MK_PAIR]
 Fst e -> (compile e) @ [FST]
```


## Implement inter_0 in interp_2

```
let rec interpret (e, env, store)=
 match e with
 | If(e1, e2, e3) ->
 let (v, store') = interpret(e1, env, store) in
 (match v with
 BOOL true -> interpret(e2, env, store')
 BOOL false -> interpret(e3, env, store')
 v -> complain "runtime error. Expecting a boolean!")
 :
let step = function
 ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
 ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
:
let rec compile = function
 | If(e1, e2, e3) -> (compile e1) @ [TEST(compile e2, compile e3)]
:
interp_2.ml
```


## Tricky bits again!

let rec interpret (e, env, store) =
| Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)
| App(e1, e2) -> (* I chose to evaluate argument first! *)
let (v2, store1) $=$ interpret(e2, env, store) in
let $(\mathrm{v} 1$, store2) $=$ interpret(e1, env, store1) in
(match v1 with
| FUN f -> f (v2, store2)
| v -> complain "runtime error. Expecting a function!")
let step = function

$$
\text { evs) }->\text { (ds, } \quad \text { (mk_fun(c, evs_to_env evs)) :: evs) }
$$

$$
\text { | (APPLY :: ds, V(CLOSURE (_, (c, env))) }::(\mathrm{V} \text { v) :: evs) }
$$

$$
->(c @ d s,(V \text { v) :: (EV env) :: evs) }
$$

let rec compile $=$ function
| Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
| App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]

$$
\begin{aligned}
& \text { s :: evs) -> (ds, evs) } \\
& \text { s1 :: s2 :: evs) -> (ds, s2 :: s1 :: evs) } \\
& \text { (V v) :: evs) -> (ds, EV([(x, v)]) :: evs) }
\end{aligned}
$$

## Example : Compiled code for rev_pair.slang

```
let rev_pair (p : int * int) : int * int = (snd p, fst p)
in
 rev_pair (21, 17)
end
```

MK_CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]);
BIND rev_pair;
PUSH 21;
PUSH 17;
MK_PAIR;
LOOKUP rev_pair;
APPLY;
SWAP;
POP;
DEMO TIME!!!
SWAP;
POP

## LECTURE 10 Derive Interpreter 3

1. "Flatten" code into linear array
2. Add "code pointer" (cp) to machine state
3. New instructions : LABEL, GOTO, RETURN
4. "Compile away" conditionals and while loops

## Linearise code

Interpreter 2 copies code on the code stack. We want to introduce one global array of instructions indexed by a code pointer (cp). At runtime the $\mathbf{c p}$ points at the next instruction to be executed.


This will require two new instructions:
LABEL L : Associate label L with this location in the code array
GOTO L : Set the $\mathbf{c p}$ to the code address associated with L

## Compile conditionals, loops

If(e1, e2, e3)

| code for e1 |
| :--- |
| TEST k |
| code for e2 |
| GOTO m |
| $\mathbf{k : ~ c o d e ~ f o r ~ e 3 ~}$ |
| $\mathbf{m}:$ |


| m: code for e1 |
| :--- |
| TEST $\mathbf{k}$ |
| code for e2 |
| GOTO m |
| $\mathbf{k}:$ |

## If ? = 0 Then 17 else 21 end

## interp_2

PUSH UNIT; UNARY READ; PUSH 0;
OPER EQI; TEST(
[PUSH 17], [PUSH 21]
interp_3
PUSH UNIT;
UNARY READ;
PUSH 0;
OPER EQI;
TEST LO;
PUSH 17;
GOTO L1;
LABEL L0;
PUSH 21;
LABEL L1; HALT

Symbolic code locations
interp_3 (loaded)
0: PUSH UNIT;
1: UNARY READ;
2: PUSH 0;
3: OPER EQI;
4: TEST LO = 7;
5: PUSH 17;
6: GOTO L1 = 9;
7: LABEL LO;
8: PUSH 21;
9: LABELL1;
10: HALT
Numeric code locations

## Implement inter_2 in interp_3



Code locations are represented as
("L", None) : not yet loaded (assigned numeric address)
("L", Some i): label "L" has been assigned numeric address i

## Tricky bits again!


let step (cp, evs) =
match (get_instruction cp, evs) with

$$
\begin{gathered}
s:: \text { evs) }->(c p+1, \text { evs }) \\
s 1:: \text { s2 }:: \text { evs) }->(c p+1, \text { s2 }:: \text { s1 }:: \text { evs }) \\
(\mathrm{V} \text { v) }:: \mathrm{evs})->(c p+1, E V([(x, v)]):: \text { evs }) \\
\quad \text { evs })->(c p+1,
\end{gathered}
$$

V(CLOSURE(loc, evs_to_env evs)) ::
evs)
| (RETURN, (V v) :: _ :: (RA i) :: evs) -> (i, (V v) :: evs)
| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

$$
\text { -> (i, (V v) } \because:(E \vee \text { env })::(R A(c p+1)):: \text { evs })
$$

Note that in interp_2 the body of a closure is consumed from the code stack. But in interp_3 we need to save the return address on the stack (here i is the location of the closure's code).

## Tricky bits again!

let rec compile $=$ function
interp_2.ml
| Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
| App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]
let rec comp = function
Interp_3.ml
| App(e1, e2)
let (defs1, c1) = comp e1 in
let (defs2, c2) = comp e2 in
(defs1 @ defs2, c2 @ c1 @ [APPLY])
| Lambda(x, e) ->
let (defs, c) = comp e in
let $f=$ new_label () in
let def = [LABEL f ; BIND x] @ c @ [SWAP; POP; RETURN] in (def @ defs, [MK_CLOSURE((f, None))])
let compile $\mathrm{e}=$
let (defs, c) = comp e in
c (* body of program *)
@ [HALT] (* stop the interpreter *)
@ defs (* function definitions *)

## Interpreter 3 (very similar to interpreter 2)

```
let step (cp, evs) =
```

match (get_instruction cp, evs) with

evs) $->$ (cp $+1,(\mathrm{v}$ v) : : evs)
(BWAB
evs) $\rightarrow$ (cp +1, s2 $:=$ s1 $\vdots j$ evs $)$
evs) $->(c p+1, E V([(x, v)]):: e v s)$
evs) $->$ (cp + 1, V(search(evs, x)) : : evs)
evs) $->$ (cp + 1, v(do_unary (op, v)) : : evs)
op
evs) -> (cp + 1, v(do-oper (op, v1, v2)) : : evs)
evs) -> (cp + 1, v(PAIR(v1, v2)) :: evs)
evs) $->$ (cp + 1, (v v) :: evs)
evs) -> (cp + 1, (V v) :: evs)
(SND,
(MK_INL,
| (MK_CloSURE loc,
evs) -> (cp + 1, v(CLOSURE(loc, evs_to_env evs)) :: evs)
(APP̄LY, V(CLOSURE ((_, Some i), env)) :: (V v) : : evs)
$\rightarrow$ (i, (V v) : : (EV env) :: (RA (cp + 1)) : : evs)
(* new intructions *)

(HALT,
evs) -> (cp + 1, evs)
evs) $->$ (cp, evs)
(GOTO' (_, Some i), evs) $->$ (i, evs)
_ -> complain ("step : bad state = " ^ (string_of_state (cp, evs)) ^ "\n")

## Some observations

- A very clean machine!
- But it still has a very inefficient treatment of environments.
- Also, pushing complex values on the stack is not what most virtual machines do. In fact, we are still using OCaml's runtime memory management to manipulate complex values.


## Example : Compiled code for rev_pair.slang

```
let rev_pair (p : int * int) : int * int = (snd p, fst p)
in
 rev_pair (21, 17)
end
```

```
MK_CLOSURE(
 [BIND p; LOOKUP p; SND;
 LOOKUP p; FST; MK_PAIR;
 SWAP; POP]);
BIND rev_pair;
PUSH 21;
PUSH 17;
MK_PAIR;
LOOKUP rev_pair;
APPLY;
SWAP;
POP;
SWAP;
POP
Interp_2
```

| MK_CLOSURE(rev_pair) | LABEL rev_pair |
| :--- | :--- |
| BIND rev_pair | BIND p |
| PUSH 21 |  |
| PUSH 17 | LOOKUP p |
| MK_PAIR | SND |
| LOOKUP rev_pair | LOOKUP p |
| APPLY |  |
| SWAP |  |
| POP | FST |
| HALT | IntePAIR |
|  | SWAP |
|  | Inte_3 |
|  | ROP |
| RETURN |  |

## LECTURES 11 Deriving The Jargon VM (interpreter 4)

1. First change: Introduce an addressable stack.
2. Replace variable lookup by a (relative) location on the stack or heap determined at compile time.
3. Relative to what? A frame pointer (fp) pointing into the stack is needed to keep track of the current activation record.
4. Second change: Optimise the representation of closures so that they contain only the values associated with the free variables of the closure and a pointer to code.
5. Third change: Restrict values on stack to be simple (ints, bools, heap addresses, etc). Complex data is moved to the heap, leaving pointers into the heap on the stack.
6. How might things look different in a language without firstclass functions? In a language with multiple arguments to function calls?

## Jargon Virtual Machine



## The stack in interpreter 3

A stack
in interpreter 3

| $(1,(2,17))$ |  |
| :---: | :---: |
| $\ln (\operatorname{inr}(99))$ |  |
| $\vdots$ | $\vdots$ |
| $:$ | $\vdots$ |

"All problems in computer science can be solved by another level of indirection, except of course for the problem of too many indirections."
--- David Wheeler

Stack elements in interpreter 3 are not of fixed size.

Virtual machines (JVM, etc) typically restrict stack elements to be of a fixed size

We need to shift data from the high-level stack of interpreter 3 to a lower-level stack with fixed size elements.

Solution : put the data in the heap. Place pointers to the heap on the stack.

interp_3.mli
Small change to instructions

```
type instruction =
 | PUSH of stack_item (* modified *)
 | LOOKUP of value_path (* modified *)
 | UNARY of Ast.unary_oper
 | OPER of Ast.oper
 | ASSIGN
 SWAP
 | POP
(* | BIND of var not needed *)
| FST
 SND
 | DEREF
 | APPLY
 | RETURN
 | MK_PAIR
 | MK_INL
 | MK_INR
 | MK_REF
 | MK_CLOSURE of location * int (* modified *)
 | TEST of location
 | CASE of location
 | GOTO of location
 | LABEL of label
 | HALT
```


## A word about implementation

| type stack_item $=$ <br> \| STACK_INT of int | Jargon VM |  |
| :--- | ---: | :--- |
| \| STACK_BOOL of bool |  |  |
| \| STACK_UNIT |  |  |
| \| STACK_HI of heap_index | (* Heap Index | $\left.{ }^{*}\right)$ |
| \| STACK_RA of code_index | (* Return Address | $\left.{ }^{*}\right)$ |
| \| STACK_FP of stack_index | (* (saved) Frame Pointer *) |  |

type heap_type $=$
| HT_PAIR
| HT_INL
| HT_INR
| HT_CLOSURE
type heap_item =
| HEAP_INT of int
| HEAP_BOOL of bool
| HEAP_UNIT
| HEAP_HI of heap_index
| HEAP_Cl of code_index
| HEAP_HEADER of int * heap_type

## The headers will be essential for garbage collection!

$\begin{array}{lr}\left({ }^{*} \text { Heap Index }\right. & \text { *) } \\ \text { ( } \text { Code pointer for closures } & { }^{*} \text { ) } \\ \left({ }^{*} \text { int is number items in heap block *) }\right.\end{array}$

## In interpreter 3

(MK_INR, (V v) :: evs) -> (cp + 1, V(INR(v)) :: evs)

## Jargon VM

The stack before

The stack after


Newly allocated locations in the heap

Header 2, INR
v

Note: The header types are not really required. We could instead add an extra field here (for example, 0 or 1 ). However, header types aid in understanding the code and traces of runtime execution.

## CASE (TEST is similar)

(CASE (_, Some _), V(INL v)::evs) -> (cp + 1, (V v) :: evs) (CASE (_, Some i), V(INR v)::evs) -> (i, (V v) :: evs)
$\mathbf{c p}=\mathrm{t}$

cp $=\mathrm{t}$

| a | $\longrightarrow \mathrm{a}:$ | INL |
| :---: | :---: | ---: |
| $\vdots$ | $\vdots$ | $\mathrm{a}+1:$ |
|  | v |  |

$\mathbf{c p}=\mathrm{t}+1$

$\mathrm{cp}=\mathrm{i}$


## MK_PAIR

In interpreter 3:
(MK_PAIR, (V v2) :: (V v1) :: evs) -> (cp + 1, V(PAIR(v1, v2)) :: evs)

In Jargon VM:

The stack before

| v 2 |  |
| :---: | :---: |
| v 1 |  |
| $:$ | $\vdots$ |
| $:$ | $:$ |

The stack after

Newly allocated
locations in the heap


## FST (similar for SND)

In interpreter 3:

$$
\text { (FST, } \quad V(\operatorname{PAIR}(\mathrm{v} 1, \mathrm{v} 2)):: \text { evs }) \quad->\quad(c p+1, \mathrm{v} 1:: \text { evs })
$$

In Jargon VM:

The stack before

Somewhere in the heap

The stack after


Note that v1 could be a simple value (int or bool), or aother heap address.

## These require more care

In interpreter 3:
let step (cp, evs) =
match (get_instruction cp, evs) with
( (MK_CLOSURE loc, evs)
-> (cp + 1, V(CLOSURE(loc, evs_to_env evs)) :: evs)
| (APPLY, $\left.V\left(C L O S U R E ~\left(\left(\_, ~ S o m e ~ i\right), ~ e n v\right)\right) ~:: ~(V ~ v) ~:: ~ e v s\right) ~$
$->(i,(V v)::(E V$ env $)::(R A(c p+1))::$ evs $)$
(RETURN, (V v) :: _ : (RA i) :: evs)
-> (i, (V v) :: evs)

## MK_CLOSURE(c, n)

c = code location of start of instructions for closure, $\mathrm{n}=$ number of free variables in the body of closure.

Put values associated with free variables on stack, then construct the closure on the heap

The stack before

The stack after

Newly allocated locations in the heap


## A stack frame



Return address
Saved frame pointer
Pointer to closure
Argument value


Stack frame.
(Boundary
May vary in the literature.)

Currently executing code for the closure at heap address "a" after it was applied to argument v .

## APPLY

Interpreter 3:
(APPLY, $\quad \mathrm{V}\left(\mathrm{CLOSURE}\left(\left(\_\right.\right.\right.$, Some i), env)) :: (V v) :: evs)
-> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)
Jargon VM:

BEFORE

$$
\begin{aligned}
& \mathbf{c p}=k \\
& \mathbf{f p}=\mathrm{j}
\end{aligned}
$$

AFTER

$$
\begin{gathered}
\mathbf{c p}=i \\
\mathbf{f p}=m
\end{gathered}
$$



## RETURN

Interpreter 3:
(RETURN, ( V v) :: _ $::(\mathrm{RA} \mathrm{i})::$ evs) -> (i, (V v) :: evs)

BEFORE Jargon VM:

$$
\mathbf{c p}=i
$$

| $v 2$ |
| :---: |
| $t$ |
| $j$ |
| $a$ |
| $v 1$ |
| $:$ |
| $:$ |

Replace stack frame with return value

AFTER
$\mathbf{c p}=\mathrm{t}$
(return address)


## Finding a variable's value at runtime

Suppose we are executing code associated with this closure. Then every free variable in the body of the closure can be found from the frame pointer fp :

- Formal parameter: at stack location fp-2
- Other free variables :

- Follow heap pointer found at $\mathbf{f p - 1}$
- Each free variable can be associated with a fixed offset from this heap address


## LOOKUP (HEAP_OFFSET k)

Interpreter 3:
(LOOKUP $x, \quad$ evs) $->(c p+1, V(\operatorname{search}(e v s, x)):: ~ e v s)$


## LOOKUP (STACK_OFFSET -2)

Interpreter 3:
(LOOKUP x,

$$
\text { evs) }->(c p+1, V(\text { search(evs, } x)):: \text { evs })
$$

Jargon VM:
BEFORE
$s p \rightarrow$ FREE

push argument value onto the stack


## Oh, one problem

## let rec comp = function

| LetFun(f, (x, e1), e2) -> let (defs1, c1) = comp e1 in let (defs2, c2) = comp e2 in
let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in (def @ defs1 @ defs2,
[MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])


Problem: Code c2 can be anything --- how are we going to find the closure for $f$ when we need it? It has to be a fixed offset from a frame pointer --- we no longer scan the stack for bindings!
let rec comp vmap = function
Solution in Jargon VM
| LetFun(f, (x, e1), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

## LOOKUP (STACK_OFFSET -1)

For recursive function calls, push current closure on to the stack.

Jargon VM:
BEFORE


AFTER


## Example : Compiled code for rev_pair.slang

```
let rev_pair (p : int * int) : int * int = (snd p, fst p)
in
 rev_pair (21, 17)
end
```

After the front-end, compile treats this as follows.
App(
Lambda(
"rev_pair",
App(Var "rev_pair", Pair (Integer 21, Integer 17))),
Lambda("p", Pair(Snd (Var "p"), Fst (Var "p"))))

## Example : Compiled code for rev_pair.slang

App(
Lambda("rev_pair",
App(Var "rev_pair", Pair (Integer 21, Integer 17))),
Lambda("p", Pair(Snd (Var "p"), Fst (Var "p"))))

## Example : trace of rev_pair.slang execution

```
Installed Code =
0: MK_CLOSURE(L1 = 11, 0)
1:MK_CLOSURE(LO = 4, 0)
2: APPLY
3: HALT
4: LABEL LO
5: PUSH STACK_INT 21
6: PUSH STACK_INT 17
7: MK_PAIR
8: LOOKUP STACK_LOCATION-2
9: APPLY
10: RETURN
11: LABELL1
12: LOOKUP STACK_LOCATION-2
13: SND
14: LOOKUP STACK_LOCATION-2
15: FST
16: MK_PAIR
17: RETURN
```

```
========== state 1 ==========
cp = 0 -> MK_CLOSURE(L1 = 11,0)
fp =0
Stack =
1: STACK_RA 0
0: STACK_FP 0
========== state 2 ==========
cp = 1 -> MK_CLOSURE(LO = 4, 0)
fp = 0
Stack =
2: STACK HI O
1:STACK_RA 0
0: STACK_FP 0
```

Heap =
0 -> HEAP_HEADER(2, HT_CLOSURE)
1 -> HEAP_CI 11

## Example : trace of rev_pair.slang execution

```
========== state 15 ===========
CP = 16 -> MK_PAIR
fp=8
Stack =
11: STACK_INT 21
10: STACK_INT 17
9: STACK_RA 10
8: STACK_FP 4
7: STACK_HI O
6: STACK_HI 4
5: STACK_RA 3
4: STACK_FP 0
3: STACK_HI }
2: STACK_HI }
1: STACK_RA 0
0: STACK_FP 0
Heap =
0 -> HEAP_HEADER(2, HT_CLOSURE)
1 -> HEAP_Cl 11
2 -> HEAP_HEADER(2, HT_CLOSURE)
3 -> HEAP_CI 4
4-> HEAP_HEADER(3, HT_PAIR)
5 -> HEAP_INT 21
6 -> HEAP_INT 17
```

$==========$ state 19 ==========
cp $=3->$ HALT
$\mathrm{fp}=0$
Stack =
2: STACK_HI 7
1: STACK_RA 0
0: STACK_FP 0
Heap =
$0->$ HEAP_HEADER(2, HT_CLOSURE)
$1->$ HEAP_Cl 11
$2->\operatorname{HEAP}_{-} H E A D E R\left(2, H_{1}\right.$ CLOSURE)
3 -> HEAP_CI 4
$4->$ HEAP_HEADER(3, HT_PAIR)
$5->$ HEAP_INT 21
6 -> HEAP_INT 17
7 -> HEAP_HEADER(3, HT_PAIR)
8 -> HEAP_INT 17
9 -> HEAP_INT 21
Jargon VM :
output> $(17,21)$

## Example : closure_add.slang

```
let f(y : int) : int -> int = let g(x :int) : int = y + x in g end
in let add21 : int -> int =f(21)
 in let add17 : int -> int = f(17)
 in add17(3) + add21(10)
 end
 end
end
```

Note : we really do need closures on the heap here the values 21 and 17 do not exist on the stack at this point in the execution.

After the front-end, this becomes represented as follows.
App(Lambda(f, App(Lambda(add21,
App(Lambda(add17,
Op(App(Var(add17), Integer(3)),
ADD,
App( $\operatorname{Var}($ add21), Integer(10)))),
App( $\operatorname{Var}(\mathrm{f})$, Integer(17))),
App( $\operatorname{Var}(f)$, Integer(21))))),
Lambda(y, App(Lambda(g, $\operatorname{Var}(\mathrm{g})), \operatorname{Lambda}(\mathrm{x}, \operatorname{Op}(\operatorname{Var}(\mathrm{y}), \mathrm{ADD}, \operatorname{Var}(\mathrm{x}))))))$

## Can we make sense of this?

MK_CLOSURE(L3, 0) MK_CLOSURE(L0, 0) APPLY HALT
LO: PUSH STACK_INT 21 LOOKUP STACK_LOCATION -2
APPLY
LOOKUP STACK_LOCATION -2 MK_CLOSURE(L1, 1)
APPLY
RETURN
L1: PUSH STACK_INT 17
LOOKUP HEAP_LOCATION 1
APPLY
LOOKUP STACK_LOCATION -2 MK_CLOSURE(L2, 1)
APPLY
RETURN

```
L2: PUSH STACK_INT 3
LOOKUP STACK_LOCATION -2
APPLY
PUSH STACK_INT 10
LOOKUP HEAP_LOCATION 1
APPLY
OPER ADD
RETURN
L3: LOOKUP STACK_LOCATION -2
MK_CLOSURE(L5, 1)
MK_CLOSURE(L4, 0)
APPLY
RETURN
L4: LOOKUP STACK_LOCATION-2
RETURN
L5: LOOKUP HEAP_LOCATION 1
LOOKUP STACK_LOCATION -2
OPER ADD
RETURN

\section*{The Gap, illustrated}

\section*{fib.slang}
```

let fib ( m : int) : int =
if $m=0$
then 1
else if $m=1$
then 1
else fib(m-1) + fib (m-2)
end
end
in fib (?) end

```

slang.byte -c -i4 fib.slang

MK_CLOSURE(fib, 0)
MK_CLOSURE(LO, 0)
APPLY
HALT
LO: PUSH STACK_UNIT
UNARY READ
LOOKUP STACK_LOCATION-2
APPLY
RETURN
fib: LOOKUP STACK_LOCATION-2
PUSH STACK_INT 0
OPER EQI
TEST L1
PUSH STACK_INT 1
GOTO L2
L1: LOOKUP STACK_LOCATION -2 PUSH STACK_INT 1
OPER EQI
TEST L3
PUSH STACK_INT 1
GOTO L4
L3: LOOKUP STACK_LOCATION-2
PUSH STACK_INT 1
OPER SUB
LOOKUP STACK_LOCATION-1
APPLY
LOOKUP STACK_LOCATION-2 PUSH STACK_INT 2
OPER SUB
LOOKUP STACK_LOCATION-1
APPLY
OPER ADD
L4:
L2: RETURN

\section*{Taking stock}

Starting from a direct implementation of Slang/L3 semantics, we have DERIVED a Virtual Machine in a step-by-step manner. The correctness of aach step is (more or less) easy to check.

\section*{Interpreter 0}

Interpreter 1

Interpreter 2

Interpreter 3

Jargon VM

\section*{Remarks}
1. The semantic GAP between a Slang/L3 program and a low-level translation (say x86/Unix) has been significantly reduced.
2. Implementing the Jargon VM at a lower-level of abstraction (in C?, JVM bytecodes? X86/Unix? ...) looks like a relatively easy programming problem.
3. However, using a lower-level implementation (say x86, exploiting fast registers) to generate very efficient code is not so easy. See Part II Optimising Compilers.

\section*{Verification of compilers is an active area of research. See CompCert, CakeML, and DeepSpec.}

\section*{We could implement a Jargon byte code interpreter ...}
```

void vsm_execute_instruction(vsm_state *state, bytecode instruction)
{
opcode code = instruction.code;
argument arg1 = instruction.arg1;
switch (code) {
case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }
case POP : { state->sp--; state->pc++; break; }
case GOTO: { state->pc = arg1; break; }
case STACK_LOOKUP: {
state->stack[state->sp++] =

```
 state->stack[state->fp + arg1];
 state->pc++; break; \}
- Generate compact byte code for each Jargon instruction.
- Compiler writes byte codes to a file.
- Implement an interpreter in C or C++ for these byte codes.
- Execution is much faster than our jargon.ml implementation.
- Or, we could generate assembly code from Jargon instructions

\section*{Backend could target multiple platforms}

One of the great benefits of Virtual Machines is their portability. However, for more efficient code we may want to compile to assembler. Lost portability can be regained through the extra effort of implementing code generation for every desired target platform.

\section*{Lectures 12 --- 16 Assorted Topics}
1. Separate compilation, linking
2. Interface with OS
3. Stacks vs registers
4. Calling conventions
5. Generating assembler code
6. Simple optimisations
7. The runtime system (automatic memory management, ...)
8. Static links (for languages without nested functions/procedures)
9. Implementing OOP with inheritance 10.Implementing exceptions 11.Compiling a compiler, "boot strapping"

\section*{Assembly and Linking}

\title{
The gcc manual (810 pages) https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf
}
Chapter 9: Binary Compatibility 677

\section*{9 Binary Compatibility}

Binary compatibility encompasses several related concepts:
application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with binary representations of a program, including compilers, assemblers, linkers, and language runtime support. Some ABIs are formal with a written specification, possibly designed by multiple interested parties. Others are simply the way things are actually done by a particular set of tools.

\section*{Applications Binary Interface (ABI)}

We will use \(x 86 /\) Unix as our running example. Specifies many things, including the following.
- C calling conventions used for systems calls or calls to compiled C code.
- Register usage and stack frame layout
- How parameters are passed, results returned
- Caller/callee responsibilities for placement and cleanup

Note: the conventions are required for portable interaction with compiled C.
Your compiled
language does not
have to follow the same conventions!
- Byte-level layout and semantics of object files.
- Executable and Linkable Format (ELF). Formerly known as Extensible Linking Format.
- Linking, loading, and name mangling

\section*{Object files}

Must contain at least
- Program instructions
- Symbols being exported
- Symbols being imported
- Constants used in the program (such as strings)

Executable and Linkable Format (ELF) is a common format for both linker input and output.

\section*{ELF details (1)}

Header information; positions and sizes of sections
.text segment (code segment): binary data
.data segment: binary data
.rela.text code segment relocation table: list of (offset,symbol) pairs giving:
(i) offset within .text to be relocated; and (iii) by which symbol
.rela.data data segment relocation table: list of (offset,symbol) pairs giving:
(i) offset within .data to be relocated; and (iii) by which symbol

\section*{ELF details (2)}
. symtab symbol table:
List of external symbols (as triples) used by the module.
Each is (attribute, offset, symname) with attribute:
1. undef: externally defined, offset is ignored;
2. defined in code segment (with offset of definition);
3. defined in data segment (with offset of definition).

Symbol names are given as offsets within .strtab to keep table entries of the same size.
. strtab string table:
the string form of all external names used in the module

\section*{The (Static) Linker}

What does a linker do?
- takes some object files as input, notes all undefined symbols.
- recursively searches libraries adding ELF files which define such symbols until all names defined ("library search").
- whinges if any symbol is undefined or multiply defined.

Then what?
- concatenates all code segments (forming the output code segment).
- concatenates all data segments.
- performs relocations (updates code/data segments at specified offsets.

\section*{Dynamic vs. Static linking}

\section*{Static linking (compile time)}

Problem: a simple "hello world" program may give a 10MB executable if it refers to a big graphics or other library.
Dynamic linking (run time)
For shared libraries, the object files contain stubs, not code, and the operating system loads and links the code on demand.

Pros and Cons of dynamic linking:
(+) Executables are smaller
\({ }^{(+)}\)Bug fixes to libraries don't require re-linking.
(-) Non-compatible changes to a library can wreck previously working programs ("dependency hell").

\section*{A"runtime system"}

A library implementing functionality needed to run compiled code on a given operating system. Normally tailored to the language being compiled.
- Implements interface between OS and language.
- May implement memory management.
- May implement "foreign function" interface (say we want to call compiled C code from Slang code, or vice versa).
- May include efficient implementations of primitive operations defined in the compiled language.
- For some languages, the runtime system may perform runtime type checking, method lookup, security checks, and so on.

\section*{Runtime system}

\section*{Targeting a VM}

\section*{Targeting a platform}

\section*{Generated} code

\begin{tabular}{|c|}
\hline Virtual Machine \\
Implementation \\
Includes runtime \\
system
\end{tabular}

Generated code

Run-time system

Linker

Executable

In either case, implementers of the compiler and the runtime system must agree on many low-level details of memory layout and data representation.

\section*{Typical (Low-Level) Memory Layout (UNIX)}

Rough schematic of traditional layout in (virtual) memory.

Dealing with Virtual Machines allows us to ignore some of the low-level details....

The heap is used for dynamically allocating memory. Typically either for very large objects or for those objects that are returned by functions/procedures and must outlive the associated activation record.

In languages like Java and ML, the heap is managed automatically ("garbage collection")

\section*{Stack vs regsisters}

\begin{tabular}{c}
\hline r3:V2 \\
\hline\(\ldots\) \\
\hline r7: \\
\hline \hline\(r 8: V\) \\
\hline
\end{tabular}

r3: V2
..
\begin{tabular}{|c|}
\hline \(\mathrm{r} 7: \mathrm{V} 1+\mathrm{V} 2\) \\
\hline \(\mathrm{r} 8: \mathrm{V} 1\) \\
\hline
\end{tabular}

Stack-oriented:
(+) argument locations is implicit, so instructions are smaller.
(---) Execution is slower

Register-oriented:
(+++) Execution MUCH faster
\((-)\) argument location is explicit, so instructions are larger

\section*{Main dilemma : registers are fast, but are fixed in number. And that number is rather small.}
- Manipulating the stack involves RAM access, which can be orders of magnitude slower than register access (the "von Neumann Bottleneck")
- Fast registers are (today) a scarce resource, shared by many code fragments
- How can registers be used most effectively?
- Requires a careful examination of a program's structure
- Analysis phase: building data structures (typically directed graphs) that capture definition/use relationships
- Transformation phase : using this information to rewrite code, attempting to most efficiently utilise registers
- Problem is NP-complete
- One of the central topics of Part II Optimising Compilers.
- Here we focus only on general issues : calling conventions and register spilling

\section*{Caller/callee conventions}
- Caller and callee code may use overlapping sets of registers
- An agreement is needed concerning use of registers
- Are some arguments passed in specific registers?
- Is the result returned in a specific register?
- If the caller and callee are both using a set of registers for "scratch space" then caller or callee must save and restore these registers so that the caller's registers are not obliterated by the callee.
- Standard calling conventions identify specific subsets of registers as "caller saved" or "callee saved"
- Caller saved: if caller cares about the value in a register, then must save it before making any call
- Callee saved: The caller can be assured that the callee will leave the register intact (perhaps by saving and restoring it)

\section*{Another C example. X86, 64 bit, with gcc}
```

int
callee(int, int,int,
int,int,int,int);
int caller(void)
{
int ret;
ret =
callee(1,2,3,4,5,6,7);
ret += 5;
return ret;
}

```
_caller:
pushq \%rbp \# save frame pointer
movq \%rsp, \%rbp \# set new frame pointer
subq \$16, \%rsp \# make room on stack
movl \$7, (\%rsp) \# put 7th arg on stack
movl \$1, \%edi \# put 1st arg on in edi
movl \$2, \%esi \# put 2nd arg on in esi
movl \$3, \%edx \# put 3rd arg on in edx
movl \$4, \%ecx \# put 4th arg on in ecx
movl \$5, \%r8d \# put 5th arg on in r8d
movl \$6, \%r9d \# put 6th arg on in r9d
callq _callee \#will put resut in eax
addl\$5, \%eax \# add 5
addq \$16, \%rsp \# adjust stack
popq \%rbp \# restore frame pointer
ret \# pop return address, go there

\section*{Regsiter spilling}
- What happens when all registers are in use?
- Could use the stack for scratch space ...
- ... or (1) move some register values to the stack, (2) use the registers for computation, (3) restore the registers to their original value
- This is called register spilling

\section*{A Crash Course in \(\times 86\) assembler}
- A CISC architecture
- There are 16, 32 and 64 bit versions
- 32 bit version :
- General purpose registers : EAX EBX ECX EDX
- Special purpose registers : ESI EDI EBP EIP ESP
- EBP : normally used as the frame pointer
- ESP : normally used as the stack pointer
- EDI : often used to pass (first) argument
- EIP : the code pointer
- Segment and flag registers that we will ignore ...
- 64 bit version:
- Rename 32-bit registers with "R" (RAX, RBX, RCX, ...)
- More general registers: R8 R9 R10 R11 R12 R13 R14 R15

Register names can indicate "width" of a value.
rax : 64 bit version
eax : 32 bit version (or lower 32 bits of rax) ax : 16 bit version (or lower 16 bits of eax) al : lower 8 bits of ax
ah : upper 8 bits of ax

\section*{See https://en.wikibooks.org/wiki/X86_Assembly}

The syntax of \(x 86\) assembler comes in several flavours. Here are two examples of "put integer 4 into register eax":
movl \$4, \%eax // GAS (aka AT\&T) notation mov eax, \(4 \quad / /\) Intel notation

I will (mostly) use the GAS syntax, where a suffix is used to indicate width of arguments:
- b (byte) \(=8\) bits
- \(w(\) word \()=16\) bits
- 1 (long) = 32 bits
- \(q\) (quad) \(=64\) bits

For example, we have movb, movw movl, and movq.

\section*{Examples (in GAS notation)}

\section*{A few more examples}
call label \# push return address on stack and jump to label ret \# pop return address off stack and jump there \# NOTE: managing other bits of the stack frame \# such as stack and frame pointer must be done \# explicitly
subl \$4, \%esp \# subtract 4 from esp. That is, adjust the \# stack pointer to make room for one 32-bit \# (4 byte) value. (stack grows downward!)

Assume that we have implemented a procedure in C called allocate that will manage heap memory. We will compile and link this in with code generated by the slang compiler. At the x86 level, allocate will expect a header in edi and return a heap pointer in eax.

\section*{Some Jargon VM instructions are "easy" to translate}

Remember: X86 is CISC, so RISC architectures may require more instructions
\begin{tabular}{|c|c|c|}
\hline GOTO loc & jmp loc & \\
\hline POP & addl \$4, \%esp & // move stack pointer 1 word = 4 bytes \\
\hline PUSH v & subl \(\$ 4\), \%esp movl \$i, (\%esp) & // make room on top of stack // where i is an integer representing v \\
\hline FST & movl (\%esp), \%edx movl 4(\%edx), \%edx movl \%edx, (\%esp) & \begin{tabular}{l}
//store "a" into edx \\
// load v1, 4 bytes, 1 word, after header \\
// replace "a" with "v1" at top of stack
\end{tabular} \\
\hline SND & movl (\%esp), \%edx movl 8(\%edx), \%edx movl \%edx, (\%esp) & \begin{tabular}{l}
//store "a" into edx \\
// vload v2, 8 bytes, 2 words, after header \\
// replace "a" with "v2" at top of stack
\end{tabular} \\
\hline
\end{tabular}

\section*{while others require more work}
\begin{tabular}{|c|}
\hline v 2 \\
\hline v 1 \\
\hline\(\vdots\)
\end{tabular}\(\quad \vdots\)

\section*{One possible x86 (32 bit) implementation of MK_PAIR:}
movl \$3, \%edi shr \$16, \%edi, movw \$PAIR, \%di call allocate movl (\%esp), \%edx movl \%edx, 8(\%eax) addl \$4, \%esp movl (\%esp), \%edx movl \%edx, 4(\%eax) movl \%eax, (\%esp)
// construct header in edi
// ... put size in upper 16 bits (shift right)
// ... put type in lower 16 bits of edi
// input: header in ebi, output: "a" in eax
// move "v2" to the heap,
// ... using temporary register edx
// adjust stack pointer (pop "v2")
// move " v 1 " to the heap
// ... using temporary register edx
// copy value "a" to top of stack

\section*{call function computed at runtime?}

For things you don't understand, just experiment! OK, you need to pull an address out of a closure and call it. Hmm, how does something similar get compiled from C ?
int func (int (*f)(int)) \{ return (*f)(17); \}/* pass a function pointer and apply it /*
_func:
pushq \%rbp \# save frame pointer
movq \%rsp, \%rbp \# set frame pointer to stack pointer
subq \$16, \%rsp \# make some room on stack
movl \$17, \%eax \# put 17 in argument register eax
movq \%rdi, -8(\%rbp) \# rdi contains the argument f
movl \%eax, \%edi \# put 17 in register edi, so f will get it
callq *-8(\%rbp) \# WOW, a computed address for call!
addq \$16, \%rsp \# restore stack pointer
popq \%rbp
ret
\# restore old frame pointer \# restore stack

X86, 64 bit
without
-O2

\section*{What about arithmetic?}

Houston, we have a problem....
- It may not be obvious now, but if we want to have automated memory management we need to be able to distinguish between values (say integers) and pointers at runtime.
- Have you ever noticed that integers in SML or Ocaml are either 31 (or 63) bits rather than the native 32 (or 64) bits?
- That is because these compilers use a the least significant bit to distinguish integers (bit = 1) from pointers (bit =0).
- OK, this works. But it may complicate every arithmetic operation!
- This is another exercise left for you to ponder

\section*{New topic: Memory Management}
- Many programming languages allow programmers to (implicitly) allocate new storage dynamically, with no need to worry about reclaiming space no longer used.
- New records, arrays, tuples, objects, closures, etc.
- Java, SML, OCamI, Python, JavaScript, Python, Ruby, Go, Swift, SmallTalk, ...
- Memory could easily be exhausted without some method of reclaiming and recycling the storage that will no longer be used.
- Often called "garbage collection"
- Is really "automated memory management" since it deals with allocation, de-allocation, compaction, and memory-related interactions with the OS.

\section*{Explicit (manual) memory management}
- User library manages memory; programmer decides when and where to allocate and deallocate
- void* malloc(long n)
- void free(void *addr)
- Library calls OS for more pages when necessary
- Advantage: Gives programmer a lot of control.
- Disadvantage: people too clever and make mistakes. Getting it right can be costly. And don' t we want to automate-away tedium?
- Advantage: With these procedures we can implement memory management for "higher level" languages ;-)

Automation is based on an approximation : if data can be reached from a root set, then it is not "garbage"

\section*{... Identify Cells Reachable From Root Set...}

\section*{But How? Two basic techniques, and many variations}
- Reference counting : Keep a reference count with each object that represents the number of pointers to it. Is garbage when count is 0 .
- Tracing : find all objects reachable from root set. Basically transitive close of pointer graph.

> For a very interesting (non-examinable) treatment of this subject see A Unified Theory of Garbage Collection. David F. Bacon, Perry Cheng, V.T. Rajan. OOPSLA 2004.

> In that paper reference counting and tracing are presented as "dual" approaches, and other techniques are hybrids of the two.

\section*{Reference Counting, basic idea:}
- Keep track of the number of pointers to each object (the reference count).
- When Object is created, set count to 1.
- Every time a new pointer to the object is created, increment the count.
- Every time an existing pointer to an object is destroyed, decrement the count
- When the reference count goes to 0 , the object is unreachable garbage

\section*{Reference counting can't detect cycles!}

\section*{Mark and Sweep}
- A two-phase algorithm
- Mark phase: Depth first traversal of object graph from the roots to mark live data
- Sweep phase: iterate over entire heap, adding the unmarked data back onto the free list

\section*{Copying Collection}
- Basic idea: use 2 heaps
- One used by program
- The other unused until GC time
- GC:
- Start at the roots \& traverse the reachable data
- Copy reachable data from the active heap (fromspace) to the other heap (to-space)
- Dead objects are left behind in from space
- Heaps switch roles

\section*{Copying Collection}

\section*{Copying GC}
- Pros
- Simple \& collects cycles
- Run-time proportional to \# live objects
- Automatic compaction eliminates fragmentation
- Cons
- Twice as much memory used as program requires
- Usually, we anticipate live data will only be a small fragment of store
- Allocate until 70\% full
- From-space \(=70 \%\) heap; to-space \(=30 \%\)
- Long GC pauses = bad for interactive, real-time apps

\section*{OBSERVATION: for a copying garbage collector}
- \(80 \%\) to \(98 \%\) new objects die very quickly.
- An object that has survived several collections has a bigger chance to become a long-lived one.
- It's a inefficient that long-lived objects be copied over and over.

\section*{IDEA: Generational garbage collection}

Segregate objects into multiple areas by age, and collect areas containing older objects less often than the younger ones.

Diagram from Andrew Appel's Modern Compiler Implementation

\section*{Other issues...}
- When do we promote objects from young generation to old generation
- Usually after an object survives a collection, it will be promoted
- Need to keep track of older objects pointing to newer ones!
- How big should the generations be?
- When do we collect the old generation?
- After several minor collections, we do a major collection
- Sometimes different GC algorithms are used for the new and older generations.
- Why? Because the have different characteristics
- Copying collection for the new
- Less than \(10 \%\) of the new data is usually live
- Copying collection cost is proportional to the live data
- Mark-sweep for the old

\section*{New topic : Simple optimisations. Inline expansion}
\[
\begin{aligned}
& \text { fun } f(x)=x+1 \\
& \text { fun } g(x)=x-1
\end{aligned}
\]
...
\[
\text { fun } h(x)=f(x)+g(x)
\]
inline \(f\) and \(g\)
```

fun f(x) = x + 1
fun g(x) = x - 1
fun h(x) = (x+1) +(x-1)

```
(+) Avoid building activation records at runtime
(+) May allow further optimisations
(-) May lead to "code bloat" (apply only to functions with "small" bodies?)

Question: if we inline all occurrences of a function, can we delete its definition from the code?
What if it is needed at link time?

\section*{Be careful with variable scope}

Inline g in h
```

let val }x=
fun g(y)=x+y
fun h(x)=g(x) +1
in
h(17)
end

```
```

let val $x=1$

```
let val \(x=1\)
```

let val $x=1$
fun $g(y)=x+y$
fun $g(y)=x+y$
fun $g(y)=x+y$
fun $h(x)=x+y+1$
fun $h(x)=x+y+1$
fun $h(x)=x+y+1$
in
in
in
$\mathrm{h}(17)$
$\mathrm{h}(17)$
$\mathrm{h}(17)$
end

```
end
```

end

```
```

let val $x=1$
fun $g(y)=x+y$
fun $h(z)=x+z+1$
in
$h(17)$
end

```

What kind of care might be needed will depend on the representation level of the Intermediate code involved.

\section*{(b) Constant propagation, constant folding}
1et \(x=2\)
1et \(y=x-1\)
1et \(z=y * 17\)
1et \(x=2\)
1 et \(y=2-1\)
1et \(z=y * 17\)
1et \(x=2\)
1et \(y=1\)
1et \(z=y * 17\)
let \(x=2\)
let \(y=1\)
1et \(z=1 * 17\)

1et \(x=2\)
1et \(y=1\)
1et \(z=17\)

\section*{Propagate constants and evaluate simple expressions at compile-time}

Note : opportunities are often exposed by inline expansion!

\section*{David Gries :}
"Never put off till
run-time what you can do at compile-time."

But be careful
How about this?
Replace
x*0
with
0
OOPS, not if \(x\) has type float!
\(N A N^{*} 0=N A N\),

\section*{(c) peephole optimisation}

\section*{Peephole Optimization}
W. M. McKeeman

Stanford University, Stanford, California

Communications of the ACM, July 1965

Example 1. Source code:
\[
\begin{aligned}
& X:=Y \\
& Z:=X+Z
\end{aligned}
\]

Compiled code:
LDA Y load the accumulator from Y STA X store the accumulator in X LDA \(X\) load the accumulator from \(X\) ADD Z add the contents of Z STA Z store the accumulator in Z

Results for syntax-directed code generation.

\section*{peephole optimisation}
... code sequence ... \(\square\)
Sweep a window over the code sequence looking for instances of simple code patterns that can be rewritten to better code ... (might be combined with constant folding, etc, and employ multiple passes)
```

Examples
-- eliminate useless combinations (push 0; pop)
-- introduce machine-specific instructions
-- improve control flow. For example: rewrite
"GOTO L1 ... L1: GOTO L2"
to
"GOTO L2 .. L1 : GOTO L2")

```

\section*{gcc example. \\ - \(0<m>\) turns on optimisation to level \(m\)}

\section*{g.C}
int h(int n) \{ return \((0<n) ? n: 101 ;\}\)
int g(int n) \{ return 12 * \(\mathrm{h}(\mathrm{n}+17) ;\) \}
g.s (fragment)
```

_g:
.cfi_startproc
pushq %rbp
movq %rsp, %rbp
addl \$17, %edi
imull \$12, %edi, %ecx
testl %edi, %edi
movl \$1212, %eax
cmovgl %ecx, %eax
popq %rbp
ret
.cfi_endproc

```

\section*{gcc example (-0<m> turns on optimisation)}

\section*{g.c}
int h(int n) \{return (0<n) ? n: 101; \}
int g(int n) \{ return 12 * h(n + 17); \}
The compiler must have done something similar to this:
int g(int n) \{ return 12 * \(\mathrm{h}(\mathrm{n}+17)\); \}
\(\rightarrow\)
int g(int n) \(\{\) int \(\mathrm{t}:=\mathrm{n}+17\); return 12 * \(\mathrm{h}(\mathrm{t})\); \}
\(\rightarrow\)
int g(int n) \(\{\) int \(\mathrm{t}:=\mathrm{n}+17\); return 12 *(\((0<\mathrm{t})\) ? \(\mathrm{t}: 101)\); \}
int \(g\) (int \(n)\{\) int \(t:=n+17\); return \((0<t) ? 12\) * \(t: 1212 ;\}\)
\(\rightarrow\)...

\section*{New topic : static links on the call stack.}
- Many textbooks on compilers treat only languages with first-order functions --- that is, functions cannot be passes as an argument or returned as a result. In this case, we can avoid allocating environments on the heap since all values associated with free variables will be somewhere on the stack!
- But how do we find these values? We optimise stack search by following a chain of static links. Static links are added to every stack frame and points to the stack frame of the last invocation of the defining function.
- One other thing: most languages take multiple arguments for a function/procedure call.

\section*{Terminology: Caller and Callee}
fun \(f(x, y)=e 1\)
For this invocation of the function f, we say that g is the caller while \(f\) is the callee

Recursive functions can play
both roles at the same time ...

\section*{Nesting depth}

Pseudo-code
```

fun b(z) = e
fun g(x1) =
funh(x2) =
fun f(x3) = e3(x1, x2, x3,b,g h, f)
in
e2(x1, x2, b, g, h, f)
end
in
e1(x1,b,g, h)
end
b(g(17))

```

\section*{Nesting depth}

\section*{code in big box is at nesting depth k}
fun \(\mathbf{b}(\mathbf{z})=\mathbf{e}\) nesting depth \(\mathrm{k}+1\)
fun \(g(x 1)=\)
fun \(h(x 2)=\)
fun \(\mathbf{f}(\mathbf{x 3} \mathbf{)}=\mathbf{e 3}(\mathbf{x 1}, \mathbf{x 2}, \mathbf{x 3}, \mathbf{b}, \mathbf{g} \mathbf{h}, \mathbf{f}) \quad\) nesting depth \(k+3\) in
e2(x1, x2, b, g, h, f)
end nesting depth \(k+2\)
in
e1(x1, b, g, h)
end
nesting depth \(\mathrm{k}+1\)
b(g(17))

■■■
Function \(g\) is the definer of \(h\). Functions \(g\) and \(b\) must share a definer defined at depth k-1

\section*{Stack with static links and variable number of arguments}

\section*{caller and callee at same nesting depth \(k\)}

Code

Code

\section*{caller at depth \(\mathbf{k}\) and callee at depth \(\mathbf{i}<\mathbf{k}\)}

Code

Code

\section*{caller at depth \(\mathbf{k}\) and callee at depth \(\mathbf{k}+1\)}

Code

Code

\section*{Access to argument values at static distance 0}

\section*{Access to argument values at static distance \(d, 0<d\)}

\section*{New Topic: \\ OOP Objects (single inheritance)}

1et start := 10
class Vehicle extends object \{ var position := start
 method move(int \(x)=\{\) position \(:=\) position \(+x\}\)
 \}
 class Car extends Vehicle \{
 var passengers := 0
 method await(v : Vehicle) =
 if (v.position < position)
 then v.move(position - v.position)
 else self.move(10)
 \}
 class Truck extends Vehicle \{
 method move (int x) =
 if \(x<=55\) then position := position +x
 \}
 var t := new Truck
 var c := new car
 var v : Vehicle := c
in
 c.passengers := 2;
 c.move(60);
 v.move(70);
 c. await(t)
subtyping allows a
Truck or Car to be viewed and used as a Vehicle

\section*{Object Implementation?}
- how do we access object fields?
- both inherited fields and fields for the current object?
- how do we access method code?
- if the current class does not define a particular method, where do we go to get the inherited method code?
- how do we handle method override?
- How do we implement subtyping ("object polymorphism")?
- If \(B\) is derived from \(A\), then need to be able to treat a pointer to a B-object as if it were an Aobject.

\section*{Another 00 Feature}
- Protection mechanisms
- to encapsulate local state within an object, Java has "private" "protected" and "public" qualifiers
- private methods/fields can't be called/used outside of the class in which they are defined
- This is really a scope/visibility issue! Frontend during semantic analysis (type checking and so on), the compiler maintains this information in the symbol table for each class and enforces visibility rules.

\section*{Object representation}

NB: a compiler typically generates methods with an extra argument representing the object (self) and used to access object data.

\section*{Inheritance ("pointer polymorphism")}

Note that a pointer to a B object can be treated as if it were a pointer to an A object!

\section*{Method overriding}

\section*{Static vs. Dynamic}
- which method to invoke on overloaded polymorphic types?
```

class C *c = ...;
class A *a = c;
a->m2 (3) ;

```


\section*{Dynamic dispatch implemented with vtables}

A pointer to a class \(C\) object can be treated as a pointer to a class A object

```

class C *c = ...;
class A *a = c;
a->m2(3);

```

```

*(a->vtable[1]) (a, 3);

```

\section*{New Topic : Exceptions (informal description)}

\section*{e handle f}

If expression e evaluates "normally" to value v , then \(v\) is the result of the entire expression.

Otherwise, an exceptional value \(v\) ' is "raised" in the evaluation of \(e\), then result is (\(f \mathrm{v}\))

Evaluate expression e to value \(v\), and then raise \(v\) as an exceptional value, which can only be "handled".

> Implementation of exceptions
> may require a lot of language-specific consideration and care. Exceptions can interact in powerful and unexpected ways with other language features.
> Think of C++ and class destructors, for example.

\section*{Viewed from the call stack}

Call stack just before evaluating code for
e handle f

Push a special frame for the handle
"raise \(v\) " is encountered while evaluating a function body associated with top-most frame
> "Unwind" call stack. Depending on language, this may involve some "clean up" to free resources.

\section*{Possible pseudo-code implementation}
e handle f
let fun _h27 () =
build special "handle frame"
save address of \(f\) in frame;
... code for e ...
return value of e
in _h27 () end
raise e
... code for e ...
save \(v\), the value of \(e\); unwind stack until first fp found pointing at a handle frame; Replace handle frame with frame for call to (extracted) f using v as argument.

\section*{New topic : Bootstrapping a compiler}
- Compilers compiling themselves!
- Read Chapter 13 Of
- Basics of Compiler Design
- by Torben Mogensen
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

http://mythologian.net/ouroboros-symbol-of-infinity/

\section*{Bootstrapping. We need some notation . . .}

An application called app written in language \(\mathbf{A}\)

An interpreter or VM for language A Written in language B

\section*{Tombstones}

This is an application called trans that translates programs in language A into programs in language \(\mathbf{B}\), and it is written in language \(\mathbf{C}\).

\section*{Ahead-of-time compilation}

Thanks to David Greaves for the example.

\section*{Of course translators can be translated}

Translator foo. \(\mathbf{B}\) is produced as output from trans when given foo.A as input.

\section*{Our seemingly impossible task}

We have just invented a really great new language \(\mathbf{L}\) (in fact we claim that " \(L\) is far superior to C++"). To prove how great \(\mathbf{L}\) is we write a compiler for \(\mathbf{L}\) in \(\mathbf{L}\) (of course!). This compiler produces machine code B for a widely used instruction set (say \(\mathbf{B}=x 86\)).

Furthermore, we want to compile our compiler so that it can run on a machine running \(\mathbf{B}\). Our compiler is written in L! How can we compiler our compiler?

There are many many ways we could go about this task. The following slides simply sketch out one plausible route to fame and fortune.

\title{
Step 1 \\ Write a small interpreter (VM) for a small language of byte codes
}
MBC = My Byte Codes

The zoom machine!

Step 2

\section*{Pick a small subset \(S\) of \(L\) and write a translator from S to MBC}

Write comp_1.cpp by hand. (It sure would be nice if we could hide the fact that this is written is \(\mathrm{C}++\).)

Compiler comp_1.B is produced as output from gcc when comp_1.cpp is given as input.

\section*{Step 3 \\ Write a compiler for \(L\) in \(S\)}

Write a compiler comp_2.S for the full language \(\mathbf{L}\), but written only in the sub-language \(\mathbf{S}\).

Compile comp_2.S using comp_1.B to produce comp_2.mbc

\section*{Step 4}

\section*{Write a compiler for \(L\) in \(L\), and then compile it!}

\section*{Putting it all together}

\section*{Step 5: Cover our tracks and leave the world mystified and amazed!}

Our L compiler download site contains only three components:

comp_2.mbc is a just file of bytes. We give it the mysterious name such as mr-e

Our instructions:
1. Use gcc to compile the zoom interpreter
2. Use zoom to run mr-e with input comp.L to output the compiler comp.B. MAGIC!

\section*{Another example (Mogensen, Page 285)}

\section*{Solving a different problem.}

\section*{You have:}
(1) An ML compiler on ARM. Who knows where it came from.
(2) An ML compiler written in ML, generating x86 code.

\section*{You want:}

An ML compiler generating \(x 86\) and running on an \(x 86\) platform.
```

