
Cloud Computing

MapReduce, Batch Processing



Contents

§ Batch processing: processing large amounts of data at-
once, in one-go to deliver a result according to a query on 
the data. 

§ Material is from the paper:
“MapReduce: Simplified Data Processing on Large Clusters”, 
By Jeffrey Dean and Sanjay Ghemawat from Google
published in Usenix OSDI conference, 2004 
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Motivation: Processing Large-sets of Data 
§ Need for many computations over large/huge sets of data:

§ Input data: crawled documents, web request logs
§ Output data: inverted indices, summary of pages crawled per host, the

set of the most frequent queries in a given day, …
§ Most of these computation are relatively straight-forward
§ To speedup computation and shorten processing time, we can

distribute data across 100s of machines and process them in
parallel

§ But, parallel computations are difficult and complex to manage:
§ Race conditions, debugging, data distribution, fault-tolerance, load

balancing, etc

§ Ideally, we would like to process data in parallel but not deal
with the complexity of parallelisation and data distribution
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MapReduce

“A new abstraction that allows us to express the simple
computations we were trying to perform but hides the messy
details of parallelization, fault-tolerance, data distribution and
load balancing in a library.”

§ Programming model:
§ Provides abstraction to express computation

§ Library:
§ To take care the runtime parallelisation of the computation.
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Example: Counting the number of occurrences of each 
work in the text below from Wikipedia

“Cloud computing is a recently evolved computing terminology
or metaphor based on utility and consumption of computing
resources. Cloud computing involves deploying groups of
remote servers and software networks that allow centralized
data storage and online access to computer services or
resources. Cloud can be classified as public, private or hybrid.”

Word: Number of Occurrences
Cloud 1
computing 1
is 1
a 1
recently 1
evolved 1
computing 1?
terminology 1
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Programming Model

§ Input: a set of key/value pairs
§ Output: a set of key/value pairs

§ Computation is expressed using the two functions:
1. Map task: a single pair à a list of intermediate pairs

§ map(input-key, input-value) à list(out-key, intermediate-value)
§ <ki, vi> à { < kint, vint > }

1. Reduce task: all intermediate pairs with the same kint à a list of values
§ reduce(out-key, list(intermediate-value)) à list(out-values)
§ < kint, {vint} > à < ko, vo >
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Example: Counting the number of occurrences of each 
work in a collection of documents

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents

for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// output_values: a list of counts

int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit(AsString(result));
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MapReduce Example Applications
§ The MapReduce model can be applied to many applications:

§ Distributed grep:
§ map: emits a line, if line matched the pattern
§ reduce: identity function 

§ Count of URL access Frequency
§ Reverse Web-Link Graph
§ Inverted Index
§ Distributed Sort
§ ….
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MapReduce Implementation

§ MapReduce implementation presented in the paper
matched Google infrastructure at-the-time:
1. Large cluster of commodity PCs connected via switched Ethernet
2. Machines are typically dual-processor x86, running Linux, 2-4GB of

mem! (slow machines for today’s standards)
3. A cluster of machines, so failures are anticipated
4. Storage with (GFS) Google File System (2003) on IDE disks

attached to PCs. GFS is a distributed file system, uses replication
for availability and reliability.

§ Scheduling system:
1. Users submit jobs
2. Each job consists of tasks; scheduler assigns tasks to machines
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Google File System (GFS)
§ File is divided into several chunks of predefined size;

§ Typically, 16-64 MB
§ The system replicates each chunk by a number:

§ Usually three replicas
§ To achieve fault-tolerance, availability and reliability
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Parallel Execution
§ User specifies:

§ M: number of map tasks
§ R: number of reduce tasks

§ Map:
§ MapReduce library splits the input file into M pieces 
§ Typically 16-64MB per piece 
§ Map tasks are distributed across the machines

§ Reduce:
§ Partitioning the intermediate key space into R pieces
§ hash(intermediate_key) mod R

§ Typical setting:
§ 2,000 machines
§ M = 200,000
§ R = 5,000 
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Execution Flow
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Master Data Structures

§ For each map/reduce task:
§ State status {idle, in-progress, completed}
§ Identity of the worker machine (for non-idle tasks)

§ The location of intermediate file regions is passed from maps to
reducers tasks through the master.

§ This information is pushed incrementally (as map tasks finish) to
workers that have in-progress reduce tasks.
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Fault-Tolerance 
Two types of failures:
1. worker failures:

§ Identified by sending heartbeat messages by the master. If no
response within a certain amount of time, then the worker is dead.

§ In-progress and completed map tasks are re-scheduled à idle
§ In-progress reduce tasks are re-scheduled à idle
§ Workers executing reduce tasks affected from failed map/workers are

notified of re-scheduling
§ Question: Why completed tasks have to be re-scheduler?
§ Answer: Map output is stored on local fs, while reduce output is stored

on GFS
2. master failure:

1. Rare
2. Can be recovered from checkpoints
3. Solution: aborts the MapReduce computation and starts again
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Disk Locality

§ Network bandwidth is a relatively scarce resource and also
increases latency

§ The goal is to save network bandwidth

§ Use of GFS that stores typically three copies of the data block
on different machines

§ Map tasks are scheduled “close” to data
§ On nodes that have input data (local disk)
§ If not, on nodes that are nearer to input data (e.g., same switch)
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Task Granularity
§ Number of map tasks > number of worker nodes

§ Better load balancing
§ Better recovery

§ But, this, increases load on the master
§ More scheduling
§ More states to be saved

§ M could be chosen with respect to the block size of the file
system
§ For locality properties

§ R is usually specified by users
§ Each reduce tasks produces one output file
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Stragglers
§ Slow workers delay overall completion time à stragglers

§ Bad disks with soft errors
§ Other tasks using up resources
§ Machine configuration problems, etc

§ Very close to end of MapReduce operation, master schedules backup 
execution of the remaining in-progress tasks. 

§ A task is marked as complete whenever either the primary or the 
backup execution completes. 

§ Example: sort operation takes 44% longer to complete when the 
backup task mechanism is disabled.
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Refinements: Partitioning Function

§ Partitioning function identifies the reduce task
§ Users specify the desired output files they want, R
§ But, there may be more keys than R
§ Uses the intermediate key and R
§ Default: hash(key) mod R

§ Important to choose well-balanced partitioning functions:
§ hash(hostname(urlkey)) mod R
§ For output keys that are URLs
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Refinements: Combiner Function

§ Introduce a mini-reduce phase before intermediate data is
sent to reduce

§ When there is significant repetition of intermediate keys
§ Merge values of intermediate keys before sending to reduce tasks
§ Example: word count, many records of the form <word_name, 1>.

Merge records with the same word_name
§ Similar to reduce function

§ Saves network bandwidth
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Evaluation - Setup
§ Evaluation on two programs running on a large cluster and 

processing 1 TB of data:
1. grep: search over 1010 100-byte records looking for a rare 3-character 

pattern
2. sort: sorts 1010 100-byte records 

§ Cluster configuration:
§ 1,800  machines
§ Each machine has 2 GHz Intel Xeon proc., 4GB mem, 2 160GB  IDE disks
§ Gigabit Ethernet link
§ Hosted in the same facility
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Grep
§ M = 15,000 of 64MB each split
§ R = 1
§ Entire computation finishes at 150s
§ Startup overhead ~60s

§ Propagation of program to workers
§ Delays to interact with GFS to open 1,000 files
§ …

§ Picks at 30GB/s with 1,764 workers
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Sort 
§ M = 15,000 splits, 64MB each
§ R = 4,000 files
§ Workers  = 1,700
§ Evaluated on three executions:

§ With backup tasks
§ Without backup tasks
§ With machine failures
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Sort Results
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Top: rate at which input is read
Middle: rate at which data is sent from mappers to reducers
Bottom: rate at which sorted data is written to output file by reducers 

Without backup 
tasks, 5 reduce 
tasks stragglers, 
44% increase

With machine failures, 
200 out of 1746 workers,
§ a 5% increase over 
normal execution time 

Normal execution 
with backup



Implementation
§ First MapReduce library in 02/2003
§ Use cases (back then):

§ Large-scale machine learning problems
§ Clustering problems for the Google News
§ Extraction of data for reports Google zeitgeist
§ Large-scale graph computations
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MapReduce jobs run in 8/2004



Summary

§ MapReduce is a very powerful and expressive model
§ Performance depends a lot on implementation details

§ Material is from the paper:
“MapReduce: Simplified Data Processing on Large Clusters”, 
By Jeffrey Dean and Sanjay Ghemawat from Google
published in Usenix OSDI conference, 2004 
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