Lecture 13

Recall:

Given categories and functors $C \xrightarrow{F} D$, an adjunction $F \dashv G$ is specified by functions

$$\begin{array}{ccc} F X \xrightarrow{g} Y \\ \theta_{X,Y} & & \overline{\overline{g}} \\ X \xrightarrow{\overline{g}} G Y \end{array} & \uparrow^{\theta_{X,Y}} & \xrightarrow{F X \xrightarrow{\overline{f}} Y} \\ & & & & & & \\ X \xrightarrow{\overline{g}} G Y \end{array}$$

(for each $X \in \mathbb{C}$ and $Y \in \mathbb{D}$) satisfying $\overline{\overline{f}} = f, \overline{\overline{g}} = g$ and

$$\frac{FX' \xrightarrow{Fu} FX \xrightarrow{g} Y}{X' \xrightarrow{u} X \xrightarrow{\overline{g}} GY} \qquad \qquad \begin{array}{c} FX \xrightarrow{g} Y \xrightarrow{v} Y' \\ \hline \hline \overline{X' \xrightarrow{u} X \xrightarrow{\overline{g}} GY} \end{array}$$

Theorem. A category C has binary products iff the diagonal functor $\Delta = \langle id_C, id_C \rangle : C \rightarrow C \times C$ has a right adjoint.

Theorem. A category C with binary products also has all exponentials of pairs of objects iff for all $X \in C$, the functor $(_) \times X : C \rightarrow C$ has a right adjoint.

Theorem. A category C has binary products iff the diagonal functor $\Delta = \langle id_C, id_C \rangle : C \rightarrow C \times C$ has a right adjoint.

Theorem. A category C with binary products also has all exponentials of pairs of objects iff for all $X \in C$, the functor $(_) \times X : C \to C$ has a right adjoint.

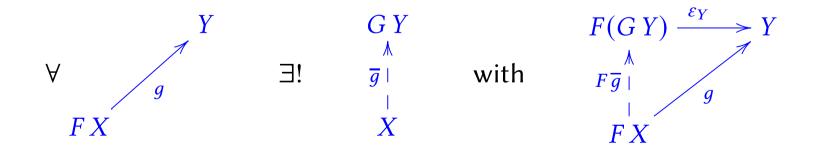
Both these theorems are instances of the following theorem, a very useful characterisation of when a functor has a right adjoint (or dually, a left adjoint).

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all **D**-objects $Y \in \mathbb{D}$, there is a **C**-object $G Y \in \mathbb{C}$ and a **D**-morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":



Proof of the Theorem—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in \mathbf{D}$ we produce $\varepsilon_Y : F(GY) \to Y$ in \mathbf{D} satisfying (UP).

Proof of the Theorem—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in \mathbf{D}$ we produce $\varepsilon_Y : F(GY) \to Y$ in \mathbf{D} satisfying (UP).

We are given $\theta_{X,Y}$: $D(FX, Y) \cong C(X, GY)$, natural in X and Y. Define

$$\varepsilon_Y \triangleq \theta_{GY,Y}^{-1}(\operatorname{id}_{GY}) : F(GY) \to Y$$

In other words $\varepsilon_Y = id_{GY}$.

Proof of the Theorem—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in \mathbf{D}$ we produce $\varepsilon_Y : F(GY) \to Y$ in \mathbf{D} satisfying (UP).

We are given $\theta_{X,Y}$: $D(FX, Y) \cong C(X, GY)$, natural in X and Y. Define

 $\varepsilon_Y \triangleq \theta_{GY,Y}^{-1}(\operatorname{id}_{GY}) : F(GY) \to Y$

In other words $\varepsilon_Y = \overline{id_{GY}}$.

Given any
$$\begin{cases} g: FX \to Y & \text{in } \mathbf{D} \\ f: X \to GY & \text{in } \mathbf{C} \end{cases}$$
, by naturality of θ we have
$$\frac{FX \xrightarrow{g} Y}{X \xrightarrow{\overline{g}} GY} \text{ and } \frac{\varepsilon_Y \circ Ff: FX \xrightarrow{Ff} F(GY) \xrightarrow{\overline{id}_{GY}} Y}{f: X \xrightarrow{\overline{f}} GY \xrightarrow{\overline{id}_{GY}} GY}$$

Hence $g = \varepsilon_Y \circ F \overline{g}$ and $g = \varepsilon_Y \circ F f \implies \overline{g} = f$.

Thus we do indeed have (UP).

Proof of the Theorem—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object G Y and \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ satisfying (UP). We have to

- 1. extend $Y \mapsto G Y$ to a functor $G : \mathbf{D} \to \mathbf{C}$
- 2. construct a natural isomorphism θ : Hom_D \circ ($F^{op} \times id_{D}$) \cong Hom_C \circ ($id_{C^{op}} \times G$)

Proof of the Theorem—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object G Y and \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ satisfying (UP). We have to

1. extend $Y \mapsto G Y$ to a functor $G : \mathbf{D} \to \mathbf{C}$

For each **D**-morphism $g: Y' \to Y$ we get $F(GY') \xrightarrow{\varepsilon_{Y'}} Y' \xrightarrow{g} Y$ and can apply (UP) to get

$$Gg \triangleq \overline{g \circ \varepsilon_{Y'}} : GY' \to GY$$

The uniqueness part of (UP) implies

$$G$$
 id = id and $G(g' \circ g) = G g' \circ G g$

so that we get a functor $G : \mathbf{D} \to \mathbf{C}$. \Box

Proof of the Theorem—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object G Y and \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ satisfying (UP). We have to

2. construct a natural isomorphism θ : Hom_D \circ ($F^{op} \times id_{D}$) \cong Hom_C \circ ($id_{C^{op}} \times G$)

Since for all $g : F X \to Y$ there is a unique $f : X \to G Y$ with $g = \varepsilon_Y \circ F f$,

$$f \mapsto \overline{f} \triangleq \varepsilon_Y \circ F f$$

determines a bijection $C(X, GY) \cong C(FX, Y)$; and it is natural in X & Y because

$$G v \circ f \circ u \triangleq \varepsilon_{Y'} \circ F(G v \circ f \circ u)$$

= $(\varepsilon_{Y'} \circ F(G v)) \circ F f \circ F u$ since F is a functor
= $(v \circ \varepsilon_Y) \circ F f \circ F u$ by definition of $G v$
= $v \circ \overline{f} \circ F u$ by definition of \overline{f}

So we can take θ to be the inverse of this natural isomorphism. \Box

Dual of the **Theorem**:

 $G : \mathbb{C} \leftarrow \mathbb{D}$ has a left adjoint iff for all $X \in \mathbb{C}$ there are $FX \in \mathbb{D}$ and $\eta_X \in \mathbb{C}(X, G(FX))$ with the universal property:

for all $Y \in \mathbf{D}$ and $\underline{f} \in \mathbf{C}(X, G Y)$ there is a unique $\overline{f} \in \mathbf{D}(FX, Y)$ satisfying $G\overline{f} \circ \eta_X = f$

Dual of the **Theorem**:

 $G : \mathbb{C} \leftarrow \mathbb{D}$ has a left adjoint iff for all $X \in \mathbb{C}$ there are $FX \in \mathbb{D}$ and $\eta_X \in \mathbb{C}(X, G(FX))$ with the universal property:

for all
$$Y \in \mathbf{D}$$
 and $\underline{f} \in \mathbf{C}(X, G Y)$
there is a unique $\overline{f} \in \mathbf{D}(FX, Y)$
satisfying $G \overline{f} \circ \eta_X = f$

E.g. we can conclude that the forgetful functor $U : Mon \rightarrow Set$ has a left adjoint $F : Set \rightarrow Mon$, because of the universal property of

```
F\Sigma \triangleq (\text{List}\Sigma, @, \text{nil}) \text{ and } \eta_{\Sigma} : \Sigma \rightarrow \text{List}\Sigma
```

noted in Lecture 3.

Why are adjoint functors important/useful?

Their universal property (UP) usually embodies some useful mathematical construction

(e.g. "freely generated structures are left adjoints for forgetting-stucture")

and pins it down uniquely up to isomorphism.