STLC equations take the form $\Gamma \vdash s = t : A$ where $\Gamma \vdash s : A$ and $\Gamma \vdash t : A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M[\Gamma \vdash s : A]$ and $M[\Gamma \vdash t : A]$ are equal C-morphisms $M[\Gamma] \to M[A]$.

Qu: which equations are always satisfied in any ccc?

Ans: $\beta\eta$-equivalence…
The relation $\Gamma \vdash s =_{\beta \eta} t : A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:
STLC $\beta\eta$-Equality

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- **β-conversions**

\[
\begin{align*}
\Gamma, x : A & \vdash t : B \\
\Gamma & \vdash (\lambda x : A. t)s =_{\beta\eta} t[s/x] : B
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash s : A \\
\Gamma & \vdash t : B \\
\Gamma & \vdash \text{fst}(s, t) =_{\beta\eta} s : A
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash s : A \\
\Gamma & \vdash t : B \\
\Gamma & \vdash \text{snd}(s, t) =_{\beta\eta} t : B
\end{align*}
\]
The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- **β-conversions**
- **η-conversions**

\[
\begin{array}{ll}
\Gamma \vdash t : A \rightarrow B & x \text{ does not occur in } t \\
\hline
\Gamma \vdash t =_{\beta\eta} (\lambda x : A. t x) : A \rightarrow B
\end{array}
\]

\[
\begin{array}{ll}
\Gamma \vdash t : A \times B \\
\hline
\Gamma \vdash t =_{\beta\eta} (\text{fst } t, \text{snd } t) : A \times B
\end{array}
\]

\[
\begin{array}{ll}
\Gamma \vdash t : \text{unit} \\
\hline
\Gamma \vdash t =_{\beta\eta} () : \text{unit}
\end{array}
\]
The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- β-conversions
- η-conversions
- congruence rules

\[
\begin{align*}
\Gamma, x : A \vdash t =_{\beta\eta} t' : B \\
\Gamma \vdash \lambda x : A. t =_{\beta\eta} \lambda x : A. t' : A \rightarrow B
\end{align*}
\]
\[
\begin{align*}
\Gamma \vdash s =_{\beta\eta} s' : A \rightarrow B \\
\Gamma \vdash t =_{\beta\eta} t' : A
\end{align*}
\]
\[
\Gamma \vdash s \; t =_{\beta\eta} s' t' : B
\]

etc
STLC $\beta\eta$-Equality

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- β-conversions
- η-conversions
- congruence rules
- $=_{\beta\eta}$ is reflexive, symmetric and transitive

\[
\begin{align*}
\Gamma \vdash t : A & \quad \Gamma \vdash s =_{\beta\eta} t : A \\
\Gamma \vdash t =_{\beta\eta} t : A & \quad \Gamma \vdash t =_{\beta\eta} s : A \\
\Gamma \vdash r =_{\beta\eta} s : A & \quad \Gamma \vdash s =_{\beta\eta} t : A \\
\Gamma \vdash r =_{\beta\eta} t : A & \quad \Gamma \vdash r =_{\beta\eta} t : A
\end{align*}
\]
STLC $\beta\eta$-Equality

Soundness Theorem for semantics of STLC in a ccc. If $\Gamma \vdash s =_{\beta\eta} t : A$ is provable, then in any ccc

$$M[\Gamma \vdash s : A] = M[\Gamma \vdash t : A]$$

are equal C-morphisms $M[\Gamma] \to M[A]$.

Proof is by induction on the structure of the proof of $\Gamma \vdash s =_{\beta\eta} t : A$.

Here we just check the case of β-conversion for functions.

So suppose we have $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash s : A$. We have to see that

$$M[\Gamma \vdash (\lambda x : A. t)s : B] = M[\Gamma \vdash t[s/x] : B]$$
Suppose

\[M[\Gamma] = X \]
\[M[A] = Y \]
\[M[B] = Z \]
\[M[\Gamma, x : A \vdash t : B] = f : X \times Y \to Z \]
\[M[\Gamma \vdash s : A] = g : X \to Z \]

Then

\[M[\Gamma \vdash \lambda x : A. t : A \to B] = \text{cur } f : X \to Z^Y \]

and hence

\[M[\Gamma \vdash (\lambda x : A. t)s : B] \]
\[= \text{app } \circ \langle \text{cur } f , g \rangle \]
\[= \text{app } \circ (\text{cur } f \times \text{id}_Y) \circ \langle \text{id}_X , g \rangle \] # since \((a \times b) \circ \langle c , d \rangle = \langle a \circ c , b \circ d \rangle\)
\[= f \circ \langle \text{id}_X , g \rangle \] # by definition of \text{cur } f
\[= M[\Gamma \vdash t[s/x] : B] \] # by the Substitution Theorem

as required.
The internal language of a ccc, \mathcal{C}

- one ground type for each \mathcal{C}-object X
- for each $X \in \mathcal{C}$, one constant f^X for each \mathcal{C}-morphism $f : 1 \to X$ (“global element” of the object X)

The types and terms of STLC over this language usefully describe constructions on the objects and morphisms of \mathcal{C} using its cartesian closed structure, but in an “element-theoretic” way.

For example…
Example

In any ccc C, for any $X, Y, Z \in C$ there is an isomorphism

$$Z^{(X \times Y)} \cong (Z^Y)^X$$
Example

In any ccc \(C \), for any \(X, Y, Z \in C \) there is an isomorphism

\[Z^{(X \times Y)} \cong (Z^Y)^X \]

which in the internal language of \(C \) is described by the terms

\[\Diamond \vdash s : ((X \times Y) \to Z) \to (X \to (Y \to Z)) \]
\[\Diamond \vdash t : (X \to (Y \to Z)) \to ((X \times Y) \to Z) \]

where

\[
\begin{align*}
s & \triangleq \lambda f : (X \times Y) \to Z. \lambda x : X. \lambda y : Y. f(x, y) \\
t & \triangleq \lambda g : X \to (Y \to Z). \lambda z : X \times Y. g(fst z)(snd z)
\end{align*}
\]

and

which satisfy

\[
\begin{align*}
\Diamond, f : (X \times Y) \to Z & \vdash t(s f) =_{\beta \eta} f \\
\Diamond, g : X \to (Y \to Z) & \vdash s(t g) =_{\beta \eta} g
\end{align*}
\]
The **Soundness Theorem** has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single ccc \(F \) (the free ccc for that language) with an interpretation function \(M \) so that \(\Gamma \vdash s =_{\beta\eta} t : A \) is provable iff \(M[\Gamma \vdash s : A] = M[\Gamma \vdash t : A] \) in \(F \).
Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single ccc (the free ccc for that language) with an interpretation function M so that $\Gamma \vdash s \equiv_{\beta\eta} t : A$ is provable iff $M[\Gamma \vdash s : A] = M[\Gamma \vdash t : A]$ in F.

- **F-objects** are the STLC types over the given set of ground types
- **F-morphisms** $A \rightarrow B$ are equivalence classes of STLC terms t satisfying $\Diamond \vdash t : A \rightarrow B$ (so t is a closed term—it has no free variables) with respect to the equivalence relation equating s and t if $\Diamond \vdash s \equiv_{\beta\eta} t : A \rightarrow B$ is provable.
- identity morphism on A is the equivalence class of $\Diamond \vdash \lambda x : A. x : A \rightarrow A$.
- composition of a morphism $A \rightarrow B$ represented by $\Diamond \vdash s : A \rightarrow B$ and a morphism $B \rightarrow C$ represented by $\Diamond \vdash t : B \rightarrow C$ is represented by $\Diamond \vdash \lambda x : A. t(s x) : A \rightarrow C$.
Curry-Howard correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Type Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>↔ types</td>
</tr>
<tr>
<td>proofs</td>
<td>↔ terms</td>
</tr>
</tbody>
</table>

E.g. IPL *versus* STLC.
Curry-Howard for IPL vs STLC

Proof of $\Diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta \vdash \varphi \Rightarrow \theta$ in IPL

where $\Phi = \Diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta, \varphi$
Curry-Howard for IPL vs STLC

and a corresponding STLC term

where $\Phi = \Diamond, y : \varphi \Rightarrow \psi, z : \psi \Rightarrow \theta, x : \varphi$
Curry-Howard-Lawvere/Lambek correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Type Theory</th>
<th>Category Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>↔ types</td>
<td>↔ objects</td>
</tr>
<tr>
<td>proofs</td>
<td>↔ terms</td>
<td>↔ morphisms</td>
</tr>
</tbody>
</table>

E.g. IPL *versus* STLC *versus* CCCs
Curry-Howard-Lawvere/Lambek correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Type Theory</th>
<th>Category Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
<td>objects</td>
</tr>
<tr>
<td>proofs</td>
<td>terms</td>
<td>morphisms</td>
</tr>
</tbody>
</table>

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we first need to define the notions of functor and natural transformation in order to define the notion of equivalence of categories.