Lecture 2

Recall

A category C is specified by

- ► a set obj C whose elements are called C-objects
- ► for each $X, Y \in obj C$, a set C(X, Y) whose elements are called C-morphisms from X to Y
- ► a function assigning to each $X \in obj C$ an element $id_X \in C(X, X)$ called the identity morphism for the C-object X
- ► a function assigning to each $f \in C(X, Y)$ and $g \in C(Y, Z)$ (where $X, Y, Z \in obj C$) an element $g \circ f \in C(X, Z)$ called the composition of C-morphisms f and g and satisfying associativity and unity properties.

objects are sets *P* equipped with a pre-order _ ⊑ _ i.e. a binary relation on *P* that is reflexive: ∀x ∈ P, x ⊑ x transitive: ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

A partial order is a pre-order that is also anti-symmetric: $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$

objects are sets *P* equipped with a pre-order _ ⊑ _
 morphisms: Preord((*P*₁, ⊑₁), (*P*₂, ⊑₂)) ≜ {*f* ∈ Set(*P*₁, *P*₂) | *f* is monotone}

$$\forall x, x' \in P_1, \ x \sqsubseteq_1 x' \Rightarrow f x \sqsubseteq_2 f x'$$

- objects are sets *P* equipped with a pre-order $_$ \sqsubseteq $_$
- ► morphisms: $\operatorname{Preord}((P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2)) \triangleq$ { $f \in \operatorname{Set}(P_1, P_2) \mid f \text{ is monotone}$ }
- identities and composition: as for Set

Q: why is this well-defined?

A: because the set of monotone functions contains identity functions and is closed under composition.

- objects are sets *P* equipped with a pre-order $_$ \sqsubseteq $_$
- ► morphisms: $\operatorname{Preord}((P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2)) \triangleq$ { $f \in \operatorname{Set}(P_1, P_2) \mid f \text{ is monotone}$ }
- identities and composition: as for Set

Pre- and partial orders are relevant to the denotational semantics of programming languages (among other things).

▶ objects are monoids (M, ·, e) — set M equipped with a binary operation _ · _ : M × M → M which is associative ∀x, y, z ∈ M, x · (y · z) = (x · y) · z has e as its unit ∀x ∈ M, e · x = x = x · e

CS-relevant example of a monoid: (List Σ , @, nil) where

List Σ = set of finite lists of elements of set Σ @ = list concatenation nil @ $\ell = \ell$ ($a :: \ell$) @ $\ell' = a :: (\ell @ \ell')$ nil = empty list

> objects are monoids (M, ·, e)
 > morphisms: Mon((M₁, ·₁, e₁), (M₂, ·₂, e₂)) ≜ {f ∈ Set(M₁, M₂) | f e₁ = e₂ ∧ ∀x, y ∈ M₁, f(x ·₁ y) = (f x) ·₂ (f y)}

It's common to denote a monoid (M, \cdot, e) just by its underlying set M, leaving $_\cdot_$ and e implicit (hence the same notation gets used for different instances of monoid operations).

- objects are monoids (M, \cdot, e)
- ► morphisms: $Mon((M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2)) \triangleq$ { $f \in Set(M_1, M_2) | f e_1 = e_2 \land$ $\forall x, y \in M_1, f(x \cdot_1 y) = (f x) \cdot_2 (f y)$ }
- identities and composition: as for Set

Q: why is this well-defined?

A: because the set of functions that are monoid morphisms contains identity functions and is closed under composition.

- objects are monoids (M, \cdot, e)
- ► morphisms: $Mon((M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2)) \triangleq$ { $f \in Set(M_1, M_2) | f e_1 = e_2 \land$ $\forall x, y \in M_1, f(x \cdot_1 y) = (f x) \cdot_2 (f y)$ }
- identities and composition: as for Set

Monoids are relevant to automata theory (among other things).

Given a pre-ordered set (P, \sqsubseteq) , we get a category \mathbb{C}_P by taking

- objects obj $\mathbf{C}_P = P$
- ► morphisms $C_P(x, y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$

(where 1 is some fixed one-element set and 0 is the empty set)

Given a pre-ordered set (P, \sqsubseteq) , we get a category \mathbb{C}_P by taking

• objects obj $\mathbf{C}_P = P$

• morphisms
$$C_P(x, y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$$

identity morphisms and composition are uniquely determined (why?)

Given a pre-ordered set (P, \sqsubseteq) , we get a category \mathbb{C}_P by taking

- objects obj $\mathbf{C}_P = P$
- ► morphisms $C_P(x, y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

E.g. when
$$(P, \sqsubseteq)$$
 has just one element (
 $C_P = \begin{bmatrix} 0 & id_0 \\ one object, one morphism \end{bmatrix}$

Given a pre-ordered set (P, \sqsubseteq) , we get a category \mathbb{C}_P by taking

- objects obj $\mathbf{C}_P = P$
- ► morphisms $C_P(x, y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

E.g. when
$$(P, \sqsubseteq)$$
 has just two elements $0 \sqsubseteq 1$
 $C_P = \begin{bmatrix} id_0 & 0 \longrightarrow 1 & id_1 \\ two objects, one non-identity morphism \end{bmatrix}$

Given a pre-ordered set (P, \sqsubseteq) , we get a category \mathbb{C}_P by taking

- objects obj $\mathbf{C}_P = P$
- ► morphisms $C_P(x, y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

Example of a finite category that does not arise from a pre-ordered set:

two objects, two non-identity morphisms

 $id_0 \rightarrow 0 \longrightarrow 1 \quad id_1$

Example: each monoid determines a category

Given a monoid (M, \cdot, e) , we get a category C_M by taking

- objects: obj $C_M = 1 = \{0\}$ (one-element set)
- morphisms: $C_M(0,0) = M$
- identity morphism: $id_0 = e \in M = C_M(0, 0)$
- ► composition of $f \in C_M(0,0)$ and $g \in C_M(0,0)$ is $g \cdot f \in M = C_M(0,0)$

Definition of isomorphism

Let C be a category. A C-morphism $f : X \rightarrow Y$ is an isomorphism if there is some $g : Y \rightarrow X$ for which

is a commutative diagram.

Definition of isomorphism

Let **C** be a category. A **C**-morphism $f : X \to Y$ is an **isomorphism** if there is some $g : Y \to X$ with $g \circ f = id_X$ and $f \circ g = id_Y$.

- Such a *g* is uniquely determined by f (why?) and we write f^{-1} for it.
- ► Given $X, Y \in \mathbb{C}$, if such an f exists, we say the objects X and Y are isomorphic in \mathbb{C} and write $X \cong Y$

(There may be many different f that witness the fact that X and Y are isomorphic.)

Theorem. A function $f \in Set(X, Y)$ is an isomorphism in the category Set iff f is a bijection, that is

• injective: $\forall x, x' \in X, f x = f x' \Rightarrow x = x'$

► surjective: $\forall y \in Y, \exists x \in X, f x = y$

Proof...

Theorem. A function $f \in Set(X, Y)$ is an isomorphism in the category Set iff f is a bijection, that is

- injective: $\forall x, x' \in X, f x = f x' \Rightarrow x = x'$
- ► surjective: $\forall y \in Y, \exists x \in X, f x = y$

Proof...

Theorem. A monoid morphism $f \in Mon((M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2))$ is an isomorphism in the category Mon iff $f \in Set(M_1, M_2)$ is a bijection.

Proof...

Define **Poset** to be the category whose objects are **posets** = pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category **Preord** of pre-ordered sets. Define **Poset** to be the category whose objects are **posets** = pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category **Preord** of pre-ordered sets.

Theorem. A monotone function $f \in \text{Poset}((P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2))$ is an isomorphism in the category **Poset** iff $f \in \text{Set}(P_1, P_2)$ is a surjective function satisfying

▶ reflective: $\forall x, x' \in P_1, f x \sqsubseteq_2 f x' \Rightarrow x \sqsubseteq_1 x'$

Proof...

Define **Poset** to be the category whose objects are **posets** = pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category **Preord** of pre-ordered sets.

Theorem. A monotone function $f \in \text{Poset}((P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2))$ is an isomorphism in the category **Poset** iff $f \in \text{Set}(P_1, P_2)$ is a surjective function satisfying

• reflective:
$$\forall x, x' \in P_1, f x \sqsubseteq_2 f x' \Rightarrow x \sqsubseteq_1 x'$$

Proof...

(Why does this characterisation not work for **Preord**?)