
Example sheet 4
Graphs and path finding

Algorithms—DJW∗—2020/2021

Questions labelled ◦ are warmup questions. Questions labelled ∗ are more challenging, and optional.

Question 1◦. Read the definitions of directed acyclic graph and tree from lecture notes. Draw an example of each
of the following, or explain why no example exists:
(i) A directed acyclic graph with 8 vertices and 10 edges
(ii) An undirected tree with 8 vertices and 10 edges
(iii) A graph without cycles that is not a tree

Question 2◦. Give pseudocode for a function dfs_recurse_path(𝑔, 𝑠, 𝑡) based on dfs_recurse, that returns
a path from 𝑠 to 𝑡.

Question 3. Modify your function from question 2 so that it does not visit any further vertices once it has reached
the destination vertex 𝑡.

Question 4. Do dfs and dfs_recurse (as given in lecture notes) always visit vertices in the same order? Either
prove they do, or give an example of a graph where they do not. You may assume that there is an ordering on
vertices, and that 𝑣.neighbours returns a sorted list of 𝑣’s neighbouring vertices.

If they do not, then modify dfs so they do. Give pseudocode.

Question 5. Consider a directed graph in which every vertex 𝑣 is labelled with a real number 𝑥𝑣 . For each vertex
𝑣, define 𝑚𝑣 to be the minimum value of 𝑥𝑢 among all vertices 𝑢 such that either 𝑢 = 𝑣 or 𝑢 is reachable via some
path from 𝑣. Give an 𝑂 (𝐸 +𝑉 log𝑉)-time algorithm that computes 𝑚𝑣 for all vertices 𝑣.

[Extra challenge, going beyond what’s taught in this course: give an 𝑂 (𝑉 + 𝐸) algorithm.]

Question 6. Modify bfs_path(𝑔, 𝑠, 𝑡) to find all shortest paths from 𝑠 to 𝑡.

Question 7. The breadth-first search algorithm from lecture notes uses 𝑂 (1) storage within each vertex object
(to store the seen flag), plus extra memory for toexplore. What is the worst case memory requirement of
toexplore? Give your answer using Ω notation, in terms of 𝑉 and 𝐸 . Modify the algorithm to use 𝑂 (1) storage
within each vertex object, plus 𝑂 (1) extra memory.

Question 8 (FS)◦. In a directed graph with edge weights, give a formal proof of the triangle inequality

𝑑 (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑤) + 𝑐(𝑤 → 𝑣) for all vertices 𝑢, 𝑣, 𝑤 with 𝑤 → 𝑣

where 𝑑 (𝑢, 𝑣) is the minimum weight of all paths from 𝑢 to 𝑣 (or ∞ if there are no such paths) and 𝑐(𝑤 → 𝑣) is the
weight of edge 𝑤 → 𝑣. Make sure your proof covers the cases where no path exists.

Question 9. There is a missing step in the proof of Dijkstra’s algorithm, as given in lecture notes. The proof looks
at the state of program execution at the point in time at which some vertex 𝑣 fails the assertion on line 9. Call this
time 𝑡. It uses the equation

𝑢𝑖−1.distance = distance(𝑠 to 𝑢𝑖−1),
and justifies it by saying “the assertion on line 9 didn’t fail when 𝑢𝑖−1 was popped.” Let 𝑡 ′ be the time when 𝑢𝑖−1
was popped, and explain carefully why 𝑢𝑖−1.distance cannot change between 𝑡 ′ and 𝑡.

∗Questions labelled FS are from Prof Stajano. Questions labelled CLRS are from Introduction to Algorithms, 3rd ed. by Cormen, Leiserson,
Rivest and Stein.
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Question 10. Suppose we have implemented Dijkstra’s algorithm using a priority queue for which push and
decreaskey have running time Θ(1), and popmin has running time Θ(log 𝑛) where 𝑛 is the number of items in
the queue. Construct a sequence of graphs indexed by 𝑘 , where the 𝑘th graph has |𝑉 | = 𝑘 and |𝐸 | = Θ(𝑘𝛼), such
that Dijkstra’s algorithm has running time Ω(𝑘𝛼 + 𝑘 log 𝑘). Here 𝛼 is a constant, 1 ≤ 𝛼 ≤ 2.

Question 11 (CLRS-24.3-4). A contractor has written a program that she claims solves the shortest path problem,
on directed graphs with edge weights ≥ 0. The program produces 𝑣.distance and 𝑣.come_from for every vertex
𝑣 in a graph, reporting distances and paths from a given start vertex 𝑠. Give a 𝑂 (𝑉 + 𝐸)-time algorithm to test
whether or not the output of the contractor’s program is correct.
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As a test of your algorithm, what will its output be for the graph above, when the contractor’s program produces
s.come_from=None, a.come_from=b, b.come_from=a, s.distance=0, a.distance=1, b.distance=1?

Question 12. We are given a directed graph where each edge is labelled with a weight, and where the vertices are
numbered 1, . . . , 𝑛. Assume it contains no negative weight cycles. Define 𝐹𝑖 𝑗 (𝑘) to be the minimum weight path
from 𝑖 to 𝑗 , such that every intermediate vertex is in the set {1, . . . , 𝑘}. Give a dynamic programming equation for
𝐹𝑖 𝑗 (𝑘), and a suitable definition for 𝐹𝑖 𝑗 (0).
Question 13◦. By hand, run both Dijkstra’s algorithm and the Bellman-Ford algorithm on each of the graphs
below, starting from the shaded vertex. The labels indicate edge costs, and one is negative. Does Dijkstra’s
algorithm correctly compute minimum weights?

[Run dijkstra as described in lectures, which loops until toexplore is empty. Some textbooks use different
versions of Dijkstra’s algorithm, that terminate once a destination vertex has been popped, or that don’t allow
popped vertices to re-enter toexplore.]
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Question 14. In the course of running the Bellman-Ford algorithm, is the following assertion true? “Pick some
vertex 𝑣, and consider the first time at which the algorithm reaches line 7 with 𝑣.minweight correct i.e. equal to the
true minimum weight from the start vertex to 𝑣. After one subsequent pass of relaxing all the edges, 𝑢.minweight
is correct for all 𝑢 ∈ neighbours(𝑣).”

If it is true, prove it. If not, provide a counterexample.

Question 15. Consider running Dijkstra’s algorithm on a graph which may have negative edge weights, but which
has no negative-weight cycle. Assuming it terminates, prove that the minweights it computes are correct. [Hint.
Use a similar argument to the Bellman-Ford proof.]

Question 16 (CLRS-25.3-4)◦. An engineer friend tells you there is a simpler way to reweight edges than the
method used in Johnson’s algorithm. Let 𝑤∗ be the minimum weight of all edges in the graph, and just define
𝑤′(𝑢 → 𝑣) = 𝑤(𝑢 → 𝑣) − 𝑤∗ for all edges 𝑢 → 𝑣. What is wrong with your friend’s idea?

Question 17*. Consider running Dijkstra’s algorithm as in question 15. Show that its asymptotic worst-case
running time is worse than that of Bellman-Ford. [You should pick some 𝛼 ∈ [1, 2], and construct a sequence of
graphs as in question 10, and show that the running time on your graphs is asymptotically larger than 𝑉𝐸 = 𝑘1+𝛼.
There is in fact a construction in which the running time grows exponentially in 𝑘 .]

Question 18*. Consider a graph without edge weights, and write 𝑑 (𝑢, 𝑣) for the length of the shortest path from
𝑢 to 𝑣. The diameter of the graph is defined to be max𝑢,𝑣∈𝑉 𝑑 (𝑢, 𝑣). Give an efficient algorithm to compute the
diameter of an undirected tree, and analyse its running time. [Hint. One way to solve this is by using breadth-first
search, twice.]

Question 19*. The Bellman-Ford code given in lecture notes will report “Negative cycle detected” if there is
a negative-weight cycle reachable from the start vertex. Modify the code so that, in such cases, it returns a
negative-weight cycle, rather than just reporting that one exists.
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