Advanced Operating Systems:
Lab 3 -TCP

Lecturelet 3
Dr Robert Watson
2020-2021

Lab 3 objectives

* Further develop tracing, analysis, presentation skills

* Explore the TCP protocol and implementation, tracing
and analysing internal state and wire-level behaviours

* Experiment with the interactions between TCP and
variable network latency; explore:
e TCP state-machine behaviour and variation (Part Il only)
e TCP congestion control behaviour (L41 only)

* You are (very) welcome to investigate the other
assignment, but you will not receive marks for it

e Gather and analyse data for your third lab submission

New documents

* Advanced Operating Systems: Lab 3 — TCP
* Part Il - Advanced Operating Systems: Lab 3 —TCP
* L41 - Advanced Operating Systems: Lab 3 — TCP

* Important: The two assignments are substantially
different. Please make sure you use the right

assignment!

Lecture 6: The Transmission Control Protocol (TCP)

V. Cerf, K. Dalal, and C.
Sunshine, Transmission
Control Protocol (version 1),
INWG General Note #72,
December 1974.

* In practice: J. Postel, Ed.,
Transmission Control Protocol:
Protocol Specification, RFC
793, September, 1981.

Lecture 6: TCP principles and properties

Node A

CLOSED

SYN SENT

FIN WAIT-1

FIN WAIT-2

TIME WAIT

CLOSED

3-way
handshake

STeaoy—ACK —

state

FIN/ACK —
<« ACK -

<«—— FIN/ACK ——
=
ACK —

2x half
Y close

* Assumptions: Network may delay,
(reorder), drop, corrupt IP packets

 TCP implements reliable, ordered,
CLOSED stream transport protocol over IP

* Three-way handshake:
SYN / SYN-ACK / ACK (mostly!)

* Steady state
e Sequence numbers ACK’d

* Round-Trip Time (RTT) measured to
time out loss

e Data retransmitted on loss

* Flow control via advertised window
size in ACKs

* Congestion control (‘fairness’)
detects congestion via loss
— (and, recently, via delay: BBR)

* NB: “Half close” allows
communications in one direction to
end while the other continues

Node B

SYN RCVD

CLOSED

Advanced Operating Systems - Lab 3 - TCP

TCP in the IPC benchmark

root@rpid-000:/data/ipc # ./ipc-benchmark
ipc-benchmark [-Bgjgsv] [-b buffersize] [-i pipellocall|tcp] [-n iterations]
[-p tcp port] [-P arch|dcache|instr|tlbmem] [-t totalsize] mode

Modes (pick one - default lthread):

lthread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:

-B Run in bare mode: no preparatory activities

-g Enable getrusage(2) collection

-i pipe|local]|tcp Select pipe, local sockets, or TCP (default: pipe)
=7 Output as JSON

-p tcp_port Set TCP port number (default: 10141)

-P arch|dcache|instr|tlbmem Enable hardware performance counters

-q Just run the benchmark, don't print stuff out

-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description

-b buffersize Specify the buffer size (default: 131072)

-n iterations Specify the number of times to run (default: 1)

-t totalsize Specify the total I/0 size (default: 16777216)

* -1 tcp Set IPC type to TCP
e —p 10141 Set TCP port number

Loopback networking, IPFW, DUMMYNET

* Loopback network interface
e Synthetic local network interface: packets “loop back” when sent
* Interface name 00
e Assigned IPv4 address 127.0.0.1
e Set the MTU to 1500 bytes

* |IPFW — IP firewall by Rizzo, et al.

 Numbered rules classify packets and perform actions
e Actions include accept, reject, and inject into DUMMYNET
e Set up IPFW to match port 10141 and inject into DUMMYNET

* DUMMYNET - Link simulation tool by Rizzo, et al.

* Impose simulated network conditions (e.g., latency) on “pipes’
e Configure DUMMYNET pipes as required for the assignment

)

Some TCP-relevant DTrace probes

* Described in more detail in the lab assignment:

fbt:
fbt:

fbt:
fbt:

:syncache add:entry

:syncache expand:entry

:tcp_do segment:entry

:tcp_state change:entry

TCP segment installs new SYN-cache entry

TCP segment converts SYN-cache entry to
full connection

TCP segment received post-SYN cache

TCP state transition

* We are using implementation-specific probes (FBT)
rather than portable TCP provider probes in order to:

 avoid the 5-argument limit to FreeBSD/arm64 DTrace; and
e provide easier access to internal data structures

* Do not limit yourself to only these probes!

Lecture 6: Data structures — sockets, control blocks

TCP Protocol
Control Blocks

Socket and Internet Protocol
Socket Buffers Control Blocks
—>

tcpcb

inp_ppcb
List/hash entries
IP/port 4-tuple
IP options
Flow/RSS state

Protocol

Description
>

inp->inp_flags has flag INP_TIMEWAIT set when

inp_ppcb points at a tcptw rather than a tcpcb

tcptw

Part IlI: The TCP state machine

How does the TCP implementation state machine differ
from the TCP protocol specification? How does latency
affect transition through the state machine?

* Plot an effective (measured) TCP state-transition
diagram for both directions of a flow

* Label the state-transition diagram with causes — TCP
headers, system calls, timer, etc.

 Compare the diagram with RFC 793

 What observations can we make about state-machine
transitions as latency increases?

* Describe any apparent simulation or probe effects

Part Il: tcpcb sender-side data-structure fields

* In this lab, two parties have tcpcbs as we run:
* The ‘client’ is receiving data Instrument state
* The ‘server’ is sending data transitions in both

* Described in more detail in the lab assignment:
Current TCP state in a tcpcb

* Note that connection setup and teardown, there may
not be a tcpcb present

L41: TCP congestion control

* This lab explores the behavior the TCP implementation
and the bandwidth it achieves as latency is varied

 How does TCP congestion control affect bandwidth at
different latencies?

* What are the impacts of specific implementation choices
and policies, such as socket-buffer auto-sizing

* As we are working over the loopback interface, we can
instrument both ends of the TCP connection
* Track packet-level headers on transmit and receive

* Also track TCP-internal parameters such as whether TCP is
in “slow start” or the steady state

* And, of course, we care about the arising probe effect

L41: tcpcb sender-side data-structure fields

* In this lab, there are two parties with tcpcbs as we run:

* The ‘client’ is receiving data
* The ‘server’ is sending data € Instrument CC send state here

* For the purposes of classical TCP congestion control, only
the sender retains congestion-control state

* Described in more detail in the lab assignment:
Last received advertised flow-control window.

Current calculated congestion-control window.
Current slow-start threshold:

if (snd cwnd <=snd ssthresh), then TCP is in slowstart;
otherwise, it is in congéstion avoidance

* Instrument tcp do segment using DTrace to inspect
TCP header fieldsand tcpcb state for only the server

* Inspect port number to decide which way the packet is going

L41: Experimental questions for the |lab report

1. How do latency and achieved TCP bandwidth relate?

* Plot DUMMYNET-imposed latency on the X axis and
effective bandwidth on the Y axis, considering both the case

where the socket-buffer size is set versus allowing it to be
auto-resized.

2. How does socket-buffer strategy interact with

latency?

* Plot a time-bandwidth graph comparing the effects of
setting the socket-buffer size versus allowing it to be auto-
resized by the stack. Stack additional graphs showing the
sender last received advertised window and congestion

window on the same X axis.
3. Be sure to describe any simulation or probe effects.

Get in touch if you need a hand

* You can reach me and the course demonstrators on
Slack — we try to reply quickly

* We will arrange 1:1 supervision sessions at various
points during the assignment period
* Read the assignment, experiment a bit first

* Talk to us about the strategies you are pursuing — or if you
aren’t sure what strategy to pursue

e Ask us if you have questions about what you discover

* Or drop me email directly

