Advanced Operating Systems:
Lab 2- IPC

Lecturelet 2
Dr Robert Watson
2020-2021

Lab 2 objectives

* Consolidate and extend skills developed in Lab 1

* Continue to gain experience tracing user-kernel
interactions via system calls and traps

* Explore the performance of varying IPC models and
buffer sizes

e Use DTrace and hardware performance counters
(HWPMC) to analyse these properties

* Generate data to complete the second lab assignment

New documents

* Advanced Operating System: Hardware Performance
Counters (HWPMC)

 Introduction to performance counters in this lab
* You may wish to refer to the ARMv8-A and A72 manuals (or not)

* Advanced Operating Systems: Lab 2 — IPC
* Part Il - Advanced Operating Systems: Lab 2 — IPC
* [41 - Advanced Operating Systems: Lab 2 — IPC

. ImFortant: The two assignments are substantially more
different than they were in Lab 1

* However, L41 students might find the Part Il assignment
useful to think about potential analysis strategies

Rough framing

* Inter-Process Communication (IPC) is an essential
component to using the Process Model

* |solated boxes that can’t talk to anyone aren’t very useful

* There are many design dimensions to an IPC primitive
relating to application semantics and performance
* Message passing vs shared memory?
e Stream vs datagram?
e Synchronous vs. asynchronous?
* Portability to other OSes, communication semantics?

* You will compare two such primitives to understand its
performance behaviour

* Use DTrace and hardware performance counters to explain
.. Surprising? .. performance artifacts

The benchmark

root@rpid4-000:/data # ipc/ipc-benchmark
ipc-benchmark [-Bgjgsv] [-b buffersize] [-1 pipe|localltcp] [-n iterations]
[-p tcp port] [-P arch|dcache|instr|tlbmem] [-t totalsize] mode

Modes (pick one - default lthread):

lthread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:

-B Run in bare mode: no preparatory activities

-g Enable getrusage (2) collection

-i pipe|local|tcp Select pipe, local sockets, or TCP (default: pipe)
-J Output as JSON

-p tcp port Set TCP port number (default: 10141)

-P arcﬂldcachelinstrltlbmem Enable hardware performance counters

-q Just run the benchmark, don't print stuff out

-s Set send/receive socket-buffer sizes to buffersize
-V Provide a verbose benchmark description

-b buffersize Specify the buffer size (default: 131072)

-n iterations Specify the number of times to run (default: 1)

-t totalsize Specify the total I/O size (default: 16777216)

* Simple, bespoke IPC benchmark: pipes and sockets
 Statically linked

* Adjust user and kernel buffer sizes
Advanced Operating Systems - Lab 2 - IPC

The benchmark (2)

e Use only one of its operational modes:
2thread

* Adjust IPC parameters:

-b
-1
-1
-P
—S

e Qutput flags:
-9

=]

-V

size
pilpe
local
mode

IPC between two threads in one process

Set user IPC buffer size

Use pipe() IPC (L41 only)
Use socketpair() IPC

Configure HWPMC

Set socket-buffer size (Part Il only)

Display getrusage(1) statistics
Output as JSON
Verbose output (more configuration detail)

Advanced Operating Systems - Lab 2 - IPC

Hardware performance counters (1/2)

* Seems simple enough:
* Source code compiles to instructions
* Instructions are executed by the processor

* But some instructions take longer than others:
* Register-register operations generally single-cycle (or less)

* Multiply and divide may depend on the specific numeric
values

* Floating point may take quite a while

* Loads/stores cost different amounts depending on
TLB/cache use

Hardware performance counters (2/2)

e Optimisation is therefore not just about reducing
instruction count

e Optimisation must take into account micro-architectural
effects

* TLB/cache effects tricky as they vary with memory footprint
* How can we tell when the cache overflows?

* Hardware performance counters let us directly
investigate architectural and micro-architectural
events

* #instructions, #memory accesses, #cache misses, DRAM
traffic...

Performance counter modes

* We have adapted the benchmark to use libpmc
* We use only counting mode, not sampling mode

* The A-72 supports up to six counters enabled at a time
* We always enable instruction and cycle counting
* The other 4 are used for specific groups of counters

arch Architectural (ISA-level) statistics (some speculative™®)
dcache L1-D and L2 cache statistics

instr L1-I and branch-prediction statistics

tlbmem D-TLB / I-TLB and memory access/bus access statistics

* You will need to run the benchmark for each counter set
 ...Butitis reasonable to limit to one iteration each

* The probe effect affects hardware counters, too!

*Non-speculative counters can be quite expensive in the microarchitecture for superscalar
processors, so Arm has chosen not to provide architectural counters

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-000:/data # ipc/ipc-benchmark -g -i local -j -P arch -v 2thread

{

"host_configuration": {
"hw.machine": "arm64",
"hw.model": "ARM Cortex-A72 rOp3",
"hw.ncpu": 4,

"hw.physmem": 8419667968,

"hw.pagesizes": {
"pagesize": 4096,
"pagesize": 2097152,
"pagesize": 1073741824

}’

"hw.cpufreqg.arm_freq": 600000000

}’

"benchmark_configuration": {
"buffersize": 131072,

"totalsize": 16777216,
"msgcount™: 128,
"mode": "2thread",
"Ipctype": "local",

"pmctype": "arch",
"iterations": 1

b

System configuration

Benchmark configuration

"benchmark_samples": |
{

"bandwidth": 4944.31,
"time": "3.313705598",
"INST_RETIRED": 1187796464,
"CPU_CYCLES": 1448312762,
"LD_SPEC": 414032426,
"ST_SPEC": 228205020,
"EXC_RETURN": 1484103,
"BR_RETURN_SPEC": 24429746,
"CYCLES_PER_INSTRUCTION": 1.219327,
"utime": "0.007958",
"stime": "3.305383",
"msgsnd": 128,
"msgrcv': 2048

Performance / wallclock time

Hardware performance counters
(and derived metrics)

Sampled execution time in userlevel/kernel

Getrusage(2) statistics

Sketch of ARM Cortex A-8 memory hierarchy

(This is not the CPU you are using, just an illustration!)

e Architectural refers to an ISA-level view of execution
 Micro-architectural refers to behaviours below the ISA

Instruction Instruction Instruction Load/
Fetch Decode execute Store
ITLB DTLB
L1 Instruction Cache L1 Data Cache

! H

L2 shared cache ‘

e

This is a very, very rough sketch indeeddnced Operating Systems - Lab 2 - IPC

Reminder: High-density Cortex A-72 slide

(Some of this information will be useful only for later labs)

The L1 memory system consists of separate instruction and data caches.

Per-Core:

CI r m The L1 instruction memory system has the following features:

C O RT EX®'A7 2 e 48KB 3-way set-associative instruction cache. L 1 I 'Ca C h e : 48 K

e Fixed line length of 64 bytes.

e Parity protection per 16 bits.

Arm CoreSight™ multicore debug and trace

e [nstruction cache that behaves as Physically-indexed and physically-tagged (PIPT).
e Least Recently Used (LRU) cache replacement policy.

Corel
e MBIST support.

NEON™
Armv8-A SIMD engine The L1 data memory system has the following features: P C
32b/64b CPU . = .
Flpatlng e 32KB 2-way set-associative data cache. e r O re .
point unit

o Fixed line length of 64 bytes. L1 D-Cache: 32K

48kB I-cache with parity 32kB D-cache w/ECC e ECC protection per 32 bits.

e Datacache thatis PIPT.

e Out-of-order, speculative, non-blocking load requests to Normal memory and non-speculative, non-blocking
load requests to Device memory.

e | RU cache replacement policy.

ACP SCU L2 cache w/ECC (512kB-4MB) e Hardware prefetcher that generates prefetches targeting both the L1 data cache and the L2 cache.
e MBIST support.
128-bit AMBA®4 ACE or AMBA 5 CHI coherent bus interface The features of the L2 memory system include: Sha red .
e Configurable L2 cache size of 512KB, 1MB, 2MB and 4MB.
Branch e Fixed line length of 64 bytes. L2 Ca C h SH 1 M

e Physically indexed and tagged cache.
e 16-way set-associative cache structure. P C !
) The MMU has the following features: er-core:

Fetch > Rename, >

Issue

FP/ASIMD 0 | e 48-entry fully-associative L1 instruction TLB. M M U

Dispatch —DI
_.| PASIVD 1 | e 32-entry fully-associative L1 data TLB for data load and store pipeline| I-TLB: 48, D-TLB: 32,
e 4-way set-associative 1024-entry L2 TLB in each processor. L2-TLB: 1024
Load
_.| | e Intermediate table walk caches.
» Store e The TLB entries contain a global indicator or an Address Space Identifier (ASID) to permit
context switches without TLB flushes.
IN ORDER OUT OF ORDER

Advanced Operati rTgeSVSEem’nas cotaibhaYirtd® @achine Identifier (VMID) to permit virtual machine
* Our benchmarks use only the first core to simplify analysis switches without TLB flushes.

A few concluding thoughts

* You are now (fairly) familiar with:
* DTrace as an instrumentation tool
e JupyterlLab as a data collection, analysis, presentation tool

* You will now pick up new skills:

* Further DTrace experience — e.g., perhaps the system-call
provider, scheduling provider, etc.

* Performance counter experience (can be hard to interpret...)

 When analysing data:

 Start with short runs (even —n 1) to allow quick iteration
Plot data to understand its behaviour
Pay attention to inflection points, regions of commonality
Mark up graphs with key hardware, software thresholds
Remember that the cache/TLB footprint of a workload will
(almost certainly) not be the benchmark buffer size

* We are now doing comparative analysis...

