
Advanced Operating Systems:
Lab 2- IPC

Lecturelet 2
Dr Robert Watson

2020-2021

Lab 2 objectives

• Consolidate and extend skills developed in Lab 1
• Continue to gain experience tracing user-kernel

interactions via system calls and traps
• Explore the performance of varying IPC models and

buffer sizes
• Use DTrace and hardware performance counters

(HWPMC) to analyse these properties
• Generate data to complete the second lab assignment

Advanced Operating Systems - Lab 2 - IPC

New documents
• Advanced Operating System: Hardware Performance

Counters (HWPMC)
• Introduction to performance counters in this lab
• You may wish to refer to the ARMv8-A and A72 manuals (or not)

• Advanced Operating Systems: Lab 2 – IPC
• Part II - Advanced Operating Systems: Lab 2 – IPC
• L41 - Advanced Operating Systems: Lab 2 – IPC

• Important: The two assignments are substantially more
different than they were in Lab 1
• However, L41 students might find the Part II assignment

useful to think about potential analysis strategies

Advanced Operating Systems - Lab 2 - IPC

Rough framing

• Inter-Process Communication (IPC) is an essential
component to using the Process Model
• Isolated boxes that can’t talk to anyone aren’t very useful

• There are many design dimensions to an IPC primitive
relating to application semantics and performance
• Message passing vs shared memory?
• Stream vs datagram?
• Synchronous vs. asynchronous?
• Portability to other OSes, communication semantics?

• You will compare two such primitives to understand its
performance behaviour
• Use DTrace and hardware performance counters to explain

.. Surprising? .. performance artifacts

Advanced Operating Systems - Lab 2 - IPC

The benchmark

• Simple, bespoke IPC benchmark: pipes and sockets
• Statically linked
• Adjust user and kernel buffer sizes

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-000:/data # ipc/ipc-benchmark
ipc-benchmark [-Bgjqsv] [-b buffersize] [-i pipe|local|tcp] [-n iterations]

[-p tcp_port] [-P arch|dcache|instr|tlbmem] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:
-B Run in bare mode: no preparatory activities
-g Enable getrusage(2) collection
-i pipe|local|tcp Select pipe, local sockets, or TCP (default: pipe)
-j Output as JSON
-p tcp_port Set TCP port number (default: 10141)
-P arch|dcache|instr|tlbmem Enable hardware performance counters
-q Just run the benchmark, don't print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify the buffer size (default: 131072)
-n iterations Specify the number of times to run (default: 1)
-t totalsize Specify the total I/O size (default: 16777216)

The benchmark (2)

• Use only one of its operational modes:
2thread IPC between two threads in one process

• Adjust IPC parameters:
-b size Set user IPC buffer size
-i pipe Use pipe() IPC (L41 only)
-i local Use socketpair() IPC
-P mode Configure HWPMC
-s Set socket-buffer size (Part II only)

• Output flags:
-g Display getrusage(1) statistics
-j Output as JSON
-v Verbose output (more configuration detail)

Advanced Operating Systems - Lab 2 - IPC

Hardware performance counters (1/2)

• Seems simple enough:
• Source code compiles to instructions
• Instructions are executed by the processor

• But some instructions take longer than others:
• Register-register operations generally single-cycle (or less)
• Multiply and divide may depend on the specific numeric

values
• Floating point may take quite a while
• Loads/stores cost different amounts depending on

TLB/cache use

Advanced Operating Systems - Lab 2 - IPC

Hardware performance counters (2/2)

• Optimisation is therefore not just about reducing
instruction count
• Optimisation must take into account micro-architectural

effects
• TLB/cache effects tricky as they vary with memory footprint
• How can we tell when the cache overflows?

• Hardware performance counters let us directly
investigate architectural and micro-architectural
events
• #instructions, #memory accesses, #cache misses, DRAM

traffic...

Advanced Operating Systems - Lab 2 - IPC

Performance counter modes
• We have adapted the benchmark to use libpmc
• We use only counting mode, not sampling mode
• The A-72 supports up to six counters enabled at a time

• We always enable instruction and cycle counting
• The other 4 are used for specific groups of counters

• You will need to run the benchmark for each counter set
• … But it is reasonable to limit to one iteration each

• The probe effect affects hardware counters, too!

Advanced Operating Systems - Lab 2 - IPC

-P mode Category

arch Architectural (ISA-level) statistics (some speculative*)

dcache L1-D and L2 cache statistics

instr L1-I and branch-prediction statistics

tlbmem D-TLB / I-TLB and memory access/bus access statistics

*Non-speculative counters can be quite expensive in the microarchitecture for superscalar
processors, so Arm has chosen not to provide architectural counters

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-000:/data # ipc/ipc-benchmark -g -i local -j -P arch -v 2thread
{

"host_configuration": {
"hw.machine": "arm64",
"hw.model": "ARM Cortex-A72 r0p3",
"hw.ncpu": 4,
"hw.physmem": 8419667968,
"hw.pagesizes": {

"pagesize": 4096,
"pagesize": 2097152,
"pagesize": 1073741824

},
"hw.cpufreq.arm_freq": 600000000

},
"benchmark_configuration": {

"buffersize": 131072,
"totalsize": 16777216,
"msgcount": 128,
"mode": "2thread",
"ipctype": "local",
"pmctype": "arch",
"iterations": 1

},

System configuration

Benchmark configuration

Advanced Operating Systems - Lab 2 - IPC

"benchmark_samples": [
{

"bandwidth": 4944.31,
"time": "3.313705598",
"INST_RETIRED": 1187796464,
"CPU_CYCLES": 1448312762,
"LD_SPEC": 414032426,
"ST_SPEC": 228205020,
"EXC_RETURN": 1484103,
"BR_RETURN_SPEC": 24429746,
"CYCLES_PER_INSTRUCTION": 1.219327,
"utime": "0.007958",
"stime": "3.305383",
"msgsnd": 128,
"msgrcv": 2048

}
]

}

Hardware performance counters
(and derived metrics)

Performance / wallclock time

Sampled execution time in userlevel/kernel

Getrusage(2) statistics

Sketch of ARM Cortex A-8 memory hierarchy
(This is not the CPU you are using, just an illustration!)

• Architectural refers to an ISA-level view of execution
• Micro-architectural refers to behaviours below the ISA

Advanced Operating Systems - Lab 2 - IPCThis is a very, very rough sketch indeed!

Reminder: High-density Cortex A-72 slide
(Some of this information will be useful only for later labs)

Per-Core:
L1 D-Cache: 32K

Per-Core:
L1 I-Cache: 48K

Per-Core:
MMU

I-TLB: 48, D-TLB: 32,
L2-TLB: 1024

Shared:
L2 Cache: 1M

* Our benchmarks use only the first core to simplify analysis
Advanced Operating Systems - Lab 2 - IPC

A few concluding thoughts
• You are now (fairly) familiar with:

• DTrace as an instrumentation tool
• JupyterLab as a data collection, analysis, presentation tool

• You will now pick up new skills:
• Further DTrace experience – e.g., perhaps the system-call

provider, scheduling provider, etc.
• Performance counter experience (can be hard to interpret…)

• When analysing data:
• Start with short runs (even –n 1) to allow quick iteration
• Plot data to understand its behaviour
• Pay attention to inflection points, regions of commonality
• Mark up graphs with key hardware, software thresholds
• Remember that the cache/TLB footprint of a workload will

(almost certainly) not be the benchmark buffer size
• We are now doing comparative analysis…

Advanced Operating Systems - Lab 2 - IPC

