The Network Stack (2)

Lecture 6, Part 3: Wrapping Up

Dr Robert N. M. Watson

2020-2021

Architectural \rightarrow micro-architectural + I/O optimisation

- Hardware, software, protocol co-design causes change to optimisation approach over time:
 - Counting instructions
 - Reducing lock contention
 - Adding locking

- \rightarrow counting cache misses
- \rightarrow cache-line contention
- \rightarrow identifying new parallelism
- Work ordering, classification, and placement
- Vertically integrated distribution and affinity
- NIC offload of further protocol layers, crypto
- DMA/cache interactions
- Convergence of networking and storage technologies?

Labs 3: TCP

- From abstract to concrete understanding of TCP
 - Use tools such as tcpdump and DUMMYNET
 - Explore effects of latency on TCP performance
 - Be sure to consider probe and simulation effects
- Part 1: TCP state machine and latency
 - Measure the TCP state machine in practice
 - Experiment with artificially induced latency (DUMMYNET)
- Part 2: TCP congestion control
 - Explore OS buffering strategies
 - Explore slow-start vs. steady state as latency changes
 - Explore OS and microarchitectural performance interactions

Advanced Operating Systems: wrap-up

- Goal: Deeper understanding of OS design and implementation
 - Evolving architectural and microarchitectural foundations
 - Evolving OS design principles
 - Evolving tradeoffs in OS design
 - Case study: The process model
 - Case study: Network-stack abstractions
 - Quick explorations of past and current research
- Goal: Gain practical experience analysing OS behaviour
- Goal: Develop scientific analysis + writing skills (L41 only)
- Feel free to get in touch to learn more!

