Kernels and Tracing

Lecture 2, Part 2: The Probe Effect
Dr Robert N. M. Watson
2020-2021

he Probe Effect

* The probe effect is the unintended alteration of
system behaviour that arises from measurement

e Software instrumentation is active: execution is changed

* DTrace minimises probe effect when unused...
* ... but has a very significant impact when it is used
* Disproportionate effect on probed events

* Potential perturbations:
» Speed relative to other cores (e.g., lock hold times)
* Speed relative to external events (e.g., timer ticks)
* Microarchitectural effects (e.g., cache, branch predictor)

Probe effect example:
dd(1) execution time

* Simple (naive) microbenchmark —dd (1)
e dd copies blocks from input to output
e Copy 10M buffer from /dev/zeroto /dev/null
* (“Do nothing .. But do it slowly”)
* Execution time measured with /usr/bin/time
* Workload chosen to illustrate high overhead

dd if=/dev/zero of=/dev/null bs=10m count=1 status=none

e Simultaneously, run various DTrace scripts
 Compare resulting execution times using ministat
* Difference is probe effect (+/- measurement error)

Probe effect 1: memory allocation

e Using the dtmalloc provider, count kernel memory allocations:

dtmalloc:::
{ @count = count(); }

X no-dtrace
+ dtmalloc-count

e e +

| * |

| * |

| * +

| * +

| * +

| * * *

| | I A M A I |

e e +
N Min Max Median Avg Stddev

x 11 0.2 0.22 0.21 0.20818182 0.0060302269

+ 11 0.2 0.22 0.21 0.21272727 ©.0064666979

No difference proven at 95.0% confidence

* No statistically significant overhead at 95% confidence level

Probe effect 2: locking

* Using the lockstat provider, track kernel lock acquire, release:

lockstat:::
{ @count = count(); }

X no-dtrace
+ lockstat-count

R e e e +
| x +|
| x +|
| x + +|
|x x + +|
|x x + +|
|x x x + + |
| 1_A_] |_A_M|
R e e e +
N Min Max Median Avg Stddev
x 11 0.2 0.22 0.21 0.20818182 0.0060302269
+ 11 0.42 0.44 0.44 0.43454545 0.0068755165

Difference at 95.0% confidence
0.226364 +/- 0.00575196
108.734% +/- 2.76295%
(Student's t, pooled s = 0.0064667)

* 109% overhead — 170K locking operations vs. 6 malloc () calls!

5

Probe effect 3: limiting to dd(1)?

e Limit the action to processes with the name dd:

lockstat::: /execname == "dd"/
{ @count = count(); }

X no-dtrace
+ lockstat-count-dd

R e e e +
| + |
| x + |
| x + |
| x + |
| x + |
|x x + |
|x x + |
|x x x + + + +|
|1_Al |_Al |
R e e e +
N Min Max Median Avg Stddev
x 11 0.2 0.22 0.21 0.20818182 0.0060302269
+ 11 0.54 0.57 0.56 0.55818182 0.0075075719

Difference at 95.0% confidence
0.35 +/- 0.0060565
168.122% +/- 2.90924%
(Student's t, pooled s = 0.00680908)

 Well, crumbs. Now 168% overhead!

Probe effect 4: stack traces

e Gather more locking information in action — capture call stacks:

lockstat::: { @stacks[stack()] = count(); }
lockstat::: /execname == "dd"/ { @stacks[stack()] = count(); }

X no-dtrace
+ lockstat-stack
* lockstat-stack-dd

R e e e +
| o
| o
| o
| o
| xx =+ KE
| xx =+ KE
| xx + o RX kg
| AM |_MA_[A] |
R e e e +
N Min Max Median Avg Stddev
x 11 0.2 0.22 0.21 0.20818182 0.0060302269
+ 11 1.38 1.57 1.44 1.4618182 0.058449668

1.25364 +/- 0.0369572
602.183% +/- 17.7524%
¥ 11 1.5 1.55 1.51 1.5127273 0.014206273
1.30455 +/- 0.00970671
626.638% +/- 4.66261%

What does this mean for us?

* Always think about the potential role of the probe
effect when instrumenting a workload

* E.g., avoid benchmarking while running DTrace ...
... unless measuring or accounting for the probe effect

* Traced applications may behave (very) differently

* E.g., more timer ticks will fire, affecting thread inverleaving
e E.g., I/0 will “seem faster” relative to computation, as latter

may slow down due to probe effect
* Performance overheads may be disproportionate
e E.g., if you instrument one way of doing things, but not
another, and workloads have a different functional footprint
* Consider ways to decide if an analysis is representative

* E.g., are the performance inflection points consistent even if
absolute performance is lower?

