Advanced Operating Systems: Lab Setup

Dr Robert N. M. Watson
2020-2021

Advanced Operating Systems is taught through a blend of lectures and laboratory experiments. The purpose of
the labs is threefold: to teach you about real-world operating systems, to teach you experimental methodology and
practical skills, and to provide fodder for assessment. You will use tools such as DTrace to explore the behaviour
of the system through ‘potted’ example programs that will trigger OS behaviours for you to investigate. Each lab is
structured as a set of mandatory experimental questions; take care to ensure that your lab report or lab assignment
submission addresses all of the assigned experimental questions.

Experimental platform

Our experimental platform is the open-source FreeBSD operating system running on the Raspberry Pi 4 Model B
board, described in the remainder of this handout.

The operating system: FreeBSD

We will be using the open-source FreeBSD operating system’s ARMv8-A port on the Rasberry Pi 4. FreeBSD
is of particular interest due to its tight integration of a number of tracing and measurement tools (e.g., DTrace)
and that it is built by default with the Clang/LLVM compiler suite, which make it easier to insert additional
instrumentation. You can learn more about FreeBSD by visiting the FreeBSD Project’s website:

https://www.FreeBSD.org/

The course text, The Design and Implementation of the FreeBSD Operating System, Second Edition will be
a useful reference, covering concepts such as the process model, inter-process communications, and filesystems.
There is also a section on the implementation of DTrace, which may be useful background material for the labs.
DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD is a detailed, user-facing guide on how to
use DTrace, and will also be a useful reference for the labs. In addition to these books, FreeBSD has a rich set of
manual pages for its commands and APIs, which can be read using the man command.

The board: Raspberry Pi 4 (Model B)

The Raspberry Pi 4 (Model B) is a single-board computer based on the Broadcom BCM2711 System-on-Chip
(SoC); we have selected the 8GB version of the board for this course. The BCM2711 includes a quad-core
superscalar Cortex-A72 64-bit ARMv8-A superscalar (out-of-order) processor clocked at up to 1.5Ghz. For this
course, we underclock the Arm cores at 600MHz for reasons of performance determinism, so that as the boards
heat up, and reduce their clock speed as part of power management, you don’t see performance change. Each of
the cores has a 48KB I-cache and 32KB D-cache; they share a common 2MB L2 cache. A key feature of this
processor line is the inclusion of support for hardware performance counters. We use a 64 GB SDCard to hold the
OS image and scratch areas.

The RPi4 cluster

The boards we use in this course (quantity 50) are rack-mounted in a machine room in the William Gates Building,
and will be accessed remotely using SSH. As part of the lab work, you will use a Jupyter Lab notebook — a web-
based frontend to Python that makes it easy to gather and plot data. You will need to SSH tunnel HTTP from your
personal machine to the RPi4 board for this purpose.

You will need to run the labs as the root user, so that can apply tools such as DTrace and HWPMC to the
kernel itself. We ask that you take great care to avoid bricking your board — e.g., by damaging the OS install! We
do have additional boards in the rack, and most likely will be able to recover the board remotely, but it is best to
avoid these scenarios — especially as the fix will involve reimaging the board’s SDCard.

We strongly recommend that you keep your work mirrored on another machine so that, if we have to provide
a replacement board, you lose as little as possible. One way to do this conveniently and easily is to use a tool
such as git to keep version history and move your files between the board, your personal machine, and perhaps a
service such as GitHub.

SSH access to your RPi4

Currently, TCP port 22 to the cluster is blocked from the public Internet. To SSH to the RPi4 boards, you will
need to be connected via the UIS or CL VPN, or tunnel via another lab host on the University or CL network.
Instructions for the UIS VPN can be found here:

https://help.uis.cam.ac.uk/service/network-services/remote-access/uis-vpn

If you need help with this, please get in touch with us.

Getting started

We have preinstalled FreeBSD on your RPi4 board, and separately provided you with its network details and SSH
login credentials. We ask that you not change the root password, nor remove any existing SSH keys we have
preinstalled — these allow us to more easily maintain the system, as well as support you if you encounter any
difficulties.

In order to run various tracing and instrumentation tools on the kernel itself, you will need to run as the root
user. We therefore ask you to take significant care not to damage the system installation or configuration, and also
to ensure that your data is carefully backed up. While we are able to reimage boards, that will resolve in loss of
all data on the board.

We have created a directory for you to place your work in, /data, and recommend that you keep any files you
create in that directory. Once you’ve logged in as root, you can run your first DTrace script:

cd /data
dtrace -gn 'BEGIN { printf("Hello world"); exit (0); 1}

To write the output of a script to a file, you can redirect standard output to a file:

dtrace —-gn 'BEGIN { printf ("Hello world"); exit(0); }' > data.out

The first lab

You can find the supporting materials for the first lab — its JupyterLab notebook and benchmark in a compressed
tarball on your RPi4 in /advopsys-packages/labs/2020-2021-advopsys—labl.tbz. You should un-tar
the file into your /data directory before proceeding to the next step:

cd /data
tar —-xzf /advopsys-packages/labs/2020-2021-advopsys—labl.tbz

This will extract a subdirectory named io containing the benchmark used in the first lab. It will also extract a
JupyterLab notebook named 2020-2021-141-1abl.ipynb, which demonstrates how to use JupyterLab to run
the benchmark, collect results, analyse the data, and present it. It also demonstrates how to use DTrace from
within JupyterLab.

Running the Jupyter notebook

Jupyter Lab notebooks provide a web-based Ul able to run Python (and other languages), incorporating code,
capturing data, and presenting plots in a unified environment. We provide template notebooks for lab reports and
assignments, which include starting-point code to run the appropriate benchmark, as well as demonstrate various
instrumentation tools.

As Jupyter will serve its content on the RPi’s loopback interface, you will need to configure SSH port forward-
ing to access it remotely. You will also need to point SSH at the SSH authentication key that we have provided for
your node (you can configure .ssh/config so as to avoid specifying this manually on the command line each
time you use SSH). The details will depend on the operating system you are using on your notebook or desktop,
but will typically resemble the following (replacing xxx with your RPi node number):

% ssh —i id_rsa_rpi4d4-XXX -L8888:localhost:8888 root@rpid-XXX.advopsys.cl.cam.ac.uk
You can then start Jupyter by running:

cd /data
Jupyter—-lab —--allow-root

On starting, the JupyterLab prints the URL on which it can be accessed with a Web browser, which will include
an embedded access token. Open this URL on the system where you have run the SSH command to get started.
You may need to adjust the URL depending on your port-forwarding setup.

JupyterLab Notebooks are identified by the file extension .ipynb. To open a Notebook simply click on its
name. The selected Notebook will open in a separate tab from which it can be edited and run. The first lab
Notebook is named 2020-2021-141-1abl.ipynb.

Compiling and running the benchmark

The template lab report includes information on how to compile and run the benchmark from within JupyterLab.
The template assumes that your current working directory is /data when you start running jupyter-1lab, and
may require modification if that is not the case.

Running DTrace scripts

DTrace scripts can be executed within the JupyterLab notebook with the assistance of the python-dtrace mod-
ule. In order to run the I/O benchmark and also instrument it with DTrace, scripts are executed within a separate
thread by instantiating a DTraceConsumerThread object. The DTraceConsumerThread constructor takes a
Python string specifying D-Language script to execute, as well as several other optional parameters. The lab tem-
plate contains a worked example using DTrace to capture system-call counts in the benchmark. We recommend
using guards (illustrated in the template) to limit DTrace tracing to the main benchmark loop itself, and running
with only one iteration when using DTrace.

Plotting performance measurements

”,

Performance measurements can be plotted inside the JupyterLab Notebook using the built-in “magic”: $matplotlib
inline. In addition to displaying inline, matplotlib graphs can be saved to the RPi4 filesystem using the
plt.savefig() function. Saved files can then be copied from the RPi4 to your home system using SSH
for inclusion in L41 lab reports. Further information about matplotlib can be found at the project’s website:
matplotlib.org.

Analysing performance measurements

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data struc-
tures and data analysis tools for the Python programming language. (pandas.pydata.orqg)

In this laboratory, performance measurements capture how the dependent variable (1/O read and write band-
width) changes as a result to changes in the independent variable (for example, buffer size). This data is best
represented in pandas using a DataFrame. The pandas DataFrame is a tabular structure comprised of rows and

columns. A DataFrame can be used to, for example, store the performance of a benchmark with the rows repre-
senting runs of the benchmark for different buffer sizes. And the columns of the Dat aFrame representing repeated
runs of the benchmark for a given buffer size.

A flat list a performance values can be converted into a n-by-m array for loading into a DataFrame using the
Python module numpy’s reshape function. Once a DataFrame has been created, statistics such as the median or
the 25 and 75 percentile values can be computed directly:

df . .median (1) # Median value of rows
df.quartile([.25, .75], axis=1) # 25th and 75th quartile value of rows

While you are not obligated to use pandas for data analysis — it can be done solely using ordinary Python data
types and matplotlib, pandas can make data manipulation and analysis far more straightforward, especially as data-
set sizes grow. Further information about pandas can be found at the project’s website: pandas.pydata.org.

Troubleshooting

In the event of the JupyterLab Notebook behaving erratically the first port of call is to simply stop the currently
executing cell (this can be done from the JupyterLab Notebook toolbar). For more serious problems (such as
systemic unresponsiveness) the executing “kernel” can be reset from the Jupyter toolbar. This resets the Python
runtime’s state and is an effective for most problems. If resetting the kernel does not resolve the issue it may be to
terminate and restart the jupyter—1lab command.

Unreliable networking

It may be that some students experience unreliable networking, which can be disruptive when working on these
labs — especially if you are having trouble completing benchmark runs. Here are some things that may help
mitigate that lack of reliability:

1. If your SSH session is disconnected, it’s a good idea on reconnect to check that state from the prior session
has been discarded. If, for example, your IP address changed after a VPN reconnection, then your system
may have noticed that the SSH connection has closed, but the SSH server on the Raspberry Pi may still be
waiting for the connection to time out — potentially several minutes. Benchmark runs started in the prior
session will affect performance in the new one.

You can use the UNIX ps ax command to list all processes running, after you log in, to see if benchmark
programs or JupyterLab are still running. If they are, you can use the UNIX kill command to terminate
them. See the ps (1) and k111 (1) man pages for further details.

2. You may want to consider running JupyterLab under tmux, a terminal multiplexer that supports reconnect-
ing to prior sessions. First run tmux to create a new session. If you are disconnected and reconnect, you
can use tmux 1s to list running sessions, and tmux attach -t session to reconnect to the specified
session.

As long as the terminal being used by JupyterLab — either the one allocated by SSH when you logged in, or
one provided by tmux — is still active, JupyterLab will continue to run. You can reconnect to it using the same
URL you did for the prior terminal session.

