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Many graphics/display solutions are 

motivated by visual perception

*

…
Halftonning

Image & video 

compression

Display spectral emission - metamerism

Display’s subpixels

Camera’s 
Bayer pattern

Color wheel in DLPs
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Luminous efficiency function 
(weighting)

Light spectrum (radiance)

Luminance (again)

� Luminance – measure of light weighted by the response 
of the achromatic mechanism. Units: cd/m2

Luminance
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Steven’s power law for brightness

� Stevens (1906-1973) measured the perceived magnitude 
of physical stimuli

� Loudness of sound, tastes, smell, warmth, electric shock and 
brightness

� Using the magnitude estimation methods

� Ask to rate loudness on a scale with a known reference

� All measured stimuli followed the power law:

� For brightness (5 deg target in dark), a = 0.3

ϕ(I ) = kI aPerceived 
magnitude

Physical 
stimulus

Exponent

Constant
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Steven’s law for brightness
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Steven’s law  vs. Gamma correction
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Detection thresholds

� The smallest detectable difference between 

� the luminance of the object and

� the luminance of the background
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Threshold versus intensity (t.v.i.) 

function

� The smallest detectable difference in luminance for a 
given background luminance

L

ΔL

L

L+ΔL
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t.v.i. measurements – Blackwell 1946
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Psychophysics

Threshold experiments 

L

L+ΔL

Luminance difference ΔL

P=0.75

Detection 

threshold
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t.v.i function / c.v.i. function / Sensitivity

� The same data, different representation

t.v.i.
c.v.i.

S

Contrast vs. intensityThreshold vs. intensity Sensitivity

backgrounddisk LLL −=∆
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Sensitivity to luminance

� Weber-law – the just-noticeable difference 
is proportional to the magnitude of a 
stimulus

The smallest 
detectable 
luminance 
difference

Background 
(adapting) 
luminance

Constant

L

ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]
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Consequence of the Weber-law

� Smallest detectable difference in luminance

� Adding or subtracting luminance will have different visual 
impact depending on the background luminance

� Unlike LDR luma values, luminance values are not
perceptually uniform!

L ΔL

100 cd/m2 1 cd/m2

1 cd/m2 0.01 cd/m2
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How to make luminance (more) 

perceptually uniform?

� Using “Fechnerian” integration

luminance - L
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dR

dl
(L) =

1

∆L(L)
Derivative of 

response
Detection 
threshold

15

Luminance 

transducer: � � � � 1
Δ����

�

����
��



Assuming the Weber law

� and given the luminance transducer

� the response of the visual system to light is:
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Fechner law

� Response of the visual system to luminance 
is approximately logarithmic

Gustav Fechner
[From Wikipedia]

R(L) = aln(L)
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But…the Fechner law does not hold for 

the full luminance range

� Because the Weber law does not hold either

� Threshold vs. intensity function:

L

ΔL

The Weber law 
region
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Weber-law revisited

� If we allow detection threshold to vary with luminance 
according to the t.v.i. function:

� we can get a more accurate estimate of the “response”:

R(L) =
1

tvi(l)
dl

0

L

ò

L

ΔL tvi(L)
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Fechnerian integration and Stevens’ law
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R(L) - function 
derived from the 

t.v.i. function

R(L) =
1

tvi(l)
dl

0

L

ò



Applications of JND encoding – R(L)

� DICOM grayscale function

� Function used to encode signal for medial 
monitors

� 10-bit JND-scaled (just noticeable 
difference)

� Equal visibility of gray levels

� HDMI 2.0a (HDR10)

� PQ (Perceptual Quantizer) encoding

� Dolby Vision

� To encode pixels for high dynamic range 
images and video 
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Resolution and sampling rate

� Pixels per inch [ppi]

� Does not account for vision

� The visual resolution depends on

� screen size

� screen resolution

� viewing distance

� The right measure

� Pixels per visual degree [ppd]

� In frequency space

� Cycles per visual degree [cpd]
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Fourier analysis

� Every N-dimensional function (including images) can be 
represented as a sum of sinusoidal waves of different 
frequency and phase

� Think of “equalizer” in audio software, which manipulates 
each frequency

=å
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Spatial frequency in images

� Image space units: cycles per sample (or cycles per pixel)

� What are the screen-space frequencies of the red and green 
sinusoid?

� The visual system units: cycles per degree

� If the angular resolution of the viewed image is 55 pixels per 
degree, what is the frequency of the sinusoids in cycles per 
degree?
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Nyquist frequency

� Sampling density restricts the highest spatial frequency 
signal that can be (uniquely) reconstructed

� Sampling density – how many pixels per image/visual angle/…

� Any number of sinusoids can be fitted to this set of samples

� It is possible to fit an infinite number of sinusoids if we allow 
infinitely high frequency
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Nyquist frequency

� Sampling density restricts the highest spatial frequency 
signal that can be (uniquely) reconstructed
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Nyquist frequency

� Sampling density restricts the highest spatial frequency 
signal that can be (uniquely) reconstructed

� Sampling density – how many pixels per image/visual angle/…

� Any number of sinusoids can be fitted to this set of samples
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Nyquist frequency

� Sampling density restricts the highest spatial frequency 
signal that can be (uniquely) reconstructed

� Sampling density – how many pixels per image/visual angle/…

� Any number of sinusoids can be fitted to this set of samples

� It is possible to fit an infinite number of sinusoids if we allow 
infinitely high frequency
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Nyquist frequency / aliasing

� Nuquist frequency is the highest frequency that can be 
represented by a discrete set of uniform samples (pixels)

� Nuquist frequency = 0.5 sampling rate

� For audio

� If the sampling rate is 44100 samples per second (audio CD), then the 
Nyquist frequency is 22050 Hz

� For images (visual degrees)

� If the sampling rate is 60 pixels per degree, then the Nyquist 
frequency is 30 cycles per degree

� When resampling an image to lower resolution, the 
frequency content above the Nyquist frequency needs to 
be removed (reduced in practice)

� Otherwise aliasing is visible
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Modeling contrast detection
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LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking

Defocus &

Aberrations
Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function



Spatial frequency  [cycles per degree]
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Campbell & Robson contrast sensitivity chart
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Contrast sensitivity function

CSF = S(ρ,θ,ω, l,i
2
,d,e)

Spatial frequency

Orientation

Temporal frequency

Adapting luminance

Stimulus size

Viewing distance

Eccentricity
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CSF as a function of spatial frequency
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CSF as a function of background 

luminance
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CSF as a function of spatial frequency 

and background luminance
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Contrast constancy

Match?Experiment: Adjust the 

amplitude of one sinusoidal 

grating until it matches the 

perceived magnitude of 

another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio.39
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Contrast constancy
No CSF above the detection threshold
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CSF and the resolution

� CSF plotted as the 
detection contrastΔ�

��
� �� 

� The contrast below each 
line is invisible

� Maximum perceivable 
resolution depends on 
luminance
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iPhone 4

Retina display

HTC Vive Pro

CSF models:
Barten, P. G. J. (2004). 
https://doi.org/10.1117/12.537476

Expected 
contrast in 

natural images



Spatio-chromatic CSF
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Color CSF across the luminance range
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Color CSF across the luminance range
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Color CSF across the luminance range
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Color CSF across the luminance range
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Color CSF across the luminance range
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Color CSF across the luminance range
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Visibility of blur

� The same amount of blur was introduced into light-dark, 
red-green and blue-yellow colour opponent channels

� The blur is only visible in light-dark channel

� This property is used in image and video compression

� Sub-sampling of colour channels (4:2:1)
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Mach Bands – evidence for band-pass 

visual processing

• “Overshooting“ along edges

– Extra-bright rims on bright sides

– Extra-dark rims on dark sides

• Due to “Lateral Inhibition“

51



Centre-surround (Lateral Inhibition)

� “Pre-processing” step within the retina

� Surrounding brightness level weighted negatively

� A: high stimulus, maximal bright inhibition

� B: high stimulus, reduced inhibition & stronger response

� D: low stimulus, maximal inhibition

� C: low stimulus, increased inhibition &
weaker response

Center-surround 
receptive fields

(groups of 
photoreceptors)
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Centre-surround: Hermann Grid
• Dark dots at crossings

• Explanation

– Crossings (A)

• More surround stimulation 
(more bright area)

 Less inhibition

 Weaker response

– Streets (B)

• Less surround stimulation

 More inhibition

 Greater response

• Simulation

– Darker at crossings, brighter in streets

– Appears more steady

– What if reversed ?

A B

S
im

u
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Psychedelic

some further weirdness
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Spatial-frequency selective channels

� The visual information is 
decomposed in the visual cortex 
into multiple channels

� The channels are selective to spatial 
frequency, temporal frequency and 
orientation

� Each channel is affected by different 
„noise” level

� The CSF is the net result of 
information being passed in noise-
affected visual channels

From: Wandell, 1995
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Multi-scale decomposition

Steerable pyramid

decomposition
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Multi-resolution visual model

� Convolution kernels 
are band-pass, 
orientation selective 
filters

� The filters have the 
shape of an oriented 
Gabor function

From: Wandell, 1995
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Predicting visible differences with CSF

� We can use CSF to find the probability of spotting a 
difference beween a pair of images ! and !":

58

# $%! & � $%!"& |! , !", *�+

! 

!"

,-./.0/123
Wavelet

decomposition

Δ�
/

Compute
contrast

��

Background
luminance

-1

Wavelet
reconstruction

Psychometric
function

X

*�+

Δ�
��

��
Δ�/45

(simplified) Visual Difference Predictor
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Applications of multi-scale models

� JPEG2000

� Wavelet decomposition

� JPEG / MPEG

� Frequency transforms

� Image pyramids

� Blending & stitching

� Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
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Light and dark adaptation

� Light adaptation: from dark to bright

� Dark adaptation: from bright to dark (much slower)
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Time-course of 

adaptation

Bright -> Dark Dark -> Bright
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Temporal adaptation mechanisms

� Bleaching & recovery of photopigment

� Slow assymetric (light -> dark, dark -> light) 

� Reaction times (1-1000 sec)

� Separate time-course for rods and cones

� Neural adaptation

� Fast

� Approx. symmetric reaction times (10-3000 ms)

� Pupil

� Diameter varies between 3 and 8 mm

� About 1:7 variation in retinal illumunation
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Night and daylight vision

Luminous efficiency
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Simultaneous contrast
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High-Level Contrast Processing
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High-Level Contrast Processing
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Shape Perception

http://www.panoptikum.net/optischetaeuschungen/index.html

• Depends on surrounding primitives

– Directional emphasis

– Size emphasis
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Shape Processing: Geometrical Clues

http://www.panoptikum.net/optischetaeuschungen/index.html

• Automatic geometrical interpretation

– 3D perspective

– Implicit scene depth

70



Impossible Scenes

http://www.panoptikum.net/optischetaeuschungen/index.html

• Escher et.al.

– Confuse HVS by presenting 

contradicting visual clues

– Local vs. global processing
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Virtual Movement

caused by saccades, motion from dark to bright areas 
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Law of closure
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