PERL(1) PerProgrammers Reference Guide PERL(1)

NAME
perl — Practical Extraction and Report Language

SYNOPSIS
perl [=sTuU][-hv][—V][:configvat]
[—cw] [—d[:debuge]][—D[number/lis}]
[-pna][—Fpattern] [—l[octal]] [—O[octall]
[=Idir][=-m[-]module] [-M[-]'module..]
[-P1[-S][—x[dir]]
[-i[exension][—e’command’][——][programfile] [argumen{...

If you're naw to Perl, you should start with perlintro, which is a general intro for beginners aniigso
some background to help you navigate the rest ofSR&ténsive documentation.

For ease of access, the Perl manual has been split up i@@lsgections.

Overview
perl Perl overview (this section)
perlintro Perl introduction for beginners
perltoc Perl documentation table of contents
Tutorials
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays
perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial
perlboot Perl OO tutorial for beginners
perltoot Perl OO tutorial, part 1
perltooc Perl OO tutorial, part 2
perlbot Perl OO tricks and examples
perlistyle Perl style guide
pericheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial
perlfaq Perl frequently asked questions
perlfaql General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.8.6 2004-11-05 1

PERL(1)

perlsyn
perldata
perlop
perisub
perlfunc
perlopentut
perlpacktut
perlpod
perlpodspec
perlrun
perldiag
perllexwarn
perldebug
perlvar
perire
perlreref
perlref
perlform
perlob]
perltie
perldbmfilter

perlipc
perlfork
perlnumber

perlthrtut
perlothrtut

perlport
perllocale
perluniintro
perlunicode
perlebcdic

perlsec

perimod
perimodlib
perimodstyle
perimodinstall
perlnewmod

perlutil
perlcompile
perlfilter

PerProgrammers Reference Guide

Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl

Perl
Perl
Perl

Perl
Oold

Perl
Perl
Perl
Perl

Considerations

Perl

Perl
Perl
Perl

Perl
Perl
utilities
Perl
Perl

Internals and C Language Interface

perlembed
perldebguts
perixstut
perixs
perliclib
perlguts
perlcall

perlapi
perlintern
perliol
perlapio

PERL(1)

syntax

data structures

operators and precedence

subroutines

built-in functions

open() tutorial

pack() and unpack() tutorial

plain old documentation

plain old documentation format specification
execution and options

diagnostic messages

warnings and their control

debugging

predefined variables

regular expressions, the rest of the story
regular expressions quick reference
references, the rest of the story
formats

objects

objects hidden behind simple variables
DBM filters

interprocess communication
fork() information
number semantics

threads tutorial

Perl threads tutorial

portability guide

locale support

Unicode introduction

Unicode support

for running Perl on EBCDIC platforms

security

modules: how they work

modules: how to write and use

modules: how to write modules with style
modules: how to install from CPAN

modules: preparing a new module for distribution

packaged with the Perl distribution
compiler suite intro
source filters

Perl ways to embed perl in your C or C++ application
Perl debugging guts and tips
Perl XS tutorial
Perl XS application programming interface
Internal replacements for standard C library functions
Perl internal functions for those doing extensions
Perl calling conventions from C
Perl API listing (autogenerated)
Perl internal functions (autogenerated)
C API for Perl's implementation of IO in Layers
Perl internal 10 abstraction interface

2004-11-05 pen/5.8.6

PERL(1)

perlhack

Miscellaneous

perlbook
perltodo

perldoc

perlhist
perldelta
perl585delta
perl584delta
perl583delta
perl582delta
perl581delta
perl58delta
perl573delta
perl572delta
perl571delta
perl570delta
perl561delta
perl56delta
perl5005delta
perl5004delta

perlartistic
perlgpl

Language-Specific

pericn
perljp
perlko
perltw

Platform-Specific

perl v5.8.6

PerProgrammers Reference Guide

Perl hackers guide

Perl book information

Perl things to do

Look up Perl documentation in Pod format
Perl history records
Perl changes since previous version
Perl changes in version 5.8.5
Perl changes in version 5.8.4
Perl changes in version 5.8.3
Perl changes in version 5.8.2
Perl changes in version 5.8.1
Perl changes in version 5.8.0
Perl changes in version 5.7.3
Perl changes in version 5.7.2
Perl changes in version 5.7.1
Perl changes in version 5.7.0
Perl changes in version 5.6.1
Perl changes in version 5.6
Perl changes in version 5.005
Perl changes in version 5.004

Perl Artistic License

GNU General Public License

Perl for Simplified Chinese (in EUC-CN)
Perl for Japanese (in EUC-JP)

Perl for Korean (in EUC-KR)

Perl for Traditional Chinese (in Big5)

2004-11-05

PERL(1)

PERL(1) PerProgrammers Reference Guide PERL(1)

perlaix Perl notes for AIX

perlamiga Perl notes for AmigaOS
perlapollo Perl notes for Apollo DomainOS
perlbeos Perl notes for BeOS
perlbs2000 Perl notes for POSIX-BC BS2000
perice Perl notes for WinCE
perlcygwin Perl notes for Cygwin
perldgux Perl notes for DG/UX

perldos Perl notes for DOS

perlepoc Perl notes for EPOC
perlfreebsd Perl notes for FreeBSD
perlhpux Perl notes for HP-UX

perlhurd Perl notes for Hurd

perlirix Perl notes for Irix

perlmachten Perl notes for Power MachTen
perlmacos Perl notes for Mac OS (Classic)
perlmacosx Perl notes for Mac OS X
perimint Perl notes for MiNT

perimpeix Perl notes for MPE/iX
perinetware Perl notes for NetWare
perlos2 Perl notes for OS/2

perlos390 Perl notes for OS/390
perlos400 Perl notes for OS/400
perlplan9 Perl notes for Plan 9

perlgnx Perl notes for QNX

perlsolaris Perl notes for Solaris

perltru64 Perl notes for Tru64

perluts Perl notes for UTS

perlvmesa Perl notes for VM/ESA
perlvms Perl notes for VMS

perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

By default, the manpages listed aba@e installed in théusr/local/maniirectory.

Extensve alditional documentation for Perl modules isikable. Thedefault configuration for perl will

place this additional documentation in thusr/local/lib/perl5/mandirectory (or else in thenansubdirec-

tory of the Perl library directory). Some of this additional documentation is distributed standard with Perl,
but you'll also find documentation for third-party modules there.

You should be able to vie Perl's documentation with youman(1) program by including the proper direc-
tories in the appropriate start-up files, or in MENPATH ervironment \ariable. D find out where the con-
figuration has installed the manpages, type:

perl -V:man.dir

If the directories hae a @mmon stem, such dasr/local/man/manind/usr/local/man/man3you need
only to add that stemiysr/local/man to your man(1) configuration files or youvANPATH environment
variable. Ifthey do rot share a stem, you'll tia to add both stems.

If that doesrt work for some reason, you can still use the supglerttocscript to viev module informa-
tion. You might also look into getting a replacement man program.

If something strange has gone wrong with your program andeyoot sure where you should look for
help, try the-w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl is a language optimized for scanning arbitrary text files, extracting information from those text files,
and printing reports based on that informatidtis dso a good language for masgystem management
tasks. Thdanguage is intended to be practical (easy to use, efficient, complete) rather than beawtiful (tin
elggant, minimal).

Perl combines (in the authsrpinion, aryway) some of the best features ofs€d awk, and sh, so geople
familiar with those languages shouldvidittle difficulty with it. (Language historians will also note some

4 2004-11-05 per/5.8.6

PERL(1) PerProgrammers Reference Guide PERL(1)

vestiges ofcsh Pascal, andven BASIC-PLUS) Expressiorsyntax corresponds closely to &peession
syntax. Unlile most Unix utilities, Perl does not arbitrarily limit the size of your datd you've gt the
memory Perl can slurp in your whole file as a single string. Recursion is of unlimited dépith.the
tables used by hashes (sometimes calie$dciatve arays’) grow as recessary to pvent degraded per

formance. Pertan use sophisticated pattern matching techniques to scan large amounts of data quickly

Although optimized for scanningxi Perl can also deal with binary data, and canenthkn files look lile
hashes. SetuiBerl scripts are safer than C programs through a datafhcing mechanism that prants
mary stupid security holes.

If you hare a poblem that would ordinarily useedor awk or sh, but it exceeds their capabilities or must
run a little &ster and you dont want to write the silly thing in C, then Perl may be for ydinere are also
translators to turn yowgedandawk scripts into Perl scripts.

But wait, theres nore...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete rewrite that provides the following addi-

tional benefits:
* modularity and reusability using innumerable modules
Described in perlmod, perlmodlib, and perimodinstall.
* embeddable and extensible
Described in perlembed, perixstut, perlxs, perlcall, perlguts, and xsubpp.
» roll-your-own magic variables (including multiple simultaneo@v implementations)
Described in perltie and AnyDBM_ File.
» subroutines can me be overridden, autoloaded, and prototyped
Described in perlsub.
» arbitrarily nested data structures and anonymous functions
Described in perlreftut, perlref, perldsc, and perllol.
* object-oriented programming
Described in perlobj, perlboot, perltoot, perltooc, and perlbot.
» support for light-weight processes (threads)
Described in perlthrtut and threads.
e support for Unicode, internationalization, and localization
Described in perluniintro, perllocale and Locale::Maketext.
» lexcal scoping
Described in perlsub.
» regular expression enhancements
Described in perlre, with additional examples in perlop.
» enhanced debugger and interaetRerl environment, with integrated editor support
Described in perldebtut, perldebug and perldebguts.
* POSIX1003.1 compliant library
Described irPOSIX
Okay, that'sdefinitelyenough hype.

AVAILABILITY
Perl is aailable for most operating systems, including virtually all Unielifatforms. Se€ Supported
Platforms’ in perlport for a listing.

ENVIRONMENT
See perlrun.

perl v5.8.6 2004-11-05 5

PERL(1) PerProgrammers Reference Guide PERL(1)

AUTHOR

FILES

Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wisbdatadke use of Perl
in their applications, or if you wish to simply express your gratitude to Larry and the Redpdes,
please write to perl-thanks@pergjor

"@INC" locations of perl libraries

SEE ALSO

azp awk to perl translator
s2p sed to perl translator

http://www.perl.org/ the Perl homepage

http://www.perl.com/ Perl articles (O'Reilly Media)

http://www.cpan.org/ the Comprehensive Perl Archive

http://www.pm.org/ the Perl Mongers
DIAGNOSTICS

BUGS

Theuse warnings pragma (and thew switch) produces somevdy diagnostics.

See perldiag forx@lanations of all Ped’ dagnostics. Thaise diagnostics pragma automatically
turns Per normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the ermith an indication of the next token or &k
type that was to bexamined. (Ina <ript passed to Perl viee switches, eacheis counted as one line.)

Setuid scripts hae alditional constraints that can produce error messages such as “Insecure dggendenc
See perlsec.

Did we mention that you should definitely consider using-thewitch?

The-w switch is not mandatory.

Perl is at the meycof your machines definitions of various operations such as type castif(), and
floating-point output witlsprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so d¢€ki$erl.
doesnt apply tosysread(andsyswrite())

While none of the built-in data typesvaaany abitrary size limits (apart from memory size), there are still

a few abitrary limits: a gven variable name may not be longer than 251 characters. Line numbers dis-
played by diagnostics are internally stored as short integers, ysaréhémited to a maximum of 65535
(higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, orfrl -V) to perlbug@perl.ay . If you've sicceeded in compiling
perl, theperlbug script in theutils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Listgrdont tell anyone | said that.

NOTES

The Perl motto isThere’s more than one way to do”itD ivining hov mary more is left as anxercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and FHdwithe Camel Book for
why.

2004-11-05 pen/5.8.6

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

NAME
perlsyn — Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the bottom.
Loops, subroutines and other control structuresvajiou to jump around within the code.

Perl is afree-form language, you can format and indent itvaeer you like. Whitespacenostly serves to
separate tokens, unéikanguages li Bithon where it is an important part of the syntax.

Many of Perl's gntactic elements amptional. Rather than requiring you to put parentheses arovey e
function call and declarevery variable, you can often lea such explicit elements dand Perl will figure
out what you meant. This is known@e What | Mean, abbreviatedwIM . It dlows programmers to be
lazy and to code in a style with which thare comfortable.

Perlborrows s/ntax and concepts from mgrianguages: awk, sed, C, Bourne Shell, Smalltalk, Lisp and
even English. Otherlanguages hee lorroved syntax from Perl, particularly its regulaxpeession
extensions. Sdf you hare programmed in another language you will see familiar pieces in FPady
often work the same, but see perltrap for information aboutthey differ.

Declarations

The only things you need to declare in Perl are report formats and subroutines (and sometires not e
subroutines). Avariable holds the undefined valuen@ef) until it has been assigned a defineadue,
which is anything other thanndef . When used as a numbemndef is treated a®; when used as a
string, it is treated as the empty strifi§,; and when used as a reference thattibaing assigned to, it is
treated as an errotf you enable warnings, you'll be notified of an uninitialized value wierneu treat
undef as a string or a numbewell, usually Boolean contexts, such as:

my $a;

if (%a) {}
are eempt from warnings (because theare about truth rather than definedness). Operators sueh, as
——,+=, —=, and .=, that operate on undefined left values such as:

my $a;

$a++;

are also alays exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect xectitere of the primary
sequence of statementsdeclarations all tad eff ect at compile timeTypically all the declarations are put

at the bginning or the end of the scripowever, if you're using lexically-scoped pdte variables created
with my() , you'll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to be able to access thosetprvariables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the programYou can declare a subroutine without defining it by saginlg name , thus:

sub myname;
$me = myname $0 or die "can’t get myname";

Note thatmyname(functions as a list operatatot as a unary operator; so be careful toarsénstead of
@ in this case.However, if you were to declare the subroutinesa® myname ($) , thenmyname
would function as a unary operatep étheror or [would work.

Subroutines declarations can also be loaded up withethére statement or both loaded and imported
into your namespace withuse statement. Segerlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration actselikn adinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

perl v5.8.6 2004-11-05 7

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

Comments

Text from a"#" character until the end of the line is a comment, and is ignored. Exceptions i#£lude
inside a string or regular expression.

Simple Statements

The only kind of simple statement is an expressi@uated for its side &fcts. Ewery simple statement

must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged if the block takes up more than one line, because you may
evantually add another line.) Note that there are some operatersviét { anddo {} that look like
compound statements, but ateftheyre just TERMs in an expression), and thus need xqpiicé
termination if used as the last item in a statement.

Truth and Falsehood

The number 0, the string® and” , the empty lis{) , andundef are all false in a boolean context. All
other values are true.

Statement Modifiers

Any simple statement may optionally be followed bySENGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
foreach LIST

The EXPRfollowing the modifier is referred to as theondition”. Its truth or falsehood determineswvio
the modifier will behee.

if executes the statement on€éeand only if the condition is trueunless is the opposite, it>@cutes the
statementinlessthe condition is true (i.e., if the condition is false).

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

The foreach modifier is an iterator: itxecutes the statement once for each item inuBa& (with $_
aliased to each item in turn).

print "Hello $_\n" foreach qw(world Dolly nurse);

while repeats the statemenhile the condition is trueuntil does the opposite, it repeats the statement
until the condition is true (or while the condition is false):

Both of these count from 0 to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;
The while anduntil modifiers hae the usual While loop" semantics (conditionalvauated first),

except when applied to @0-BLOCK (or to the deprecatedtb-SUBROUTINE statement), in which case
the block e&ecutes once before the conditionalvslaated. Thiss so that you can write loops like:

do {
$line = <STDIN>;

} until $line eq".\n";
See ‘do” in perlfunc. Notealso that the loop control statements described laterN@itt work in this

construct, because modifiers dotake loop labels.Sorry. You can alvays put another block inside of it
(for next) or around it (forlast) to do hat sort of thing.For next , just double the braces:

do {{

next if $x == $y;

do s omething here
} until $x++ > $z;

8 2004-11-05 pervs.8.6

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

For last , you hare o be nore elaborate:

LOOP: {
do {
last if $x = $y**2;
do s omething here
} while $x++ <= $z;
}
NOTE: The behaviour of any statement modified with a statement modifier conditional or loop construct
(e.g.my $x if ...) is undefined The value of thamy variable may beundef , any previously

assigned value, or possibly anything el§on't rely on it. Future ersions of perl might do something
different from the version of perl you try it out on. Here be dragons.

Compound Statements

In Perl, a sequence of statements that defines a scope is called a3uowtimes a block is delimited by
the file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of\a).e

But generally a Hock is delimited by curly brackets, also known as brad&s. will call this syntactic
construct 88LOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL foreach VAR (LIST) BLOCK continue BLOCK
LABEL BLOCK continue BLOCK

Note that, unlik C and Pascal, these are defined in terms of BLOCKSs, not statenTénssmeans that the
curly brackets areequired-—no dangling statements aMled. If you want to write conditionals without
curly brackets there areva@eal other ways to do it. The following all do the same thing:

if (lopen(FOQ)) { die "Can't open $FOO: $!"; }
die "Can’t open $FOO: $!" unless open(FOO);
open(FOO) or die "Can't open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom’ : die "Can’t open $FOO: $!";
a bit exotic, that last one

The if statement is straightfoavd. Becaus®LOCKSs are alvays bounded by curly brackets, there is
never any ambiguity about whichf anelse goes with. If you usenless in place ofif , the sense of
the test is reersed.

The while statement xecutes the block as long as the expression is true (doewvahoate to the null
string™ or 0 or "0"). TheLABEL is optional, and if present, consists of an identifier fedid by a
colon. TheLABEL identifies the loop for the loop control statememéxt , last , and redo . If the
LABEL is omitted, the loop control statement refers to the innermost enclosing Ttdg.may include
dynamically looking back your call-stack at run time to finduRBEL. Such desperate bekiar triggers a
warning if you use theise warnings pragma or the-w flag.

If there is acontinue BLOCK, it is adways eecuted just before the conditional is about to tauated
again. Thusit can be used to increment a loogriable, &en when the loop has been continued via the
next statement.

Loop Control
Thenext command starts the next iteration of the loop:

perl v5.8.6 2004-11-05 9

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

LINE: while (<STDIN>) {

next LINE if I"'#/; # discard comments
}
The last command immediatelyxé@s the loop in question.The continue block, if ary, is rot
executed:
LINE: while (<STDIN>) {
last LINE if I"$/; # exit when done with header
}

The redo command restarts the loop block withowtlaating the conditional agn. Thecontinue
block, if ary, is not executed. Thiscommand is normally used by programs that want to lie to theesselv
about what was just input.

For example, when processing a file diketc/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (sAN\$//) {
$_ =<

redo unless eof();

}

now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =" sN\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line
}

Note that if there were aontinue block on the abeée de, it would get xecuted only on lines
discarded by the gex (since redo skips the continue block). A continue block is often used to reset line
counters ofpat? one-time matches:

i nspired by :1,$g/fred/s//WILMA/

while (<>) {
2(fred)? && S//WILMA $1 WILMA/;
?(barney)? && S/IBETTY $1 BETTY/;
?(homer)? && s//IMARGE $1 MARGE/;

} ¢ ontinue {
print "SARGV $.: $_";
close ARGV if eof(); # reset$.
reset if eof(); # reset ?pat?
}

If the word while is replaced by the evd until , the sense of the test isreesed, but the conditional is
still tested before the first iteration.

The loop control statements domiork in anif orunless , since thg aren't loops. Yu can double the
braces to makthem such, though.

10 2004-11-05 perl v5.8.6

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last", but doesn’t document as well
do s omething here

1

This is caused by thadt that a block by itself acts as a loop thecates once, see “Basic BLOCKs and
Switch Statements”.

The form while/if BLOCK BLOCK , available in Perl 4, is no longervailable. Replaceany
occurrence off BLOCK by if (do BLOCK)

For L oops
Perl's C-stylefor loop works lile the correspondinghile loop; that means that this:
for ($i = 1; $i < 10; $i++) {

}

is the same as this:
$i=1,
while ($i < 10) {

} ¢ oﬁ.t.inue{
$i++;
}

There is one minor difference: ikiables are declared withy in the initialization section of thior , the
lexical scope of those variables is exactlyftre loop (the body of the loop and the control sections).

Besides the normal array indoping,for can lend itself to manother interesting applicationddere’s
one that woids the problem you get into if yoxg@icitly test for end-of-file on an interagé file descriptor
causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something
}

Usingreadline (or the operator formsEXPR> as he conditional of dor loop is shorthand for the
following. Thisbehaviour is the same asvhile loop conditional.

for (prompt(); defined($_ = <STDIN>); prompt()) {
do something
}

Foreach Loops

Theforeach loop iterates wer a normal list value and sets tharniableVAR to be each element of the list
in turn. If the variable is preceded with theylword my, then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop andaies its former alue
upon exiting the loop. If the variable was previously declared mighit uses that variable instead of the
global one, but i8 dill localized to the loop. This implicit localisation occwslyin aforeach loop.

The foreach keyword is actually a syngm for thefor keyword, so you can ustoreach for
readability orfor for brevity. (Or because the Bourne shell is more familiar to you tisnso writing
for comes more naturally If VAR is omitted,$_ is set to each value.

If any element ofLIST is an Ivalue, you can modify it by modifyin@R inside the loop.Corversely if any
element ofLIST is NOT an Ivalue, ap attempt to modify that element willafl. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you're loopirag o

If any part of LIST is an arrayforeach will get very confused if you add or rew® dements within the
loop body for example wittsplice . So don't do that.

perl v5.8.6 2004-11-05 11

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

12

foreach probably won't do what you expect if/AR is a tied or other speciabxiable. Dont do that
either.

Examples:
for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;
}

for $count (10,9,8,7,6,5,4,3,2,1,’'BOOM’) {
print $count, "\n"; sleep(1);
}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:\\n:]*/, SENV{TERMCAP})) {
print "ltem: $item\n";
}

Here's how a C pogrammer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > Sary2[$i]) {
last; # can't go to outer :-(
}

Saryl[$i] += $ary2[$]];
}
t his is where that last takes me

}

Whereas herg’how a Rerl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1l) {

INNER: for my $jet (@ary2) {
next OUTER if $wid > $jet;
$wid += $jet;

}

See hw much easier this istt’'s deaner safer, and faster It's deaner because st'less noisy It's safer
because if code gets added between the inner and outer loops later on; tbdeneon’'t be acidentally
executed. Thenext explicitly iterates the other loop rather than merely terminating the inner Ané.
it's faster because Peneeutes doreach statement more rapidly than it would the eql@ntfor loop.

Basic BLOCKSs and Switch Statements

A BLOCK by itself (labeled or not) is semantically ecplient to a loop that»ecutes once. Thus you can
use ag of the loop control statements in it to Veaa restart the block. (Note that this MOT true in
eval{} , sub{} , or ocontrary to popular belieflo{} blocks, which doNOT count as loops.)The
continue block is optional.

TheBLOCK construct is particularly nice for doing case structures.

SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"def/) { $def = 1, last SWITCH; }
if (/"xyz/) { $xyz = 1, last SWITCH; }
$nothing = 1;
}
There is no dicial switch statement in Perl, because there are alreadgradeways to write the
equialent.

However, garting from Perl 5.8 to get switch and case one can use the Switch extension and say:

2004-11-05 perl v5.8.6

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

use Switch;

after which one has switch and case. It is not as fast as it could be becamst r¢ally part of the
language (i done using source filters) but it igadlable, and it5 very flexible.

In addition to the aha BLOCK construct, you could write

SWITCH: {
$abc = 1, last SWITCH if /"abc/;
$def = 1, last SWITCH if I"def/;
$xyz = 1, last SWITCH if I"xyz/;
$nothing = 1;

}

(That's ectually not as strange as it looks once you realize that you can use loop topéraitors’ within
an «pression. Tha$ just the binary comma operator in scalar cxnteéSee“ Comma Operatdr'in
perlop.)

or
SWITCH: {
["abc/ && do { $abc = 1; last SWITCH; };
["def/ && do { $def = 1, last SWITCH,; };
I"xyz/ && do { $xyz = 1, last SWITCH; };
$nothing = 1;
}
or formatted so it stands out more as a “prop#itch statement:
SWITCH: {
["abc/ && do {
$abc = 1;
last SWITCH,;
h
["def/ && do {
$def = 1;
last SWITCH,;
h
I"xyzl/ && do {
$xyz = 1;
last SWITCH,;
h
$nothing = 1;
}
or
SWITCH: {
["abc/ and $abc = 1, last SWITCH,;
["def/ and $def = 1, last SWITCH,;
I"xyz/ and $xyz = 1, last SWITCH,;
$nothing = 1;
}
or even, horrors,
if (/"abc/)
{ $abc=1}
elsif (/"def/)
{ $def=1}
elsif (/"xyz/)
{ $xyz=1}
else

{ $ nothing=1}
A common idiom for aswitch statement is to udereach 's diasing to mak a emporary assignment

perl v5.8.6 2004-11-05 13

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

to $_ for corvenient matching:
SWITCH: for ($where) {

/In Card Names/ && do { push @flags, '-e’; last; };
/Anywhere/ && do{push @flags, -h’; last; };
/In Rulings/ && do { last; };

die "unknown value for form variable where: ‘$where™;

Another interesting approach to a switch statement is arrangelfoblack to return the proper value:
$amode = do {

if ($flag & O RDONLY) {"r"} # XXX:isn't this 0?
elsif ($flag & O WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & ORDWR) {

if ($flag & O_CREAT) { " w+"}

else { ($flag & O_APPEND) ? "a+": "r+"}
}

2
Or

print do {

($flags & O_WRONLY) ? "write-only"

($flags & O_RDWR) ? " read-write"

"read-only";

%

Or if you are certain that all th&& clauses are true, you can use somethirgfthils, which ‘switches’ on
the value of thédTTP_USER_AGENd@nvironment variable.

#!/usr/bin/perl
pick out jargon file page based on browser
$dir = "http://www.wins.uva.nl/"mes/jargon’;
for (BENV{HTTP_USER_AGENT}) {
$page = /Mac/ && ’'m/Macintrash.html’
@ /Win(dows)?NT/ && 'elevilandrude.html’

MM /Win CMSIEDWebTV/ && 'm/MicroslothWindows.html’
M /Linux/ && ‘I/Linux.html’

MM /HP-UX/ && 'h/HP-SUX.html’

M /SunOS/ && ’'s/ScumOS.html’

m 'a/AppendixB.html’;

}
print "Location: $dir/$page\015\012\015\012";

That kind of switch statement only works when youwrtbe && clauses will be truelf you don't, the
previous?: example should be used.

You might also consider writing a hash of subroutine references instead of synthesizinitcta
statement.

Goto

Although not for the dint of heart, Perl does supportgato statement. Therare three forms:
goto —LABEL, goto —EXPR, andgoto —&NAME. A loop’s LABEL is not actually a alid target for a
goto ; it's just the name of the loop.

Thegoto —LABEL form finds the statement labeled witABEL and resumesxecution there.It may not

be used to go into grconstruct that requires initialization, such as a subroutineforeach loop. It
also cart be used to go into a construct that is optimizedya It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines,itss usually better to use some other construct
such adast ordie . The author of Perl has ver felt the need to use this form gbto (in Perl, that
is — Cis another matter).

The goto —EXPR form expects a label name, whose scope will be resolved dynamidaibyallows for
computed goto s per FORTRAN, but isnt necessarily recommended if you're optimizing for

14 2004-11-05 perl v5.8.6

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

maintainability:
goto(("FOQO", "BAR", "GLARCH")[$i]);

The goto —&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used BYTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (excgpt that an
modifications to@_in the current subroutine are propagated to the other subroutine.) Afgatthe not

even caller() will be able to tell that this routine was called first.

In almost all cases lkthis, it's uisually a &r, far better idea to use the structured contreV fleechanisms
of next , last , orredo instead of resorting togoto . For certain applications, the catch and thgair
ofeval{} anddie()for exception processing can also be a prudent approach.

PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source ste it's expecting the bginning
of a nev statement, if the compiler encounters a line that begins with an equal sign and a wahnd lik

=headl Here There Be Pods!

Then that text and all remaining text up through and including a lgierieg with=cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text fiedly
=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;

Note that pod translators should look at only paragraphs beginning with a podrelifectiakes parsing
easier), whereas the compiler actually wado look for pod escapesen in the middle of a paragraph.
This means that the following secret stufll be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldrt’'rely upon thevarn() being podded out fover. Not all pod translators are well-
behaed in this regard, and perhaps the compiler will become pickier.

One may also use pod diregs to quickly comment out a section of code.

Plain Old Comments (Not!)

Perl can process line diregs, much lile the C preprocessoiJsing this, one can control Perliidea of
filenames and line numbers in error caming messages (especially for strings that are processed with
eval()). Thesyntax for this mechanism is the same as for most C preprocessors: it matchgsléne re
expression

example: '# line 42 "new_filename.plx
n# \s*
line\s+ (\d+) \s*
(2\s("?)([M+H\2)? \s*
$Ix

with $1 being the line number for the next line, a8l being the optional filename (specified with or
without quotes).

perl v5.8.6 2004-11-05 15

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

16

There is a fairly obvious gotcha included with the line divectbebuggers and profilers will only stathe
last source line to appear at a particular line number ixea §le. Careshould be taken not to cause line
number collisions in code yalilike to cebug later.

Here are some examples that you should be able to type into your command shell:

% perl

| ine 200 "bzzzt"

t he ‘#' on the previous line must be the first char on line
die 'foo’;

__END__

foo at bzzzt line 201.

% perl

| ine 200 "bzzzt"

eval qg[\n#line 2001 "\ndie 'foo’]; print $@;
__END__

foo at - line 2001.

% perl

eval gq[\n#line 200 "foo bar"\ndie 'foo’]; print $@;
__END__

foo at foo bar line 200.

% perl

| ine 345 "goop"

eval "\n#line". LINE__ .’™._FILE__ ."\"\ndie 'foo™;
print $@;

__END__

foo at goop line 345.

2004-11-05 perl v5.8.6

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

NAME
perldata — Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and assamiayis of scalars, known as
“hashes! A scalar is a single string (of yarsize, limited only by the \@ilable memory), numberor a
reference to something (which will be discussed in perlrBfdrmal arrays are ordered lists of scalars
indexed by number starting with 0. Hashes are unordered collections of scalar valuexedday their
associated stringely

Values are usually referred to by name, or through a named reference. The first character of the name tells
you to what sort of data structure it refefhe rest of the name tells you the particular value to which it
refers. Usuallythis name is a singlelentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by
(or by the slightly archait); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (seé®ackages’in perlmod for details).It's possible to substitute

for a simple identifieran expression that produces a reference to the value at runfirhis. is described in

more detail bely and in perlref.

Perl also has its own built-iraviables whose names dbfollow these rules.They havestrange names so
they don't accidentally collide with one of your normadrables. Stringthat match parenthesized parts of
a reqular expression are s under names containing only digits after th¢see perlop and perlre)n
addition, seeral special variables that provide windows into the innerkimg of Perl hae rames
containing punctuation characters and control characters. These are documented in perlvar.

Scalar values arewadys named with '$’, een when referring to a scalar that is part of an array or a hash.
The '$’ symbol works semantically lig the English word ‘the” in that it indicates a single value is

expected.
$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb’} # the 'Feb’ value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by '@’, which works rautle Mord
“these’or ‘‘those’ does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a’,'c’} # same as ($days{'a’},$days{’c’})

Entire hashes are denoted by "%’
%days # (keyl, vall, key2, val2 ...)

In addition, subroutines are named with an initial '&’, though this is optional when unambiguous, just as
the word ‘do” is often redundant in English. Symbol table entries can be named with an initiaut*', b
you dont really care about that yet (ifer :-).

Every variable type has its own namespace, as\iwaaon-variable identifiers. This means that you can,
without fear of conflict, use the same name for a scald@hle, an arrgyr a lkash — oyfor that matterfor

a filehandle, a directory handle, a subroutine name, a format name, or aTlaiseineans tha$foo and
@foo are two different \ariables. lialso means th&foo[l] is a part of@foo, not a part ofsfoo . This
may seem a bit weird, but thaitkay, because it is weird.

Because variable referencewayfs start with '$’, '@’, or '%’, the ‘reserved’words arert'in fact resered
with respect to variable name$hey are resered with respect to labels and filehandlesyéar, which
don't havean initial special characteiYou cant havea filehandle namedlo6g’’, for instance. Hint: you
could say open(LOG,'logfile”) rather than open(log,’logfile’) . Using uppercase
filehandles also impkes readability and protects you from conflict with future reservedda. Casds
significant——"FOQ", “Foo”, and ‘foo’’ are all different names.Names that start with a letter or
underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the
appropriate typeFor a description of this, see perlref.

perl v5.8.6 2004-11-05 17

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

18

Names that start with a digit may contain only more digitames that do not start with a letter
underscore, digit or a caret (i.a.control character) are limited to one chargatay., $%or $$. (Most of
these one character nameséa pedefined significance to Perkor instance$$ is the current process
id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements okthe conte
around the operation oalue. Thereare two major contexts: list and scalaCertain operations return list
values in contexts wanting a list, and scalar values otherwfsthis is true of an operation it will be
mentioned in the documentation for that operation. In other words, \Reldaxds certain operations based

on whether the expected return value is singular or pliBame words in English work thisay like

“fish” and “sheep”.

In a reciprocal fashion, an operation ides either a scalar or a list context to each of garaents. Br
example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> opgevatamh responds by reading one line from
STDIN and passing it back to the integer operation, which will then find thgeintalue of that line and
return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to veadlme available up to the
end of file, and pass that list of lines back to the sort routine, which will then sort those lines and return
them as a list to whater the context of the sort was.

Assignment is a little bit special in that it uses its lefuanent to determine the context for the right
argument. Assignmertb a scalar wluates the right-hand side in scalar cahtevhile assignment to an
array or hashwaluates the righthand side in list coxtte Assignmento a list (or slice, which is just a list
anyway) alsoeuates the righthand side in list context.

When you use these warnings pragma or Ped —w command-line option, you may seamvings
about useless uses of constants or functiorg@id' contet”’. Void context just means the value has been
discarded, such as a statement containing tndgd"; or getpwuid(0); . It still counts as scalar
context for functions that care whether or not they’re being called in list context.

Userdefined subroutines may choose to care whethgrateebeing called in a void, scalar list context.
Most subroutines do not need to botithough. That because both scalars and lists are automatically
interpolated into listsSee ‘wantarray’ in perlfunc for hav you would dynamically discern your functien’
calling context.

Scalar values

All data in Perl is a scalaan aray of scalars, or a hash of scala#sscalar may contain one single value in
ary of three different flaors: a numbera gring, or a reference. In general, gersion from one form to
another is transparent. Although a scalar may not directly hold mulaples; it may contain a reference
to an array or hash which in turn contains multiple values.

Scalars arem’necessarily one thing or anothérheres no pace to declare a scalaanable to be of type

“string’, type “number’, type “‘reference’, or anything else. Because of the automatic v@sion of

scalars, operations that return scalars tdo@éd to care (and in fact, cannot care) whether their caller is
looking for a string, a numbeor a ieference. Peiik a contextually polymorphic language whose scalars

can be strings, numbers, or references (which includes objects). Although strings and numbers are
considered pretty much the same thing for nearly all purposes, references are strongly—typed, uncastable
pointers with builtin reference-counting and destructeogation.

A scalar value is interpreted aRUE in the Boolean sense if it is not the null string or the number O (or its
string equialent, “0’’). The Boolean contet is just a special kind of scalar context where no/esion to
a dring or a number isver performed.

There are actually twvarieties of null strings (sometimes referred to‘aspty” strings), a defined one

and an undefined one. The defined version is just a string of length zero, slich &ke undefined

version is the value that indicates that there is no real value for something, such as when there was an error
or at end of file, or when you refer to an uninitializediable or element of an array or hash. Although in

2004-11-05 perl v5.8.6

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

early versions of Perl, an undefined scalar could become defined when first used in apdeiiegea
defined value, this no longer happersept for rare cases of awuteification as explained in perlrefyou

can use thdefined(Joperator to determine whether a scalar value is defined (this has no meaning on arrays
or hashes), and thendef()operator to produce an undefined value.

To find out whether a gén gring is a valid non-zero numheét's ometimes enough to test it against both
numeric 0 and also lexicdD'’' (although this will cause noises if warnings are ofat's because strings
that arent numbers count as 0, just asytu® in awk:

if (Bstr == 0 && Pstrne "0") {
warn "That doesn’t look like a number";

}

That method may be best because otherwise ymnitwreat IEEE notations lilke NaN or Infinity
properly At other times, you might prefer to determine whether string data can be used numerically by
calling thePOSIX::strtod()function or by inspecting your string with a regular expression (as documented

in perlre).
warn "has nondigits" if N\D/,
warn "not a natural number" unless /"\d+$/; # rejects -3
warn "not an integer" unless /"-\d+$/; # rejects +3
warn "not an integer" unless /"[+-]?\d+$/;
warn "not a decimal number" unless /"-?2\d+\.2\d*$/; # rejects .2
warn "not a decimal number" unless /*-?(?:\d+(?:\.\d*)? O\d+)$/;
warn "not a C float"
unless /"([+-]?)(?=\d OAd)\d*(\\d*)?([Ee]([+-]?\d+)) ?$/;

The length of an array is a scalalue. You may find the length of arrg@days by evaluating $#days |,

as incsh Howeva, this isnt the length of the array; &'the subscript of the last element, which is a
different value since there is ordinarily a Oth eleméssigning to$#days actually changes the length of
the array Shortening an array this way destroys intervenirdu®s. Lengtheningn array that as
previously shortened does not reepvalues that were in those elements. (It used to do so in Perl 4, but we
had to break this to malaure destructors were called when expected.)

You can also gain some minuscule measure fidiency by pre-extending an array that is going to get big.
You can also extend an array by assigning to an element thatieafnd of the arrayYou can truncate an
array down to nothing by assigning the null list () to it. The following arevelguit:

@whatever = ();
$#whatever = -1,

If you evaluate an array in scalar cortgit returns the length of the arragNote that this is not true of
lists, which return the last value, dkhe C comma operatonor of built-in functions, which return
whatever they feel like returning.) Thédollowing is alvays true:

scalar(@whatever) == $#whatever - $[+ 1;

Version 5 of Perl changed the semantic$of files that dort' set the value o$[no longer need to arry
about whether another file changed &sue. (Inother words, use [is deprecated.) So in general you
can assume that

scalar(@whatever) == $#whatever + 1;
Some programmers choose to use an explicitesion so as to le& rothing to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in scalar coxtgit returns false if the hash is emptythere are ankey/value pairs,

it returns true; more preciselhe \alue returned is a string consisting of the number of usekbts and
the number of allocatedubkets, separated by a slashhis is pretty much useful only to find out whether
Perl’s internal hashing algorithm is performing poorly on your data Bet.example, you stick 10,000
things in a hash, butvaluating %HASHN scalar conte reveals "1/16" , which means only one out of
sixteen lickets has been touched, and presumably contains all 10,000 of your items. Thigj@nsed to
happen.

You can preallocate space for a hash by assigning tdkeys) function. Thisrounds up the allocated
buckets to the next power of two:

perl v5.8.6 2004-11-05 19

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

20

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified inyaaf the following floating point or integer formats:

12345

12345.67

23E-10 # a very small number
3.14 15 92 # a very important number
4 294 967 296 # underscore for legibility
Oxff # hex

Oxdead_beef # more hex

0377 # octal

0b011011 # binary

You ae allowed to use underscores (underbars) in numeric literals between digitgtitityie You could,
for example, group binary digits by threes (as for a Unix-style magerent such as 0b110_100_100) or
by fours (to represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double qudtkey work much lile quotes in the
standard Unix shells: double-quoted string literals are subject to backslastriahievsubstitution; single-
guoted strings are not (except for and\\). The usual C-style backslash rules apply for making
characters such as newline, tab, etc., as well as some muire ferms. See “Quote and Quotedik
Operators’in perlop for a list.

Hexadecimal, octal, or binaryepresentations in string literals (e.g. 0fare not automatically comrted
to their intger representationThe hex()andoct() functions mak these cowversions for you. Seehex” in
perlfunc and “oct’in perlfunc for more details.

You can also embed newlines directly in your strings, i.ey tam end on a different line than thieegn.

This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote characterhich may be much further on in the scriMariable substitution inside
strings is limited to scalar variables, arrays, and array or hash dlicegher words, names beginning with

$ or @, bllowed by an optional bracketed expression as a subscript.) The following cpdenserints

out "The price is $100."

$Price ='$100’; # not interpolated
print "The price is $Price.\n"; # i nterpolated

There is no double interpolation in Perl, so$1€0 is left as is.

As in some shells, you can enclose ttaiable name in braces to disambiguate it from vVahg
alphanumerics (and underscoredpu must also do this when interpolating a variable into a string to
separate the variable name from a following double-colon or an apostrophe, sinceothlddgevotherwise
treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/peri\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl wouldugalooked for a$whospeak , a$who::0 , and a$who’s variable. The
last two would be theb0 and thebs variables in the (presumably) non-existent packape.

In fact, an identifier within such curlies is forced to be a string, asyisiaaple identifier within a hash
subscript. Neitheneed quoting.Our earlier @ample,$days{'Feb’} can be written a$days{Feb}

and the quotes will be assumed automaticalByt anything more complicated in the subscript will be
interpreted as an expression.

Vesion Strings

Note: Version Strings (v-strings) ke keen deprecatedThey will not be aailable after Perl 5.8.The
marginal benefits of v—strings were greatly outweighed by the potential for Surprise and Confusion.

A literal of the formv1.20.300.4000 is parsed as a string composed of characters with the specified
ordinals. Thisform, known as v-strings, provides an altewgtimore readable way to construct strings,
rather than use the sowleat less readable interpolation fort{1}\x{14}\x{12c}\x{fa0}" .

This is useful for representing Unicode strings, and for comparing vefsiombers’ using the string

2004-11-05 perl v5.8.6

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

comparison operatorsmp, gt , It etc. Ifthere are tw or more dots in the literal, the leadingmay be

omitted.
print v9786; # prints UTF-8 encoded SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by botiguire anduse for doing a ersion check.The$V special ariable

also contains the running Perl interprezegrsion in this form. Seé$™V’'’ in perlvar Note that using the
v-strings for IPv4 addresses is not portable unless you also useth&ton(Jinet_ntoa()routines of the
Socket package.

Note that since Perl 5.8.1 the single-number v—stringe {6) are not v—strings before the> operator
(which is usually used to separate a hash kom a hash alue), instead theare interpreted as literal
strings (V65"). They were v-strings from Perl 5.6.0 to Perl 5.8.0, but that caused more confusion and
breakage than good. Multi-number v-stringselik65.66 and 65.66.67 continue to be v-strings
always.

Special Literals

The special literals FILE , LINE__, and _ PACKAGE_ _represent the current filename, line
number and package name at that point in your progrdihey may be used only as separatectiog; thg
will not be interpolated into strings. If there is no current package (due to an paggbge; directive),
__PACKAGE_ _is the undefined value.

The two control characters "D and “Z, and the token&ND __and _ DATA__ may be used to indicate
the logical end of the script before the actual end of filey faltowing text is ignored.

Text after _ DATA__ kut may be read via the filehandPACKNAME::DATA where PACKNAMES the
package that was current when theDATA __ token was encountered.he filehandle is left open pointing
to the contents after DATA . It is the programs responsibility toclose DATA when it is done
reading from it. For compatibility with older scripts written before DATA__ was introduced, END
behaes like _ DATA__ in the topleel script (but not in files loaded wittequire or do) and leaves the
remaining contents of the file accessiblemi@n::DATA .

See SelfLoader for more description of DATA__, and an example of its use. Note that you cannot read
from the DATA filehandle in aBEGIN block: the BEGIN block is eecuted as soon as it is seen (during
compilation), at which point the corresponding ATB.__ (or __END_)token has not yet been seen.

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quotedTstesg.
are known asbarewords”. As with filehandles and labels, a baad that consists entirely ofwercase
letters risks conflict with future reserved words, and if you useuskewarnings pragma or the-w
switch, Perl will warn you about grsuch words. Somepeople may wish to outlabaravords entirely If
you say

use strict 'subs’;

then ay baravord that wuld NOT be interpreted as a subroutine call produces a compile-time error
instead. Theestriction lasts to the end of the enclosing blo&k. inner block may countermand this by
sayingno strict 'subs’
Array Joining Delimiter
Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the$" variable $LIST_SEPARATORIf “use English;’ is specified), space by dafilt. The
following are equialent:

$temp = join($", @ARGV);

system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate ambiguity:
Is /$foo[bar]/ to be interpreted asb{foo}[bar]/ (where[bar] is a character class for the
regular expression) or a${foo[bar]}/ (where[bar] is the subscript to arra@foo)? If @foo

doesnt otherwise exist, then &' doviously a character clas$f @foo exists, Perl taks a good guess about

[bar] , and is almost abays right. If it does guess wrong, or if you're just plain paranoid, you can force

perl v5.8.6 2004-11-05 21

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

22

the correct interpretation with curly braces asvabo

If you're looking for the information on koto use here—documents, which used to be here sthaén
moved to “Quote and Quote-li& Operators’in perlop.

List value constructors

List values are denoted by separating individwdu®s by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a lisalue, the value of what appears to be a list literal is simply the value of the
final element, as with the C comma operatar example,

@foo = (’cc’, *-E’, $bar);
assigns the entire list value to ar@foo, but
$foo = ('cc’, -E’, $bar);

assigns thealue of \ariable$bar to the scalar ariable$foo . Note that the value of an actual array in
scalar context is the length of the array; the following assigns the val&&to

@foo = (’cc’, *-E’, $bar);

$foo = @foo; # $foo gets 3
You may hare an optional comma before the closing parenthesis of a list literal, so that you can say:
@foo = (
1|
2|
3|
);

To use a here-document to assign an awag line per element, you might use an approaehthiis:

@sauces = <<End_Lines =~ m/(\S.x\S)/qg;
normal tomato
spicy tomato
green chile
pesto
white wine
End_Lines

LISTs do automatic interpolation of sublists. That is, whersa is evaluated, each element of the list is
evduated in list context, and the resulting listlne is interpolated intaIST just as if each indidual
element were a memberldBT. Thus arrays and hashes lose their identity in a HSMe list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements @foo followed by all the elements a@®bar, followed by all the elements
returned by the subroutine named SomeSub called in list contextyddllby the ky/value pairs of
%glarch . To make a Ist reference that do@&T interpolate, see perlref.

The null list is represented by (). Interpolating it in a list has fecef Thus((),(),()) is equvalent to ().
Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

This interpolation combines with thadts that the opening and closing parentheses are opticnap{e

when necessary for precedence) and lists may end with an optional comma to mean that multiple commas
within lists are Igd syntax. The listl,,3 is a concatenation of twlists,1, and3, the first of which ends

with that optional commal,,3 is (1,),(3) is 1,3 (And similarly for1,,,3 is (1,),(,),3 is

1,3 and so on.) Not that we'advise you to use this obfuscation.

A list value may also be subscriptedelik rormal array You must put the list in parentheses toid
ambiguity For example:

Stat returns list value.
$time = (stat($file))[8];

2004-11-05 perl v5.8.6

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = ('a’,’b’,’c’,’d’,’e’, ")[$digit-10];
A "reverse comma operator".
return (pop(@foo),pop(@f00))[0];
Lists may be assigned to only when each element of the list is ig&lfdessign to:
(%$a, $b, $c) = (1, 2, 3);
($map{red’}, $map{’blue’}, Smap{'green’}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assignuredef in a list. This is useful for throwingway some of
the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar context returns the number of elements produced kgréssien on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set$xto 3, not 2
$x = (($foo,$bar) = 1()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpfete8@as

It's dso the source of a useful idiom foreeuting a function or performing an operation in list cahtnd
then counting the number of return values, by assigning to an empty list and then using that assignment in
scalar context. For example, this code:

$count = () = $string =" \d+/g;

will place into$count the number of digit groups found $string . This happens because the pattern
match is in list context (since it is being assigned to the empty list), and will therefore return a list of all
matching parts of the string. The list assignment in scalar xtowi# translate that into the number of
elements (here, the number of times the pattern matched) and assign®batirto . Note that simply

using

$count = $string =~ N\d+/g;

would not hae worked, since a pattern match in scalar ceintdgll only return true or false, rather than a
count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hashyatere in the list, but the first one in the list will soak up all the
values, and anything after it will become undefined. This may be usefuhyrf)ar local().

A hash can be initialized using a literal list holding pairs of items to be interpretectpsalla value:

same as map assignment above
%map = ('red’,0x00f,’blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are often interchangeables thathe case for hashes. Just because
you can subscript a list value dila rormal array does not mean that you can subscript aalis¢\as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into &y/value pairs. That' why it's good to use references sometimes.

It is often more readable to use tire operator betweendy/value pairs.The => operator is mostly just a
more visually distinctie synonym for a comma, it it also arranges for its left-hand operand to be
interpreted as a string— if it's a karevord that would be a t& simple identifier €> doesnt quote
compound identifiers, that contain double colons). This makes it nice for initializing hashes:

perl v5.8.6 2004-11-05 23

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,
);
or for initializing hash references to be used as records:
$rec ={
witch =>'Mable the Merciless’,
cat => 'Fluffy the Ferocious’,
date => '10/31/1776’,
2

or for using call-by-named-parameter to complicated functions:
$field = $query->radio_group(

name => ’group_nhame’,

values => ['eenie’,’meenie’,’minie’],
default => 'meenie’,

linebreak => 'true’,

labels => \%labels

);
Note that just because a hash is initialized in that order daeeah that it comes out in that orde&ee
“sort” in perlfunc for examples of hoto arrange for an output ordering.
Subscripts

An array is subscripted by specifying a dollar sif§jy (hen the name of the array (without the leadihg
then the subscript inside square betsk r example:

@myarray = (5, 50, 500, 5000);
print "Element Number 2 is", $myarray[2], "\n";

The array indices start with 0. A gative subscript retriges its value from the end. In ourxample,
$myarray[-1] would have been 5000, animyarray[-2] would have been 500.

Hash subscripts are similanly instead of square brackets curly brackets are used. For example:
%scientists =

(
"Newton" => "[saac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",
);

print "Darwin’s First Name is ", $scientists{"Darwin"}, "\n";

Slices

A common way to access an array or a hash is one scalar element at ¥otintan also subscript a list to
get a single element from it.

$whoami = $SENV{"USER"}; # one element from the hash
$parent = $ISA[0]; # one element from the array
$dir = (getpwnam("daemon"))[7]; # likewise, but with list

A slice accesses geral elements of a list, an arfay a lash simultaneously using a list of subscripts.
more corenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @olks[0,-1]; # array slice
@them = @folks[O .. 3]; # array slice
($who, $home) = @&NV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

24 2004-11-05 perl v5.8.6

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

@daysJ[3..5] = gw/Wed Thu Fri/;

@colors{’red’,’blue’,’green’}

(0xff0000, 0x0000ff, 0x00ff00);
@folksJO0, -1] @olks[-1, OF;

The previous assignments are exactly eaent to

($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
($colors{’red’}, $colors{’blue’}, $colors{’green’})

= (0xff0O000, 0x0000ff, 0x00ff00);
($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash thdicitig, aforeach construct will alter
some — oeven dl — of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }
foreach (@hash{qw[keyl key2]}) {

s/M\s+//; # trim leading whitespace
s\s+$//; # trim trailing whitespace
s/(w+)Au\L$l/g; # "titlecase" words
}
A slice of an empty list is still an empty list. Thus:
@a = ()[1,0]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (0,1)[2,3]; # @c has no elements
But:
@a = (1)[1,0]; # @a has two elements
@b = (1,undef)[1,0,2]; # @b has three elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%-8s %s\n", $user, $home;
}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the right-
hand side of the assignment. The null list contains no elements, so when the passworhéilgsted, the
result is 0, not 2.

If you're confused about whyou use an '@’ there on a hash slice instead of a '%’, think ofatttils.

The type of bracket (square or curlyvgms whether i an aray or a hash being looked at. On the other
hand, the leading symbol ('$’ or '@’) on the array or hash indicates whether you are getting back a singular
value (a scalar) or a plural one (a list).

Typeglobs and Filehandles

Perl uses an internal type calledy@eglobto hold an entire symbol table entrfhe type prefix of a
typeglob is a*, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, butwmadhat we hae real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:
*this = *that;

makes$this an alias fosthat , @this an alias for@that , %this an alias fofsthat , &this an alias
for &that, etc. Much safer is to use a reference. This:

local *Here::blue =\$There::green;

temporarily maks$Here::blue an alias fol$There::green , but doesrnt make @Here::blue an

alias for @There::green , or %Here::blue an alias for%There::;green , ec. See“ Symbol
Tables’ in perlmod for more xamples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to creafdetandles. Ifyou need to
use a typeglob to ga avay a filehandle, do it this way:

perl v5.8.6 2004-11-05 25

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

$fth = *STDOUT;
or perhaps as a real referenceg likis:
$fth = *STDOUT;
See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle usinptad) operator These last until their block
is exited, but may be passed baékr example:

sub newopen {
my $path = shift;

local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}

$fh = newopen('/etc/passwd’);

Now that we hse te *foo{THING} notation, typeglobs aren'used as much for filehandle
manipulations, although thee still needed to pass brandanéle and directory handles into or out of
functions. Thas because'HANDLE{IO} only works if HANDLE has already been used as a hantite.
other words, *FH must be used to createweymbol table entries*foo{THING} cannot. Whenn
doubt, useéFH.

All functions that are capable of creating filehandieset() opendir() pipe() sodketpair(), sysopen()
soket(), and accept() automatically create an angmous filehandle if the handle passed to them is an
uninitialized scalar ariable. This allows the constructs such agen(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that wilhamiently be closed automatically
when the scope ends, pided there are no other references to them. This largely eliminates the need for
typeglobs when opening filehandles that must be passed around, as in the following example:

sub myopen {
open my $fh, "@_"
or die "Can’'t open’'@_": $!";

return $fh;
}
{
my $f = myopen('</etc/motd");
print <$f>;
$f i mplicitly closed here
}
Note that if an initialized scalar variable is used instead the result feyedif my $fh="zzz’;
open($fh, ...) is equvalent toopen(*{'zzz'}, ...) . use strict 'refs’ forbids such
practice.

Another way to create anonymous filehandles is with the Symbol module or with the 10::Handle module
and its ilk. These modules V& te advantage of not hiding different types of the same name during the
local(). See the bottom of 8pen() i n perlfunc for an example.

SEE ALSO
See perlvar for a description of Psrkuilt-in variables and a discussion ofy# variable names.See
perlref, perlsub, and “Symbol ables’ in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

26 2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

NAME
perlop — Perl operators and precedence

DESCRIPTION
Operator Precedence and Associativity

Operator precedence and associativity work in Perl more or ledhdikdo in mathematics.

Opeiator precedenceneans some operators aveleated before others-or example, in2 + 4 * 5 | the
multiplication has higher precedence4d® 5 is evaluated first yielding2 + 20 == 22 and not6 *
5 == 30.

Opeiator associativitydefines what happens if a sequence of the same operators is used one after another:
whether the wauator will evaluate the left operations first or the righfor example, in8 - 4 - 2,
subtraction is left associat © Perl evaluates the expression left to rigl8. — 4 is evaluated first making

the expressiod — 2 == 2 andnot8 - 2 == 6.

Perl operators va te following associatity and precedence, listed from highest precedencewtesto
Operators borrowed from C keep the same precedence relationship with eacrevethevhere Cs
precedence is slightly sevg. (This makes learning Perl easier for C folk®ith very fav exceptions,
these all operate on scalar values onty array values.

left terms and list operators (leftward)
left ->

nonassoc ++ -

right **

right ! "\ a ndunary + and -

left = I~

left * ! % X

left + -

left << >>

nonassoc named unary operators
nonassoc < ><=>=lJtgtleg e

nonassoc == l=<=>eqgnecmp
left &

left o-

left &&

left m

nonassoc .

right ?:

right = = -=*=etc.

left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators ane in precedence order.
Many operators can beverloaded for objects. See@load.

Terms and List Operators (Leftward)

A TERM has the highest precedence in Pdithey include variables, quote and quoteeligperators, ay
expression in parentheses, and/ donction whose guments are parenthesizedctually, there arert’

really functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around thgaments. Thesare all documented in perlfunc.

If any list operator grint(), etc.) or ary unary operatorgndir(), etc.) isfollowed by a left parenthesis as the
next token, the operator and arguments within parentheses arettake of highest precedence, just kk
normal function call.

In the absence of parentheses, the precedence of list operators ptioh assort , or chmod is either
very high or very lev depending on whether you are looking at the left side or the right side of the aperator
For example, in

perl v5.8.6 2004-11-05 27

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

28

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324
the commas on the right of the sort avel@ated before the sort, but the commas on the left\ataated

after In other words, list operators tend to gobble up all arguments thawvf@hal then act lik a $mple
TERM with regard to the precedingxgression. Beareful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or t his.
print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably does’do what you expect at first glanc@he parentheses enclose the argument ligbriat
which is ealuated (printing the result dffoo & 255). Thenone is added to the return valuepoint
(usually 1). The result is somethingdikis:

1+ 1, " \n" # Obviously not what you meant.
To do what you meant propetlyou must write:

print(($foo & 255) + 1, "\n");
See “Named Unary Operatorsbr more discussion of this.

Also parsed as terms are @ {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdits and{} .

See also “Quote and Quote-ilOperators’'toward the end of this section, as well as “I/O Operators”.

The Arrow Operator

"—>" s an infix dereference operatqust as it is in C and+€ If the right side is eitherfa.] ,{..} ,
ora(...) subscript, then the left side must be either a hard or symbolic reference to aa kashy or a
subroutine respeetily. (Or technically speaking, a location capable of holding a hard referencs,af it’
array or hash reference being used for assignment.) See perlreftut and perliref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method name or
a aubroutine reference, and the left side must be either an object (a blessed reference) or a class name (that
is, a package name). See perlobj.

Auto-increment and Auto-decrement

“++"and “—=""work as in C.That is, if placed before a variable, yiacrement or decrement thariable
by one before returning the value, and if placed afterement or decrement after returning the value.
$i=0; $=0;
print $i++; # prints 0
print ++3j; # prints 1

Note that just as in C, Perl doesdefinewhen the variable is incremented or decremented. You justkno
it will be done sometime before or after theue is returned. This also means that modifying@atble
twice in the same statement will lead to undefined behavidtoid statements like:

$i = $i ++;

print ++ $i + $i ++;
Perl will not guarantee what the result of thewahgatements is.

The auto-increment operator has a litthdr& builtin magic to it. If you increment a variable that is
numeric, or that hasver been used in a numeric context, you get a normal increment. wivlag the

variable has been used in only string contexts since it was set, and has a value that is not the empty string
and matches the pattefija—zA-Z]*[0-9]*\z/ , the increment is done as a string, preserving each
character within its range, with carry:

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

print ++($foo = '99’); # prints '100’
print ++($foo = 'a0’); # prints 'al’
print ++($foo = 'Az’); # prints '‘Ba’
print ++($foo = 'zz’); # prints 'aaa’

undef is aways treated as numeric, and in particular is changé@dhtefore incrementing (so that a post-
increment of an undef value will retudrather tharundef).

The auto-decrement operator is not magical.

Exponentiation

Binary “**' ' is the exponentiation operatoit binds e/en more tightly than unary minus, so —-2**4 is
—(2**4), not (-2)**4. (This is implemented using £pow(3) function, which actually arks on doubles
internally.)

Symbolic Unary Operators
Unary “I'" performs logical ngation, i.e., “not”. Seealsonot for a lower precedence version of this.

Unary ‘="’ performs arithmetic rggtion if the operand is numeric. If the operand is an identdigring
consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts with a
plus or minus, a string starting with the opposite sign is returi@uk effect of these rules is that
—barevord is equvalent to “~barevord”.

Unary '’ performs bitwise ngetion, i.e., 15 complement. Br example,0666 & "027 is 0640. (See
also ‘Integer Arithmetic’ and “Bitwise String Operators) Note that the width of the result is
platform—dependent: "0 is 32 bits wide on a 32-bit platform,84 bits wide on a 64-bit platform, so if
you are expecting a certain bit width, remember to use the & operator to sk @fcess bits.

Unary ‘+'" has no effect whatswer, even on grings. Itis useful syntactically for separating a function
name from a parenthesized expression thatldvotherwise be interpreted as the complete list of function
arguments. (Seexamples abee under “Terms and List Operators (Leftward)”.)

Unary ‘'’ creates a reference to whade follows it. See perlreftut and perlreDo not confuse this
behaior with the behavior of backslash within a string, although both forms deegahe notion of
protecting the next thing from interpolation.

Binding Operators

Binary “=""" binds a scalar expression to a pattern match. Certain operations search or modify the string
$_ by dehwult. Thisoperator makes that kind of operation work on some other string. The Ggimemt

is a search pattern, substitution, or transliteratibhe left argument is what is supposed to be searched,
substituted, or transliterated instead of theadif$. When used in scalar comte the return glue
generally indicates the success of the operatBeghavior in list context depends on the particular operator

See “Regexp Quote-LikOperators'f or details and perlretut for examples using these operators.

If the right agument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time.

Binary “I”""is just like “=""" except the return value is gaed in the logical sense.

Multiplicati ve Operators
Binary “*" ' multiplies two numbers.
Binary “/"* divides two numbers.

Binary “%’’ computes the modulus of banumbers. Gien integer operand$a and$b: If $b is positie,
then$a % $b is $a minus the largest multiple &b that is not greater thaba. If $b is negative, then
$a % $b is $a minus the smallest multiple &b that is not less thada (i.e. the result will be less than
or equal to zero). Note that whase integer is in scope,'%’’ gives you direct access to the modulus
operator as implemented by your C compil€his operator is not as well defined forgetive qperands,
but it will execute faster.

Binary “X'’ i s the repetition operatorin scalar context or if the left operand is not enclosed in parentheses,
it returns a string consisting of the left operand repeated the number of times specified by the right operand.
In list context, if the left operand is enclosed in parentheses, it repeats the list. If the right operand is zero

perl v5.8.6 2004-11-05 29

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

or ngdive, it returns an empty string or an empty list, depending on the context.

print -’ x 80; # print row of dashes

print "\t" x ($tab/8), ' ' x ($tab%8); # t ab over
@ones = (1) x 80; # a |listof801's

@ones = (5) x @ones; # setall elements to 5

Additi ve Operators

Binary “+’ returns the sum of twnumbers.
Binary “~'’' returns the difference of wnumbers.
Binary “.” concatenates twdrings.

Shift Operators

Binary “<<’’ returns the &lue of its left argument shifted left by the number of bits specified by the right
argument. Aguments should be irgers. (Sealso “Integer Arithmetic”.)

Binary “>>"" returns the value of its left argument shifted right by the number of bits specified by the right
argument. Aguments should be irgers. (Sealso “Integer Arithmetic”.)

Note that both'«<’’ and “>>"" in Perl are implemented directly usingc<’ and “>>"" in C. If use

integer (see ‘Integer Arithmetic”) is in force then signed C igers are used, else unsigned Cgats
are used. Either ay, the implementation ishigoing to generate results ¢gar than the size of the igter
type Perl was built with (32 bits or 64 bits).

The result of wverflowing the range of the integers is undefined because it is undefined also in C. In other
words, using 32-bit ingers,1 << 32 is undefined. Shifting by a ngaive rumber of bits is also
undefined.

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.

If any list operator grint(), etc.) or ary unary operatorghdir(), etc.) isfollowed by a left parenthesis as the
next token, the operator andgaiments within parentheses are taken to be of highest precedencegjast lik
normal function call.For example, because named unary operators are higher preceden@& than

chdir $foo [die; # (chdir $foo) [die

chdir($foo) [die; # (chdir $foo) [die

chdir ($foo) [die; # (chdir $foo) [die

chdir +($foo) [die; # (chdir $foo) [die

but, because * is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)

chdir($foo) * 20; # (chdir $foo) * 20

chdir ($foo) * 20; # (chdir $foo) * 20

chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)

rand(10) * 20; # (rand 10) * 20

rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)
Regarding precedence, the filetest operatorss tik, —M etc. are treated li&k ramed unary operatorsuto
they don't follow this functional parenthesis rule. That means, for example;-ft&file).".bak" is

equivaent to—f "$file.bak"
See also “Terms and List Operators (Leftward)”.

30 2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Relational Operators

Binary “<’’ returns true if the left argument is numerically less than the right argument.

Binary “>"' returns true if the left argument is numerically greater than the right argument.

Binary “<="'returns true if the left argument is numerically less than or equal to the right argument.
Binary “>="' returns true if the left argument is numerically greater than or equal to the right argument.
Binary “It'’ returns true if the left argument is stringwise less than the right argument.

Binary “gt” returns true if the left argument is stringwise greater than the right argument.

Binary “le”’ returns true if the left argument is stringwise less than or equal to the right argument.
Binary “ge” returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary “=="'returns true if the left argument is numerically equal to the right argument.
Binary “!="" returns true if the left argument is numerically not equal to the right argument.

Binary “<=>""returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the rightgument. Ifyour platform supports NaNs (not—-a—numbers) as numaetiges,

using them with‘<=>"" returns undef. NaN is nok"’, *'=="", *'>"’, '<="" or *'’>="" anything (esen NaN),

so those 5 returrafse. NaN != NaN returns true, as does NaN != anything else. If your platform tdoesn’
support NaNs then NaN is just a string with numeric value 0.

perl -le '$a = NaN; print "No NaN support here" if $a == $a’
perl -le '$a = NaN; print "NaN support here" if $a != $a’

Binary “eq” returns true if the left argument is stringwise equal to the right argument.
Binary “ne” returns true if the left argument is stringwise not equal to the right argument.

Binary “cmp” returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to,
or greater than the right argument.

“It', “le’, “‘ge”, “‘gt’” and “cmp” use the collation (sort) order specified by the current localsef
locale isin efect. Segerllocale.

Bitwise And

Binary “&’ ' returns its operands ANDed together bit by bit. (See diseger Arithmetic’ and “Bitwise
String Operators”.)

Note that ‘&'’ has lower priority than relational operators, so for example the brackets are essential in a
test like

print "Even\n" if ($x & 1) == 0;

Bitwise Or and Exclusive Or

Binary “[0' returns its operands ORed together bit by bit. (See digeder Arithmetic’ and “Bitwise
String Operators”.)

Binary “’ returns its operands XORed together bit by KBee also‘Integer Arithmetic’ and “Bitwise
String Operators”.)

Note that “Or and “’’ have lower priority than relational operators, so for example the brackets are
essential in a test like

print "false\n" if (8 0 2) 1= 10;

C-style Logical And

Binary “&&'’ ’ performs a short-circuit logicédND operation. Thais, if the left operand isafse, the right
operand is notven evaluated. Scalaor list context propagates down to the right operand if wakiated.

perl v5.8.6 2004-11-05 31

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

32

C-style Logical Or

Binary “[M" performs a short-circuit logicabR operation. Thats, if the left operand is true, the right
operand is notven evaluated. Scalaor list context propagates down to the right operand if wakiated.

The [and&& operators return the last valwakeiated (unlile Cs [and&&, which return 0 or 1). Thus, a
reasonably portable way to find out the home directory might be:

$home = $ENV{HOME} [$ENV{LOGDIR?} [
(getpwuid($<))[7] [0 die "You're homeless\n";

In particular this means that you shouldnise this for selecting betweendwsggregaes for assignment:

@a=@b M @c; # this is wrong
@a = scalar(@b) M @c; # really meant this
@a=@b? @b: @c; # t his works fine, though

As more readable alternas to && and[when used for control flg Perl providesand andor operators
(see belw). Theshort-circuit behavior is identical. The precedence'afd” and “or’’ is much lower,
however, s0 that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would/adeen written like this:

unlink("alpha", "beta", "gamma")
@ (gripe(), next LINE);

Using “or” for assignment is unlikely to do what you want; seevhelo

Range Operators

Binary “..” i s the range operatowhich is really tvo different operators depending on the critdn list
contet, it returns a list of values counting (up by ones) from the left value to the dgld. vifthe left

value is greater than the righalue then it returns the empty list. The range operator is useful for writing
foreach (1..10) loops and for doing slice operations on arrays. In the current implementation, no
temporary array is created when the range operator is used apthgs®n irforeach loops, but older
versions of Perl might burn a lot of memory when you write somethiegHik:

for (1..1_000_000) {
code
}

The range operator also works on strings, using the magical auto—increment, wee belo

In scalar context,’..” r eturns a booleanalue. Theoperator is bistable, l&ka fip—flop, and emulates the
line-range (comma) operator skd awk, and various editors. Each..” operator maintains itswmn
boolean state. It isafse as long as its left operandatsé. Oncehe left operand is true, the range operator
stays true until the right operand is tra&TERwhich the range operator becomes falsairag It doesn’t
become false till the metime the range operator isatuated. Itcan test the right operand and become
false on the samevduation it became true (as awk), but it still returns true once. If you ddnvant it to

o

test the right operand till the xteevaluation, as irsed just use three dots.(:") instead of tw. Inall other

“ o n “ on

regards, “.." behaves just like “..” d oes.

The right operand is notvauated while the operator is in théalse” state, and the left operand is not
evduated while the operator is in thH&ue” state. Theprecedence is a little lower thdfi and &&. The
value returned is either the empty string for false, or a sequence number (beginning with 1) fdhérue.
sequence number is reset for each range encounténedfinal sequence number in a range has the string
“ EQ” appended to it, which doedreffect its numeric value, but\gis you something to search for if you
want to exclude the endpoinlYou can exclude the beginning point by waiting for the sequence number to
be greater than 1.

If either operand of scalat.” i s a @nstant expression, that operand is considered true if it is eg)atio(
the current input line number (tBe variable).

To be pedantic, the comparison is actuatf(EXPR) == int(EXPR) , but that is only an issue if you
use a floating pointx@ression; when implicitly using. as described in the previous paragraph, the
comparison isnt(EXPR) == int($.) which is only an issue wheh is set to a floating pointalue

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

and you are not reading from a filEurthermore;'span” .. "spat" or2.18..3.14 will not do
what you want in scalar context because each of the operandsvauatesl using their intger
representation.

Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for

if ($.==101.%. ==200)...
next line if (1 .. I"$/); # skip header lines, short for

L0 ($.==1..19%);
s> 1if (I'$/ .. eof()); # quote body

parse mail messages
while (<>) {
$in_header = 1 ..717%,
$in_body = /% .. eof;
if ($in_header) {
...
} else {#in body
...
}

} ¢ ontinue {
close ARGV if eof; # reset $. each file

}
Heres a smple example to illustrate the difference between tleramge operators:
@lines = (" - Foo",
"01 - Bar",
"l - Baz",
- Quux");

foreach(@lines)

if (/O .. 11/)
{

}

print "$_\n";

}

This program will print only the line containingar”. If the range operator is changed.to , it will also
print the “Baz’ line.

And nov some examples as a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no-op
@foo = @foo[$#foo-4 .. $#foo]; # slice last 5 items

The range operator (in list corte makes use of the magical auto-increment algorithm if the operands are
strings. You can say

@alphabet = (A’ .. 'Z");

to get all normal letters of the English alphabet, or
$hexdigit= (0 .. 9, ’a’ .. 'f)[$num & 15];

to get a hexadecimal digit, or
@z2 =('01'..'31"); print $z2[$mday];

to get dates with leading zeros.the final value specified is not in the sequence that the magical increment
would produce, the sequence goes until the next value would be longer than the final value specified.

Because each operand igleated in integer form2.18 .. 3.14 will return two dements in list
context.

perl v5.8.6 2004-11-05 33

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

@list = (2.18 .. 3.14); # same as @list= (2 .. 3);

Conditional Operator

Ternary “?:" is the conditional operatpjust as in C. It works much kkan f-then—-else. Ithe agument
before the ? is true, the argument before the : is returned, otherwise the argument after the : isFeturned.
example:

printf "I have %d dog%s.\n", $n,
($n==1)2":"s"

Scalar or list context propagates downward into the 2nd or 3rd argument, wehisteelected.

$a = $ok ? $b : $c; # geta scalar
@a =3%0k ? @b : @c; # getan array
$a =%0k ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd argumenigablhealaes (meaning that you can
assign to them):

($a_or_b ? $a : $b) = $c;

Because this operator produces an assignable result, using assignments without parentheses will get you in
trouble. For example, this:

$a%2?%a+=10:%a+=2
Really means this:
(32 % 2) ? ($a +=10) : $a) +=2
Rather than this:
($a% 2) ? ($a +=10) : ($a +=2)
That should probably be written more simply as:
$a+=($a % 2)?10: 2;

Assignment Operators
“="is the ordinary assighment operator.
Assignment operators work as in C. That s,
$a +=2;
is equiaent to
$a=%a+ 2;

although without duplicating grside effects that dereferencing the Ivalue might triggsrh as frontie().
Other assignment operators work similarihe following are recognized:

k= += *= &= <<= &&=
= /= B >>= M=

Although these are grouped by familyey al have the precedence of assignment.

Unlike in C, he scalar assignment operator produces a vallddv Modifyingan assignment is egalent
to doing the assignment and then modifying the variable that was assigned to. This is useful for modifying
a wopy of something, lile this:

($tmp = $global) =" tr [A-Z] [a-Z];
Likewise,

($Pa +=2) *=3;
is equiaent to

$a +=2;
$a *=3;

34 2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Similarly, a list assignment in list context produces the list afues assigned to, and a list assignment in
scalar contet returns the number of elements produced by the expression on the right hand side of the
assignment.

Comma Operator

Binary “,” i s the comma operatoin scalar context it waluates its left argument, throws that valweag,
then @aluates its right argument and returns thetie. Thiss just like Cs comma operator.

In list context, it§ just the list argument separatand inserts both its arguments into the list.

The=> operator is a synonym for the comma, but forcgsveard to its left to be interpreted as a string (as
of 5.001). It is helpful in documenting the correspondence betwegnakd values in hashes, and other
paired elements in lists.

List Operators (Rightward)

On the right side of a list operatdt has very lev precedence, such that it controls all comma-separated
expressions found there. The only operators with lower precedence are the logical oparatgrsor”,
and “not”, which may be used tovaluate calls to list operators without the need for extra parentheses:

open HANDLE, "filename"
or die "Can’t open: $!\n";

See also discussion of list operators in “Terms and List Operators (Leftward)”.

Logical Not

Unary ‘not” returns the logical mggtion of the expression to its rightt’s the equialent of “I'* except for
the very lav precedence.

Logical And

Binary “and” returns the logical conjunction of thedveurrounding &pressions. I8 equivalent to &&
except for the very v precedence. Thigeans that it short—circuits: i.e., the right expressionakiated
only if the left expression is true.

Logical or and Exclusive Or

Binary “or’’ returns the logical disjunction of thedvaurrounding &pressions. I8 equivalent to [l except
for the very lov precedence. Thisakes it useful for control flow

print FH $data or die "Can’t write to FH: $!";

This means that it short—circuits: i.e., the right expressiondsiaed only if the left expression ial$e.
Due to its precedence, you should probabbichusing this for assignment, only for controMilo

$a = $b or $c; # bug: this is wrong
($a = $b) or $c; # r eally means this
$a=%b @ $c; # better written this way

However, when it's a Ist-context assignment and you're trying to usgl” f or control flav, you probably
need “or’ so that the assignment takes higher precedence.

@info = stat($file) [die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you couldwabys use parentheses.

Binary “xor’’ returns the xclusve-OR of the two surrounding &pressions. ltcannot short circuit, of
course.

C Operators Missing From Perl

Here is what C has that Perl doesn't:

unary & Address-of operatofBut see the “Voperator for taking a reference.)

unary * Dereference-address operafBerl's prefix dereferencing operators are typed: $, @, %, and &.)

perl v5.8.6 2004-11-05 35

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

(TYPE) Type-casting operator.

Quote and Quote-like Operators

While we usually think of quotes as literal values, in Pery thumction as operators, piding various

kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaiors, but also provides a way for you to choose your quote characteyfof tiem. Inthe following

table, &} represents gnpair of delimiters you choose.

Customary Generic Meaning Interpolates
af} Literal no
qq{} Literal yes

ax{} Command yes*
agw{} Word list no

/1 m{} Pattern match yes*

ar{} Pattern yes*

s{{} Substitution yes*

tr{}{} Transliteration no (but see below)
<<EOF here-doc yes*

* u nless the delimiter is .

Non-bracleting delimiters use the same character fore and aft, but the four sorts etdiacknd, angle,
square, curly) will all nest, which means that

g{foo{bar}baz}

is the same as
'foo{bar}baz’

Note, howeer, that this does notwabys work for quoting Perl code:
$s={ if(aeq"}") ... }; # WRONG

is a syntax errorThe Text::Balanced module (fromCPAN, and starting from Perl 5.8 part of the
standard distribution) is able to do this properly.

There can be whitespace between the operator and the quoting characégtsywber¥ is being used as
the quoting characteg#foo# is parsed as the stridigo , while g #foo# is the operatoq followed by
a omment. Itsargument will be taken from the next line. This allows you to write:

s {foo} # Replace foo
{bar} # with bar.

The following escape sequences a@lable in constructs that interpolate and in transliterations.

\t tab (HT, TAB)
\n newline (NL)

\r return (CR)

\f form feed (FF)

\b backspace (BS)

\a alarm (bell) (BEL)

\e escape (ESC)
\033 octal char (ESC)
\x1b hex char (ESC)
\x{263a} wide hex char (SMILEY)
\c[control char (ESC)

\N{name} named Unicode character
NOTE: Unlike C and other languages, Perl has no \v escape sequence for the vertical tahSCIl 11).
The following escape sequences a@lable in constructs that interpolate but not in transliterations.

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

\l lowercase next char

\u uppercase next char

\L lowercase till\E

\U uppercase till\E

\E end case modification

\Q quote non-word characters till \E

If use locale is in effect, the case map used\by, \L , \u and\U is taken from the current locale.
See perllocale. If Unicode (foxample,\N{} or wide he& characters of 0x100 or beyond) is being used,
the case map used Ky, \L ,\u and\U is as defined by Unicodd=or documentation ofN{name} , see
charnames.

All systems use the virtudin" to represent a line terminat@alled a ‘newline”. Thereis no such thing

as an uwarying, physical newline charactelt is only an illusion that the operating system, deviceetsi,

C libraries, and Perl all conspire to pregenNotall systems reathr" asASCIl CRand"\n" asASCII

LF. For example, on a Mac, these areersed, and on systems without line termingpanting "\n" may

emit no actual dataln general, us&n" when you mean anewline” for your system, but use the literal
ASCIl when you need an exact charactBor example, most networking protocols expect and prefer a
CR+LF ("\015\012" or"\cM\cJ") for line terminators, and although theften accept just\012" |,

they seldom tolerate just\015" . If you get in the habit of usingn" for networking, you may be
burned some day.

For constructs that do interpolate, variables beginning with r " @ are interpolated. Subscripted
variables such a$a[3] or $href->{key}[0] are also interpolated, as are array and hash sligass.
method calls such &obj—>meth are not.

Interpolating an array or slice interpolates the elements in,oselearated by thealue of$", so &
equialent to interpolatingoin $", @array . “Punctuation” arrays such agd+are only interpolated
if the name is enclosed in brac@g+}.

You cannot include a literah or @within a \Q sequence. Arunescapedb or @ interpolates the
corresponding variable, while escaping will cause the literal stéintp be inserted.You'll need to write
something liken\QusenE\@\Qhost/

Paterns are subject to an additionaldeof interpretation as a regulaxgression. Thiss done as a second
pass, after variables are interpolated, so thatlae expressions may be incorporated into the pattern from
the ariables. Ifthis is not what you want, u$® to interpolate a variable literally.

Apart from the behavior described &bp Perl does not expand multiplevids of interpolation. In
particular contrary to the xpectations of shell programmers, back-quotesi@ddinterpolate within double
guotes, nor do single quotes impesdawation of variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-kkagperators that apply to pattern matching and related activities.

?RTTERN?
This is just lile the /pattern/ search, except that it matches only once between calls to the
reset()operator This is a useful optimization when yowamt to see only the first occurrence of
something in each file of a set of files, for instan@nly ?? patterns local to the current
package are reset.

while (<>) {
if (7787) {
blank line between header and body
}
} ¢ ontinue {
reset if eof; # clear ?? status for next file
}

This usage is vaguely deprecated, which means it just might possibly beedemeome distant
future version of Perl, perhaps somewhere around the year 2168.

m/PAT TERN/cgimosx

perl v5.8.6 2004-11-05 37

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

/PAT TERN/cgimosx
Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if it
fails. If no string is specified via th€" or I” operatorthe$_ string is searched. (The string
specified with=" need not be an &lue —itmay be the result of an expressiomeation, hut
remember the=" binds rather tightly Seealso perlre. See perllocale for discussion of
additional considerations that apply whese locale is in effect.

Options are:

c Do not reset search position on a failed match when /g is in effect.
g Match globally, i.e., find all occurrences.

i D o case-insensitive pattern matching.

m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

If “/'" is the delimiter then the initiain is optional. With the m you can use anpair of
non—alphanumeric, non-whitespace characters as delimifehis is particularly useful for
matching path names that contdifi,'to avoid LTS (leaning toothpick syndrome). If?’is the
delimiter, then the match-only-once rule 8PATTERN?applies. If“™ i s the delimiter no
interpolation is performed on tH&ATTERN.

PATTERN may contain griables, which will be interpolated (and the pattern recompilegty e
time the pattern search isaluated, except for when the delimiter is a single qu@héote that
$(, %), and $0are not interpolated becauseytheok like end-of-string tests.) If you ant such
a pattern to be compiled only once, addoa after the trailing delimiter This avoids expensve

run-time recompilations, and is useful when thiig you are interpolatingom’t change wer the

life of the script. However, mentioning/o constitutes a promise that yowmt change the
variables in the pattern. If you change them, Perbniv even notice. See also

“qr/STRING/imosx”.

If the PATTERN evduates to the empty string, the lasiccessfullymatched regularx@ression is
used instead. In this case, only thendc flags on the empty pattern is honoured - the other
flags are ta&n from the original pattern. If no match has previously succeeded, this will (silently)
act instead as a genuine empty pattern (which wiiyd match).

If the /g option is not usedn// in list context returns a list consisting of the syiressions
matched by the parentheses in the pattern, $&,,%2, $3...). (Notethat here$l etc. are also
set, and that this differs from Perk4iehavior) Whenthere are no parentheses in the pattern, the
return value is the lisfl) for success.With or without parentheses, an empty list is returned

upon failure.
Examples:
open(TTY, 'ldevitty’);
<TTY> ="/"yli && foo(); # do f oo if desired

if (/Version: *([0-9.]*)/) { $version = $1; }
next if m# /usr/spool/uucp#;

poor man’s grep
$arg = shift;
while (<>) {
print if /$arg/o; # compile only once
}

if ($F1, $F2, $Etc) = ($f00 =~ I"(\S+)\s+(S+N\s*(*)1))

This last example splitdfoo into the first tvo words and the remainder of the line, and assigns
those three fields BF1, $F2, and $Etc . The conditional is true if anvariables were assigned,
i.e., if the pattern matched.

The/g modifier specifies global pattern matchinghat is, matching as maitimes as possible
within the string. How it behares depends on the conte In list context, it returns a list of the

38 2004-11-05 perl v5.8.6

PERLOP(1)

perl v5.8.6

PerProgrammers Reference Guide PERLOP(2)

substrings matched by yarcapturing parentheses in thegudar expression. Ifthere are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In scalar context, eackxeeution ofm//g finds the next match, returning true if it matches, and
false if there is no further match. The position after the last match can be read or set using the
pos()function; see‘pos” in perlfunc. Afailed match normally resets the search position to the
beginning of the string, but you carvad that by adding thdc modifier (e.g.m//gc).
Modifying the target string also resets the search position.

You can intermixm//g matches withmAG.../g , where\G is a zero-width assertion that
matches the exact position where thevigngs m//g , if any, left off. Without the/g modifier,
the\G assertion still anchors abs() but the match is of course only attempted ondsing\G
without/g on a target string that has not previously hdg anatch applied to it is the same as
using the\A assertion to match the beginning of the string. Note also that, curi€ntly only
properly supported when anchored at the very beginning of the pattern.

Examples:

| ist context
($one, $five, Sfifteen) = (‘uptime’ =~ /(\d+\.\d+)/g);

scalar context
$/="
while (defined($paragraph = <>)) {
while ($paragraph =" /[a-z][")*[.!?]+[")]*\s/g) {
$sentences++;
}

}

print "$sentences\n®;

using m//gc with \G

$_ ="ppoogppqq";
while ($i++ < 2) {

print "1: ™;
print $1 while /(0)/gc; print ™, pos=", pos, "\n";
print "2: ™
print $1 if AG(qg)/gc; print ™, pos=", pos, "\n";
print "3: ™;

print $1 while /(p)/gc; print ™, pos=", pos, "\n";

}
print "Final: '$1’, pos=",pos,"\n" if AG(.)/;

The last example should print:

=

:'00’, pos=4
2:'q", pos=5
3:'pp’, pos=7
1.7, pos=7
2:'q", pos=8
3.7, pos=8
Final: 'q’, pos=8

Notice that the final match matchgdnstead ofp, which a match without the&s anchor veuld
have done. Also note that the final match did not upgaie — pos is only updated on &
match. If the final match did indeed matph it's a god bet that you're running an older
(pre-5.6.0) Perl.

A useful idiom forlex -like sanners ig\G.../gc . You can combine seral regexps like
this to process a string part—by—part, doindedént actions depending on whiclyeep matched.
Each regexp tries to match where the previous owedeif.

2004-11-05 39

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

$ =<<EOL
$url = new URI::URL "http://iwww/"; die if $url eq "xXx";
EOL
LOOP:
{
print(" digits"), redo LOOP if A\G\d+\b[,.;]?\s*/gc;
print(" lowercase"), redo LOOP if AG[a-z]+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP if A\G[A-Z]+\b],.;]?\s*/gc;
print(" Capitalized"), redo LOOP if A\G[A-Z][a-z]+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if N\G[A-Za-z]+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP if N\G[A-Za-z0-9]+\b],.;]?\s*/gc;
print(" line-noise"), redo LOOP if A\G["A-Za-z0-9]+/gc;
print ". That's all'\n";
}

Here is the output (split intoeeral lines):

line-noise lowercase line-noise lowercase UPPERCASE line-noise
UPPERCASE line-noise lowercase line-noise lowercase line-noise
lowercase lowercase line-noise lowercase lowercase line-noise
MiXeD line-noise. That's all!

q/STRING/
'STRING’

A single—quoted, literal string.A backslash represents a backslash unless followed by the
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

$foo = g!l said, "You said, 'She said it.""!;

$bar = q('This is it.");

$baz ="\n’; # a t wo-character string
gqq/STRING/

“STRING’
A double—-quoted, interpolated string.

$ =qq
(*** The previous line contains the naughty word "$1".\n)
if \b(tcl fava [python)\b/i; # =)
$baz ="\n"; # a one-character string
gr/STRING/imosx

This operator quotes (and possibly compiles)STRINGas a regular x@ression. STRINGis
interpolated the same way BATTERNin m/PATTERN/. If *“” is wsed as the delimiteno
interpolation is done. Returns a Perl value which may be used instead of the corresponding
/STRING/imosx expression.

For example,

$rex = qr/imy.STRING/is;
s/$rex/fool;

is equvalent to
s/my.STRING/foolis;
The result may be used as a subpattern in a match:

$re = gr/$pattern/;

$string =" /[foo${re}bar/; # can be interpolated in other patterns
$string =" $re; # or u sed standalone
$string =" /$re/; # or t his way

Since Perl may compile the pattern at the momenkefution ofqr() operatoy using qr() may
have geed advantages in some situations, notably if the resgii{)aé used standalone:

40 2004-11-05 perl v5.8.6

PERLOP(1)

PerProgrammers Reference Guide PERLOP(2)

sub match {
my $patterns = shift;
my @compiled = map gr/$_/i, @$patterns;
grep {
my $success = 0;
foreach my $pat (@compiled) {
$success = 1, last if /$pat/;
}

$success;
} @
}

Precompilation of the pattern into an internal representation at the mongn(t afads a need
to recompile the patterrvery time a matchi$pat/ is attempted. (Perl has maather internal
optimizations, but none would be triggered in thevabsample if we did not usgr() operator.)

Options are:

i D o case-insensitive pattern matching.
m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

See perlre for additional information oald syntax forSTRING, and for a detailed look at the
semantics of regular expressions.

gx/STRING/
‘STRING'

perl v5.8.6

A string which is (possibly) interpolated and thee@ited as a system command whin/sh

or its equvalent. Shellwildcards, pipes, and redirections will be honored. The collected standard
output of the command is returned; standard error ideatafl. Inscalar context, it comes back

as a single (potentially multi-line) string, or undef if the commaiildd. Inlist context, returns

a list of lines (havever you've defined lines with $/ o8INPUT_RECORD_SEPARATQRT an
empty list if the command failed.

Because backticks do not affect standard eusa shell file descriptor syntax (assuming the shell
supports this) if you care to address thig capture a commansl’'STDERR and STDOUT
together:

$output = ‘cmd 2>&1%;

To capture a commandSTDOUTbut discard itsSSTDERR:
$output = ‘cmd 2>/dev/null’;

To capture a commandSTDERRDbUt discard itsSTDOUT (ordering is important here):
$output = ‘cmd 2>&1 1>/dev/null’;

To exchange a commarglSTDOUT and STDERRIn order to capture thBTDERRbut leave its
STDOUTto come out the ol§ TDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&-;

To read both a commarglSTDOUT and its STDERR separatelyit's easiest to redirect them
separately to files, and then read from those files when the program is done:

system("program args 1>program.stdout 2>program.stderr");

Using single-quote as a delimiter protects the command frons Ritble-quote interpolation,
passing it on to the shell instead:

$perl_info = gx(ps $3%); # t hat's Perl's $$
$shell_info = gx’ps $%; # t hat's the new shell's $$

How that string getswaluated is entirely subject to the command interpreter on your sysbem.
most platforms, you will ha o protect shell metacharacters if you want them treated literally

2004-11-05 41

PERLOP(1)

PerProgrammers Reference Guide PERLOP(2)

This is in practice difficult to do, asstinclear hev to escape which characters. See perlsec for a
clean and safe example of a marfoak() andexec()to emulate backticks safely.

On some platforms (notably DOS-ikanes), the shell may not be capable of dealing with
multiline commands, so puttingwknes in the string may not get you what yoank You may

be able to eduate multiple commands in a single line by separating them with the command
separator charactef your shell supports that (e.g.on mary Unix shells;& on the WhdowsNT

cmd shell).

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before starting the
child process, but this may not be supported on some platforms (see peilpad.safe, you

may need to se$ (PAUTOFLUSH in English) or call theautoflush() method of
I0::Handle on ary open handles.

Beware that some command shells may place restrictions on the length of the command line.
You must ensure your strings doréxceed this limit after annecessary interpolations. See the
platform-specific release notes for more details about your particular environment.

Using this operator can lead to programs that afewif to port, because the shell commands
called vary between systems, and may in fact not be present at all. As one exantpfe the
command under theOSIX shell is very different from théype command undebOS. That

doesnt mean you should go out of your way teo#l backticks when there the right way to get
something done. Perl was made to be a glue language, and one of the things it glues together is
commands. Jusinderstand what you're getting yourself into.

See “I/O Operatorsfor more discussion.

gW/STRING/

Evaluates to a list of the words extracted oUBORING, using embedded whitespace as thardv
delimiters. Itcan be understood as being roughly egant to:

split(’, g/STRING)/);

the differences being that it generates a real list at compile time, and in scalat itoeterns
the last element in the list. So this expression:

gw(foo bar baz)

is semantically equélent to the list:
'foo’, 'bar’, 'baz’

Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistak is to ty to separate theards with comma or to put comments into a multi-
line gw-string. For this reason, these warnings pragma and thew switch (that is, the

$"W variable) produces warnings if ttBTRING contains the “, or the “#” character.

s/ITTERN/REPLACEMENT/egimosx

42

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it retales {specificallythe empty
string).

If no string is specified via the” or!™ operatorthe$_ variable is searched and modifieflhe
string specified with=" must be scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an Ivalue.)

If the delimiter chosen is a single quote, no interpolation is done on eitheATthERN or the
REPLACEMENT. Otherwise, if thePATTERN contains a $ that looks kka \ariable rather than an
end-of-string test, the variable will be interpolated into the pattern at run—tfrgeu want the
pattern compiled only once the first time thaiable is interpolated, use the option. If the
pattern galuates to the empty string, the last successfulsc@ted regular expression is used
instead. Segerlre for further explanation on these. See perllocale for discussion of additional
considerations that apply whese locale s in effect.

2004-11-05 perl v5.8.6

PERLOP(1)

perl v5.8.6

PerProgrammers Reference Guide PERLOP(2)

Options are:

e Evaluate the right side as an expression.
g Replace globally, i.e., all occurrences.

i D o case-insensitive pattern matching.
m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

Any non-alphanumeric, non-whitespace delimiter may replace the slashes. If single quotes are
used, no interpretation is done on the replacement string/dthenodifier orerrides this,
however). Unlike Rerl 4, Perl 5 treats backticks as normal delimiters; the replacemeis teot
evduated as a commandf the PATTERN is delimited by bracketing quotes, tREPLACEMENT

has its own pair of quotes, which may or may not be letaak quotes, e.gs(foo)(bar) or
s<foo>/bar/ . A /e will cause the replacement portion to be treated as a full-fledged Perl
expression andwaluated right then and therét is, havever, syntax checked at compile-time. A
seconde modifier will cause the replacement portion todwal ed before being run as a Perl
expression.

Examples:
s/\bgreen\b/mauve/q; # don’t change wintergreen
$path ="s [usr/bin [ustr/local/bin 0

s/Login: $foo/Login: $bar/; # run-time pattern

($foo = $bar) =" s/this/that/; # copy first, then change
$count = ($paragraph =" s/Mister\b/Mr./g); # get change-count
$ =’abcl23xyz’;

sh\d+/$&*2/e; # yields 'abc246xyz’
s\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz’

s\w/$& x 2/eq; # yields 'aabbcc 224466xxyyzz’
s/%(.)/$percent{$1}/q; # change percent escapes; no /e
s/%(.)/$percent{$1} M $&/ge; # exprnow, so/e
s/"=(\w+)/&pod($1)/ge; # use function call

expand variables in $_, but dynamics only, using
symbolic dereferencing
sN\S(\w+)/${$1}/q;

Add one to the value of any numbers in the string
s/(\d+)/1 + $1/egq;

This will expand any embedded scalar variable
(including lexicals) in $_: First $1 is interpolated
to t he variable name, and then evaluated
s/(\$\w+)/$1/eeq;

Delete (most) C comments.
$program ="'s {

N* # Match the opening delimiter.
x? # Match a minimal number of characters.
*/ # Match the closing delimiter.
}Ilgsx;
SINS*(*?)\s*$/$1/; # trim white space in $_, expensively
for ($variable) { # t rim white space in $variable, cheap
siM\s+/1;
si\s+$//;
}
2004-11-05 43

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

44

sI([C1%) *(C 1)/$2 $1/; # r everse 1st two fields

Note the use of $ instead of \ in the lasaraple. Unlile sed we wse the \digit> form in only
the left hand side. Anywhere elsesif<digit>.

Occasionallyyou cant use just ag to get all the changes to occur that you mighhtv Here
are two common cases:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?"\d)/$1,$2/g;

expand tabs to 8-column spacing
1 while sAt+/’* x (length($&)*8 - length($)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds

y/SEARCHLIST/REPLACEMENTLIST/cds
Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or dielated.
string is specified via the =" or |” operattive $_ string is transliterated(The string specified
with =7 must be a scalamaviable, an array element, a hash element, or an assignment to one of
those, i.e., an Ivalue.)

A character range may be specified with a hyphen,tr&9-J/0-9/ does the same
replacement a$r/ACEGIBDFHJ/0246813579/ . For sed devotees,y is provided as a
synorym fortr . If the SEARCHLISTis delimited by bracketing quotes, tREPLACEMENTLIST
has its an pair of quotes, which may or may not be bracketing quotestrgdg-Z][a-z] or
tr(+\-*/)/ABCD/

Note thattr doesnot do regular expression character classes sutth as [:lower:] . The
<tr> operator is not equélent to thetr (1) utility. If you want to map strings between
lower/upper cases, sek™ in perlfunc and‘uc” in perlfunc, and in general consider using she
operator if you need regular expressions.

Note also that the whole range idea is rather unportable between charaetearsgven within
character sets thigmay cause results you probably dideXpect. Asound principle is to use only
ranges that begin from and end at either alphabets of equal case (a—e, A-E), or digits (0-4).
Anything else is unsafe. If in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.
d Delete found but unreplaced characters.
S Squash duplicate replaced characters.

If the /c modifier is specified, th€EARCHLIST character set is complemented. If thie
modifier is specified, gncharacters specified ISEARCHLISTnot found inREPLACEMENTLIST
are deleted(Note that this is slightly more flexible than the behavior of swnpeograms, which
delete anything thefind in theSEARCHLIST, period.) If the/s maodifier is specified, sequences
of characters that were transliterated to the same character are squashéal asingle instance
of the character.

If the /d modifier is used, th®@EPLACEMENTLIST is aways interpreted exactly as specified.
Otherwise, if theREPLACEMENTLIST is shorter than th€EARCHLIST, the final character is
replicated till it is long enough. If th@EPLACEMENTLIST is empty the SEARCHLIST is
replicated. Thidatter is useful for counting characters in a class or for squashing character
sequences in a class.

Examples:
$ARGV[1] =" tr/A-Z/a-zl, # canonicalize to lower case
$ent = tr/*/*/, # countthe starsin $_
$cnt = $sky =" tr/*/*/, # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

trla-zA-Zlls; # bookkeeper -> bokeper
($HOST = $host) =" tr/a-z/A-Z/;
trla-zA-Z/ Ics; # change non-alphas to single space
tr \200-\377]
[\000-\177]; # delete 8th hit

If multiple transliterations are ggn for a characteonly the first one is used:
tr/AAAIXYZ/
will transliterate ap A to X.

Because the transliteration table is built at compile time, neithelSEARCHLIST nor the
REPLACEMENTLISTare subjected to double quote interpolation. That means that if you want to
use variables, you must useeal():

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

<<EOF A line-oriented form of quoting is based on the shieire—document’syntax. Fllowing a<<
you specify a string to terminate the quoted material, and all linesvioijdhe current line den
to the terminating string are thelue of the item. The terminating string may be either an
identifier (a word), or some quotedkte If quoted, the type of quotes you use determines the
treatment of the text, just as irgrdar quoting. An unquoted identifier worksdikbuble quotes.
There must be no space between<keand the identifierunless the identifier is quotedlf you
put a space it will be treated as a null identifidrich is valid, and matches the first empty line.)
The terminating string must appear by itself (unquoted and with no surrounding whitespace) on
the terminating line.

print <<EOF;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

print << ‘EOC"; # execute commands
echo hi there
echo lo there
EOC

print <<"foo", <<"bar"; # you can stack them
| s aid foo.
foo
| s aid bar.
bar

myfunc(<< "THIS", 23, <<'THAT);
Here's a line
or two.
THIS
and here’s another.
THAT

Just dort forget that you ha t put a semicolon on the end to finish the statement, as Perl
doesnt know you're not going to try to do this:

perl v5.8.6 2004-11-05 45

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

46

print <<ABC
179231
ABC

+ 20;

If you want your here-docs to be indented with the rest of the code, you'll need teerieanting
whitespace from each line manually:

($quote = <<’FINIS") =" s/\s+//gm;
The Road goes ever on and on,
down from the door where it began.
FINIS

If you use a here-doc within a delimited construct, such af/eg , the quoted material must
come on the lines following the final delimite3o instead of

s/this/<<E . 'that’
the other
E

more '/eg;
you have o write

s/this/<<E . 'that’
" more 'leg;

the other

E

If the terminating identifier is on the last line of the program, you must be sure thereniéna ne
after it; otherwise, Perl will gé the warningCan't find string terminator ‘ ‘END” anywhere
before EOF....

Additionally, the quoting rules for the identifier are not related to Pepbting rules— q() ,
qq() , and the like ae not supported in place 6f and™ , and the only interpolation is for
backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs

When presented with something that mightvehaveal different interpretations, Perl uses the/IM
(that's “Do What | Mean”) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect thealambe of what thgwrite. Butfrom time

to time, Perk rotions differ substantially from what the author honestly meant.

This section hopes to clarify WwoPerl handles quoted constructs. Although the most common reason to
learn this is to unsal labyrinthine regular expressions, because the initial steps of parsing are the same for
all quoting operators, tlyeare all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted construct,
Perl first finds the end of that construct, then interprets its contents. If you understand this rule, you may
skip the rest of this section on the first reading. The other rules are likely to contradict tlse user’
expectations much less frequently than this first one.

Some passes discussed helare performed concurrenthput because their results are the same, we
consider them indidually. For different quoting constructs, Perl performs different numbers of passes,
from one to five, but these passes anepd performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct, whether it be a multicharacter delimiter
"\nEOF\n" in the <<EOF construct, @ that terminates aq// construct, d which terminates
qq[] construct, or & which terminates a fileglob started with

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

When searching for single-character non-pairing delimiters, suchcasnbinations of\ andV are
skipped. Havever, when searching for single-character pairing delimiter ik combinations of\\ ,

\] ,and\[are all skipped, and nestg¢] are skipped as well. When searching for multicharacter
delimiters, nothing is skipped.

For constructs with three-part delimiters/{ , y/// , and tr///), the search is repeated once
more.

During this search no attention is paid to the semantics of the construct. Thus:
"$hash{"$foo/$bhar"}"
or:

m/
bar # NOT a comment, this slash / terminated m//!
X

do not form lgd quoted epressions. Theguoted part ends on the fifstand/ , and the rest happens
to be a syntax errorBecause the slash that terminatetd was followed by aSPACE the example
above is ot m//x , but ratherm// with no/x modifier So the embedded is interpreted as a literal
#.

Remaval of backslashes before delimiters
During the second pass, text between the starting and ending delimiters is copied to a safe location,
and thée\ is remwed from combinations consisting dbfand delimiter— or delimiters, meaning both
starting and ending delimiters will should thesefedif This remwal does not happen for multi-
character delimiters. Note that the combinatlonis left intact, just as it was.

Starting from this step no information about the delimiters is used in parsing.

Interpolation
The next step is interpolation in the text obtained, whichusdaimiter—-independent. Thegge four
different cases.

<<'EOF' ,m” ,s™ ., tll ,ylll
No interpolation is performed.

,all
The only interpolation is remval of \ from pairs\\ .

Joqall L, gxdl o <file*glob>

\Q,\WU,\u,\L,\I (possibly paired withE) are comwerted to corresponding Perl constructs.
Thus, "$foo\Qbaz$bar" is corverted to $foo . (quotemeta("baz" . $bar))

internally The other combinations are replaced with appropriate expansions.

Let it be stressed thathaterer falls between Q and \ E is interpolated in the usual ay.
Something lile \Q\E" has no\E inside. insteadit has\Q, \\ , and E, so he result is the

same as for\\\E" . As a cneral rule, backslashes betweéh and \E may lead to
counterintuitve results. So,"\Q\t\E" is corverted to quotemeta("\t") , Which is the
same as\\t" (sinceTAB is not alphanumeric). Note also that:

$str ="\t';

return "\Q$str";
may be closer to the conjectunadentionof the writer of \Q\t\\E"

Interpolated scalars and arrays areveted internally to thgoin and. catenation operations.
Thus,"$foo XXX '@arr™ becomes:

$foo . " XXX ™. (join $", @arr) . "";
All operations abee ae performed simultaneouslgft to right.

Because the result 8Q STRING \E" has all metacharacters quoted, there is ap to insert
a literal $ or @inside a\Q\E pair. If protected by, $ will be quoted to becam@&\$" ; if
not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs toerakbcision on where the interpolated scalar

perl v5.8.6 2004-11-05 47

PERLOP(1)

PerProgrammers Reference Guide PERLOP(2)
ends. Br instance, whethéa $b —> {c}" really means:
"a".$b."->{c}"
or:
"a".$b->{c}

Most of the time, the longest possible text that does not include spaces between components and
which contains matching braces or breisk becausthe outcome may be determined lnting

based on heuristic estimators, the result is not strictly predictBbtunately it's usually correct

for ambiguous cases.

?RE?, IRE/ , m/RE/, s/IRE/foo/ ,

Processing ofQ, \U,\u ,\L ,\l , and interpolation happens (almost) as wit{i/ constructs,
but the substitution of followed by RE-special chars (includihg is not performed.Moreover,
inside (?{BLOCK}) , (?# comment) , and a#—-comment in a/x -regular expression, no
processing is performed whatsee This is the first step at which the presence of/tke
modifier is relgant.

Interpolation has seral quirks: $0 $(, and $) are not interpolated, and constructs
$var[SOMETHING] are voted (by seral different estimators) to be either an array element or
$var followed by arRE alternatve. This is where the notatio®{arr[$bar]} comes handy:
[${arr[0-9]}/ is interpreted as array elemen®, not as a regular expression from the
variable $arr followed by a digit, which would be the interpretation/®drr[0-9]/ . Since
voting among different estimators may ogadhe result is not predictable.

It is at this step thatl is begrudgingly comerted to$1 in the replacement text af// to
correct the incorrigiblesed haclers who heen’t picked up the saner idiom ye# warning is
emitted if theuse warnings pragma or the-w command-line flag (that is, tf#&W variable)
was =t.

The lack of processing ok creates specific restrictions on the post-processdd té the
delimiter is/ , one cannot get the combinatidéh into the result of this step. will finish the
regular pressionV/ will be stripped to/ on the previous step, and will be left as is.
Because/ is equvaent toV/ inside a regular expression, this does not matter unless the
delimiter happens to be character special toRla@ngine, such as istfoo*bar* , m[foo] ,

or ?foo? ; or an dphanumeric chaas h:

m m " a \s*b mmx;

In the RE abore, which is intentionally obfuscated for illustration, the delimitemishe modifier

is mx, and after backslash-rema the RE is the same as fon/ ™ a \s* b /mx . There's

more than one reason you're encouraged to restrict your delimiters to non—alphanumeric, non-
whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

Interpolation of regular expressions

48

Previous steps were performed during the compilation of Perl code, but this one happens at run

time — althoughit may be optimized to be calculated at compile time if appropridtfter

preprocessing described akpand possibly afterwaluation if catenation, joining, casing translation,
or metaquoting are wlved, the resultingtringis passed to theE engine for compilation.

Whatever happens in th&®E engine might be better discussed in perlre, but for the shéontinuity,
we shall do so here.

This is another step where the presence of/fthe modifier is relgant. TheRE engine scans the

string from left to right and ceerts it to a finite automaton.

Backslashed characters are either replaced with corresponding literal strings {&s)wathelse thg
generate special nodes in the finite automaton (as\with Characterspecial to the&RE engine (such
as[) generate corresponding nodes or groups of nofis..) comments are ignored. All the rest
is either cowerted to literal strings to match, or else is ignored (as is whitespace?-estgle
comments if/x is present).

Pasing of the bracketed character class constfugt, , is rather different than the rule used for the

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

rest of the pattern. The terminator of this construct is found using the same rules as for finding the

terminator of &} —delimited construct, the only exception being thammediately follaving [is
treated as though preceded by a backs|&stmilarly, the terminator o{?{...}) is found using the
same rules as for finding the terminator ¢f a-delimited construct.

It is possible to inspect both the stringegi to RE engine and the resulting finite automaton. See the
argumentslebug /debugcolor in theuse re pragma, as well as Pext-Dr command-line switch
documented in “Command Switchéisi perlrun.

Optimization of regular expressions
This step is listed for completeness on§ince it does not change semantics, details of this step are
not documented and are subject to change without nofibés step is performedver the finite
automaton that was generated during the previous pass.

It is at this stage thafplit() silently optimized™/ to mean/m .

I/O Operators
There are seral I/0O operators you should kwabout.

A string enclosed by backticks (g& acents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that commandatuthefithe backtick string, kk

in a shell. In scalar context, a single string consisting of all output is retutndist context, a list of
values is returned, one per line of outp(i¥ou can se$/ to use a different line terminatprThecommand

is executed each time the pseudo-literal Vsleated. Thestatus alue of the command is returned$f

(see perlvar for the interpretation &?). Unlike in csh no translation is done on the return
data— na/lines remain n@lines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretatiofo pass a literal dollar-sign through to the shell you need to hide it with
a backslash. Thegeneralized form of backticks igx// . (Because backticks ways undergo shell
expansion as well, see perlsec for security concerns.)

In scalar context,valuating a filehandle in angle brackets yields thet tine from that file (the newline, if
ary, included), oundef at end-of-file or on errorwWhen$/ is set toundef (sometimes known as file-
slurp mode) and the file is empilyreturns” the first time, followed byndef subsequently.

Ordinarily you must assign the returned value t@dable, but there is one situation where an automatic
assignment happens. If and only if the input symbol is the only thing inside the conditionahidé a
statement (een if disguised as #or(;;) loop), the alue is automatically assigned to the glotmiable

$_, destrgying what@er was there prgously. (This may seem li& an ald thing to you, but you'll use the
construct in almostvery Perl script you write.)The$_ variable is not implicitly localized.You'll have ©

put alocal $_; before the loop if you want that to happen.

The following lines are equélent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }

while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);

print while <STDIN>;

This also behaes smilarly, but avoids $_:
while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automdilicivy is then tested to
see whether it is definedlhe defined testvaids problems where line has a string value that would be
treated as false by Perl, for example ‘aof‘a "0" with no trailing nevline. If you really mean for such
values to terminate the loop, thehould be tested for explicitly:

while (($_=<STDIN>) ne'0) { ... }
while (<STDIN>) {lastunless $_; ... }

In other boolean comntés, <fi | ehandl e> without an a&plicit defined test or comparison elicit a
warning if theuse warnings pragma or thew command-line switch (th& W variable) is in effect.

The filehandlesSTDIN, STDOUT, and STDERR are predefined. (The filehandletdin , stdout , and

perl v5.8.6 2004-11-05 49

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

50

stderr will also work except in packages, whereytheould be interpreted as local identifiers rather than
global.) Additionalfilehandles may be created with theen()function, amongst others. See perlopentut
and “open’ in perlfunc for details on this.

If a <FILEHANDLE> is used in a contd that is looking for a list, a list comprising all input lines is
returned, one line per list element.sléasy to grav to a rather large data space this way se with care.

<FILEHANDLE> may also be spellegtadline(*FILEHANDLE) . See “readline’in perlfunc.

The null filehandle <> is special: it can be used to emulate the behawedahdawk. Input from <>
comes either from standard input, or from each file listed on the commandHines how it works: the
first time <> is gauated, the@ARG¥rray is checld, and if it is empfHy8ARGV][0] is set to ", which
when opened ges you standard inputThe @ARGH¥rray is then processed as a list of filenames. The loop

while (<>) {

}

is equiaent to the following Perl-lik pseudo code:
unshift@ARGV, ’-') unless @ARGV;,
while (JARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {

}

code for each line

code for each line

}

except that it isrt so aambersome to sagnd will actually work. It really does shift th@ARG¥rray and
put the current filename into tlARGVvariable. Italso uses filehandlaRGV internally——<> is just a
synorym for <ARGV>, which is magical. (The pseudo code abdoesnt work because it treatsARGV>
as non—magical.)

You can modify@ARGYefore the first <> as long as the array ends up containing the list of filenames you
really want. Linenumbers$.) continue as though the input were one big djlp. Seethe example in
“ eof” in perlfunc for hav to reset line numbers on each file.

If you want to se@ ARGY6 your own list of files, go right ahead. This s@#&RGY0 all plain text files if
no @ARGWas gven:

@ARGYV = grep { -f && -T } glob("*) unless @ARGV;

You can even st them to pipe commands$:or example, this automatically filters compresseguanents
throughgzip:

@ARGV =map {/\.(gz (Z)$/ ? "gzip -dc < $_ O:$ } @ ARGYV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on the
front like this:

while ($_ = $SARGVI0], /™-/) {

shift;

last if /"--$/;

if (/"-D(.*)/) { $debug = $1}

if (/"-v/) { $ verbose++ }

.. # other switches
}
while (<>) {

.. # code for each line
}

The <> symbol will returrundef for end-of-file only once. If you call it again after this, it will assume
you are processing anoth@ARGYst, and if you haen’t set @ ARGWvill read input fromSTDIN.

If what the angle brackets contain is a simple scalar variable (e.g., <$foo>), thearidialevcontains the
name of the filehandle to input from, or its typeglob, or a reference to the Baneample:

2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

$th = *STDIN;
$line = <$th>;

If what's within the angle brackets is neither a filehandle nor a simple scalar variable containing a
filehandle name, typeglob, or tygieb reference, it is interpreted as a filename pattern to be globbed, and
either a list of filenames or the next filename in the list is returned, depending oxt.cdihie distinction

is determined on syntactic grounds aloiidat means$x> is aways areadline()from an indirect handle,

but <$hash{key}> s always aglob(). That's becausebx is a simple scalar variableutshash{key}

is not—it's a kash element.

One level of double-quote interpretation is done first, but you tsay <$foo> because that’an ndirect
filehandle as explained in the pigus paragraph. (In older versions of Perl, programmers would insert
curly brackets to force interpretation as a filename gt6ffoo}> . These days, & cwnsidered cleaner to
call the internal function directly agob($foo) , which is probably the right &y to hae dne it in the

first place.) For example:

while (<*.c>) {
chmod 0644, $_;
}

is roughly equialent to:
open(FOO, "echo *.c O tr -s * \\r\f "\W012\\012\\012\\012" m);
while (<FOO0>) {
chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the stailardslob extension. Ofcourse,
the shortest way to do the afeas:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded)gument only when it is starting amdist. All values must be read
before it will start @er. In list context, this ist'important because you automatically get them athay.
However, in scalar context the operator returns the next value each temalied, orundef when the list

has run out.As with filehandle reads, an automatifined is generated when the glob occurs in the test
part of awhile , because lgd glob returns (e.g. a file called) would otherwise terminate the loop.
Again,undef is returned only once. So if you're expecting a single value from a glob, it is much better to
say

($file) = <blurch*>;
than
$file = <blurch*>;
because the latter will alternate between returning a filename and returning false.

If you're trying to do variable interpolation, st'definitely better to use thglob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);
Constant Folding

Like C, Ferl does a certain amount of expressieauation at compile time whewer it determines that all
arguments to an operator are static aneeh@ sde efects. Inparticular string concatenation happens at
compile time between literals that dodo variable substitution Backslash interpolation also happens at
compile time. You can say

'Now is the time for all’ . "\n" .
'good men to come to.’

and this all reduces to one string internallyjkewise, if you say

perl v5.8.6 2004-11-05 51

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

foreach $file (@filenames) {
if (-s $file > 5+ 100 * 2**16) { }
}

the compiler will precompute the number which thepression represents so that the interpreten’tw
have .
No-ops

Perl doesnt’officially have a -op operatqrbut the bare constanfsandl are special-cased to not produce
awarning in a void context, so you can for example safely do

1 while foo();

Bitwise String Operators
Bitstrings of ag size may be manipulated by the bitwise operators{& 7).

If the operands to a binary bitwise op are strings démifit sizes[1and” ops act as though the shorter
operand had additional zero bits on the right, while &hep acts as though the longer operand were
truncated to the length of the short&he granularity for such extension or truncation is one or more bytes.

ASCII-based examples

print"jp\n"~"ah"; # prints "JAPH\n"
print "JA" d" ph\in" # prints "japh\n"
print "japh\nJunk" &’ ' # prints "JAPH\n";
print’p N$' " " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain thatrg@upplying bitstrings: If an operand is a
number that will imply anumeric bitwise operation.You may explicitly shev which type of operation
you intend by usin§' or 0+, as in he examples bela

$foo= 150 O 105; # yields 255 (0x96 O 0x69 is OxFF)
$foo = '150° O 105; # yields 255

$foo= 150 O 105 # yields 255

$foo ='150’ 0 105 # yields string '155’ (under ASCII)

$baz = 0+$foo & O+$bar; # both ops explicitly numeric

$biz = "$foo" ~ "$bar"; # both ops explicitly stringy

See “vec’ in perlfunc for information on he to manipulate individual bits in a bit vector.

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying
use integer;

you may tell the compiler that st'dkay to use integer operations (if it feelselik) from here to the end of
the enclosin®LOCK. An innerBLOCK may countermand this by saying

no integer;

which lasts until the end of thBtOCK. Note that this doeshimean eerything is only an intger, merely
that Perl may use integer operations if it is so inclinéd. example, gen underuse integer , if you
take thesqrt(2) , you'll still get 1.4142135623731 or so.

Used on numbers, the bitwise operato&’(; ‘', “™’, *’, “’<<”’, and *>>"") always produce intgral
results. (Butsee also'Bitwise String Operators) However, use integer still has meaning for them.
By default, their results are interpreted as unsigned integers,usd ifiteger is in effect, their results
are interpreted as signed igégs. Br example,”0 usually eauates to a large integrable. Havever,
use integer; "0 is —1 on twos-complement machines.

Floating-point Arithmetic

While use integer provides intgeronly arithmetic, there is no analogous mechanism twigeo
automatic rounding or truncation to a certain number of decimal pl&oesounding to a certain number
of digits, sprintf() or printf() is usually the easiest route. See perlfag4.

Floating-point numbers are only approximations to what a mathematioiald wall real numbersThere

52 2004-11-05 perl v5.8.6

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

are infinitely more reals than floats, so some corners must bE@wgxample:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact equality of floating-point equality or inequality is not a good idéere’s a telatively
expensve) work-around to compare whetheraloating-point numbers are equal to a particular number of
decimal places. See Knuth, volumgfor a more robust treatment of this topic.

sub fp_equal {
my ($X, $Y, $SPOINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

ThePoOsSIXmodule (part of the standard perl distribution) implemeatit), floor(), and other mathematical
and trigonometric functions. The Math::Complmodule (part of the standard perl distribution) defines
mathematical functions that work on both the reals and the imaginary nuniatis..Compl& not as
efficient asPOSIX but POSIXcant work with compl& numbers.

Rounding in financial applications canvlaerious implications, and the rounding method used should be
specified preciselyln these cases, it probably pays not to trust wiviehg/stem rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers

The standard Math::Bigint and Math::BigFloat modules provide variable-precision arithmetic and
overloaded operators, although ytwee currently pretty slw. At the cost of some space and considerable
speed, theavoid the normal pitfalls associated with limited-precision representations.

use Math::Biglint;
$x = Math::BigInt->new('123456789123456789’);
print $x * $x;

prints +15241578780673678515622620750190521

There are seral modules that let you calculate with (bound only by memory and cpu-time) unlimited or
fixed precision. There are also some non-standard modules thigepfaster implementations viaternal
C libraries.

Here is a short, but incomplete summary:

Math::Fraction big, unlimited fractions like 9973 / 12967
Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations

Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::Biginteger uses an external C library

Math::Cephes uses external Cephes C library (no big numbers)
Math::Cephes::Fraction fractions via the Cephes library
Math::GMP another one using an external C library

Choose wisely.

perl v5.8.6 2004-11-05 53

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

NAME

perlsub — Perl subroutines

SYNOPSIS

To declare subroutines:

sub NAME; A "forward" declaration.
sub NAME(PROTO); ditto, but with prototypes
sub NAME : ATTRS; with attributes

#
#
#
sub NAME(PROTO) : ATTRS; # with attributes and prototypes
#
#
#

A declaration and a definition.
sub NAME(PROTO) BLOCK ditto, but with prototypes
sub NAME : ATTRS BLOCK with attributes

sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

sub NAME BLOCK

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes

$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);
To call subroutines:

NAME(LIST); # & is o ptional with parentheses.

NAME LIST; # Parentheses optional if predeclared/imported.

&NAME(LIST); # Circumvent prototypes.

&NAME; # Makes current @_ visible to called subroutine.
DESCRIPTION

54

Like mary languages, Perl provides for user-defined subroutifbese may be located anywhere in the
main program, loaded in from other files via thee require , or use keywords, or generated on the fly

usingeval or anonymous subroutine¥ou can e/en call a function indirectly using a variable containing
its name or &£ODE reference.

The Perl model for function call and return values is simple: all functions are passed as parameters one
single flat list of scalars, and all functionselitise return to their caller one single flat list of scalakay

arrays or hashes in these call and return lists will collapse, losing their identhigs/ou may alays use
pass-by-reference instead teoi this. Both call and return lists may contain as man as w <alar
elements as yod'like. (Oftena function without an explicit return statement is called a subroutirte, b
theres really no difference from Peslperspectie.)

Any arguments passed in sliaip in the array@ . Therefore, if you called a function with évarguments,

those would be stored # [0] and$_[1] . The array@_is a local arraybut its elements are aliases for

the actual scalar parameters. In particufaan dement$_[0] is updated, the corresponding argument is
updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not
exist when the function as called, that element is created only when (and if) it is modified or a reference
to it is talen. (Someearlier versions of Perl created the element whether or not the eleasassigned

to.) Assigningo the whole arra@®_removes that aliasing, and does not updatg amguments.

The return value of a subroutine is the value of the last expressioated by that sub, or the empty list in

the case of an empty sutMore eplicitly, a return statement may be used to exit the subroutine,
optionally specifying the returned value, which will he@leated in the appropriate cortglist, scalaror

void) depending on the context of the subroutine call. If you specify no return value, the subroutine returns
an empty list in list context, the undefined value in scalar context, or nothingdicontet. If you return

one or more agggetes (arrays and hashes), these will be flattened together into one large indistinguishable
list.

Perl does not h& ramed formal parameters. In practice all you do is assignny(a list of these.
Variables that areth’declared to be prate are global &riables. Br gory details on creating pete
variables, see‘Private Variables viamy()' and “Temporary Values vidocal()”. To create protected
ervironments for a set of functions in a separate package (and probably a separate fiRgclsages'in

2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

perimod.
Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {
$max = $foo if $max < $foo;
}

return $max;

}
$bestday = max($mon,$tue, $wed, $thu, $fri);

Example:

getaline, combining continuation lines
t hat start with whitespace

sub get_line {
$thisline = $lookahead,; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {
if ($lookahead =" /" \t}/) {
$thisline .= $lookahead,;

}
else {
last LINE;
}
}
return $thisline;
}
$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {
}

Assigning to a list of pviate variables to name your arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{$key};
}

Because the assignment copies the values, this also has the effect of turning call-by-reference into
call-by—walue. Otherwisea function is free to do in-place modifications @ and change its callexr’
values.

upcase_in($vl, $v2); # t his changes $v1 and $v2
sub upcase_in {

for (@) {tr/a-z/A-Z/ }
}

You aren't allowed to modify constants in thisay of course. Ifan argument were actually literal and you
tried to change it, yod'take a presumably fatal)»@eption. ©r example, this wohwork:

upcase_in("frederick");

It would be much safer if thepcase in() function were written to return a cppf its parameters
instead of changing them in place:

perl v5.8.6 2004-11-05 55

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

56

($v3, $v4) = upcase($vl, $v2); # t his doesn’t change $v1 and $v2
sub upcase {
return unless defined wantarray; # void context, do nothing
my @parms = @_;

for (@parms) { trla-z/A-Z/ }
return wantarray ? @parms : $parms|0];

}

Notice hav this (unprototyped) function doesicare whether it was passed real scalars or arrays. Perl sees
all arguments as one big, long, flat parameter lig®in This is one area where PerBmple agument-
passing style shinesThe upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things lile this:

upcase(@listl, @list2);
upcase(split /:/, $var);

@newlist
@newlist

Do not, howeer, be ttmpted to do this:
(@a, @b) = upcase(@listl, @list2);

Like the flattened incoming parameter list, the return list is also flattened on r&arall you hege
managed to do here is storedergthing in @aand made@bempty See ‘Pass by Referencefor
alternatves.

A subroutine may be called using axp#cit & prefix. The& is optional in modern Perl, as are parentheses
if the subroutine has been predeclarddhe & is not optional when just naming the subroutine, such as
when it's uised as an argument defined()or undef() Nor is it optional when you want to do an indirect
subroutine call with a subroutine name or reference using&ssibref() or &{$subref}()
constructs, although ti#subref->() notation solves that problem. See perlref for more about all that.

Subroutines may be called recughy. If a subroutine is called using th& form, the argument list is
optional, and if omitted, n@ _array is set up for the subroutine: tia array at the time of the call is
visible to subroutine instead. This is an efficienechanism that meusers may wish tovaid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@_) !

foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the& form male the argument list optional, it also disabley gmototype checking on
arguments you do prade. Thisis partly for historical reasons, and partly for having aveoient way to
cheat if you kner what you're doing. See Prototypes belo

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose name:
are in all lower caseA subroutine in all capitals is a loosely-held gemion meaning it will be called

indirectly by the run-time system itself, usually due to a triggevedte Subroutineshat do special, pre-

defined things includeAUTOLOAD CLONE DESTROYplus all functions mentioned in perltie and
PerllO::via.

The BEGIN, CHECK INIT and END subroutines are not so much subroutines as named special code
blocks, of which you can ke nore than one in a package, and which you maincall explicitly. See
“ BEGIN, CHECK, INIT andEND” i n perlmod

Private Variables viamy()

Synopsis:
my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"”; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # similar, with an attribute applied

WARNING: The use of attribute lists omy declarations is still wlving. The current semantics and

2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(iflunlessl/elsif/else), loop for/foreach/while/until/continue), subroutinegval ,

or do/require/use 'd file. If more than one value is listed, the list must be placed in parenthkes.
listed elements must beg@ Ivalues. Onlyalphanumeric identifiers may be lexically scopedhagical
built-ins like $/ must currently béocal ized withlocal instead.

Unlike dynamic variables created by thecal operatoy lexical variables declared wittmy are totally
hidden from the outside world, includingyaaalled subroutines. This is true ifgtthe same subroutine
called from itself or elsghere — gery call gets its own cgp

This doesrt’ mean that any variable declared in a statically enclosing lexical scope would \isilite.
Only dynamic scopes are cuf.ofFor example, thbumpx() function belev has access to thexieal $x
variable because both timey and thesub occurred at the same scope, presumably file scope.

my $x = 10;
sub bumpx { $x++ }

An eval() , howeva, can see lexical variables of the scope it is bewaduated in, so long as the names
arent hidden by declarations within trewval() itself. Seeperlref.

The parameter list toy() may be assigned to if desired, which allows you to initialize yatiables. (If
no initializer is gven for a particular variable, it is created with the undefingider) Commonlthis is
used to name input parameters to a subroutine. Examples:

$arg = "fred"”; # " global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **=1/3;
return $arg;

}

The myis simply a modifier on something you might assign$o. when you do assign to variables in its
argument listmy doesnt change whether those variables are viewed as a scalar or anSarray

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while
my $foo = <STDIN>;
supplies a scalar conte Butthe following declares only one variable:
my $foo, $bar = 1; # WRONG
That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,
my $x = $x;

can be used to initialize a néx with the value of the oléx, and the expression
my $x = 123 and $x == 123

is false unless the olsk happened to va te valuel23.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

perl v5.8.6 2004-11-05 57

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

while (my $line = <>) {
$line = Ic $line;

} ¢ ontinue {
print $line;

}

the scope offline extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similariy the conditional

if ((my $answer = <STDIN>) =" /"yes$/i) {
user_agrees();

} e Isif (Janswer =" /"no$/i) {
user_disagrees();

} else{
chomp $answer;
die $answer’ is neither 'yes’ nor 'no™;

}

the scope offanswer extends from its declaration through the rest of that conditional, includipg an
elsif andelse clauses, but not beyond it. See “Simple statemeintgerlsyn for information on the
scope of variables in statements with modifiers.

Theforeach loop defaults to scoping its inkl@ariable dynamically in the mannerlotal . Howeva,
if the index variable is prefixed with theeword my, or if there is already a lexical by that name in scope,
then a ne lexical is created instead. Thus in the loop

formy $i (1, 2, 3) {
some_function();
}

the scope offi extends to the end of the loop, but not beyond it, rendering the valbie ifaccessible
within some_function()

Some users may wish to encourage the use of lexically scapiedbles. Asan aid to catching implicit
uses to package variables, which aveagé global, if you say

use strict 'vars’;

then ay variable mentioned from there to the end of the enclosing block must either referxtoaa le
variable, be predeclared vaur oruse vars , or dse must be fully qualified with the package name.
compilation error results otherwise. An inner block may countermand thiswwitkrict 'vars’

A myhas both a compile-time and a run-timteef. Atcompile time, the compiler tak notice of it. The
principal usefulness of this is to quigse strict 'vars’ , but it is also essential for generation of
closures as detailed in perlrefictual initialization is delayed until run time, though, so it getceted at
the appropriate time, such as each time through a loop, for example.

Variables declared witlmy are not part of anpackage and are thereforevaefully qualified with the
package name. In particulgou’re not allowed to try to maka @ckage variable (or other global) lexical:

my $pack::var; # ERROR! lllegal syntax
my$_; # also illegal (currently)

In fact, a dynamic ariable (also known as package or global variables) are still accessible using the fully
qualified:: notation @en while a lexical of the same name is also visible:

package main;

local $x = 10;

my $x = 20;
print "$x and $::x\n";

That will print out20 and10.

You may declaremy variables at the outermost scope of a file to hide smich identifiers from the arld
outside that file. This is similar in spirit to £&atic variables when tlyeare used at the file el. To do

this with a subroutine requires the use of a closure (anyarass function that accesses enclosing
lexicals). If you want to create a prite subroutine that cannot be called from outside that block, it can
declare a lexical variable containing an anonymous sub reference:

58 2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

my $secret_version = '1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference isveereturned by aypfunction within the module, no outside module can see the
subroutine, because its name is not ip packages ymbol table. Remember that & not REALLY called
$some_pack::secret_version or anything; it5 just $secret_version , unqualified and
unqualifiable.

This does not work with object methodswiawer; all object methods ka © be n the symbol table of
some package to be found. See “Function Templateperiref for something of a work-around to this.

Persistent Private Variables

Just because a lexical variable is lexically (also called statically) scoped to its enclosing\@bclgr do
FILE, this doesrt mean that within a function it works Bka C satic. It normally works more lig a C
auto, but with implicit garbage collection.

Unlike local variables in C or# Perl's lexical variables dor’necessarily get recycled just because their
scope hasxted. If something more permanent is stiae of the lexical, it will stick aroundSo long as
something else references a lexical, that lexicah’tvbe freed — whichis as it should beYou wouldn't
want memory being free until you were done using it, @ptkaround once you were donAutomatic
garbage collection takes care of this for you.

This means that you can pass back oe saay references to lexical variables, whereas to return a pointer
to a C auto is a gva aror. It also gives us a vay to simulate & function statics.Here's a nechanism for
giving a function pwrate variables with both lexical scoping and a static lifetifigiou do want to create
something lile Cs datic variables, just enclose the whole function in an extra block, and put the static
variable outside the function but in the block.

{
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}
}

$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate fileetmire or use, then this is probably just fine.
If it's dl in the main program, you'll need to arrange for theto be &ecuted earlyeither by putting the
whole block abwe your main program, or more b&ky, placing merely a(BEGIN code block around it to
malke are it gets recuted before your program starts to run:

BEGIN {
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}

}

See “BEGIN, CHECK, INIT andEND” i n perimod about the special triggered code bloBEGIN, CHECK
INIT andEND

If declared at the outermost scope (the file scope), thx@ale work somewhat lik Cs file statics. They
are aailable to all functions in that same file declared hetbhem, but are inaccessible from outside that
file. Thisstrategy is sometimes used in modules to createt@nvariables that the whole module can see.

Temporary Values vialocal()

WARNING: In general, you should be usingyinstead ofocal , because it faster and safelExceptions

to this include the global punctuation variables, global filehandles and formats, and direct manipulation of
the Perl symbol table itselfocal is mostly used when the currerglive of a variable must be visible to
called subroutines.

Synopsis:

perl v5.8.6 2004-11-05 59

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

| ocalization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it
local $hash{key} = "val"; # sets a local value for this hash entry
local ($cond ? $v1 : $v2); # several types of Ivalues support
| ocalization
| ocalization of symbols
local *FH; # | ocalize $FH, @FH, %FH, &FH
local *merlyn = *randal; # now $merlyn is really $randal, plus
@merlyn is really @randal, etc
local *merlyn = 'randal’; # SAME THING: promote 'randal’ to *randal
local *merlyn = \$randal, #] ust alias $merlyn, not @merlyn etc

A local modifies its listed variables to béotal” to the enclosing blockeval , or do FILE ——-and to
any subroutine called from within that blocA local just gives temporary values to global (meaning
package) ariables. ltdoesnotcreate a localariable. Thids known as dynamic scopind.exical scoping
is done withmy, which works more lik Cs auto declarations.

Some types of Ivalues can be localized as well : hash and array elements and slices, conditicidels (pro
that their result is alays localizable), and symbolic references. As for simple variables, this creates ne
dynamically scoped values.

If more than one variable or expression igegito local , they must be placed in parentheseBhis
operator works by saving the current values of those variables irgitsiant list on a hidden stack and
restoring them uponxéing the block, subroutine, owva. This means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired, which
allows you to initialize your localariables. (Ifno initializer is gven for a particular variable, it is created

with an undefined value.)

Becausdocal is a run-time operatpit gets executed each time through a looonsequentlyit's nore
efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an Ivaluegression. Whelyou assign to docal ized variable, the
local doesnt change whether its list is viewed as a scalar or an.aS8ay

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while
local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you'll be giving amealue to it, but its magic @n't go avay. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code kktis to work :

Read the whole contents of FILE in $slurp
{ | ocal $/ = undef; $slurp = <FILE>; }

Note, havever, that this restricts localization of somalwes ; for example, the following statement dies, as
of perl 5.9.0, with an errdviodification of a ead-only value attemptebecause th&1 variable is magical
and read-only :

local $1 = 2;
Similarly, but in a way more difficult to spot, the following snippet will die in perl 5.9.0 :

60 2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

sub f { local $_ = "foo"; print }

for ($1) {
now $_ is aliased to $1, thus is magic and readonly
f0;

}

See next section for an alterwatio this situation.

WARNING: Localization of tied arrays and hashes does not currently work as described. This witibe fix
in a future release of Perl; in the meantimajidcode that relies on gparticular behaviour of localising
tied arrays or hashes (localising widual elements is still okay). See “Localising Tied Arrays and Hashes
Is Broken' in perl58delta for more details.

Localization of globs
The construct
local *name;

creates a whole mesymbol table entry for the glohame in the current packageThat means that all
variables in its glob slot ($nam@&name%name &name, and theame filehandle) are dynamically reset.

This implies, among other things, thatyamagic eventually carried by those variables is locally los.
other words, sayingpcal */ will not have any &ect on the internal value of the input record separator

Notably if you want to work with a brand wevalue of the default scal& , and avoid the potential
problem listed abee @out$_ previously carrying a magicalue, you should uslecal *_ instead of
local $_

Localization of elements of composite types

It's dso worth taking a moment to explain what happens whenlgoal ize a member of a composite
type (i.e. an array or hash elemerit).this case, the elementltecal izedby nameThis means that when
the scope of thiocal() ends, the sed value will be restored to the hash element whesewas named
in thelocal() , or the array element whose indeas named in théocal() . If that element as
deleted while théocal() was in dfect (e.g. by alelete() from a hash or ahift() of an array), it
will spring back into existence, possiblxtending an array and filling in the skipped elements with
undef . For instance, if you say
%hash = ('This’ =>'is’, 'a’ => 'test’);
@ary = (0.5);
{
local($ary[5]) = 6;
local($hash{'a’}) = 'drill’;
while (my $e = pop(@ary)) {
print "$e . . .\n";
last unless $e > 3;

}
if (@ary) {
$hash{’only a’} = 'test’;
delete $hash{'a’};
}
}
print join(" ’, map { "$_ $hash{$_}"} sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",
join(, ', map { defined $_? $_:'undef } @ary),"\n";

Perl will print

6 ...

4 ...

3. ..

This is a test only a test.

The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior ofocal() on non-existent members of composite types is subject to change in future.

perl v5.8.6 2004-11-05 61

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

Lvalue subroutines

WARNING: Lvalue subroutines are still experimental and the implementation may change in future
versions of Perl.

It is possible to return a modifiablalue from a subroutineTo do this, you hae o declare the subroutine
to return an Ivalue.

my $val;

sub canmod : Ivalue {
r eturn $val; this doesn’'t work, don’t say "return"

$val;
}
sub nomod {
$val;
}
canmod() = 5; # assigns to $val
nomod() = 5, # ERROR

The scalar/list conte for the subroutine and for the right-hand side of assignment is determined as if the
subroutine call is replaced by a scakar example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:
(data(2,3)) = get_data(3,4);

and in:
(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines aeXPERIMENTAL
They appear to be camnient, but there are we&ral reasons to be circumspect.

You can't use the returndyword, you must pass out the value before falling out of subroutine scope.
(see comment in example algh Thisis usually not a problemubit disallows an explicit return out
of a deeply nested loop, which is sometimes a nice way out.

They violate encapsulationA normal mutator can check the supplieguanent before setting the
attribute it is protecting, an Ivalue subroutineereyets that chance. Consider;

my $some_array_ref = []; # protected by mutators ??
sub set_arr { # normal mutator
my $val = shift;

die("expected array, you supplied ", ref $val)
unless ref $val eq '"ARRAY;
$some_array_ref = $val;

}

sub set_arr_Iv : Ivalue { # | value mutator
$some_array_ref;

}

set_arr_lv cannot stop this !
set arr Iv()={a=>1};

Passing Symbol Table Entries (typeglobs)

WARNING: The mechanism described in this sectioasveriginally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, theraference
mechanism is generally easier to work with. Seeviaelo

Sometimes you dohivant to pass thealue of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global gopf it rather than wrking with a local cop In perl you can refer to

all objects of a particular name by prefixing the name with a %@o: . This is often known as a
“typeglob’, because the star on the front can be thought of as a wildcard match for all theriefisn

62 2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

characters on variables and subroutines and such.

When &aluated, the typeglob produces a scalar value that represents all the objects of that name, including
ary filehandle, format, or subroutin®/hen assigned to, it causes the name mentioned to refer tovevhate
* value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}

}

doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this mechanism
by referring explicitly to$_[0] etc. You can modify all the elements of an array by passing all the
elements as scalars, but yowdap use the* mechanism (or the eqwent reference mechanism) to

push , pop, or change the size of an arral will certainly be faster to pass the typeglob (or reference).

Even if you dont want to modify an arrayhis mechanism is useful for passing multiple arrays in a single
LIST, because normally theST mechanism will merge all the array values so that you eatract out the
individual arrays.For more on typeglobs, see “Typeglobs and Filehandiegerldata.

When to Still Uselocal()

Despite the existence afy, there are still three places where theal operator still shines. In fact, in
these three places, yowstuselocal instead oimy.

1. You need to ge a dobal variable a temporary value, especiglly

The global ariables, lile @ARGYr the punctuation variables, mustlbeal ized withlocal()
This block reads iletc/motd and splits it up into chunks separated by lines of equal signs, which are
placed in@Fields .

{
local @ARGYV = ("/etc/motd");
local $/ = undef;
local $_ =<>;
@Fields = split /"\s*=+\s*$/,
}

It particular it's important tolocal ize $_ in ary routine that assigns to it. Look out for implicit
assignments iwhile conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own mustlosal() on a complete tyggob. This can be
used to create mesymbol table entries:

sub ioqueue {
local (*READER, *WRITER); # notmy!
pipe (READER, WRITER) or die "pipe: $!";
return *READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to agtgpecreates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

perl v5.8.6 2004-11-05 63

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

{

local *grow = \&shrink; # only until this block exists

grow(); # really calls shrink()

move(); # if move() grow()s, it shrink()s too
}
grow(); # get the real grow() again

See “Function Templatésh perlref for more about manipulating functions by name in this way.
3. You want to temporarily change just one element of an array or hash.

You canlocal ize just one element of an aggae. Usuallythis is done on dynamics:

{
local $SIG{INT} = 'IGNORE’;

funct(); # uninterruptible

}

i nterruptibility automatically restored here

But it also works on lexically declared aggaes. Priorto 5.005, this operation could on occasion
misbehae.

Pass by Reference

If you want to pass more than one array or hash into a funetiamreturn them from i—and have them
maintain their intgrity, then you're going to he t use an explicit pass—by-reference. Before you do that,
you need to understand references as detailed in perlref. This section may eatunhksense to you
otherwise.

Here are a f& simple examples. Firstlet's pass in seeral arrays to a function and Vit pop all of then,
returning a ne list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);
sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
push @retlist, pop @$aref;
}

return @retlist;

}

Here's how you might write a function that returns a list @k occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
while ($k = each %S$href) {
$seen{Sk}++;
}

}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we're using just the normal list return mechanism. What happens if goti tov pass or return a
hash? WIl, if you're using only one of them, or you domind them concatenating, then the normal
calling covention is ok, although a little expemsi

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or
(%a, %b) = func(%c, %d);

That syntax simply wn’t work. It sets just@aor %aand clears th@bor %h Pus the function didr’get

64 2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

passed into tevseparate arrays or hashes: it got one long lig€dinas dways.

If you can arrange forveryone to deal with this through references d@éaner code, although not so nice
to look at. Here's a unction that taks two array references as arguments, returning theeavay elements
in order of hav mary elements thg havein them:

($aref, $bref) = func(\@c, \@d);
print "@%$aref has more than @$bref\n";
sub func {
my ($cref, $dref) = @_;
if (@$cref > @$dref) {
return ($cref, $dref);
} else{
return ($dref, $cref);
}

}

It turns out that you can actually do this also:
(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {
local (*c, *d) = @_;
if (@c > @d) {
return \@c, \@d);
} else{
return \@d, \@c);
}

}

Here we're using the typeglobs to do symbol table aliadihg.a ad subtle, though, and als@mt work if
you're usingmy variables, because only globalyée in disguise asocal s) are in the symbol table.

If you're passing around filehandles, you could usually just use the bare typegot§TIROUT, but
typeglobs references work, toBor example:

splutter(*STDOUT);
sub splutter {
my $fh = shift;
print $th "her um well a hmmm\n";
}
$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}

If you're planning on generating weilehandles, you could do thidNotice to pass back just the bare *FH,
not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;
}
Prototypes
Perl supports a very limited kind of compile-timgumnent checking using function prototyping. If you
declare

sub mypush \@@)

thenmypush() takes arguments exactly #push() does. Theunction declaration must be visible at
compile time. The prototype affects only interpretation of new-style calls to the function, whestyte
is defined as not using ti@echaracter In ather words, if you call it lik a huilt-in function, then it behaes

perl v5.8.6 2004-11-05 65

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

like a huilt-in function. If you call it like an dd-fashioned subroutine, then it bebsilike an dd-fashioned
subroutine. Itaturally falls out from this rule that prototypes/@ao influence on subroutine references
like \&foo or on indirect subroutine calls lil{$subref} or $subref->()

Method calls are not influenced by prototypes ejtbecause the function to be called is indeterminate at
compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that vedokilién functions,
here are prototypes for some other functions that parse almost exaxcthelitorresponding built=in.

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myvec ($$$) myvec $var, $offset, 1

sub myindex ($$;9$) myindex &getstring, "substr"

sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) - $off, $off
sub myreverse (@) myreverse $a, $b, $c

sub myjoin ($@) myjoin ":", $a, $b, $c

sub mypop (\@) mypop @array

sub mysplice \@$$@) mysplice @array, @array, 0, @pushme
sub mykeys (\%) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c

sub myrand ($) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actyuahant that absolutely must start with that
character The value passed as part@f will be a reference to the actual argumenegiin the subroutine
call, obtained by applying to that argument.

You can also backslashwsal argument types simultaneously by using\fhe notation:
sub myref \[$@%&*])
will allow calling myref()as
myref $var
myref @array
myref %hash

myref &sub

myref *glob
and the first argument afyref()will be a reference to a scalan aray, a hash, a code, or a glob.
Unbackslashed prototype charactergehgoecial meaningsAny unbackslashedor %eats all remaining
arguments, and forces list corte An argument represented I$/forces scalar conte An & requires an

anorymous subroutine, which, if passed as the first argument, does not requingbtheyword or a
subsequent comma.

A * allows the subroutine to accept a lveoed, constant, scalar expression, typeglob, or a reference to a
typeglob in that slot. The value will bevalable to the subroutine either as a simple scalafin the latter

two cases) as a reference to the plpb. If you wish to alvays corvert such arguments to a tygleb
reference, us8ymbol::qualify_to_ref(as follows:

use Symbol 'qualify_to_ref’;

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);

}

A semicolon separates mandatory arguments from optiogairents. lis redundant befor@or % which
gobble up eerything else.

Note hav the last three examples in the tableabae treated specially by the parsenygrep() is
parsed as a true list operataryrand() is parsed as a true unary operator with unary precedence the same
asrand() , andmytime() is truly without arguments, just likeme() . That s, if you say

66 2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

mytime +2;
you'll getmytime() + 2, notmytime(2) , which is hav it would be parsed without a prototype.
The interesting thing abow is that you can generatewmesyntax with it, provided is in the initial

position:
sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if (@) {
local $_=$@;
&$catch;
}
}
sub catch (&) {$_[0] }
try {
die "phooey";
} catch{
/phooey/ and print "unphooey\n";
2

That prints"unphooey” . (Yes, there are still unresolved issuesihg to do with visibility of @. I'm
ignoring that question for the momer(But note that if we mak@_lexically scoped, those angmous
subroutines can act Bkdosures... (Gee, is this sounding a little Lispish? véXeind.))))

And heres$ a eimplementation of the Pegtep operator:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
push(@result, $_) if &$code;
}

@result;
}

Some folks would prefer full alphanumeric prototypédphanumerics hee keen intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechaniss main goal is to let module writers provide better diagnostics for module usamy. feels the

notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor mad it harder to read. The line noise is visually encapsulated into a small pifl éaay to

swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional wathegg- *
character in prototyp€... Unfortunately earlier versions of Perl allowed the prototype to be used as long as
its prefix was a valid prototype. The warning may be upgradeddtabefror in a future version of Perl
once the majority of offending code is fixed.

It's probably best to prototype wefunctions, not retrofit prototyping into older on€ghat's because you
must be especially careful about silent impositions of differing éssws scalar contts. For example, if
you decide that a function should ¢glast one parametdike this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func(split /:/);

Then youve just supplied an automatscalar in front of their argument, which can be more than a bit
surprising. Theold @foo which used to hold one thing doeisgét passed inlnsteadfunc() now gets
passed in 4; that is, the number of elements@foo. And thesplit gets called in scalar context so it

perl v5.8.6 2004-11-05 67

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

68

starts scribbling on you®@ parameter list. Ouch!

This is all very pwerful, of course, and should be used only in moderation tce rinekworld a better
place.

Constant Functions

Functions with a prototype ¢ are potential candidates for inlining. If the result after optimization and
constant folding is either a constant or a lexically-scoped scalar which has no other references, then it will
be used in place of function calls made with@utCalls made using are nger inlined. (Seeonstant.pm

for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159} # Not exact, but close.

sub PI () {4 *atan21,1} # As good as it gets,
and it's inlined, too!

sub ST_DEV () {0}

sub ST_INO () {1}

sub FLAG_FOO () {1<<8}

sub FLAG_BAR () {1<<9}

sub FLAG_MASK () { FLAG_FOOUO FLAG_BAR}

sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }

sub N () { int(OPT_BAZ) /3 }
sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }

Be awvare that these will not be inlined; as yheontain inner scopes, the constant folding ddesduce
them to a single constant:

sub foo_set () { if (FLAG_MASK & FLAG_FOO){1}}

sub baz_val () {
if (OPT_BAZ) {

return 23;
}
else {

return 42;
}

}

If you redefine a subroutine that was eligible for inlining, you'll get a mandatargimg. (You can use

this warning to tell whether or not a particular subroutine is considered constdm.)warning is
considered sere enough not to be optional because previously compiegations of the function will

still be using the old value of the function. If you need to be able to redefine the subroutine, you need to
ensure that it ism’inlined, either by dropping th€ prototype (which changes calling semantics, so
beware) or by thwarting the inlining mechanism in some other, wagh as

sub not_inlined () {
23if §];
}

Overriding Built-in Functions

Many built-in functions may be werridden, though this should be tried only occasionally and for good
reason. Ypically this might be done by a package attempting to emulate missing built-in functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module at compile—tiondinary
predeclaration ish'good enough.However, theuse subs pragma lets you, in effect, predeclare subs via
the import syntax, and these names may tlverride built-in ones:

2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

use subs 'chdir’, 'chroot’, ‘chmod’, 'chown’;
chdir $somewhere;
sub chdir{ ... }

To unambiguously refer to the built-in form, precede thétiin name with the special package qualifier
CORE::. For example, sayin@ORE::open() always refers to thewlt-in open() , even if the current
package has imported some other subroutine c&ldgan() from elsevhere. Een though it looks lig a
regular function call, it isn’'t: you cahtake a eference to it, such as the incorréCORE::open might
appear to produce.

Library modules should not in general export built-in namesdjken or chdir as part of their defult
@EXPORTist, because these may sheak into someonesefs@espace and change the semantics
unexpectedly Instead, if the module adds that name@&XPORT_QHKhen it's possible for a user to
import the name explicitjybut not implicitly. That is, thg could say

use Module 'open’;

and it would import thepen overide. Butif they said
use Module;

they would get the default imports withowerides.

The foregoing mechanism forvariding built-in is restricted, quite deliberatelfo the package that
requests the importThere is a second method that is sometimes applicable when you wiglrrtdeoa
built-in everywhere, without rgard to namespace boundari€Ehis is achiged by importing a sub into the
special namespac€EORE::GLOBAL:: . Here is an xample that quite brazenly replaces thleb
operator with something that understands regular expressions.

package REGIob;
require Exporter;

@ISA ="Exporter’;
@EXPORT_OK ="glob’;

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =" s/"GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg->export($where, $sym, @_);
}

sub glob {
my $pat = shift;
my @got;
local *D;
if (opendir D, ".") {
@got = grep /$pat/, readdir D;
closedir D;

}
return @got;

}
1
And heres$ how it could be (ab)used:

#use REGIlob 'GLOBAL_glob’; # override glob() in ALL nhamespaces
package Foo;

use REGIob 'glob’; # override glob() in Foo:: only

print for <"[a-z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a conid, even dangerouseample. Byoveriding glob globally, you would
be forcing the n& (and subersive) behavior for the glob operator forevery namespace, without the
complete cognizance or cooperation of the modules thattbose namespaceblaturally; this should be
done with extreme cauties-if it must be done at all.

The REGIlob example abwe dbes not implement all the support needed to cleavdyride perls glob

perl v5.8.6 2004-11-05 69

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

operator The huilt-in glob has different behaviors depending on whether it appears in a scalar or list
contt, but ourREGIob doesnt. Indeed,mary perl built-in have such context sensite kehaviors, and
these must be adequately supported by a properly writtemide. For a fully functional example of
overriding glob , sudy the implementation dfile::DosGlob in the standard library.

When you werride a built—in, your replacement should be consistent (if possible) withuthénbnative
syntax. Yu can achiee this by using a suitable prototyp&o get the prototype of anverridable lilt-in,
use theprototype function with an argument ofCORE::builtin_name" (see “prototype’ in
perlfunc).

Note havever that some bilt-ins cant havetheir syntax expressed by a prototype (suclsyatem or
chomp). If you override them you wort’be ale to fully mimic their original syntax.

The huilt-ins do, require andglob can also be w@rridden, but due to special magic, their original
syntax is preserved, and you dohdveto define a prototype for their replacementgou cant override
thedo BLOCK syntax, though).

require has special additional dark magic: if yowadke your require replacement asequire
Foo::Bar , it will actually receve the argumentFoo/Bar.pm” in @. See “require’in perlfunc.

And, as you'll hae roticed from the previous example, if youerride glob , the <*> glob operator is
overidden as well.

In a similar fashion, werriding the readline function also werrides the equialent 1/O operator
<FILEHANDLE>.

Finally, some built-ins (e.gexists orgrep) can't be overridden.

Autoloading

If you call a subroutine that is undefined, yoautd ordinarily get an immediate, fatal error complaining
that the subroutine doesrexist. (Likewise for subroutines being used as methods, when the method
doesnt exist in ary base class of the clasgackage.) Hwever, if an AUTOLOABuUbroutine is defined in

the package or packages used to locate the original subroutine, th&tJTr@LOABubroutine is called
with the arguments that would\eabeen passed to the original subroutifiéae fully qualified name of the
original subroutine magically appears in the gloBAUTOLOADvariable of the same package as the
AUTOLOADoutine. Thename is not passed as an ordinary argument because]lejust because, that’
why...

Many AUTOLOADoutines load in a definition for the requested subroutine «sad(), then eecute that
subroutine using a special form géto() that erases the stack frame of tkhdTOLOADoutine without a
trace. (Seethe source to the standard module documented in AutolLoéolerexample.) Butan
AUTOLOADoutine can also just emulate the routine angendefine it. For example, lets pretend that a
function that wasn'defined should just iroke system with those aguments. Allyou'd do is:

sub AUTOLOAD {
my $program = $AUTOLOAD;
$program =" s/.*::/f;
system($program, @_);
}
date();
who(am’, 'i");
IsC-I);
In fact, if you predeclare functions you want to call that,way dont even need parentheses:

use subs gw(date who Is);
date;

who "am", "i";
Is -I;

A more complete example of this is the standard Shell module, which can treat undefined subroutine calls
as calls to external programs.

Mechanisms arevailable to help modules writers split their modules into autoloadable files. See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules
in SelfLoaderand the document on adding C functions to Perl code in perlxs.

70 2004-11-05 perl v5.8.6

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

Subroutine Attributes

A subroutine declaration or definition mayvieaa Ist of attributes associated with it. If such an attigb
list is present, it is broken up at space or colon boundaries and treated as thsegltabutes had
been seen. See attributes for details about what attributes are currently suppalileel.the limitation
with the obsolescentse attrs , thesub : ATTRLIST syntax works to associate the attributes with a
pre—declaration, and not just with a subroutine definition.

The attributes must bealid as simple identifier names (withoutyapunctuation other than the '
character). Themay hae a @rameter list appended, which is only checked for whether its parentheses

CC,))) nest properly.
Examples of valid syntax ¥en though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) . e xpensive;
sub plugh () : Ugly(\(") :Bad ;
sub xyzzy : 5x5{...}

Examples of imalid syntax:
sub fnord : switch(10,foo() ; # ()-string not balanced

sub snoid : Ugly(() ; # ()-string not balanced

sub xyzzy : 5x5 ; # " 5x5" not a valid identifier

sub plugh : Y2::north ; # " Y2::north" not a simple identifier
sub snurt : foo + bar ; # " +" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them with the
subroutine. Inparticular the second example of valid syntax @daurrently looks lile this in terms of
how it's parsed and woked:

use attributes _ PACKAGE__, \&plugh, q[Ugly(\(")], 'Bad’;
For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO
See “Function Emplates’in perlref for more about references and closurgse perlxs if you like to
learn about calling C subroutines from PeBee perlembed if yod’like to learn about calling Perl
subroutines from C. See perlmod to learn abawtdbng up your functions in separate fileSee
perlmodlib to learn what library modules come standard on your sySemperltoot to learn faoto make
object method calls.

perl v5.8.6 2004-11-05 71

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

NAME
perlfunc — Perl builtin functions

DESCRIPTION
The functions in this section can seras eérms in an epression. Thefall into two major categories: list
operators and named unary operators. These differ in their precedence relationship witviagfollo
comma. (Seg¢he precedence table in perlof.jst operators tad more than one argument, while unary
operators can ner take nore than one gument. Thusa comma terminates the garment of a unary
operatoy but merely separates thegaments of a list operatoA unary operator generally provides a scalar
contet to its argument, while a list operator may provide either scalar or list contexts fguitsesnts. |If
it does both, the scalargaments will be first, and the list argument will fello (Note that there carver
be only one such list gnment.) Br instancesplice() has three scalar arguments foled by a list,
whereagyethostbyname(as four scalar arguments.

In the syntax descriptions that folp list operators thatxgect a list (and provide list context for the
elements of the list) are shown witl8T as an aggument. Sucla list may consist of gncombination of
scalar arguments or list values; the liatues will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single-dimensionaldiseyv Elementsf the LIST
should be separated by commas.

Any function in the list bel may be used either with or without parentheses aroundgitsremts. (The
syntax descriptions omit the parenthesel.)you use the parentheses, the simple (but occasionally
surprising) rule is this: Itookslike a function, therefore its a function, and precedence dodsmatter.
Otherwise it5 a lst operator or unary operat@nd precedence does mattétnd whitespace between the
function and left parenthesis dodstdunt — soyou need to be careful sometimes:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the-w switch it can warn you about thig:or example, the third line alve produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at - line 1.

A few functions tak no aguments at all, and therefore work as neither unary nor list operatbese
include such functions dsne andendpwent . For exampletime+86 400 always meangime() +
86_400.

For functions that can be used in either a scalar or list context, nonalfaittire is generally indicated in a
scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following important rule: Therens rule that relates the behavior of an expression in list
contt to its behavior in scalar context, or vicersa. Itmight do tw totally different things. Each
operator and function decides which sort of valuedti be most appropriate to return in scalar cdnte

Some operators return the length of the list that wowe leen returned in list conte Someoperators

return the first value in the list. Some operators return the last value in the list. Some operators return a
count of successful operations. In generaly thewhat you want, unless you want consistenc

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar contet. You cant get a list like (1,2,3) into being in scalar context, because the compilewkno

the context at compile time. Itomld generate the scalar comma operator there, not the list construction
version of the comma. That means it wagena list to start with.

In general, functions in Perl that seras wappers for system calls of the same name @gihown(2),
fork (2), closedir(2), etc.) all return true when theucceed andindef otherwise, as is usually mentioned
in the descriptions belo This is different from the C inteates, which retural on failure. Exceptionso
this rule arewait , waitpid , and syscall . System calls also set the speckl variable on &ilure.
Other functions do not, except accidentally.

72 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Perl Functions by Category

Here are Pew functions (including things that look #kfunctions, lile ssme leywords and named
operators) arranged by categoS8ome functions appear in more than one place.

Functions for SCALARSs or strings

chomp, chop, chr, crypt , hex, index , Ic, Icfirst , length , oct, ord, pack,
g/STRING/ , qg/STRING/ , reverse |, rindex , sprintf , substr , tr/// |, uc, ucfirst
il

Regular expressions and pattern matching
m// , pos, quotemeta ,s/// ,split ,study ,qr//

Numeric functions
abs, atan2 , cos, exp, hex, int ,log ,oct ,rand ,sin ,sqrt ,srand

Functions for rea@ARRAYs
pop, push, shift , splice ,unshift

Functions for list data
grep ,join , map, qw/STRING/ , reverse ,sort ,unpack

Functions for rea%oHASHes
delete ,each,exists ,keys,values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock , format ,
getc , print , printf | read , readdir , rewinddir , seek, seekdir , select , syscall ,
sysread ,sysseek ,syswrite ,tell ,telldir ,truncate , warn, write

Functions for fixed length data or records
pack ,read , syscall ,sysread ,syswrite ,unpack ,vec

Functions for filehandles, files, or directories
=X, chdir , chmod, chown, chroot , fcntl , glob , ioctl , link , Istat , mkdir , open,
opendir ,readlink ,rename, rmdir ,stat ,symlink ,sysopen ,umask, unlink , utime

Keywords related to the control floof your perl program
caller , continue |, die , do, dump, eval , exit , goto , last , next , redo , return , sub,
wantarray

Keywords related to scoping
caller ,import ,local ,my,our,package ,use

Miscellaneous functions
defined ,dump, eval ,formline ,local ,my,our,reset ,scalar ,undef ,wantarray

Functions for processes and process groups
alarm , exec, fork , getpgrp , getppid , getpriority , kill , pipe , gx/STRING/ ,
setpgrp , setpriority , Sleep , system , times , wait , waitpid

Keywords related to perl modules
do, import , no, package , require , use

Keywords related to classes and object-orientedness
bless , dbmclose , dbmopen, package , ref ,tie ,tied ,untie ,use

Low-level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt |, listen , recv ,
send, setsockopt , shutdown , socket , socketpair

System V interprocess communication functions
msgctl , msgget , msgrev , msgsnd, semctl , semget , semop, shmctl , shmget , shmread ,
shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam, getpwuid , setgrent , setpwent

perl v5.8.6 2004-11-05 73

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Fetching network info

endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent
getnetbyaddr , getnetbyname , getnetent , getprotobyname , getprotobynumber
getprotoent , getservbyname , getservbyport , getservent , sethostent

setnetent , setprotoent , setservent

Time-related functions
gmtime , localtime , time , times

Functions ne in perl5
abs, bless , chomp, chr , exists , formline , glob , import , Ic , Icfirst , map, my, no,
our , prototype , gx, qw, readline , readpipe , ref , sub*, sysopen , tie , tied , uc,
ucfirst , untie , use

* — sub was a keyword in perl4, but in perl5 it is an operatahich can be used in expressions.

Functions obsoleted in perl5
dbmclose , dbmopen

Portability

Perl was born in Unix and can therefore access all common Unix systemlcaltsn-Unix enironments,
the functionality of some Unix system calls may not talable, or details of thevailable functionality
may differ slightly The Perl functions affected by this are:

=X, binmode , chmod, chown, chroot , crypt , dbmclose , dbmopen, dump, endgrent |,
endhostent , endnetent , endprotoent , endpwent , endservent , exec, fcntl , flock
fork , getgrent , getgrgid , gethostbyname , gethostent , getlogin , getnetbyaddr
getnetbyname , getnetent , getppid , getprgp , getpriority , getprotobynumber
getprotoent , getpwent , getpwnam, getpwuid , getservbyport , getservent
getsockopt , glob , ioctl , kil , link , Istat , msgctl , msgget, msgrcv , msgsnd, open,
pipe , readlink , rename, select , semctl , semget, semop, setgrent , sethostent ,
setnetent , setpgrp , setpriority , setprotoent , setpwent , setservent , setsockopt
shmctl , shmget, shmread , shmwrite , socket , socketpair , stat , symlink , syscall
sysopen , system , times , truncate ,umask, unlink , utime ,wait , waitpid

For more information about the portability of these functions, see perlport and etilable platform-
specific documentation.

Alphabetical Listing of Perl Functions

—X FILEHANDLE

-X EXPR

-X A file test, where X is one of the letters listed beldThis unary operator tals one ajument,
either a filename or a filehandle, and tests the associated file to see if something is true about it.
If the argument is omitted, tes® , except for -t , which testsSTDIN. Unless otherwise
documented, it returnk for true and’ for false, or the undefined value if the file doésxist.
Despite the furyn names, precedence is the same asaliner named unary operatand the
argument may be parenthesizec &y ather unary operatorThe operator may be wpiof:

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.

-x File is executable by effective uid/gid.
-0 File is owned by effective uid.

-R File is readable by real uid/gid.
-W File is writable by real uid/gid.

-X File is executable by real uid/gid.
-O File is owned by real uid.

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

74 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.

-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File is a socket.

-b File is a block special file.

-c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.

-T File is an ASCII text file (heuristic guess).
-B File is a "binary" file (opposite of -T).

-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other platforms)

Example:
while (<>) {
chomp;
next unless f$_; # i gnore specials
#...
}

The interpretation of the file permission operaters —R, —w, -W -x, and —X is by de&ult

based solely on the mode of the file and the uids and gids of theThsee may be other reasons

you cant actually read, write, orxecute the file. Such reasons may be for example or&tw
filesystem access controls, ACLs (access control lists), read-only filesystems, and unrecognized
executable formats.

Also note that, for the superuser on the local filesystems;rtheR, —w, and -Wtests alvays
return 1, and-x and —X return 1 if ay execute bit is set in the mode. Scripts run by the
superuser may thus need to dstat()to determine the actual mode of the file, or temporarily set
their effective ud to something else.

If you are using £Ls, there is a pragma callditetest that may produce more accurate
results than the bamgat() mode bits. When under these filetest 'access’ the aboe
mentioned filetests will test whether the permission can (not) be granted usingdbe(family

of system calls.Also note that thex and—X may under this pragma return truee if there are
no eecute permission bits set (noryaextra execute permission &Ls). Thisstrangeness is due
to the underlying system calls’ definitions. Read the documentation fditeteest pragma
for more information.

Note that-s/a/b/ does not do a ggted substitution.Saying —exp($foo) still works as
expected, howeer — only single letters following a minus are interpreted as file tests.

The -T and-B switches work as follws. Thefirst block or so of the file is examined for odd
characters such as strange control codes or characters with the high Bitaemary strange
characters (>30%) are foundsi&—B file, otherwise its a—T file. Also, ary file containing null
in the first block is considered a binary filé.—T or —B is used on a filehandle, the currént
buffer is examined rather than the first blo&oth —T and-B return true on a null file, or a file
at EOF when testing a filehandleBecause you h& read a file to do theT test, on most
occasions you want to use-f against the file first, as inext unless —f $file && -T

$file

If any of the file tests (or either tretat orIstat operators) are gén the special filehandle
consisting of a solitary underline, then the stat structure of thiopsfile test (or stat operator)
is used, sang a system call. (This doesniork with -t , and you need to remember thstiat()
and-| will leave values in the stat structure for the symbolic link, not the real f{&&9o, if the
stat luffer was filled by dstat call, =T and -B will reset it with the results oftat _).

perl v5.8.6 2004-11-05 75

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

Example:
print "Can do.\n" if -r $a m -w m -x_;

stat($filename);

print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;

print "Text\n" if -T _;

print "Binary\n" if -B _;

absVALUE

abs

Returnshe absolute value of itsqument. IfVALUE is omitted, use$_.

acceptNEWSOCKETGENERICSOCKET

Accepts an incoming socket connect, just asatt@pi2) system call does. Returns the ptk
address if it succeededalde otherwise. See the example f#$Sotkets: Client/Sersr
Communicatiori’in perlipc.

On systems that support a close-aredlag on files, the flag will be set for thewig opened file
descriptoyas @termined by the value of $"Bee “$°F” in perlvar.

alarmSECONDS

alarm

76

Arrangego hare aSIGALRM delivered to this process after the specified number afclock
seconds hae dapsed. IfSECONDSIs not specified, the value stored$n is used. (On some
machines, unfortunatelyhe elapsed time may be up to one second less or more than you
specified because of Weseconds are counted, and process scheduling may delay trezydefi

the signal een further.)

Only one timer may be counting at once. Each call disables the previousatichan agument
of 0 may be supplied to cancel the previous timer without startingvaone. Thereturned alue
is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, you may usesHeudi-agument version of
select()leaving the first three guments undefined, or you might be able to usesyiseall
interface to accessetitimer(2) if your system supports it. The Time::HiRes module (f@PAN,
and starting from Perl 5.8 part of the standard distribution) may alge mweful.

It is usually a mistak to intermix alarm and sleep calls. 6leep may be internally
implemented in your system witarm)

If you want to usealarm to time out a system call you need to usecaal /die pair. You
cant rely on the alarm causing the system callaibwith $! set toEINTR because Perl sets up
signal handlers to restart system calls on some systdeisgeval /die always works, modulo
the caeats gven in “Signals’ in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;
g
if (@) {
die unless $@ eq "alarm\n"; # propagate unexpected errors
t imed out
}
else {
didn't
}

For more information see perlipc.

2004-11-05 perl v5.8.6

PERLFUNC(1)

atan2 Y, X

PerProgrammers Reference Guide PERLFUNC(1)
Returns the arctangent of Y/X in the range —F?ito
For the tangent operation, you may use hhath::Trig::tan function, or use theafmiliar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

bind SOCKET,NAME

Binds a netwrk address to a socket, just as the bind system call does. Returns true if it
succeeded,afse otherwise NAME should be a packed address of the appropriate type for the
soclet. Sedhe examples in “Sockets: Client/Server Communicatiomerlipc.

binmodeFILEHANDLE, LAYER
binmodeFILEHANDLE

perl v5.8.6

Arranges forFILEHANDLE to be read or written irbinary” or ‘‘text” mode on systems where
the run-time libraries distinguish between binary and text flleSILEHANDLE is an &pression,
the value is taken as the name of the filehan&eturns true on success, otherwise it returns
undef and set$! (errno).

On some systems (in generdsS and Wndows-based system$&inmode()is necessary when
you're not working with a text fileFor the sak of portability it is a good idea to &bys use it
when appropriate, and tovee use it when it isrt’ appropriate. Alsopeople can set their I/O to
be by defauluTF-8 encoded Unicode, not bytes.

In other words: rgardless of platform, uskinmode(Jon binary data, lik for example images.

If LAYER is present it is a single string, but may contain multiple dirextiThe directies dter
the behaviour of the file handl®/henLAYER is present using binmode on text file makes sense.

If LAYER is omitted or specified asaw the filehandle is made suitable for passing binary data.
This includes turning éfpossible CRLF translation and marking it as bytes (as opposed to
Unicode characters)Note that, despite what may be implied “iProgramming Rrl” (the
Camel) or elsehere,:raw is not the simply iverse of:crlf — other layers which wuld
affect binary nature of the stream alsodisabled. See PerllO, perlrun and the discussion about
the PERLIO environment variable.

The :bytes , :crlf , and:utf8 , and ary other directves of the form:... , are called I/O
layers Theopen pragma can be used to establish default I/O layers. See open.

TheLAYERparameter of the binmode() function is described BESCIPLINE i n “Programming
Perl, 3rd Edition”. However, since the publishing of this book, by many knownGamel 11",
the consensus of the naming of this functionality has mowed ‘Hiscipline” to “layer”. All
documentation of this version of Perl tefare refers to ‘layers” rather than to ‘tisciplines”.
Now bag to the regularly scheduled documentation...

To mark FILEHANDLE asUTF-8, use:utf8

In generalbinmode()should be called aftapen()but before ay 1/0 is done on the filehandle.
Calling binmode()will normally flush ay pending huffered output data (and perhaps pending
input data) on the handle. An exception to this is.¢éimeoding layer that changes the deft
character encoding of the handle, see ofdre:encoding layer sometimes needs to be called
in mid-stream, and it doegrlush the streamThe:encoding also implicitly pushes on top of
itself the :utf8 layer because internally Perl will operate OTF-8 encoded Unicode
characters.

The operating system, devicewdrs, C libraries, and Perl run-time system all work together to
let the programmer treat a single charadter) @s he line terminatqgrirrespectie d the eternal
representation. Omnary operating systems, the nati ext file representation matches the
internal representation, but on some platforms the external representationisomade up of
more than one character.

Mac 0S, dl variants of Unix, and Stream_LF files ®MS use a single character to end each line
in the external representation of textde though that single characterG&RRIAGE RETURNoN
Mac OS andLINE FEED on Unix and mosVMS files). In other systems &O0S/2 DOS and the
various flavors of MS-Windows your program sees\n as a simpléacJ , but whats gored in

2004-11-05 77

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

text files are the ter characterdcM\cJ . That means that, if you ddnisebinmode()on these
systems\cM\cJ sequences on disk will be amnted to\n on input, and an\n in your
program will be comerted back tdcM\cJ on output. This is what you want for text files, but it
can be disastrous for binary files.

Another consequence of usibinmode()(on some systems) is that special end-of-file mark
will be seen as part of the data stredror systems from the Microsoft family this means that if
your binary data containsZ , the 1/0 subsystem will gexd it as the end of the file, unless you
usebinmode()

binmode()is not only important foreadline() andprint() operations, but also when usiregad(),
seek() sysread()syswrite()andtell() (see perlport for more detailsgee thes/ and$\ variables
in perlvar for hav to manually set your input and output line-termination sequences.

blessREF,CLASSNAME
blessREF

This function tells the thingy referenced B¥F that it is nev an diject in theCLASSNAME

package. IICLASSNAME is omitted, the current package is us@&#cause d&less is often the
last thing in a constructoit returns the reference for cmmience. Alays use the te-argument
version if the function doing the blessing might be inherited by aetbdass. Se@erltoot and
perlobj for more about the blessing (and blessings) of objects.

Consider alays blessing objects in CLASSWIEs that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragBuaittin types hae dl uppercase
names, so to pvent confusion, you may wish tos@id such package names as wéllake sure
that CLASSNAME is a true value.

See “Perl Modules$'in perimod.

callerEXPR

caller

Returnghe context of the current subroutine call. In scalar context, returns thescpdigrage
name if there is a callghat is, if we're in a subroutine eval orrequire , and the undefined
vaue otherwise. In list context, returns

($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stackTihace.
value of EXPRindicates hav mary call frames to go back before the current one.

($package, $filename, $line, $subroutine, $hasargs,
$wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);

Here $subroutine may be(eval) if the frame is not a subroutine call, but ewal . In
such a case additional elemefiesvaltext and $is_require are set:$is_require is
true if the frame is created byrequire or use statement$evaltext contains the text of
the eval EXPR statement. Inparticular for an eval BLOCK statement3$filename s
(eval) , but$evaltext is undefined. (Note also that eacte statement createsrequire
frame inside aneval EXPR frame.) $subroutine may also be(unknown) if this
particular subroutine happens tosbdeen deleted from the symbol tablhasargs is true if a
new instance of@_was st up for the frame$hints and$bitmask contain pragmatic hints
that the caller was compiled withThe $hints and $bitmask vaues are subject to change
between versions of Perl, and are not meant for external use.

Furthermore, when called from within tb8 package, caller returns more detailed information:
it sets the list variabl@DB::args to be the arguments with which the subroutine weskid.

Be avare that the optimizer might ia gptimized call framesway beforecaller had a chance
to get the informationThat means thataller(N) might not return information about the call
frame you expect it do, fod > 1. In particular, @DB::args might hare information from the
previous timecaller was aalled.

chdirEXPR

78

Changes the working directory EXPR, if possible. IfEXPRis omitted, changes to the directory
specified bysSENV{HOME} if set; if not, changes to the directory specifiedBBENV{LOGDIR}.
(UndervMs, the variable$ENV{SYS$LOGIN} is also cheokd, and used if it is set.) If neither is

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

set,chdir does nothing. It returns true upon success, false otherwise. See the example under
die .

chmodLIST
Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal numbed which definitely shouldhot a dring of
octal digits:0644 is okay '0644’ is not. Returns the number of files successfully changed.
See also “oct”, if all you hee is a $ring.

$cnt = chmod 0755, 'foo’, 'bar’;
chmod 0755, @executables;

$mode ='0644’; chmod $mode, 'foo’; # 1 1l sets mode to
- -W-—--r-T

$mode ='0644"; chmod oct($mode), 'foo’; # this is better

$mode = 0644; chmod $mode, foo’; # t his is best

You can also import the symbolig I* constants from the Fcntl module:
use Fentl :mode’;

chmod S_IRWXUS_IRGRFPB_IXGRPE_IROTHB _IXOTH, @executables;
This is identical to the chmod 0755 of the above example.

chompVARIABLE

chomp(LIST)

chomp Thissafer version of ¢chop” removes any trailing string that corresponds to the current value of
$/ (also knevn as$INPUT_RECORD_SEPARATAR the English module). Itreturns the
total number of characters rewed from all its aguments. I dten used to rema the nevline
from the end of an input record when you'rervied that the final record may be missing its
newline. Whenin paragraph modeb(=""), it removes dl trailing newlines from the string.
When in slurp mode${ = undef) or fixed-length record mode$(is a reference to an inger
or the like, see perar) chomp()won’t remove aything. If VARIABLE is omitted, it chomp$_.
Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/));
...

}
If VARIABLE is a hash, it chomps the haskélues, but not itseys.

You can actually chomp anything thatin lalue, including an assignment:

chomp($cwd = ‘pwd");
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characteredramo
returned.

If the encoding pragma is in scope then the lengths returned are calculated from the length of
$/ in Unicode characters, which is noways the same as the length & in the natie

encoding.
Note that parentheses are necessary when you're chomping anything that is not aasiaipée v
This is becausehomp $cwd = ‘pwd’; is interpreted agchomp $cwd) = ‘pwd’; ,
rather than ashomp($cwd = ‘pwd") which you might gpect. Similarly chomp $a,
$b is interpreted ashomp($a), $b rather than ashomp($a, $b)

ChopVARIABLE

chop(LIST)

chop Chopwoff the last character of a string and returns the character chopped. It is much more
efficient thans/.$//s because it neither scans nor copies the stihifARIABLE is omitted,
chops$_. If VARIABLE is a hash, it chops the haskalues, but not itseys.

You can actually chop anything thatan alue, including an assignment.

perl v5.8.6 2004-11-05 79

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

If you chop a list, each element is chopped. Only the value of thehlagtis returned.

Note that chop returns the last characterTo return all but the last characteuse
substr($string, 0, —1)

See also “chomp”.

chownLIST
Changes the owner (and group) of a list of files. The firstdements of the list must be the
numericuid and gid, in that orderA value of -1 in either position is interpreted by most systems
to leave that value unchanged. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

Heres an gample that looks up nonnumeric uids in the passwd file:

print "User: ";

chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you're the
superuserdthough you should be able to change the group yaméygour secondary groupsOn
insecure systems, these restrictions may be relaxed, but this is not a portable assubmption.
POSIXsystems, you can detect this condition this way:

use POSIX qw(sysconf PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_ PC_CHOWN_RESTRICTED);

chrNUMBER

chr Returnghe character represented by tRatMBER in the character sef-or example,chr(65)
is "A" in either ASCIl or Unicode, and chr(0x263a) is a Unicode syniface. Notethat
characters from 128 to 255 (inclusi are by default not encoded idTF-8 Unicode for
backward compatibility reasons (but see encoding).

If NUMBER is omitted, use$.

For the reverse, use “ord”.

Note that under thbytes pragma theWUMBER is masked to the Vo eight bits.
See perlunicode and encoding for more about Unicode.

chrootFILENAME

chroot Thisfunction works lile the system call by the same name: it makes the named directorymhe ne
root directory for all further pathnames thagimewith a/ by your process and all its children.
(It doesnt change your current working directoryhich is unafected.) er security reasons, this
call is restricted to the superuséf FILENAME is omitted, does ehroot to$.

closeFILEHANDLE

close Closeghe file or pipe associated with the file handle, returning true oni@ buffers are
successfully flushed and closes the system file descriploses the currently selected filehandle
if the argument is omitted.

You don't haveto closeFILEHANDLE if you are immediately going to do anothmsen on it,
becausepen will close it for you. (Seeopen.) However, an explicit close on an input file
resets the line counte$.(), while the implicit close done kgpen does not.

If the file handle came from a piped opelose will additionally return false if one of the other
system calls ivolved fails, or if the programxés with non-zero status. (If the only problenasv
that the programxéted non-zero$! will be set t00.) Closinga ppe also waits for the process
executing on the pipe to complete, in case yantwto look at the output of the pipe aftards,

80 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

and implicitly puts the exit status value of that command$fto

Prematurely closing the read end of a pipe (i.e. before the process writing to it at the other end
has closed it) will result in 8IGPIPEbeing delered to the writer If the other end canhhandle
that, be sure to read all the data before closing the pipe.

Example:
open(OUTPUT, ' [kort >foo’) # pipe to sort
or die "Can't start sort: $!";
#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
. " EXxit status $? from sort";
open(INPUT, 'foo’) # get sort’s results
or die "Can'’t open 'foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually
the real filehandle name.

closedirDIRHANDLE
Closes a directory opened bgendir and returns the success of that system call.

conneciSOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns true if it
succeeded,afse otherwise NAME should be a packed address of the appropriate type for the
soclet. Sedhe examples in “Sockets: Client/Server Communicatiomerlipc.

continueBLOCK
Actually a flav control statement rather than a function. If there isoatinue BLOCK
attached to 8LOCK (typically in awhile or foreach), it is always executed just before the
conditional is about to bevaluated again, just lik the third part of dor loop in C. Thus it can
be used to increment a loop variablgerewhen the loop has been continued via tiext
statement (which is similar to thed®ntinue statement).

last , next , or redo may appear within aontinue block. last andredo will behave &
if they had been xecuted within the main block. So willext , but since it will execute a
continue block, it may be more entertaining.

while (EXPR) {
redo always comes here
do_something;
} ¢ ontinue {
next always comes here
do_something_else;
t hen back the top to re-check EXPR
}

last always comes here

Omitting thecontinue section is semantically egqalent to using an empty one, logically
enough. Irthat casenext goes directly back to check the condition at the top of the loop.

COSEXPR

cos Returnghe cosine oEXPR (expressed in radians). BEXPRis omitted, takes cosine §f .
For the inverse cosine operation, you may use Mueth::Trig::acos() function, or use this
relation:

sub acos { atan2(sqrt(1 - $_[0]*$ _[0]), $_[0])}

Crypt PLAINTEXT,SALT
Encrypts a string exactly kkthe crypt(3) function in the C library (assuming that you actually
have a vesion there that has not beextigated as a potential munition). This canyaraseful
for checking the password file for lousy passwords, amongst other tiomijysthe guys wearing
white hats should do this.

Note that crypt is intended to be a one-way function, muah tikaking eggs to makan

perl v5.8.6 2004-11-05 81

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

omelette. Therés no (knavn) corresponding decrypt function (in other words, ¢hgt() is a
one-way hash function) As a result, this function isnall that useful for cryptograph (For that,
see your nearb@PAN mirror.)

When verifying an existing encrypted string you should use the encrypted text as theesalt (lik
crypt($plain, $crypted) eq $crypted). Thisallows your code to wk with the
standard crypt and with moreatic implementations. In other words, do not assumgharg

about the returned string itself, onthanary bytes in the encrypted string matter.

Traditionally the result is a string of 13 bytesotiirst bytes of the salt, foleed by 11 bytes
from the se{./0-9A-Za-z] , and only the first eight bytes of the encrypted string mattered,
but aternatve hashing schemes (EkMD5), higher leel security schemes (lk C2), and
implementations on non-UNIX platforms may produce different strings.

When choosing a mesalt create a random twcharacter string whose characters come from the
set [./0-9A-Za-z] (like join ™", (., 'f, 0.9, 'A.Z,

'a’..’z")[rand 64, rand 64]). This set of characters is just a recommendation; the
characters allowed in the salt depend solely on your systeypt library, and Perl cart'restrict
what saltcrypt() accepts.

Heres an gample that makes sure that wheeruns this program knows their own password:
$pwd = (getpwuid($<))[1];

system "stty -echo";

print "Password: ";
chomp($word = <STDIN>);
print "\n";

system "stty echo";

if (crypt($word, $pwd) ne $pwd) {

die "Sorry...\n";
} else{
print "ok\n";

}

Of course, typing in your own password to wiaeasks you for it is unwise.

The crypt function is unsuitable for encryptinggarquantities of data, not least of all because
you cant get the information back. Look at thby-module/Cryptand by—-module/PGP
directories on yourdvaite CPAN mirror for a slev of potentially useful modules.

If using crypt() on a Unicode string (whicpotentiallyhas characters with codepoints @b@&5),
Perl tries to ma& nse of the situation by trying to downgrade (aycoipthe string) the string
back to an eight-bit byte string before callienypt() (on that cop). If that works, good. If not,
crypt() dies withWide character in crypt

dbmcloseHASH
[This function has been largely superseded bwttiee function.]

Breaks the binding betweerd®M file and a hash.

dbmoperHASH,DBNAME,MASK
[This function has been largely superseded byi¢hefunction.]

This binds adbm(3), ndbm(3), sdbm(3), gdbm(3), or Berleley DB file to a hash.HASH is the
name of the hash(Unlike normal open, the first argument igot a filehandle, een though it
looks like one). DBNAME is the name of the database (without .ttie or .pagextension if ag).

If the database does not exist, it is created with protection specifieds¥ (as modified by the
umask). If your system supports only the oldeBM functions, you may perform only one
dbmopen in your program.In older versions of Perl, if your system had neithem nor ndbm,
callingdbmopen produced a fatal error; it mofalls back tasdbm(3).

If you dont havewrite access to theBM file, you can only read hash variables, not set thém.
you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside areval , which will trap the error.

82 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Note that functions such &eys andvalues may return huge lists when used org&abBM
files. You may prefer to use tleach function to iterate wer largeDBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ' =", unpack(L’,$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons @fritngsvdbm
approaches, as well as DB_File for a particularly rich implementation.

You can control whictDBM library you use by loading that library before you dlimopen()

use DB_File;
dbmopen(%NS_Hist, "SENV{HOME}/.netscape/history.db")
or die "Can'’t open netscape history file: $!";

definedEXPR
defined Returna Boolean value telling wheth&xPRhas a value other than the undefinatligundef .
If EXPRis not present$_ will be checked.

Many operations returmndef to indicate &ilure, end of file, system erraninitialized \ariable,
and other exceptional conditions. This function allows you to distinguistef from other
values. (Asimple Boolean test will not distinguish amougdef , zero, the empty string, and
"0" , which are all equallydise.) Notehat sinceundef is a valid scalarits presence doesn’
necessarilyndicate an exceptional conditiopop returnsundef when its argument is an empty
array,or when the element to return happens taihgef .

You may also usedefined(&func) to check whether subroutingfunc has eer been
defined. Thereturn value is unéécted by ap forward declarations o&func . Note that a
subroutine which is not defined may still be callable: its package may @aAUTOLOAD
method that makes it spring into existence the first time that it is callesde perlsub.

Use ofdefined on aggrgaes (hashes and arrays) is deprecatédised to report whether
memory for that aggogete has eer been allocated. This behavior may disappear in future
versions of Perl.You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whetheralue ¥s defined, not whether theykexsts
in the hash. Use “existd or the latter purpose.

Examples:

print if defined $switch{'D’};
print "$val\n" while defined($val = pop(@ary));
die "Can’t readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Mary folks tend to verusedefined , and then are surprised to diseothat the number
0 and™ (the zero-length string) are, in fact, definedlies. Br example, if you say

"ab" =" /a(.*)b/;

The pattern match succeeds, &idis defined, despite the fact that it matcHadthing”. But it

didn't really match nothing—rather it matched something that happened to be zero characters
long. Thisis all very abwe-board and honest. When a function returns an undefined vasue, it’
an admission that it couldrgive you an honest answego you should useefined only when
you're questioning the integrity of what yoe'trying to do. At other times, a simple comparison

" is what you want.

See also'ndef”, “exists”, ‘ ‘ref’’.

perl v5.8.6 2004-11-05 83

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

deleteEXPR
Given an pression that specifies a hash element, array element, hash slice, or array slice, deletes
the specified element(s) from the hash or arlaythe case of an arraif the array elements
happen to be at the end, the size of the array will shrink to the highest element that tests true for
exsts() (or O if no such element exists).

Returns a list with the same number of elements as the number of elements for which deletion
was dtempted. Eacklement of that list consists of either tfaue of the element deleted, or the
undefined @lue. Inscalar context, this means that you get thiees of the last element deleted

(or the undefined value if that element did not exist).

%hash = (foo => 11, bar => 22, baz => 33);

$scalar = delete $hash{foo}; # $scalaris 11
$scalar = delete @hash{gw(foo bar)}; # $scalaris 22
@array = delete @hash{gw(foo bar baz)}; # @array is (undef,undef,33)

Deleting from%ENMmodifies the evironment. Deletingrom a hash tied to BBM file deletes
the entry from theDBM file. Deletingfrom atie d hash or array may not necessarily return
anything.

Deleting an array elementfeftively returns that position of the array to its initial, uninitialized
state. Subsequentigsting for the same element weksts()will return false. Notehat deleting
array elements in the middle of an array will not shift the xndé the ones after them
down — usesplice()for that. See “exists”.

The following (inefficiently) deletes all the values%HASHNd@ARRAY:
foreach $key (keys %HASH) {

delete SHASH{$key};

}

foreach $index (0 .. $#ARRAY) {
delete SARRAY[$indeX];

}

And so do these:
delete @HASH{keys %HASH};
delete @ARRAY][O .. $#ARRAY];
But both of these are slower than just assigning the empty list or undéfiniAGtor @ARRAY::

%HASH = (); # completely empty %HASH
undef %HASH; # f orget %HASH ever existed
@ARRAY = (); # completely empty @ARRAY
undef @ARRAY; # f orget @ARRAY ever existed

Note that theEXPRcan be arbitrarily complicated as long as the final operation is a hash element,
array element, hash slice, or array slice lookup:

delete $ref->[$x][$yl{Skey};
delete @{$ref->[$x][Sy]{$keyl, $key2, @morekeys};

delete $ref->[$x][$y][$index];
delete @{$ref->[$x][$y]}[$index1, Sindex2, @moreindices];

dieLIST Outside areval , prints the value ofIST to STDERRand exits with the current value f
(errno). If$! is 0, exits with the value of$? >> 8) (backtick ‘command’ status)If ($?
>> 8) is 0, exits with 255. Inside areval(), the error message is ded into$@and the
eval is terminated with the undefinedlue. Thismakesdie the way to raise an exception.

Equivaent examples:

die "Can’t cd to spool: $\n" unless chdir '/usr/spool/news’;
chdir '/usr/spool/news’ or die "Can'’t cd to spool: $\n"

If the last element dfIST does not end in a newline, the current script line number and input line

84 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

number (if any) are also printed, and a newline is suppldate that the “input line number’
(also known as‘¢hunk”) is subject to whateer notion of ‘line’’ happens to be currently in
effect, and is alsovailable as the special varialfe . See “$/” in perlvar and “$’ i n perlvar.

Hint: sometimes appending stopped" to your message will cause it to nealketter sense
when the string"at foo line 123" is appended. Suppose you are running script
“canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respecitly

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See als@xt(), warn(), and the Carp module.

If LIST is empty andb@already contains a value (typically from a\poais eval) that value is
reused after appenditiy...propagated” . This is useful for propagating exceptions:

eval{.. }
die unless $@ =" /Expected exception/;

If LIST is empty and$@ contains an object reference that haPROPAGATHEnethod, that
method will be called with additional file and line number parameters. The return value replaces
the value in$@ ie. as if$@ = eval { $@->PROPAGATE(_ _FILE_, __LINE)

}, were called.

If $@is empty then the strintpied" is used.

die() can also be called with a referencguanent. Ifthis happens to be trapped withineal(),

$@ contains the reference. This béba permits a more elaborate exception handling
implementation using objects that maintain arbitrary state about the nature xdée¢ptan. Such

a <heme is sometimes preferable to matching particular stidhges of $@ using geilar
expressions. Herg’an gample:

eval { ... ; die Some::Module::Exception->new(FOO => "bar") };
if ($3@) {
if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because perl will stringify uncaught exception messages before displaying them, yolamay w
to overload stringification operations on such custom exception objects. vBdead for details
about that.

You can arrange for a callback to be run just beforedige does its deed, by setting the
$SIG{_DIE_} hook. Theassociated handler will be called with the error text and can
change the error message, if it sees fit, by catlieg again. Se€’ $SIG{expr}” in perlvar for
details on setting6SIG entries, and‘éval BLOCK” f or some ramples. Althougtthis feature

was meant to be run only right before your program was to exit, this is not currently the
case —the$SIG{__DIE_} hook is currently calledven insideewal()ed blocks/strings!If

one wants the hook to do nothing in such situations, put

die @_if$°S;
as the first line of the handler (sé&'S” in perlvar). Becausghis promotes strange action at a
distance, this counterintuit behavior may be fixed in a future release.

doBLOCK
Not really a function. Returns the value of the last command in the sequence of commands
indicated byBLOCK. When modified by a loop modifieexecutes theBLOCK once before

perl v5.8.6 2004-11-05 85

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do BLOCK doesnot count as a loop, so the loop control statemesetg , last , or redo
cannot be used to lea a restart the block. See perlsyn for altervattrategies.

do SUBROUTINELIST)
A deprecated form of subroutine call. See perlsub.

doEXPR
Uses the value dEXPR as a filename andkecutes the contents of the file as a Perl scrifst.
primary use is to include subroutines from a Perl subroutine library.

do 'stat.pl’;
is just like
eval ‘cat stat.pl;

except that it5s more efficient and concise, keeps track of the current filename for error messages,
searches th@INClibraries, and updatesINCif the file is found. See “Predefined Nanidsi

perhar for these ariables. Italso differs in that codevduated withdo FILENAME cannot see
lexicals in the enclosing scopeyal STRING does. It5 the same, heever, in that it does
reparse the filevery time you call it, so you probably damntant to do this inside a loop.

If do cannot read the file, it returns undef and $ttdo the error If do can read the filelt
cannot compile it, it returns undef and sets an error mess&k@ inf the file is successfully
compiled,do returns the value of the last expressivaieated.

Note that inclusion of library modules is better done with ube andrequire operators,
which also do automatic error checking and raise an exception ifslagreblem.

You might like to lsedo to read in a program configuration fil&anual error checking can be
done this way:

r ead in config files: system first, then user
for $file ("/share/prog/defaults.rc”,
"$ENV{HOMEY}/.someprogrc")

{
unless ($return = do $file) {
warn "couldn’t parse $file: $@" if $@;
warn "couldn’t do $file: $!" unless defined $return;
warn "couldn’t run $file" unless $return;
}
}

dumpLABEL

dump Thisfunction causes an immediate core dur§ee also theu command-line switch in perlrun,
which does the same thind@rimarily this is so that you can use thedump program (not
supplied) to turn your core dump into areeutable binary after having initialized all your
variables at the beginning of the program. When the bmary is executed it will beyin by
executing agoto LABEL (with all the restrictions thagoto suffers). Thinkof it as a goto with
an intervening core dump and reincarnatithLABEL is omitted, restarts the program from the
top.

WARNING: Any files opened at the time of the dump witht be open ayp more when the
program is reincarnated, with possible resulting confusion on the part of Perl.

This function is nw largely obsolete, partly becausesitiery hard to covert a core file into an
executable, and because the real compiler backends for generating portable bytecode and
compilable C code W& superseded it. That's why you should no invoke it as
CORE::dump() , if you dont want to be warned against a possible typo.

If you're looking to use dump to speed up your program, consider generating bytecodeeor nati
C code as described in perlcc. If you're just trying to acceleraé&lacript, consider using the
mod_perl extension toApache or the CPAN module, CGl::last. You might also consider
autoloading or selfloading, which at least maur programappearto run faster.

86 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

eachHASH
When called in list context, returns a 2—element list consisting ofdperik value for the ne
element of a hash, so that you can iterate . Whencalled in scalar context, returns only the
key for the next element in the hash.

Entries are returned in an apparently random ord@lee actual random order is subject to change
in future versions of perl, but it is guaranteed to be in the same order as eitheysher
values function would produce on the same (unmodified) h&hce Perl 5.8.1 the ordering is
different @en between diferent runs of Perl for security reasons (s&égbrithmic Compleity
Attacks’ in perlsec).

When the hash is entirely read, a null array is returned in list>dtofwdich when assigned
produces a falsé@} value), andundef in scalar conte. Thenext call toeach after that will

start iterating agin. Thereis a single iterator for each hash, shared byath , keys , and

values function calls in the program; it can be reset by reading all the elements from the hash,
or by evaluatingkeys HASH or values HASH . If you add or delete elements of a hash while
you're iterating @er it, you may get entries skipped or duplicated, so tdoBxception:It is

always safe to delete the item most recently returnededgh() , which means that the
following code will work:

while (($key, $value) = each %hash) {

print $key, "\n";

delete $hash{$key}; # This is safe
}

The following prints out your environment ¢ikhe printenv(1) program, only in a diérent order:

while (($key,$value) = each %ENV) {
print "$key=%value\n";
}

See alskeys , values andsort .

eof FILEHANDLE

eof ()

eof Returndl if the next read oRILEHANDLE will return end of file, or ifFILEHANDLE is not open.
FILEHANDLE may be an xpression whose value vgs the real filehandle. (Note that this
function actually reads a character and thagetc s it, so isnt very useful in an interact
contet.) Donot read from a terminal file (or calbf(FILEHANDLE) on it) after end-of-file is
reached. Filéypes such as terminals may lose the end-of-file condition if you do.

An eof without an agument uses the last file readsing eof() with empty parentheses is
very different. ltrefers to the pseudo file formed from the files listed on the command line and
accessed via the> operator Since <> isn't explicitly opened, as a normal filehandle is, an
eof() before<> has been used will caus®ARGYo be examined to determine if input is
available. Similarlyan eof() after<> has returned end-of-file will assume you are processing
another @ARG\ist, and if you hgen't set @ARGWill read input fromSTDIN; see ‘I/O
Operators’in perlop.

In awhile (<>) loop, eof oreof(ARGV) can be used to detect the end of eachdd))
will only detect the end of the last file. Examples:

r eset line numbering on each input file

while (<>) {
next if /\s*#/; # skip comments
print "$.\t$_";

} ¢ ontinue {
close ARGV if eof; # Not eof()!

}

perl v5.8.6 2004-11-05 87

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

i nsert dashes just before last line of last file

while (<>) {
if (eof()) { # check for end of last file
print "-------------- \n";
} .
print;
last if eof(); # needed if we're reading from a terminal
}

Practical hint: you almost wer need to usesof in Perl, because the input operators typically
returnundef when thg run out of data, or if there was an error.

evd EXPR

evd BLOCK
In the first form, the return value &XPR is parsed andxecuted as if it were a little Perl
program. Thevalue of the expression (which is itself determined within scalar gtni first
parsed, and if there werénany earors, eecuted in the lexical context of the current Perl
program, so that gnvariable settings or subroutine and format definitions remain aftdswy
Note that the value is parsedktry time the gal executes. IfEXPRis omitted, galuates$. This
form is typically used to delay parsing and subsequesttudon of the text oEXPR until run
time.

In the second form, the code within tBEOCK is parsed only once-at the same time the code
surrounding the \al itself was parsed—and eecuted within the context of the current Perl
program. Thidorm is typically used to trap exceptions more efficiently than the first (se®)belo
while also providing the benefit of checking the code wiBli©CK at compile time.

The final semicolon, if an may be omitted from the value BXPR or within theBLOCK.

In both forms, the alue returned is the value of the last expressigaluated inside the
mini—program; a return statement may be also used, just as with subrodthespression
providing the return value isveluated in void, scalaor list context, depending on the coxitef
the evad itself. Se€ wantarray’ for more on he the evaluation context can be determined.

If there is a syntax error or runtime efror adie statement is>ecuted, an undefined value is
returned byeval , and $@is set to the error messagé.there was no errof@is guaranteed to
be a null string. Beware that usingeval neither silences perl from printing warnings to
STDERR nor does it stdfthe text of warning messages i@ To do dther of those, you ha

to use thebSIG{__WARN__} facility, or turn of warnings inside th&@LOCK or EXPR using
no warnings ‘all’ . See “warn”, perlvar warnings and perllexwarn.

Note that, becauseval traps otherwise-fatal errors, it is useful for determining whether a
particular feature (such awcket or symlink) is implemented. lis also Perk exception
trapping mechanism, where the die operator is used to raise exceptions.

If the code to beecuted doesn’vary, you may use theval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The,dfrany, is ill returned
in $@ Examples:

make divide-by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b’; warn $@ if $@;

a compile-time error
eval { $answer =} # WRONG

a r un-time error
eval '$answer =’; # sets $@

Due to the current arguably broken state ofDIE__ hooks, when using theval{} form as
an exception trap in libraries, you may wish not to trigger anDIE__ hooks that user code
may hae installed. Yu can use thiwcal $SIG{_ _DIE_} construct for this purpose, as
shown in this example:

88 2004-11-05 perl v5.8.6

PERLFUNC(1)

exec LIST

PerProgrammers Reference Guide PERLFUNC(1)

a very private exception trap for divide-by-zero
eval { local $SIG{__DIE__'}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant,\g@n that __DIE__ hooks can caltdie again, which has the
effect of changing their error messages:

__ DIE__ hooks may modify error messages

{
local $SIG{__DIE_ '} =
sub { (my $x = $_[0]) =" s/foo/bar/g; die $x };
eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"
}

Because this promotes action at a distance, this counteviatgtiavior may be fixed in a future
release.

With aneval , you should be especially careful to remember vgHaiing looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$Sx++"; # CASE 5
$x++; # CASE®6

Cases 1 and 2 ab® kehae identically: thg run the code contained in theriable $x.
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4Wise behge in the same way: tlyerun the code

'$x’ , which does nothing but return thalwe of$x. (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at runCtise.)

5 is a pace where normally yowould like to tse double quotesxeept that in this particular
situation, you can just use symbolic references instead, as in case 6.

eval BLOCK doesnot count as a loop, so the loop control statemastd , last , or redo
cannot be used to leaa restart the block.

Note that as a very special case,eaal ” executed within theDB package doeshsee the
usual surrounding lécal scope, but rather the scope of the first non-DB piece of code that called
it. You dont normally need to worry about this unless you are writing a Perl debugger.

exec PROGRAM LIST

perl v5.8.6

The exec function ecutes a system commamahd never eturns-— usesystem instead of
exec if you want it to return. It fails and returnal$e only if the command does natst andit
is executed directly instead of via your systsmdmmand shell (see below).

Since its a @mmon mistak to wse exec instead ofsystem , Perl warns you if there is a
following statement which ishdie , warn, or exit (if —~wis set— but you alays do that). If

you really want to follow an exec with some other statement, you can use one of these styles to
avad the warning:

exec ('foo’) or print STDERR "couldn'’t exec foo: $!";
{ e xec ('foo’) }; print STDERR "couldn’t exec foo: $!";

If there is more than one argumentisT, or if LIST is an array with more than one value, calls
execvp(3) with the arguments inIST. If there is only one scalar argument or an array with one
element in it, the argument is checked for shell metacharacters, and if therg, ahe @mtire
argument is passed to the systermmmand shell for parsing (this ikin/sh —c on Unix
platforms, but varies on other platforms). If there are no shell metacharacters iguineras;, it

is split into words and passed directlyeteecvp , which is more dicient. Examples:

2004-11-05 89

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

exec 'fbinfecho’, "Your arguments are: ', @ARGV,
exec "sort $outfile O uniq";

If you dont really want to gecute the first argument, butanwt to lie to the program you are
executing about its own name, you can specify the program you actually @ run as an

“indirect object’ (without a comma) in front of thelST. (This alvays forces interpretation of
theLIST as a multialued list, @en if there is only a single scalar in the list.) Example:

$shell = '/bin/csh’;
exec $shell -sh’; # pretend it's a login shell

or, more directly,
exec {'/bin/csh’} "-sh’; # pretend it's a login shell

When the arguments geteeuted via the system shell, results will be subject to its quirks and
capabilities. Se& STRING" in perlop for details.

Using an indirect object witlexec or system is also more secureThis usage (which also
works fine withsystem() forces interpretation of the arguments as a wallied list, &en if the
list had just one gument. Thatvay you're safe from the shelkpanding wildcards or splitting
up words with whitespace in them.

@args = ("echo surprise");

exec @args; # subject to shell escapes
if @ args ==
exec { $args[0] } @args; # safe even with one-arg list

The first \ersion, the one without the indirect object, ran #who program, passing it
"surprise" an agument. Thesecond version didty—it tried to run a program literally
called” echo surprise; didn’t find it, and se$? to a non-zero value indicating failure.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output beforextue laut
this may not be supported on some platforms (see perlparthe safe, you may need to s8fl
(PAUTOFLUSH in English) or call thautoflush() method oflO::Handle on ary open
handles in order tovaid lost output.

Note thatexec will not call your ENDblocks, nor will it call ag DESTROYnethods in your
objects.

existsEXPR

90

Given an «pression that specifies a hash element or array element, returns true if the specified
element in the hash or array hagerebeen initialized, een if the corresponding value is
undefined. Thelement is not autovivified if it doedrexist.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$keys};
print "True\n" if $hash{$key}

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only & #fined, and defined if it exists, but thearse
doesnt necessarily hold true.

Given an epression that specifies the name of a subroutine, returns true if the specified
subroutine hasver been declared,ven if it is undefined. Mentioninga subroutine name for
exists or defined does not count as declaringNitte that a subroutine which does not exist may
still be callable: its package mayveaan AUTOLOADNnethod that makes it spring intgigtence

the first time that it is called— see perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that theeXPR can be arbitrarily complicated as long as the final operation is a hash or array
key lookup or subroutine name:

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

if (exists $ref->{A}->{B}->{$key}) {1}

if (exists $hash{A}{B}{$key}) {1}

if (exists $ref->{A}->{B}->[$ix]) {1}

if (exists $hash{A{B}[$ix]) {1}

if (exists &{$ref->{AHBH$key}}) {1}
Although the deepest nested array or hash will not spring xigteace just because itsigence
was tested, apintervening ones will. Thus$ref->{"A"} and$ref->{"A"}->{"B"} will

spring into existence due to the existence test forfteyy element abee. This happens
anywhere the arm operator is used, includingen:

undef $ref;
if (exists $ref->{"Some key'"}) {1}
print $ref; # prints HASH(0x80d3d5c)

This surprising autavification in what does not at first or even second — glanceppear to be
an Ivalue context may be fixed in a future release.

See “Pseudo-hashes: Using an array as a’'hagyerlref for specifics on o exsts() acts when
used on a pseudo—hash.

Use of a subroutine call, rather than a subroutine name, as an argumésts(iis an error.

exists ⊂ # OK
exists &sub(); # Error

exit EXPR
Evaluate€XPRand exits immediately with thatlue. Example:

$ans = <STDIN>;
exit 0 if $ans =" I"[XX]/;

See alsdlie . If EXPRis omitted, exits witlD status. Thenly universally recognized values for
EXPRare0 for success antl for error; other values are subject to interpretation depending on the
environment in which the Perl program is runnirfgpr example, exiting 69§X_UNAVA ILABLE)

from a sendmailincoming-mail filter will cause the mailer to return the item uneedd, hut
that’s not true @erywhere.

Don't useexit to abort a subroutine if theeeany chance that someone might want to trap
whatever error happened. Usdie instead, which can be trapped byesal .

The ext() function does not alays exit immediately It calls ary definedENDroutines first, bt
theseENDroutines may not themsels abort thexit. Likewise ary object destructors that need
to be called are called before the reatit.e If this is a problem, you can call

POSIX:_exit($status) to avoid END and destructor processing. See perlmod for details.
exp EXPR
exp Returns e (the natural logarithm base) to thewmy of EXPR If EXPR is omitted, gives
exp($.)

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements thécntl (2) function. You'll probably hae o say

use Fcntl;

first to get the correct constant definitiods.gument processing and value return works just lik
ioctl belov. For example:

use Fentl;
fentl($filehandle, F_GETFL, $packed_return_buffer)
or die "can't fcntl F_GETFL: $!";

You don't haveto check fordefined on the return fronfcntl . Like ioctl , it maps a0
return from the system call int® but true" in Perl. This string is true in boolean coxite
andO in numeric cont&t. It is also &empt from the normatw warnings on improper numeric
corversions.

perl v5.8.6 2004-11-05 91

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Note thatfcntl ~ will produce a fatal error if used on a machine that deéswglementfcntl (2).
See the Fcntl module or yofentl(2) manpage to learn what functions aveilable on your
system.

Heres an &le of setting a filehandle namR&EMOTHEo be non-blocking at the systenvée
You'll have o negotiate$Jon your own, though.

use Fentl gw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $\n";

$flags = fentl(REMOTE, F_SETFL, $flags O O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. This is
mainly useful for constructing bitmaps feelect and lav-level POSIXtty-handling operations.
If FILEHANDLE is an expression, the value is taken as an indirect filehandle, generally its name.

You can use this to find out whetherdwandles refer to the same underlying descriptor:

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";
}

(Filehandles connected to memory objects via features obpen may return undefinedven
though thg are open.)

flock FILEHANDLE,OPERATION
Callsflock(2), or an emulation of it, ORILEHANDLE. Returns true for success, false aiiifre.
Produces a fatal error if used on a machine that doesplementflock(2), fcntl(2) locking, or
lockf(3). flock is Perls portable file locking interface, although it locks only entire files, not
records.

Two potentially non-obvious but traditionflbck semantics are that it waits indefinitely until
the lock is granted, and that its lockserely advisory. Such discretionary locks are more
flexible, but offer fewer guarantees. This means that files lockedfiwitk may be modified
by programs that do not also udeck . See perlport, your por’ ecific documentation, or
your system-specific local manpages for detdils best to assume traditional befa if you're
writing portable programs. (But if you're not, you should agagé feel perfectly free to write
for your own systens' idiosyncrasies (sometimes calleteatures’). Slavish adherence to
portability concerns shouldiget in the way of your getting your job done.)

OPERATIONis one ofLOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with OCK_NB.
These constants are traditionally valued 1, 2, 8 andtdydu can use the symbolic names if you
import them from the Fcntl module, either widually, or as a goup using the ":flock’ tag.
LOCK_SHrequests a shared lodlQCK_EX requests anxelusive lock, andLOCK_UN releases a
previously requested locklIf LOCK_NB is bitwise—or'ed withLOCK_SH or LOCK_EX then
flock will return immediately rather than blocking waiting for the lock (check the return status
to see if you got it).

To avoid the possibility of miscoordination, Perl wmdlushesFILEHANDLE before locking or
unlocking it.

Note that the emulation built wittockf(3) doesrt provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semanticddbkft(3) implements.Most

if not all systems implemenribckf(3) in terms offcntl(2) locking, though, so the 6ifring
semantics shouldnbite too mag people.

Note that thefcntl (2) emulation offlock(3) requires thaFILEHANDLE be open with read intent
to useLOCK_SHand requires that it be open with write intent to LBEK_EX.

Note also that some versionsflafck cannot lock things\er the network; you would need to
use the more system-specifintl for that. If you like you can force Perl to ignore your
system’sflock(2) function, and so pwide its avn fcntl(2)-based emulation, by passing the

92 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

switch—-Ud_flock to theConfigureprogram when you configure perl.
Heres a mailbox appender foBSD systems.
use Fcntl ":flock’; # import LOCK_* constants

sub lock {
flock(MBOX,LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/SENV{'USER’}")
or die "Can’t open mailbox: $!";

lock();
print MBOX $msg,"\n\n";
unlock();

On systems that support a rélakck(), locks are inherited acro$srk() calls, whereas those that
must resort to the more capriciotentl() function lose the locks, making it harder to write
servers.

See also DB_File for othdliock() examples.

fork Doesa fork(2) system call to create amgrocess running the same program at the same point.
It returns the child pid to the parent proce3gp the child process, amndef if the fork is
unsuccessful. Filelescriptors (and sometimes locks on those descriptors) are shared, while
evaything else is copied. On most systems suppoftrk(), great care has gone into making it
extremely efficient (for example, using copy-on-write technology on data pages), making it the
dominant paradigm for multitasking@ the last fev decades.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before forking the
child process, but this may not be supported on some platforms (see peflpad.safe, you

may need to se$ (PAUTOFLUSH in English) or call theautoflush() method of
I0::Handle on ary open handles in order te@d duplicate output.

If you fork without eser waiting on your children, you will accumulate zombies. On some
systems, you carveid this by settingbSIG{CHLD} to "IGNORE". See also perlipc for more
examples of forking and reaping moribund children.

Note that if your forkd child inherits system file descriptorseliRTDIN and STDOUT that are
actually connected by a pipe or setkeven if you exit, then the remote server (such as, aay
CGil script or a backgrounded job launched from a remote shelijt\think you're done.You
should reopen those tdev/nullif it' s any issue.

format Declarea pcture format for use by therite function. For example:

format Something =
Test: @<<<<<<<< @ MM @>>>>>
$str, $%, '$. int($num)

$str = "widget";

$num = $cost/$quantity;
$” = 'Something’;

write;

See perlform for mandetails and examples.

perl v5.8.6 2004-11-05 93

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

formline PICTURELIST

This is an internal function used Wgrmat s, though you may call it, toolt formats (see
perlform) a list of @lues according to the contentsP6€ TURE, placing the output into the format
output accumulato$™A (or FACCUMULATOR English). Eventually when awrite is done,
the contents of"A are written to some filehandle, but you could also &8adyourself and then
set$"A back to™ . Note that a format typically does of@mline per line of form, but the
formline function itself doesi’care hav marny newlines are embedded in tRCTURE This
means that the and™ tokens will treat the entireICTUREas a single lineYou may therefore
need to use multiple formlines to implement a single record format, jeghékformat compiler

Be careful if you put double quotes around the picture, becauggcharacter may be taken to
mean the bginning of an array nameformline always returns true. See perlform for other

examples.
getcFILEHANDLE
getc Returnshe next character from the input file attache8It&HANDLE, or the undefined value at

end of file, or if there was an error (in the latter chisés set). If FILEHANDLE is omitted, reads
from STDIN. This is not particularly étient. Hawvever, it cannot be used by itself to fetch single
characters without waiting for the user to hit enteor that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

}

else {
system "stty",’
}

$key = getc(STDIN);

if ($BSD_STYLE) {
system "stty -cbreak </dev/tty >/dev/tty 2>&1";

-icanon’, 'eol’, "\001";

}
else {

system "stty", 'icanon’, 'eol’, "@’; # ASCII null
}

print "\n";
Determination of whetheBSD_STYLEshould be set is left as areecise to the reader.

The POSIX::getattr function can do this more portably on systems purporBg X
compliance. Sealso theTerm::ReadKey module from your nearestPAN site; details on
CPAN can be found onCPAN" i n perimodlib.

getlogin Implementshe C library function of the same name, which on most systems returns the current
login from/etc/utmp if any. If null, usegetpwuid

$login = getlogin [getpwuid($<) ["Kilroy";

Do not considegetlogin for authentication: it is not as securegaspwuid

getpeernam&0OCKET

Returns the packed sockaddr address of other end 8OMKETconnection.
use Socket;
$hersockaddr = getpeername(SOCK);
($port, Siaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrpPID
Returns the current process group for the spedied Use aPID of 0 to get the current process
group for the current procesdill raise an exception if used on a machine that dbesn’
implementgepgrp(2). If PID is omitted, returns process group of current process. Note that the
POSIXversion ofgetpgrp does not acceptrRID argument, so onlPID==0 is truly portable.

94 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

getppid Returnghe process id of the parent process.

Note for Linux users: on Linux, the C functiogstpid() andgetppid() return diferent
values from different threads. In order to be portable, thisudeh#s not reflected by the perl-
level functiongetppid() , that returns a consistent value across threads. If ymt to call the
underlyinggetppid() , you may use thePAN moduleLinux::Pid

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or.a(8segepriority (2).) Wil
raise a fatal exception if used on a machine that doiesplementgepriority (2).

getpwnanmNAME
getgrnamNAME
gethostbynamsAME
getnetbynam&lAME
getprotobynam@AME
getpwuiduID
getgrgidGID
getservbynamslAME,PROTO
gethostbyaddADDR,ADDRTYPE
getnetbyaddADDR,ADDRTYPE
getprotobynumbeXUMBER
getservbyporPORT,PROTO
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostenSTAYOPEN
setnetenSTAYOPEN
setprotoenSTAYOPEN
setservenSTAYOPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent
These routines perform the same functions as their counterparts in the system librdzsty
context, the return values from the various get routines are as follows:

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell,$expire) = getpw*

($name,$passwd,$gid, $members) = getgr*

($name,$aliases,$addrtype,$length,@addrs) = gethost*

($name,$aliases,$addrtype,$net) = getnet*

($name, $aliases,$proto) = getproto*

($name,$aliases,$port,$proto) = getserv*

(If the entry doesn’exist you get a null list.)

The exact meaning of tl&gcos field varies lt it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to theBseae, havever, that in

mary system users are able to change this information and therefore it cannot be trusted and
therefore the$gcos is tainted (see perlsec)The $passwd and $shell , users encrypted
password and login shell, are also tainted, because of the same reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case you
get the other thing, whater it is. (If the entry doesh’exist you get the undefinecalue.) Fr

perl v5.8.6 2004-11-05 95

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

example:
$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();
$gid = getgrnam($name);
$name = getgrgid($num);
$name = getgrent();
#etc.

In getpw*() the fields$quota , $comment, and $expire are special cases in the sense that in
mary systems thg are unsupported. If thdguota is unsupported, it is an empty scal#fritis
supported, it usually encodes the disk qudfathe $comment field is unsupported, it is an
empty scalar If it is supported it usually encodes some administeatbmment about the user
In some systems thgquota field may be$change or $age, fields that hee o do with
passverd aging. In some systems theomment field may bebclass . The$expire field, if
present, encodes thrpération period of the account or the passiv For the &ailability and the
exact meaning of these fields in your system, please consultggawnam(3) documentation
and yourpwd.hfile. You can also find out from within Perl what y"a and$comment
fields mean and whether youveathe $expire field by using theConfig module and the
valuesd_pwquota , d_pwage, d_pwchange , d_pwcomment, and d_pwexpire . Shadow
passwerd files are only supported if your vendor has implemented them in thevimtiaghion
that calling the rgular C library routines gets the shadeersions if you're running under
privilege or if there exists thehadow(3) functions as found in System V (this includes Solaris
and Linux.) Those systems which implement a proprietary siauissvord facility are unlilely

to be supported.

The $members value returned bygetgr*() is a space separated list of the login names of the
members of the group.

For the gethost*() functions, if theh_errno variable is supported in C, it will be returned to you

via $? if the function call &ils. The@addrs value returned by a successful call is a list of the

raw addresses returned by the corresponding system library call. In the Internet domain, each
address is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack('C4’,$addr[0]);
The Socket library makes this slightly easier:

use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);

or g oing the other way
$straddr = inet_ntoa($iaddr);

If you get tired of remembering which element of the return list contains which retiue Yy-

name interfaces are mpided in standard modulesFile::stat , Net::hostent ,
Net::netent , Net::protoent , Net::servent , Time::gmtime
Time::localtime , and User::.grent . These w@erride the normal wilt-ins, supplying

versions that return objects with the appropriate names for eachFaldxample:

use File::stat;
use User::pwent;
$is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks lie theyre the same method calls (uid), therent, because a
File::stat object is different from &ser::;pwent object.

getsocknam&OCKET
Returns the packed sockaddr address of this end BQWET connection, in case you don’
know the address because yowéaveal different IPs that the connection might/@aome in
on.

96 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use Socket;
$mysockaddr = getsockname(SOCK);
($port, Smyaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",
scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopSOCKET,LEVEL,OPTNAME
Queries the option namedPTNAME associated witlBOCKET at a gven LEVEL. Options may
exist at multiple protocol kels depending on the socket type, but at least the uppermost sock
level SOL_SOCKET(defined in theSocket module) will exist. © query options at anothenid
the protocol number of the appropriate protocol controlling the option should be supplied. F
example, to indicate that an option is to be interpreted by @rgprotocol, LEVEL should be set
to the protocol number GfCP, which you can get using getprotobyname.

The call returns a packed string representing the requested socket optioteforif there is an
error (the error reason will be in $!). What exactly is in the packed string dependd iEvitie
and OPTNAME, consult your system documentation for details. A very common casevéros
that the option is an inger, in which case the result will be an padkinteger which you can
decode using unpack with thgor |) format.

An example testing if Nagle'dgorithm is turned on on a socket:
use Socket;

defined(my $tcp = getprotobyname("tcp™))
or die "Could not determine the protocol number for tcp";
my $tcp = Socket::IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, Socket:: TCP_NODELAY)
or die "Could not query TCP_NODELAY SOCKEt option: $!";
my $nodelay = unpack("l", $packed);
print "Nagle’s algorithm is turned ", $nodelay ? "off\n" : "on\n";

globEXPR

glob Inlist context, returns a (possibly empty) list of filename expansions on the vax®RrR&uch
as the standard Unix shebin/csh would do. In scalar context, glob iterates through such
filename &pansions, returning undef when the list is exhausted. This is the internal function
implementing the<*.c> operatoy but you can use it directiyf EXPRis omitted,$ is used.
The<*.c> operator is discussed in more detail in “I/O Operatangderlop.

Beginning with v5.6.0, this operator is implemented using the starkil@:dGlob extension.
See File::Glob for details.

gmtimeEXPR
Corverts a time as returned by the time function to an 8—element list with the time localized for
the standard Greenwich time zonBpically used as follows:

0 1 2 3 4 5 6 7
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
gmtime(time);

All list elements are numeric, and come straight out of the C ‘struct $sec , $min, and
$hour are the seconds, minutes, and hours of the specified Bmelay is the day of the
month, and$mon is the month itself, in the rand®.11 with 0 indicating January and 11
indicating December$year is the number of years since 1900. Thasisar is 123 in year
2023. $wday is the day of the week, with 0 indicating Sunday and 3 indicatiegrni@sday.
$yday is the day of the yeain the range..364 (or0..365 in leap years.)

Note that thebyear element isnot simply the last tw digits of the year If you assume it is,
then you create non-Y2K-compliant programsnd you wuldn't want to do that, wuld you?

The proper way to get a complete 4—digit year is simply:
$year += 1900;
And to get the last tavdigits of the year (e.g., '01’ in 2001) do:

perl v5.8.6 2004-11-05 97

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)
$year = sprintf("%02d", $year % 100);
If EXPRis omitted,gmtime() uses the current timgifitime(time)).
In scalar contexgmtime() returns thectime(3) value:
$now_string = gmtime; # e.g., "Thu Oct 13 04:54:34 1994"
If you need local time instead @MT use the ‘localtime” builtin. Seealso thetimegm
function proided by theTime::Local module, and thatrftime(3) andmktime(3) functions
awailable via theeOSIXmodule.
This scalar value isot locale dependent (see perllocale), but is instead a Bitihb To get
somewhat similar but locale dependent date strings, see the example in “localtime”.
gotoLABEL
gOtoEXPR
goto &NAME

Thegoto—-LABEL form finds the statement labeled WithBEL and resumesxecution there.lIt

may not be used to go intoyanonstruct that requires initialization, such as a subroutine or a
foreach loop. Italso cart be wsed to go into a construct that is optimizedhg or to get out

of a block or subroutine gin to sort . It can be used to go almostyavhere else within the
dynamic scope, including out of subroutines, bt iBually better to use some other construct
such adast ordie . The author of Perl has ver felt the need to use this form géto (in

Perl, that is— C is another matter). (The difference being that C does not offer named loops
combined with loop control. Perl does, and this replaces most structured ggde o other
languages.)

The goto—EXPR form expects a label name, whose scope will be redaflynamically This
allows for computedgoto s per FORTRAN, but isn't necessarily recommended if yo’
optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

The goto—&NAME form is quite different from the other forms g@éto . In fact, it isnt a goto

in the normal sense at all, and do¢s$@vethe stigma associated with other gotdsstead, it

exits the current subroutine (losingyachanges set bipcal()) and immediately calls in its place

the named subroutine using the curreaitig of @ . This is used b AUTOLOABubroutines that

wish to load another subroutine and then pretend that the other subroutine had been called in the
first place (except that wrmodifications to@ _in the current subroutine are propagated to the
other subroutine.)After the goto , not even caller will be able to tell that this routineas

called first.

NAME neednt be the name of a subroutine; it can be a scalar variable containing a code
reference, or a block whiclva@uates to a code reference.

grepBLOCK LIST
grepEXPRLIST

98

This is similar in spirit to, bt not the same agrep(1) and its relaties. In particular it is not
limited to using regular expressions.

Evaluates th&LOCK or EXPR for each element dfiST (locally setting$_ to each element) and
returns the list value consisting of those elements for which the expregdioated to true.In
scalar context, returns the number of times the expression was true.

@foo = grep(!//'#/, @bar); # weed out comments
or equvaently,
@foo = grep {{/'#/} @bar; # weed out comments

Note that$_ is an alias to the list value, so it can be used to modify the elements0§the
While this is useful and supported, it can cause bizarre results if the elemergs efe not
variables. Similarlygrep returns aliases into the original list, much as a for $oiopex variable

aliases the list elements. That is, modifying an element of a list returned by grea(fmie in

aforeach , map or anothergrep) actually modifies the element in the original liskhis is

usually something to beveided when writing clear code.

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

See also “mapfor a list composed of the results of B18OCK or EXPR

hexEXPR
hex InterpretsEXPR as a he string and returns the correspondinglue. (D corvert strings that
might start with either 0, 0x, or Ob, see “0gt’lf EXPRis omitted, use$_.

print hex 'OxAf’; # prints '175’
print hex 'aF’; # same

Hex strings may only represent imfers. Stringghat would cause integerverflow trigger a
warning. Leadingvhitespace is not stripped, unli@et().

import Thereis no hiltin import function. Itis just an ordinary method (subroutine) defined (or
inherited) by modules that wish to export names to another modibkeuse function calls the
import method for the package used. See also “use”, perlmod, and Exporter.

indexSTRSUBSTR,POSITION

indexSTRSUBSTR
The inde function searches for one string within anaothat without the wildcard-lik behavior
of a full regular-pression pattern match. It returns the position of the first occurrence of
SUBSTR in STR at or afterPOSITION If POSITION is omitted, starts searching from the
beginning of the string.The return value is based @t(or whateer you've %t the$[variable
to—hut dont do that). If the substring is not found, returns one less than the base, ordinarily
-1.

int EXPR

int Returnsthe intgyer portion ofEXPR If EXPR is omitted, use$. You should not use this
function for rounding: one because it truncatesvatds 0, and two because machine
representations of floating point numbers can sometimes produce counteeinastilts. ©Br
example,int(-6.725/0.025) produces —268 rather than the correct —269;glmtause it
really more lile -268.99999999999994315658 insteadsually, the sprintf |, printf |, or the
POSIX::floor andPOSIX::ceil functions will sere you better than wilint().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements théoctl (2) function. You'll probably first hae o say

require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

to get the correct function definitiondf ioctl.ph doesnt exist or doesrt’ have the correct
definitions you'll hae o roll your own, based on your C header files suck@s/ioctl.h>
(There is a Perl script callé®ph that comes with the Perl kit that may help you in this, bsit it’
nontrivial.) SCALAR will be read and/or written depending on the FUNCTISM pointer to the
string \alue of SCALAR will be passed as the third argument of the actoetl call. (If
SCALAR has no string value but doesvkaa rumeric value, thatalue will be passed rather than a
pointer to the stringalue. D guarantee this to be true, ad@ #o the scalar before using ithhe
pack andunpack functions may be needed to manipulate takies of structures used by
ioctl

The return value abctl (andfcntl) is as bllows:

if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus Perl returns true on success and falsaitné, yet you can still easily determine the actual
value returned by the operating system:

$retval = ioctl(...) m -1;

printf "System returned %d\n", $retval;

The special string0 but true" is exempt from —-w complaints about improper numeric
corversions.

join EXPRLIST
Joins the separate stringsLe$T into a single string with fields separated by thkig of EXPR
and returns that mestring. Example:

perl v5.8.6 2004-11-05 99

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

$rec = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Beware that unlikesplit , join doesnt take a mattern as its first gument. Comparésplit”.

keys HASH
Returns a list consisting of all theys of the named hash(In scalar context, returns the number
of keys.)

The lkeys ae returned in an apparently random ordéhe actual random order is subject to
change in future versions of perl, but it is guaranteed to be the same order as eithkeiethe

or each function produces (gen that the hash has not been modified). Since Perl 5.8.1 the
ordering is differenten between diferent runs of Perl for security reasons (s&dgbrithmic
Complexity Attacks'’in perlsec).

As a side effect, callingreys() resets theHASH's internal iteratqrsee ‘each’. (In particulay
calling keys()in void context resets the iterator with no othesrbead.)

Here is yet another way to print your environment:

@keys = keys %ENYV;
@values = values %ENV;
while (@keys) {
print pop(@keys), =", pop(@values), "\n";
}

or how about sorted by éy.

foreach $key (sort(keys %ENV)) {
print $key, '=", SENV{$key}, "\n";
}

The returned @lues are copies of the originayk in the hash, so modifying them will notfedt
the original hash. Compare “values”.

To sort a hash byalue, you'll need to usesort function. Heres a cescending numeric sort of
a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys Y%hash) {
printf "%4d %s\n", $hash{$key}, $key;
}

As an halue keys allows you to increase the number of hasickets allocated for the ggn
hash. Thigan gain you a measure ofieiengy if you knav the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $}dfrggu say

keys %hash = 200;

then%hash will have & least 200 bickets allocated for it——256 of them, in fact, since it rounds
up to the next power of v Thesebuckets will be retainedwen if you do%hash = () , use
undef %hash if you want to free the storage whiléhash is still in scope.You can't shrink

the number of bickets allocated for the hash usikgys in this way (but you needniworry
about doing this by accident, as trying has no effect).

See als®ach, values andsort .

kill SIGNAL, LIST
Sends a signal to a list of processes. Returns the number of processes successfully signaled
(which is not necessarily the same as the number actually killed).

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

If SIGNAL is zero, no signal is sent to the processis is a useful way to check that a child
process is ale and hasnt changed itsUID. See perlport for notes on the portability of this
construct.

Unlike in the shell, if SIGNAL is negaive, it kills process groups instead of process@3n
System VY a regdive PROCESShwumber will also kill process groups, but tisatbt portable.)

100 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

That means you usually want to use pusitiot negaive sgnals. You may also use a signal
name in quotes.

See “Signals’in perlipc for more details.

lastLABEL

last Thelast command is lik thebreak statementin C (as used in loops); it immediately exits the
loop in question. If th& ABEL is omitted, the command refers to the innermost enclosing loop.
Thecontinue block, if ary, is not executed:

LINE: while (<STDIN>) {
last LINE if I"$/; # exit when done with header
#...

}

last cannot be used to exit a block which returns a value suekaq} ,sub{} ordo
{} , and should not be used to exigeep() or map()operation.

Note that a block by itself is semantically identical to a loop thetutes once.Thuslast can
be used to effect an early exit out of such a block.

See also “continuéfor an illustration of hovlast , next , andredo work.

Ic EXPR

Ic Returnsa lowercased version &@XPR. This is the internal function implementing tthe escape
in double-quoted strings. Respects curre@t CTYPE locale if use locale in force. See
perllocale and perlunicode for more details about locale and Unicode support.

If EXPRis omitted, use$_.

Icfirst EXPR
Icfirst Returnsthe alue of EXPR with the first character Weercased. Thiss the internal function
implementing th&l escape in double-quoted stringRespects curremiC_CTYPElocale ifuse

locale in force. See perllocale and perlunicode for more details about locale and Unicode

support.
If EXPRis omitted, use$_.

lengthEXPR

length Returnsghe length incharactersof the value oEXPR If EXPRis omitted, returns length & .
Note that this cannot be used on an entire array or hash to findwuhdny elements these
have. For that, usescalar @array = andscalar keys %hash respectiely.

Note thecharacters if the EXPRis in Unicode, you will get the number of characters, not the
number of bytes.To get the length in bytes, usk { use bytes; length(EXPR) } ,
see bytes.

link OLDFILE,NEWFILE
Creates a nefilename linked to the old filename. Returns true for success, false otherwise.

listen SOCKET,QUEUESIZE

Does the same thing that the listen system call does. Returns true if it succeeded, false otherwise.

See the example in “Sockets: Client/Server Communicaiiop'erlipc.

local EXPR
You really probably want to be usimgy instead, becaudecal isn't what most people think of
as “local”. See" Private Variables viany()" i n perlsub for details.

A local modifies the listedaviables to be local to the enclosing block, file,\@.elf more than
one value is listed, the list must be placed in parenth&ess: Temporary Values vitbcal()" in
perlsub for details, including issues with tied arrays and hashes.

localtimeEXPR

Corverts a time as returned by the time function to a 9—element list with the time analyzed for the

local time zone.Typically used as follows:

perl v5.8.6 2004-11-05 101

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,Sisdst) =
localtime(time);

All list elements are numeric, and come straight out of the C ‘struct $sec , $min, and
$hour are the seconds, minutes, and hours of the specified Bmelay is the day of the
month, and$mon is the month itself, in the randg®.11 with O indicating January and 11
indicating December$year is the number of years since 1900. Thasisar is 123 in year
2023. $wday is the day of the week, with 0 indicating Sunday and 3 indicatiegri@sday.
$yday is the day of the yeain the range0..364 (or 0..365 in leap years.)$isdst is true

if the specified time occurs during daylight savings time, false otherwise.

Note that thebyear element isnot simply the last tw digits of the year If you assume it is,
then you create non-Y2K-compliant programsnd you wouldn't want to do that, wuld you?

The proper way to get a complete 4—digit year is simply:
$year += 1900;

And to get the last tavdigits of the year (e.g., '01’ in 2001) do:
$year = sprintf("%02d", $year % 100);

If EXPRis omitted,localtime() uses the current timéo€altime(time)).
In scalar contexipcaltime() returns thectime(3) value:
$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value inot locale dependent but is a Pedilbn. For GMT instead of local time use
the ‘gmtime” builtin. See also th&ime::Local module (to cowert the second, minutes,
hours, ... back to the integer value returnediimg()), and thePOSIX module’sstrftime(3) and
mktimeg(3) functions.

To get somewhat similar but locale dependent date strings, set up your locaEnmeent
variables appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);

$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or f or GMT formatted appropriately for your locale:
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that thé¥oaand%h the short forms of the day of the week and the month of the ipagr
not necessarily be three characters wide.

lock THING
This function places an advisory lock on a sharadable, or referenced object contained in
THING until the lock goes out of scope.

lock() is a “weak leyword” : this means that if youé cefined a function by this name (before
ary calls to it), that function will be called instead. (Mever, if you've sid use threads
lock() is aways a leyword.) See threads.

log EXPR

log Returnghe natural logarithm (bas} of EXPR If EXPRis omitted, returns log & . To get the
log of another base, use basic algebra: The base-N log of a number is equal to the natural log of
that number divided by the natural log of Nor example:

sub log10 {
my $n = shift;
return log($n)/log(10);
}
See also “exp’for the irverse operation.
IstatEXPR
Istat Doeghe same thing as thetat function (including setting the specialfilehandle) but stats a

symbolic link instead of the file the symbolic link points tbsymbolic links are unimplemented

102 2004-11-05 perl v5.8.6

PERLFUNC(1)

m//

PerProgrammers Reference Guide PERLFUNC(1)

on your system, a normatat is done. For much more detailed information, please see the
documentation for “stat”.

If EXPRis omitted, stat$_.
Thematch operatorSee perlop.

mapBLOCK LIST
MapEXPRLIST

Evaluates th&LOCK or EXPR for each element dfiST (locally setting$_ to each element) and
returns the list value composed of the results of each saltkatton. Inscalar context, returns
the total number of elements so generatedaluatesBLOCK or EXPRin list context, so each
element oLIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And
%hash = map { getkey($_) => $_ } @array;

is just a fung way to write

%hash = ();

foreach $_ (@array) {
$hash{getkey($)}=$_;

}

Note that$_ is an alias to the list value, so it can be used to modify the elements0&the
While this is useful and supported, it can cause bizarre results if the elemergs efe not
variables. Usinga reqular foreach loop for this purpose would be clearer in most caSese
also ‘grep” for an array composed of those items of the original list for whiclBItleCK or

EXPRevduates to true.

{ starts both hash references and blocksnap { ... could be either the start of m8pOCK
LIST or mapEXPR, LIST. Because perl doegribok ahead for the closirjgit has to tak a giess
at which its dealing with based what it finds just after {théJsually it gets it right, but if it
doesnt it won't realize something is wrong until it gets to thend encounters the missing (or
unexpected) comma. The syntax error will be reported close t$ tgt you'll need to change
something near thie such as using a una#yto give perl some help:

%hash=map{ "\L$ ", 1 } @array # perl guesses EXPR. wrong
%hash =map {+"\L$ ", 1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_", 1) } @array # t his also works
%hash=map{ Ic($),1 } @array # as does this.

%hash = map +(lc($_), 1), @array # t his is EXPR and works!
%hash=map (| ¢($)), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor te
@hashes = map +{ Ic($_), 1 }, @array # EXPR, so needs , at end

and you get list of anonymous hashes each with only 1 entry.

mkdir FILENAME,MASK
mkdir FILENAME

perl v5.8.6

Creates the directory specified B.ENAME, with permissions specified BYASK (as modified
by umask). If it succeeds it returns true, otherwise it returaisef and set$! (errno). If
omitted,MASK defaults to 0777.

In general, it is better to create directories with permeggiaASK, and let the user modify that
with their umask, than it is to supply a restrigeé MASK and gve the user no way to be more
permissie. The exceptions to this rule are when the file or directory shouléfepkizate (malil
files, for instance).The perlfunc(l) entry onumask discusses the choice ®fASK in more
detail.

Note that according to tHeOSIX 1003.1-1996 th&ILENAME may hae any mmber of trailing
slashes. Someperating and filesystems do not get this right, so Perl automaticallyegatlo

2004-11-05 103

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

trailing slashes to keew&yone happ.

msgctliD,CMD,ARG
Calls the System WC functionmsgctl(2). You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitions.CMD is IPC_STAT, thenARG must be a ariable
which will hold the returnednsqid_ds structure. Returnbke ioctl : the undefined value for
error,"0 but true" for zero, or the actual return value otherwise. See &8V IPC" in
perlipc,IPC::SysV , andIPC::Semaphore documentation.

msggetKEY,FLAGS
Calls the System \IPC function msget (2). Returnsthe message queue id, or the undefined
value if there is an errorSee also ‘SysV IPC” i n perlipc andIPC::SysV andIPC::Msg
documentation.

msgrcviD,VAR,SIZE, TYPE,FLAGS
Calls the System \MPC function msgrcv to receé¢ a nessage from message quedDeinto
variable VAR with a maximum message sizeSiZE. Note that when a message is reegj the
message type as a natilong integer will be the first thing INAR, followed by the actual
message. Thipacking may be opened witmpack("l! a*") . Taints the ariable. Returns
true if successful, or false if there is an errBee also'SysV IPC" i n perlipc, IPC::SysV , and
IPC::SysV::Msg documentation.

msgsndD,MSG,FLAGS
Calls the System \PC function msgsnd to send the messaigG to the message quel®.
MSG must begin with the nate long integer message type, and be fodd by the length of the
actual message, and finally the message itself. This kind of packing can bedhatitt
pack("ll a*", $type, $message) . Returns true if successful, or false if there is an
error See alsdPC::SysV andIPC::SysV::Msg documentation.

my EXPR
my TYPE EXPR
my EXPR: ATTRS
my TYPE EXPR: ATTRS
A mydeclares the listed variables to be local (lexically) to the enclosing block, faéeabr. If
more than one value is listed, the list must be placed in parentheses.

The exact semantics and interfaceTOfPE and ATTRS are still eolving. TYPE is currently
bound to the use dields pragma, and attributes are handled usingthrébutes pragma,
or starting from Perl 5.8.0 also via thtribute::Handlers module. See" Private
Variables viamy()' i n perlsub for details, and fields, attributes, and Attribute::Handlers.

nextLABEL
next Thenext command is lik thecontinue statement in C; it starts the next iteration of the loop:
LINE: while (<STDIN>) {
next LINE if /"#/, # discard comments
#...
}

Note that if there were @ontinue block on the abee, it would get &ecuted @en on dscarded
lines. IftheLABEL is omitted, the command refers to the innermost enclosing loop.

next cannot be used to exit a block which returns a value suekaq} ,sub{} ordo
{} , and should not be used to exitgep() or map()operation.

Note that a block by itself is semantically identical to a loop tkedutes once.Thusnext will
exit such a block early.

See also “continuéfor an illustration of hovlast , next , andredo work.

no ModuleVERSION LIST
no ModuleVERSION

104 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

no ModuleLIST
no Module
See thaise function, whichno is the opposite of.

OCtEXPR

oct InterpretE€EXPR as an octal string and returns the correspondihgev (IfEXPR happens to start
off with 0x, interprets it as a kestring. If EXPR starts of with Ob, it is interpreted as a binary
string. Leadingwhitespace is ignored in all three cases$he following will handle decimal,
binary; octal, and hein the standard Perl or C notation:

$val = oct($val) if $val =" /°0/;

If EXPRis omitted, use$_. To go the other way (produce a number in octal), sizentf() or
printf():

$perms = (stat("filename™))[2] & 07777,
$oct_perms = sprintf "%lo", $perms;

Theoct() function is commonly used when a string sucl644 needs to be cerrted into a file
mode, for example. (Although perl will automatically gen strings into numbers as needed, this
automatic coversion assumes base 10.)

openFILEHANDLE,EXPR
openFILEHANDLE,MODE,EXPR
openFILEHANDLE,MODE,EXPR,LIST
openFILEHANDLE,MODE,REFERENCE
openFILEHANDLE
Opens the file whose filename isai by EXPR, and associates it witRILEHANDLE.

(The following is a compreheng reference toopen() for a gentler introduction you may
consider perlopentut.)

If FILEHANDLE is an undefined scalaasiable (or array or hash element) the variable is assigned
a reference to a meanorymous filehandle, otherwise ILEHANDLE is an epression, its alue

is used as the name of the real filehanddmted. (Thiss considered a symbolic reference, so
use strict 'refs’ shouldnotbe in effect.)

If EXPR is omitted, the scalar variable of the same name asItfBHANDLE contains the
filename. (Notdhat lexical ariables — thosdeclared withmy—-will not work for this purpose;
so if you're usingmy, specify EXPRin your call to open.)

If three or more arguments are specified then the mode of opening and the file name are separate.
If MODE is'<’ or nothing, the file is opened for inpuf. MODE is '>" , the file is truncated and
opened for output, being created if necessHrlODE is '>>" | the file is opened for appending,

again being created if necessary.

You can put @+’ in front of the’>" or’'<’ to indicate that you want both read and write
access to the file; this<’ is almost alvays preferred for read/write updatesthe’+>" mode
would clobber the file first.You cant usually use either read-write mode for updatingfiies,
since thg havevariable length records. See theswitch in perlrun for a better approachhe
file is created with permissions @66 modified by the processimask value.

) W+ 1 a

These various prefixes correspond to fhygen(3) modes ofr’ |, 'r+' | 'w , and

a4

In the 2—-arguments (and lgament) form of the call the mode and filename should be
concatenated (in this order), possibly separated by sphdsgossible to omit the mode in these
forms if the mode i&’

If the filename begins with(, the filename is interpreted as a command to which output is to
be piped, and if the flename ends with @ , the filename is interpreted as a command which
pipes output to us. Se&Jsing open()for IPC” i n perlipc for more examples of thigYou are

not allowed toopen to a command that pipes bothand out, hut see IPC::Open2, IPC::0Open3,
and “Bidirectional Communication with Another Procéss’perlipc for alternaties.)

For three or more arguments MODE is ' [+ , the filename is interpreted as a command to

perl v5.8.6 2004-11-05 105

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

which output is to be piped, andNfODE is '— O , the filename is interpreted as a command
which pipes output to us. In the 2gaments (and 1-argument) form one should replace dash
(=") with the command. Seé&Using open()for IPC" i n perlipc for more examples of this.
(You are not allowed topen to a command that pipes both and out, but see IPC::0Open2,
IPC::0Open3, and “Bidirectional Communicatioimi perlipc for alternaties.)

In the three-or-more argument form of pipe openkl|df is specified (etra arguments after the
command name) thaiST becomes arguments to the commanaked if the platform supports
it. The meaning ofopen with more than three guments for non-pipe modes is not yet
specified. Experimental “layefshay give exraLIST arguments meaning.

In the 2—arguments (and 1-argument) form opefihg opensSTDIN and opening>-" opens
STDOUT.

You may use the three-argument form of open to specifylayers’ (sometimes also referred to
as ‘disciplines’) to be applied to the handle that affectshiiie input and output are processed
(see open and PerllO for more details). For example

open(FH, "<:utf8", "file")

will open theUTF-8 encoded file containing Unicode characters, see perluniintro. (Note that if
layers are specified in the thregréorm then default layers set by theen pragma are ignored.)

Open returns nonzero upon success, the undefined value otherwiseogéth@volved a pipe,
the return value happens to be the pid of the subprocess.

If you're running Perl on a system that distinguishes between text files and binary files, then you
should check outbinmode’ for tips for dealing with this. Theely dstinction between systems

that neecbinmode and those that daonis their text file formats. Systems ékUnix, Mac OS,

and Plan 9, which delimit lines with a single charaaed which encode that character in C as
"“\n" , do rot neecbinmode . The rest need it.

When opening a file, #’usually a bad idea to continue normaéaution if the request failed, so
open is frequently used in connection witlie . Even if die won’'t do what you vant (sayin a

CGil script, where you want to mala ricely formatted error message (but there are modules that
can help with that problem)) you shouldvays check the return value from opening a filhe
infrequent exception is when working with an unopened filehandle is actually whatayduown

do.

As a special case the 3ydorm with a read/write mode and the third argument benugf :
open(TMP, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also usigy Wworks for symmetrybut
you really should consider writing something to the temporary file fifstt will need toseek()
to do the reading.

Since v5.8.0, perl has built using PerllO byaldf. Unlessyou've changed this (ie Configure
—Uuseperlio), you can open file handles to “in menidiies held in Perl scalars via:

open($fh, '>’, \$variable) m ..

Though if you try to re-opeBTDOUTor STDERRas an‘in memory’ file, you hae o dose it
first:

close STDOUT;
open STDOUT, >, \$variable or die "Can’t open STDOUT: $!";

Examples:

$ARTICLE = 100;
open ARTICLE or die "Can't find article $ARTICLE: $\n";
while (<ARTICLE>) {...

open(LOG, '>>/usr/spool/news/twitlog); # (log is reserved)
if t he open fails, output is discarded

106 2004-11-05 perl v5.8.6

PERLFUNC(1)

perl v5.8.6

PerProgrammers Reference Guide PERLFUNC(1)

open(DBASE, '+<’, 'dbase.mine’) # open for update
or die "Can'’t open 'dbase.mine’ for update: $!";
open(DBASE, '+<dbase.mine’) # ditto
or die "Can'’t open 'dbase.mine’ for update: $!";
open(ARTICLE, - [, "caesar <$article") # decrypt article
or die "Can't start caesar: $!";
open(ARTICLE, "caesar <%$article ™M # ditto
or die "Can't start caesar: $!";
open(EXTRACT, " [kort >Tmp$$") # 3 is o ur process id

or die "Can't start sort: $!";

in memory files
open(MEMORY,’>’, \$var)
or die "Can'’t open memory file: $!";
print MEMORY "foo\n"; # output will end up in $var

process argument list of files along with any includes

foreach $file (@ARGV) {
process($file, 'fh00’);
}

sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, $filename)) {
print STDERR "Can’t open $filename: $!\n";

return;
}
local $_;
while (<$input>) { # note use of indirection
if (/"#include "(.*)"/) {
process($1, $input);
next;
}
#... # whatever
}

}

See perliol for detailed info on PerllO.

You may also, in the Bourne shell tradition, specifygaPR beginning with’>&’ , in which case
the rest of the string is interpreted as the name of a filehandle (or file destripiareric) to be
duped (aglup(2)) and openedYou may use& after>, >>, <, +>, +>>, and +<. The mode you
specify should match the mode of the original filehan@uping a filehandle does not &kto
account ap existing contents ofo buffers.) If you use the 3 @form then you can pass either a
number the name of a filehandle or the normal “reference to a glob”.

Here is a script that ges, redirects, and restor83 DOUTandSTDERRusing various methods:

#!/usr/bin/perl

open my $oldout, ">&STDOUT" or die "Can’t dup STDOUT: $!";
open OLDERR, ">&", *STDERR or die "Can't dup STDERR: $!";
open STDOUT, '>', "foo.out" or die "Can'’t redirect STDOUT: $!";

open STDERR, ">&STDOUT" or die "Can’t dup STDOUT: $!";
select STDERR; $ 0= 1; # make unbuffered

select STDOUT; $ 0O = 1; # make unbuffered

2004-11-05 107

PERLFUNC(1)

108

PerProgrammers Reference Guide PERLFUNC(1)
print STDOUT "stdout 1\n"; # t his works for
print STDERR "stderr 1\n"; # subprocesses too

open STDOUT, ">&", $oldout or die "Can’t dup \$oldout: $!";
open STDERR, ">&OLDERR" or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify’<&=X" , whereX is a file descriptor number or a filehandle, then Perl will do an
equivaent of Csfdopen of that file descriptor (and not callp(2)); this is more parsimonious
of file descriptors.For example:

open for input, reusing the fileno of $fd
open(FILEHANDLE, "<&=$fd")

or
open(FILEHANDLE, "<&=", $fd)

or
open for append, using the fileno of OLDFH
open(FH, ">>&=", OLDFH)

or

open(FH, ">>&=0OLDFH")

Being parsimonious on filehandles is also useful (besides being parsimoniovg@nigieewhen
something is dependent on file descriptorg fir example locking usinfiock(). If you do just
open(A, '>>&B’) , the filehandle A will not hae the same file descriptor as B, and therefore
flock(A) will not flock(B), and vice grsa. Butwith open(A, '>>&=B’) the filehandles will
share the same file descriptor.

Note that if you are using Perls older than 5.8.0, Perl will be using the standard C libraries’
fdopen()to implement the'="" functionality On many UNIX systemsfdopen()fails when file
descriptors exceed a certain value, typically 266 Perls 5.8.0 and latePerllO is most often

the default.

You can see whether Perl has been compiled with PerllO or not by rupeihg-V and
looking for useperlio= line. If useperlio is define , you hare RerllO, otherwise you
don't.

If you open a pipe on the command , i.e., either ' or = O with 2—-arguments (or
1-agument) form ofopen() then there is an implicit fork done, and the retuatug of open is

the pid of the child within the parent process, ahdwithin the child process.(Use
defined($pid) to determine whether the open was successful.) The filehandleebeha
normally for the parent, but i/o to that filehandle is piped from/tsTBOUT/STDIN of the child
process. lIrthe child process the filehandle isopened — i/chappens from/to the meSTDOUT

or STDIN. Typically this is used li& the normal piped open when you want t@reise more
control over just hav the pipe command getgeeuted, such as when you are running setuid, and
don't want to hae t scan shell commands for metacharacters. The following triples are more or
less equiadent:

open(FOO, " 0Or [a-z] '[A-Z]™);

open(FOO, ' O, "tr'[a-z]' TA-Z]™);

open(FOO,’ @) @ exec'tr,’[a-z], '[A-Z];

open(FOO, " O, "tr", Ta-z], '[A-Z]);

open(FOOQO, "cat -n '$file’ m);

open(FOO, - 0O, "cat -n "$file™);

open(FOO,’- [0O) [exec’cat,’-n’, $file;

open(FOO, - 0O, "cat", "-n’, $file);
The last example in each block shows the pipe as “list form”, which is not yet supported on all
platforms. Agood rule of thumb is that if your platform has tfoek() (in other words, if

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

your platform isSUNIX) you can use the list form.
See “Safe Pipe Opené perlipc for more examples of this.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before@eration
that may do a fork, but this may not be supported on some platforms (see peflipde)safe,
you may need to sek] (PAUTOFLUSH in English) or call thewutoflush() method of
I0::Handle on ary open handles.

On systems that support a close-aredlag on files, the flag will be set for the newly opened file
descriptor as determined by the value of $6e “$°F” in perlvar.

Closing ary piped filehandle causes the parent process to wait for the child to finish, and returns
the status value i§i?.

The filename passed to 2—argument (or 1-argument) foopesf()will have leading and trailing
whitespace deleted, and the normal redirection characters honbhnél.property known as
“magic open, can often be used to goodexft. Auser could specify a filename ‘ofsh cat file

T, or you could change certain filenames as needed:

$filename =" s/(.*\.gz)\s*$/gzip -dc < $1 o,
open(FH, $filename) or die "Can’t open $filename: $!";

Use 3—argument form to open a file with arbitrary weird characters in it,
open(FOO, '<, $file);
otherwise it5 necessary to protect aheading and trailing whitespace:

$file =~ s#"(\s)#./$1#;
open(FOO, "< $file\0");

(this may not work on some bizarre filesystem@he should conscientiously choose between the
magicand 3—arguments form open()

open IN, $ARGVI[O0];

will allow the user to specify an argument of the fdrah cat file ', but will not work
on a filename which happens torba tailing space, while

open IN, '<’, $ARGVI[0];
will have exactly the opposite restrictions.

If you want a ‘real” C open (seeopen(2) on your system), then you should usesysopen
function, which irvolves no such magic (but may use subtlyedént filemodes than Pespen()
which is mapped to @pen(). Thisis another \&y to protect your filenames from interpretation.
For example:

use |0::Handle;

sysopen(HANDLE, $path, O_RDWR [O_CREATO_EXCL)
or die "sysopen $path: $!";

$oldfh = select(HANDLE); $ O = 1; s elect($oldfh);

print HANDLE "stuff $$\n";

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

Using the constructor from th#D::Handle package (or one of its subclasses, such as
10::File or IO::Socket), you can generate angnous filehandles that & the scope of
whatever variables hold references to them, and automatically close wdrearel havever you
leave that scope:

perl v5.8.6 2004-11-05 109

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

110

use |0::File;

#...

sub read_myfile_munged {
my $ALL = shift;

my $handle = new IO::File;
open($handle, "myfile”) or die "myfile: $!";
$first = <$handle>

or return (); # Automatically closed here.
mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

}

See “seeK'for some details about mixing reading and writing.

opendirDIRHANDLE,EXPR
Opens a directory name@&XPR for processing byreaddir , telldir , seekdir
rewinddir , and closedir . Returns true if successfuDIRHANDLE may be an ression
whose walue can be used as an indirect dirhandle, usually the real dirhandle wfame.
DIRHANDLE is an undefined scalar variable (or array or hash element), the variable is assigned a
reference to a me anorymous dirhandle. DIRHANDLESs k& their own namespace separate
from FILEHANDLEsS.

ord EXPR
ord Returnghe numeric (the nate 8-bit encoding, likke ASCII or EBCDIC, or Unicode) value of the
first character oEXPR If EXPRis omitted, use$_.

For the reverse, see “chi! Seeperlunicode and encoding for more about Unicode.

our EXPR

our EXPR TYPE

ourEXPR: ATTRS

ourTYPE EXPR: ATTRS
An our declares the listed variables to be valid globals within the enclosing block, feglot
That is, it has the same scoping rules deg' * declaration, bt does not create a locanable.
If more than one value is listed, the list must be placed in parenthilsesur declaration has
no semantic effect unless “use strietrs’ is in effect, in which case it lets you use the declared
global variable without qualifying it with a package nan{@ut only within the lexical scope of
theour declaration. Inthis it differs from “use vars”, which is package scoped.)

An our declaration declares a global variable that will be visible across its exital lscope,
even across package boundaries. The package in whichahable is entered is determined at
the point of the declaration, not at the point of use. This means the following behavior holds:

package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;

print $bar; # prints 20

Multiple our declarations in the same lexical scope are allowed yfarein different packages.
If they happened to be in the same package, Perl will emit warnings if yeualed for them.

use warnings;
package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;

our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning

2004-11-05 perl v5.8.6

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

An our declaration may also faa a Ist of attributes associated with it.

The exact semantics and interfaceTOfPE and ATTRS are still eolving. TYPE is currently
bound to the use dields pragma, and attributes are handled usingthrébutes pragma,
or starting from Perl 5.8.0 also via thtribute::Handlers module. See€" Private
Variables viamy()' i n perlsub for details, and fields, attributes, and Attribute::Handlers.

The only currently recognizeaur() attribute isunique which indicates that a single gopf

the global is to be used by all interpreters should the program happen to be running in a multi-
interpreter environment. (The default behaviour would be for each interpreteveadthavn

copy of the global.) Examples:

our @EXPORT : unique = gw(foo);
our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
our $VERSION : unique = "1.00";

Note that this attrilte also has the effect of making the global readonly when the first ne
interpreter is cloned (for example, when the first tieread is created).

Multi-interpreter environments can come to being either throughfdhg) emulation on
Windows platforms, or by embedding perl in a multi-threaded applicatibime unique
attribute does nothing in all other environments.

Warning: the current implementation of this attrié operates on the typeglob associated with the
variable; this means thatur $x : unique also has the effect afur @x : unique;
our %X : unique . This may be subject to change.

packTEMPLATE,LIST

perl v5.8.6

Takes aLIST of values and carerts it into a string using the rulesvgn by the TEMPLATE. The
resulting string is the concatenation of the wented \alues. Vpically, each cowmerted \alue
looks like its machine-leel representation. d¥ example, on 32-bit machines a eerted intgyer
may be represented by a sequence of 4 bytes.

The TEMPLATE is a sequence of characters thaedhe order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.

A A text (ASCII) string, will be space padded.

Z A null terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte, like vec()).
B A bit string (descending bit order inside each byte).

h A hex string (low nybble first).

H A hex string (high nybble first).

¢ A signed char value.

C An unsigned char value. Only does bytes. See U for Unicode.
s A signed short value.

S An unsigned short value.

(This 'short’ is _exactly_ 16 bits, which may differ from
what a local C compiler calls 'short’. If you want
native-length shorts, use the '!" suffix.)

i A signed integer value.
I A n unsigned integer value.

(This 'integer’ is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int’,
and may even be larger than the 'long’ described in
the next item.)

| A signed long value.
L An unsigned long value.
(This 'long’ is _exactly 32 bits, which may differ from
what a local C compiler calls 'long’. If you want
native-length longs, use the '’ suffix.)

2004-11-05 111

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

n An unsigned short in "network" (big-endian) order.
N An unsigned long in "network" (big-endian) order.
v An unsigned short in "VAX" (little-endian) order.
V An unsigned long in "VAX" (little-endian) order.
(These 'shorts’ and 'longs’ are _exactly 16 bits and
_exactly 32 bits, respectively.)
q A signed quad (64-bit) value.
Q A unsigned quad value.
(Quads are available only if your system supports 64-bit
integer values _and__ if Perl has been compiled to support those.
Causes a fatal error otherwise.)
j A signed integer value (a Perl internal integer, V).
J An unsigned integer value (a Perl internal unsigned integer, UV).
f A single-precision float in the native format.
d A double-precision float in the native format.
F A floating point value in the native native format

(a Perl internal floating point value, NV).
D A long double-precision float in the native format.
(Long doubles are available only if your system supports long
double values _and_ if Perl has been compiled to support those.
Causes a fatal error otherwise.)

p A pointer to a null-terminated string.

P A pointer to a structure (fixed-length string).

u A uuencoded string.

U A Unicode character number. Encodes to UTF-8 internally

(or UTF-EBCDIC in EBCDIC platforms).

w A BER compressed integer. Its bytes represent an unsigned
integer in base 128, most significant digit first, with as
few digits as possible. Bit eight (the high bit) is set
on each byte except the last.

X A null byte.

X Back up a byte.

@ NIl fill to absolute position, counted from the start of
the innermost ()-group.

(Start of a ()-group.

The following rules apply:

* Each letter may optionally be followed by a number giving a repeat coiith all
types &cepta, A, Z, b, B, h, H, @ x, X andP the pack function will gobble up that
mary values from th&IST. A * for the repeat count means to usevbger mary items
are left, except fo@ x, X, where it is equialent to0, and u, where it is equident to 1
(or 45, what is the same)A numeric repeat count may optionally be enclosed in
brackets, as ipack 'C[80]', @arr

One can replace the numeric repeat count by a template enclosed etdrien the
pacled length of this template in bytes is used as a cdemtexample,x[L] skips a

long (it skips the number of bytes in a long); the temBat&[$t] $t unpack(®
twice what$t unpacks. Ifthe template in brackets contains alignment commands
(such ax![d]), its pacled length is calculated as if the start of the template has the
maximal possible alignment.

When used witlzZ, * results in the addition of a trailing null byte (so the packed result
will be one longer than the bytength of the item).

The repeat count far is interpreted as the maximal number of bytes to encode per line
of output, with 0 and 1 replaced by 45.

112 2004-11-05 perl v5.8.6

PERLFUNC(1)

perl v5.8.6

PerProgrammers Reference Guide PERLFUNC(1)

The a, A, and Z types gobble just one value, but pack it as a string of length count,
padding with nulls or spaces as necessd#hen unpackingA strips trailing spaces
and nulls,Z strips eerything after the first null, and returns data erbatim. When
packing,a, and Z are equiaent.

If the value-to-pack is too long, it is truncated. If too long and xplicit count is
provided,Z packs only$count-1 bytes, followed by a null byteThus Z always
packs a trailing null byte under all circumstances.

L ikewise, theb andB fields pack a string that mamits long. Each byte of the input
field of pack() generates 1 bit of the resulEach result bit is based on the least-
significant bit of the corresponding input byte, i.e.ocoth($byte)%2 . In particular,
bytes"0" and"l1" generate bits 0 and 1, as do by%s and"\1"

Starting from the beginning of the input string pdck() each 8-tuple of bytes is
converted to 1 byte of outputWith formatb the first byte of the 8-tuple determines
the least-significant bit of a byte, and with forrBait determines the most-significant
bit of a byte.

If the length of the input string is notactly divisible by 8, the remainder is packed as
if the input string were padded by null bytes at the eBidhilarly, during unpack()ng
the “extra’ bits are ignored.

If the input string ofpack()is longer than neededxtea bytes are ignoredA * for the
repeat count gback()means to use all the bytes of the input fielth unpack()ng the
bits are cowerted to a string of0" sand"1" s.

The h and H fields pack a string that mamybbles (4-bit groups, representable as
hexadecimal digits, 0-9a-f) long.

Each byte of the input field opack() generates 4 bits of the resulEor non-
alphabetical bytes the result is based on the 4 least-significant bits of the input byte, i.e.,
onord($byte)%16 . In particular bytes"0" and"1" generate ybbles 0 and 1, as

do bytes"\0" and "\1" . For bytes"a"."f" and "A".."F" the result is
compatible with the usual kadecimal digits, so thad" and"A" both generate the
nybble Oxa==10. The result for bytes"g".."z" and "G".."Z" is not

well-defined.

Starting from the beginning of the input stringpafck() each pair of bytes is coerted

to 1 byte of output.With formath the first byte of the pair determines the least-
significant nybble of the output byte, and with forntatit determines the most-
significant nybble.

If the length of the input string is notem, it beha&es as if added by a null byte at the
end. Similarly during unpack(ing the “extra’ nybbles are ignored.

If the input string ofpack()is longer than neededxtea bytes are ignoredA * for the
repeat count gback()means to use all the bytes of the input fielth unpack()ng the
bits are cowerted to a string of hexadecimal digits.

Thep type packs a pointer to a null-terminated strilYgu are responsible for ensuring
the string is not a temporaralue (which can potentially get deallocated before you get
around to using the paedt result). The P type packs a pointer to a structure of the size
indicated by the lengthA NULL pointer is created if the corresponding valuegfar
Pisundef , smilarly for unpack()

The/ template character allows packing and unpacking of strings where thedpack
structure contains a byte count followed by the string its&bu write length-
item’ string-item

Thelength-itemcan be appack template letterand describes hothe length value is
pacled. Theones likely to be of most use are mgepacking ones lik n (for Jaa
strings),w (for ASN.1 or SNMP) and N (for SUnXDR).

For pack , thestring-itemmust, at present, B&*" , "a*" or"Z*" . Forunpack the
length of the string is obtained from tlemgth-item but if you put in the "*' it will be

2004-11-05 113

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

ignored. For all other codesnpack applies the length value to the next item, which
must not hee a epeat count.

unpack 'C/a’, "\04Gurusamy"; gives 'Guru’
unpack 'a3/A* A*', '007 Bond J'; gives (' Bond',J)
pack 'n/a* w/a*’hello,’,'world’; gives "\000\006hello,\005world"

Thelength-itemis not returned explicitly fromnpack .

Adding a count to théength-itemletter is unlikely to do anything useful, unless that
letter isA, a or Z. Packing with alength-itemof a or Z may introduce™\000"
characters, which Perl does noja@ as Igd in numeric strings.

* The intgyer typess, S, | , and L may be immediately followed by!asufix to signify
native $orts or longs—as you can see from ake for example a bare does mean
exactly 32 bits, the nate long (as seen by the local C compiler) may bgéar This
is an issue mainly in 64-bit platformsyou can see whether using makes ay
difference by

print length(pack("s"), " ", length(pack("s!")), "\n";
print length(pack("l")), " ", length(pack("I!")), "\n";

i! andl! also work but only because of completeness;, #he identical ta andl .

The actual sizes (in bytes) of natiorts, ints, longs, and long longs on the platform
where Perl was built are alseadable via Config:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "“\n";
print $Config{longsize}, “\n";
print $Config{longlongsize}, "\n";
(The $Config{longlongsize} will be undefined if your system does not support
long longs.)
* The integer formats, S, i, 1,1, L, j, andJ are inherently non-portable between

processors and operating systems becausg ¢hey the natve byteorder and
endianness. df example a 4-byte integer 0x12345678 (305419896 decimal) would be
ordered natiely (arranged in and handled by theUregisters) into bytes as

0x12 0x34 0x56 0x78 # big-endian
0x78 0x56 0x34 0x12 # | ittle-endian

Basically the Intel and/AX CPUs are little—endian, whileverybody else, forxample
Motorola m68k/88kPPG Sparc,HP R, Power, and Cray are big—endian. Alpha and
MIPS can be either: Digital/Compaq used/uses them in little-endian mode; SGI/Cray
uses them in big-endian mode.

The names ‘big-endian’ and ‘little—endian’ are comic references to the classic
“Gulliver's Travels” (via the paper “On Holy Wars and a Plea for Pedrg’Danny
Cohen,UsC/ISI IEN137, April 1, 1980) and the egg-eating habits of the Lilliputians.

Some systems may Veeven weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

You can see your systemjreference with

print join(" ", map { sprintf "%#02x", $_}
unpack("C*",pack("L",0x12345678))), "\n";

The byteorder on the platform where Perl was built is alatahle via Config:

use Config;
print $Config{byteorder}, "\n";

Byteorders1234’ and’'12345678' are little-endian'4321’ and’'87654321’

114 2004-11-05 perl v5.8.6

PERLFUNC(1)

perl v5.8.6

PerProgrammers Reference Guide PERLFUNC(1)

are big—endian.

If you want portable packed integers use the fornmatd, v, and V, their byte
endianness and size are Wmo Seealso perlport.

Real numbers (floats and doubles) are in thev@atiachine format only; due to the
multiplicity of floating formats around, and the lack of a standameétwork”
representation, noa€ility for interchange has been made. This means thategack
floating point data written on one machine may not be readable on another if e
both use IEEE floating point arithmetic (as the endian-ness of the memory
representation is not part of tHeEE spec). Sealso perlport.

Note that Perl uses doubles internally for all numeric calculation, anertiog from
double into float and thence back to double again will lose precision (i.e.,
unpack("f", pack('f", $foo)) will not in general equéfoo).

If the pattern begins with ig, the resulting string will be treated as UTF-8-encoded
Unicode. You can forcBTF-8 encoding on in a string with an initil0, and the bytes
that follow will be interpreted as Unicode characters. If you taint this to happen,
you can begin your pattern witB0 (or arything else) to force Perl not t0TF-8
encode your string, and then fallahis with aU* somewhere in your pattern.

You must yourself do grelignment or padding by inserting foxample enougfx’ es
while packing. There is no way fmck()andunpack()could knav where the bytes are
going to or coming fromThereforepack (andunpack) handle their output and input
as flat sequences of bytes.

A ()—group is a sub-TEMPLATE enclosed in parenthegegiroup may tak a epeat
count, both as postfix, and fanpack()also via the template charactewithin each
repetition of a group, positioning witlstarts again at 0. Therefore, the result of

pack('@1A((@2A)@3A), 'a’, 'b’, ’c’)
is the string “\0a\0\Obc”.

x and X accept! modifier. In this case theact as alignment commands: yhgimp
forward/back to the closest position aligned at a multiplecafnt bytes. ©r
example, topack() or unpack() C's struct {char c; double d; char

cc[2]} one may need to use the templ@ex![d] d C[2] ; this assumes that
doubles must be aligned on the doubkze.

For alignment commandgount of O is equaent to count of 1; both result in
no-ops.

A comment in AEMPLATE starts with# and goes to the end of line. White space may
be used to separate pack codes from each, diliea! modifier and a repeat count
must follov immediately.

If TEMPLATE requires more arguments pack() than actually gien, pack() assumes
additional™ arguments. IfTEMPLATE requires less argumentspack()than actually
given, extra arguments are ignored.

Examples:

$foo = pack("CCCC",65,66,67,68);

f oo eq"ABCD"

$foo = pack("C4",65,66,67,68);

same thing

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
same thing with Unicode circled letters

$foo = pack("ccxxcc",65,66,67,68);
f oo eq "AB\O\OCD"

2004-11-05 115

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

note: the above examples featuring "C" and "c" are true

only on ASCII and ASCII-derived systems such as ISO Latin 1
and UTF-8. In EBCDIC the first example would be

$foo = pack("CCCC",193,194,195,196);

$foo = pack("s2",1,2);
"\1\0\2\0" on little-endian
"\0\1\0\2" on big-endian

$foo = pack("a4","abcd","x","y","z"),
" abcd"

$foo = pack("aaaa","abcd","x","y","z");
" axyz"

$foo = pack("al4","abcdefg");
" abcdefg\0\0O\O\0\0\0\O"

$foo = pack("i9pl", gmtime);
a r eal struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmpl);
a struct utmp (BSDish)

@utmp?2 = unpack($utmp_template, $utmp);
" @utmpl" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
}

$foo = pack('sx2l', 12, 34);

short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);

short 12, zero fill to position 4, long 34

$foo eq $bar

The same template may generally also be usadpack()

packageNAMESRACE

package Declarethe compilation unit as being in thevgh namespace. Thecope of the package
declaration is from the declaration itself through the end of the enclosing block, filel tthe
same as theny operator). Allfurther unqualified dynamic identifiers will be in this namespace.
A package statement affects only dynamariables —includingthose yowe uwsed local
on—hut not lexical variables, which are created withy. Typically it would be the first
declaration in a file to be included by trequire or use operator You can switch into a
package in more than one place; it merely influences which symbol table is used by the compiler
for the rest of that block.You can refer to variables and filehandles in other packages by
prefixing the identifier with the package name and a double cdBackage::Variable
If the package name is null, theain package as assumed. Thatfissail is equvalent to
$main::sail (as well as tdmain’sail , ill seen in older code).

If NAMESFACE is omitted, then there is no current package, and all identifiers must be fully
qualified or lgicals. Havever, you are strongly advised not to neaise of this feature. Its use
can cause umxeected behaour, even crashing some versions of Perl. It is deprecated, and will
be remeoed from a future release.

See “Packages’in perimod for more information about packages, modules, and claSses.
perlsub for other scoping issues.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipeslike corresponding system callote that if you set up a loop
of piped processes, deadlock can occur unless yoweayecareful. In addition, note that Perl’
pipes uselO buffering, so you may need to skflto flush yourwRITEHANDLE after each
command, depending on the application.

116 2004-11-05 perl v5.8.6

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

See IPC::Open2, IPC::Open3, and “Bidirectional Communicatianperlipc for examples of
such things.

On systems that support a close-aredlag on files, the flag will be set for thewig opened file
descriptors as determined by the value of &&e “$°F” in perlvar.

POPARRAY

pop

Popsand returns the last value of the arranhortening the array by one elememtas an dect
similar to

$ARRAY[$#ARRAY--]

If there are no elements in the arresturns the undefinedalue (although this may happen at
other times as well)lf ARRAY is omitted, pops th@ARG¥rray in the main program, and the
@ _array in subroutines, just lilshift

POSSCALAR

pos

Returnghe offset of where the lasi//g search left dffor the variable in questio$ (is used

when the variable is not specified)lote that 0 is a valid match offset, whileadef indicates

that the search position is reset (usually due to match failure, but can also be because no match
has yet been performed on the scalpgs directly accesses the location used by thgexp

engine to store the offset, so assigningds will change that offset, and so will also influence
the\G zero-width assertion in regular expressions. Becauadea in//gc match doesit’reset

the offset, the return fropos won't change either in this case. See perlre and perlop.

print FILEHANDLE LIST
print LIST

print

Printsa gring or a list of strings.Returns true if successfuFILEHANDLE may be a scalar
variable name, in which case the variable contains the name of or a reference to the filehandle,
thus introducing one ‘el of indirection. NOTE: If FILEHANDLE is a \ariable and the next tek

is a term, it may be misinterpreted as an operator unless you interpose jaut parentheses
around the gyuments.) IfFILEHANDLE is omitted, prints by defilt to standard output (or to the

last selected output channelsee ‘select’). If LIST is also omitted, print$_ to the currently
selected output channeTo st the default output channel to something other 8T POUT use

the select operationThe current value o, (if any) is printed between ea¢hST item. The
current value o\ (if any) is printed after the entiteST has been printedBecause print tas

aLIST, anything in theLIST is evaluated in list context, and gsubroutine that you call will hee

one or more of its expressiongaleiated in list contet. Also be careful not to folly the print
keyword with a left parenthesis unless you want the corresponding right parenthesis to terminate
the arguments to the printinterpose & or put parentheses around all the arguments.

Note that if you're storingFILEHANDLES in an array or other expression, you wilvaao use a
block returning its value instead:

print { $files[$i] } "stuffin";
print { $OK ? STDOUT : STDERR } "stuff\n”;

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

Equivaent to print FILEHANDLE sprintf(FORMAT, LIST) , except that$\ (the

output record separator) is not appended. The figstnagnt of the list will be interpreted as the
printf format. Seesprintf for an explanation of the format argumentuse locale is

in effect, the character used for the decimal point in formatted real numbers is affected by the
LC_NUMERIC locale. Seeerllocale.

Don't fall into the trap of using printf ~ when a simplgrint would do. Theprint is more
efficient and less error prone.

prototypeFUNCTION

perl v5.8.6

Returns the prototype of a function as a string odef if the function has no prototype).
FUNCTION s a reference to, or the name of, the function whose prototype you want teeretrie

If FUNCTION is a string starting witiCORE::, the rest is taken as a name for Peiltim. If the
builtin is not overridable (such asgw//) or its aguments cannot be expressed by a prototype
(such assystem) returnsundef because the builtin does not really behike a Ferl function.

2004-11-05 117

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

118

Otherwise, the string describing the aglént prototype is returned.

PushARRAY,LIST
TreatsARRAY as a stack, and pushes tlaues ofLIST onto the end oARRAY. The length of
ARRAY increases by the length bfST. Has the same effect as

for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

}

but is more eficient. Returnghe nev number of elements in the array.

g/STRING/
gq/STRING/
gr/STRING/
gx/STRING/
gW/STRING/
Generalized quotes. See “Regexp Quoteel@perators’in perlop.

qguotemet&EXPR

guotemeta
Returns the value &XPRwith all non—‘word” characters backslashed. (That is, all characters
not matching/[A-Za-z_0-9]/ will be preceded by a backslash in the returned string,
regardless of ap locale settings.)This is the internal function implementing tk@ escape in
double-quoted strings.

If EXPRis omitted, use$_.

randEXPR

rand Returns random fractional number greater than or equdl &nd less than the value BXPR
(EXPR should be posite.) If EXPRis omitted, the &lue 1 is used. Currently EXPR with the
value 0 is also special-cased &s- this has not been documented before perl 5.8.0 and is subject
to change in future versions of peAutomatically callssrand unlesssrand has already been
called. Seealsosrand .

Apply int() to the value returned mand() if you want random integers instead of random
fractional numbersFor example,

int(rand(10))

returns a random integer betwe®and9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then

your version of Perl was probably compiled with the wrong numbRANDBITS.)

readFILEHANDLE,SCALAR,LENGTH,OFFSET

readFILEHANDLE,SCALAR,LENGTH
Attempts to readLENGTH characters of data into wariable SCALAR from the specified
FILEHANDLE. Returns the number of characters actually r€aal end of file, or undef if there
was an eror (in the latter cas$! is also set).SCALAR will be grown or shrunk so that the last
character actually read is the last character of the scalar after the read.

An OFFSETmay be specified to place the read data at some place in the string other than the

beginning. A negative OFFSETspecifies placement at that myatharacters counting baclkands
from the end of the stringA positive OFFSETgreater than the length 8CALAR results in the
string being padded to the required size with' bytes before the result of the read is
appended.

The call is actually implemented in terms of either Best’ yystem’sfread() call. To get a true
read(2) system call, segysread .

Note thecharacters depending on the status of the filehandle, either (8-bit) bytes or characters

are read. By default all filehandles operate on bytes, but for example if the filehandle has been

opened with theutf8 1/O layer (see'6pen’, and theopen pragma, open), the I/O will operate
on UTF-8 encoded Unicode characters, not bytes. Similarly foreheoding pragma: in that
case pretty much grcharacters can be read.

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

readdirDIRHANDLE
Returns the next directory entry for a directory openedpndir . If used in list contet,
returns all the rest of the entries in the directolythere are no more entries, returns an
undefined value in scalar context or a null list in list context.

If you're planning to filetest the return values out ofeaddir , you'd better prepend the
directory in question. Otherwise, because we didndir there, it would hee been testing the

wrong file.
opendir(DIR, $some_dir) [die "can’'t opendir $some_dir: $!";
@dots = grep {/'\./ && -f "$some_dir/$_" } readdir(DIR);
closedir DIR;

readlineEXPR
Reads from the filehandle whose typeglob is containeEXiPR In scalar context, each call
reads and returns thextdine, until end-of-file is reached, whereupon the subsequent call returns
undef. Inlist context, reads until end-of-file is reached and returns a list of IMete that the
notion of ‘line”” used here is ever you may hae defined it with $/ or
$INPUT_RECORD_SEPARATQRSee" $/” in perlvar.

When$/ is set toundef , whenreadline()is in scalar context (i.e. file slurp mode), and when an
empty file is read, it returris the first time, followed byndef subsequently.

This is the internal function implementing tiEXPR>operatoy but you can use it directlyThe
<EXPR>operator is discussed in more detail in “I/O Operatangerlop.

$line = <STDIN>;
$line = readline(*STDIN); # same thing

If readline encounters an operating system e@brwill be set with the corresponding error
message. Itan be helpful to check! when you are reading from filehandles you dadnist,
such as a tty or a soek Thefollowing example uses the operator fornreddline , and tales
the necessary steps to ensure teatlline was auccessful.

for () {
undef $!;
unless (defined($line = <>)) {
die $! if $!;
last; # reached EOF
}
.
}

readlinkEXPR

readlink Returnghe value of a symbolic link, if symbolic links are implementdfdnot, gives a fatal
error. If there is some system erroeturns the undefined value and sits(errno). IfEXPRIis
omitted, use$_.

readpipeEXPR
EXPR is executed as a system command. The collected standard output of the command is
returned. Inscalar context, it comes back as a single (potentially multi-line) string. In list
contxt, returns a list of lines (heever you've defined lines with $/ or
$INPUT_RECORD_SEPARATQRThis is the internal function implementing tlg/EXPR/
operatoyrbut you can use it directlyThe gx/EXPR/ operator is discussed in more detail‘ ifQ
Operators’in perlop.

recvSOCKET,SCALAR,LENGTH,FLAGS
Receves a nessage on a soek Attemptsto receve LENGTH characters of data intcaxiable
SCALAR from the specifie®OCKET filehandle. SCALAR will be grown or shrunk to the length
actually read.Takes the same flags as the system call of the same nReteirns the address of
the sender iSOCKETSs protocol supports this; returns an empty string otherwise. If there’
error, returns the undefinedalue. Thiscall is actually implemented in terms mdcvfrom(2)
system call. SeeUDP: Message Passirighn perlipc for examples.

Note thecharacters depending on the status of the socket, either (8—bit) bytes or characters are

perl v5.8.6 2004-11-05 119

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

receved. Bydefault all sockets operate on bytes, but for example if theesdzls been changed
usingbinmode(Jto operate with theutf8 1/O layer (see thepen pragma, open), the I/O will
operate onUTF-8 encoded Unicode characters, not bytes. Similarly for :#meoding
pragma: in that case pretty muclyaharacters can be read.

redoLABEL

redo Theredo command restarts the loop block withowalaating the conditional agn. The
continue block, if ary, is mot executed. Ifthe LABEL is omitted, the command refers to the
innermost enclosing loop. This command is normally used by programs that want to lie to
themselves about what was just input:

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s O{.*}.%){.*} 1 D {}

sd.*y O0;
if(s O* 00 {
$front=9_;
while (<STDIN>) {
if (W) { # end of comment?
s Bfront{ O
redo LINE;
}
}
} .
print;

}

redo cannot be used to retry a block which returns a value suebiadg} ,sub {} ordo
{} , and should not be used to exitgep() or map()operation.

Note that a block by itself is semantically identical to a loop tRetutes once.Thusredo
inside such a block will effeatély turn it into a looping construct.

See also “continuéfor an illustration of hovlast , next , andredo work.

ref EXPR

ref Returnsa non-empty string ifEXPR is a reference, the empty string otherwiseEXPR is not
specified,$_ will be used. The alue returned depends on the type of thing the reference is a
reference to. Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE

If the referenced object has been blessed into a package, then that package name is returned
instead. ¥u can think ofef as atypeof operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}

unless (ref($r)) {
print "r is not a reference at all.\n";

}

if (UNIVERSAL::isa($r, "HASH")) { # f or subclassing
print "r is a reference to something that isa hash.\n";

}

See also perlref.

120 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

renameOLDNAME ,NEWNAME
Changes the name of a file; an existing REWNAME will be clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system implementafianexample,

it will usually not work across file system boundariegnethough the systermv command
sometimes compensates for thidther restrictions include whether it works on directories, open
files, or pre-existing files. Check perlport and either tirgame(2) manpage or equalent
system documentation for details.

requireVERSION

requireEXPR

require Demanda version of Perl specified BYERSION, or demands some semantics specifiedERPR
or by$_ if EXPRIis not supplied.

VERSION may be either a numeric argument such as 5.006, which will be compakddoa
literal of the form v5.6.1, which will be compared®d/ (aka$PERL_VERSION. A fatal error

is produced at run time WERSION is greater than the version of the current Perl interpreter
Compare with “use”, which can do a similar check at compile time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally beided, because it leads
to misleading error messages under earkesions of Perl which do not support this synt@ke
equiaent numeric version should be used instead.

require v5.6.1; # r un time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards compatibility

Otherwise, demands that a library file be included if it ha@réady been includedThe file is
included via the do-FILE mechanism, which is essentially just a varietyadf. Has semantics
similar to the following subroutine:

sub require {
my ($filename) = @_;
if (exists $INC{$filename}) {
return 1 if $INC{$filename};
die "Compilation failed in require";

}
my ($realfilename,$result);
ITER: {
foreach $prefix (@INC) {
$realfilename = "$prefix/$filename”;
if (-f $realfilename) {
$INC{$filename} = $realfilename;
$result = do $realfilename;
last ITER;
}
}
die "Can't find $filename in \@INC";
}
if (@) {
$INC{$filename} = undef;
die $@;

} e Isif (I$result) {

delete $INC{$filename};

die "$filename did not return true value";
} else{

return $result;
}

}

Note that the file will not be included twice under the same specified name.

perl v5.8.6 2004-11-05 121

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

The file must return true as the last statement to indicate successfuti@n of ary initialization
code, so i austomary to end such a file wilh unless you're sure it'll return true otherwise.
But it's better just to put th&; , in case you add more statements.

If EXPRis a bareord, the require assumes @' extension and replaces:™ with /" in the
filename for you, to makit easy to load standard modules. This form of loading of modules
does not risk altering your namespace.

In other words, if you try this:
require Foo::Bar; # a splendid bareword

The require function will actually look for thé&do/Bar.pni file in the directories specified in the
@INCarray.

But if you try this:

$class = 'Foo::Bar’;
require $class; # $class is not a bareword
#or

require "Foo::Bar"; # not a bareword because of the

The require function will look for theFbo::Bar* fi le in the@INCarray and will complain about
not finding "Foo::Bar" there. Inthis case you can do:

eval "require $class";

Now that you understand tnorequire looks for files in the case of a banard argument, there
is a little extra functionality going on behind the scenBsforerequire looks for a “pnt
extension, it will first look for a filename with &pmc¢' extension. Afile with this extension is
assumed to be Perl bytecode generated by B::Bytedbttes file is found, and i nodification
time is newer than a coincidingpt’ non-compiled file, it will be loaded in place of that non-
compiled file ending in a.pni' extension.

You can also insert hooks into the impoacility, by putting directly Perl code into th@INC
array There are three forms of hooks: subroutine references, array references and blessed
objects.

Subroutine references are the simplest case. When the inclusion system walks @& Gghd
encounters a subroutine, this subroutine gets called with pavameters, the first being a
reference to itself, and the second the name of the file to be included=6@Rdr.pn). The
subroutine should returandef or a filehandle, from which the file to include will be redfl.
undef is returnedrequire will look at the remaining elements @INC

If the hook is an array reference, its first element must be a subroutine reference. This subroutine
is called as aha, but the first parameter is the array reference. This enables to pass indirectly
some arguments to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {
my ($coderef, $filename) = @_; # $coderefis \&my_sub

or:

push @INC, [\&my_sub, $x, $y, ...];
sub my_sub {
my ($arrayref, $filename) = @_;
Retrieve $x, 9y, ...
my @parameters = @$arrayref[1l..$#$arrayref];

}
If the hook is an object, it must provide &NC method, that will be called as aksp the first

122 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

parameter being the object itself. (Note that you must fully qualify the sabie, as it is atays
forced into packagmain .) Hereis a typical code layout:

In F 0o.pm
package Foo;
subnew({...}
sub Foo::INC {
my ($self, $filename) = @_;

}

In t he main program
push @INC, new Foo(...);

Note that these hooks are also permitted to setddC entry corresponding to the files the
have loaded. See “%INCin perlvar.

For a yet-more-powerful import facilitysee “use’ and perimod.

resetEXPR

reset Generallysed in aontinue block at the end of a loop to clear variables and f&3ekearches
so that thg work again. Theexpression is interpreted as a list of single charactemhéns
allowed for ranges). All variables and arrayginaing with one of those letters are reset to their
pristine state.If the expression is omitted, one-match searchpatfern?) are reset to match
agpin. Resetonly variables or searches in the current packageiays returns 1. Examples:

reset 'X’; # r eset all X variables
reset 'a-z’; # r eset lower case variables
reset; # just reset ?one-time? searches

Resetting"A-Z" is not recommended because you'll wipe out yoRARGANd @INCarrays
and your%ENVWhash. Resetsnly package ariables — Igical variables are unaffected, butyhe
clean themselves up on scope exiyveay, so you'll probably want to use them insteadGee

my”.

returnEXPR

return Returndrom a subroutinegval , or do FILE with the value gien in EXPR Evauation of
EXPRmay be in list, scalaor void context, depending on Wwahe return alue will be used, and
the context may vary from oneeeution to the next (se@antarray). If no EXPRis given,
returns an empty list in list context, the undefined value in scalar context, and (of course) nothing
at all in a void context.

(Note that in the absence of arpkcit return , a subroutine, gal, or doFILE will automatically
return the value of the last expressioal@ated.)

reverseLIST
In list context, returns a list value consisting of the elementssif in the opposite orderln
scalar contet, concatenates the elementsLST and returns a string value with all characters in
the opposite order.

print reverse <>; # | ine tac, last line first
undef $/; # f or efficiency of <>
print scalar reverse <>; # character tac, last line tsrif

Used without arguments in scalar contexterse()reverses$.

This operator is also handy forvamting a hash, although there are someeats. Ifa value is
duplicated in the original hash, only one of those can be representedyaim ¢hk inverted hash.
Also, this has to unwind one hash andld a whole nes one, which may ta& some time on a
large hash, such as fronbaM file.

%by _name = reverse %by_address; # | nvert the hash

rewinddir DIRHANDLE
Sets the current position to thegbming of the directory for theeaddir routine on
DIRHANDLE.

perl v5.8.6 2004-11-05 123

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

124

rindexSTRSUBSTR,POSITION

rindexSTRSUBSTR
Works just like index() except that it returns the position of thaST occurrence oBUBSTRIN
STR If POSITIONIs specified, returns the last occurrence at or before that position.

rmdir FILENAME
rmdir Deleteshe directory specified byILENAME if that directory is emptyIf it succeeds it returns
true, otherwise it returns false and sgts(errno). IfFILENAME is omitted, use$_.

s/l Thesubstitution operatorSee perlop.

scalarEXPR
ForcesEXPRto be interpreted in scalar context and returns the valBErRR

@counts = (scalar @a, scalar @b, scalar @c);

There is no equalent operator to force arxgression to be interpolated in list context because in
practice, this is nexr needed. Ifyou really wanted to do so, Wwever, you could use the
construction@{[(some expression)]} , but usually a simplésome expression)

suffices.

Becausescalar is unary operatoif you accidentally use faeXPR a parenthesized list, this
behaes as a salar comma expressionyatuating all but the last element in void context and
returning the final elementvauated in scalar comé Thisis seldom what you want.

The following single statement:
print uc(scalar(&foo,$bar)),$baz;
is the moral equilent of these two:

&foo;
print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

seekFILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE's position, just lile the fseek call of stdio . FILEHANDLE may be an
expression whose valuewgs the name of the filehandle. The valuesENCE are0 to set the
new positionin bytesto POSITION 1 to set it to the current position pl@®SITION and 2 to set
it to EOF plus POSITION (typically negaive). For WHENCE you may use the constants
SEEK_SET SEEK CURand SEEK_END(start of the file, current position, end of the file) from
the Fcntl module. Returrisupon succes$) otherwise.

Note thein bytes even if the filehandle has been set to operate on characters (for example by
using the:utf8 open layer),tell() will return byte offsets, not character offsets (because
implementing that would rendseek(Jandtell() rather slow).

If you want to position file fosysread or syswrite , don't useseek ——buffering makes its
effect on the files g/stem position unpredictable and non—portable. $ysseek instead.

Due to the rules and rigors afNSI C, on some systems youVeain do a gek wheneer you
switch between reading and writingsmongst other things, this mayveate effect of calling
stdio’sclearerr(3). AWHENCEof 1 (SEEK_CURIis useful for not moving the file position:

seek(TEST,0,1);

This is also useful for applications emulatitagi —f . Once you hitEOF on your read, and
then sleep for a while, you mightJyeao gick in a seek()to reset things.The seek doesn't
change the current position, butdibesclear the end-of-file condition on the handle, so that the
next<FILE> makes Perl try again to read somethilige hope.

If that doesrt work (somelO implementations are particularly cantankerous), then you may need
something more lik this:

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

for (;7) {
for ($curpos = tell(FILE); $ = <FILE>;
$curpos = tell(FILE)) {
search for some stuff and put it into files

}
sleep($for_a_while);
seek(FILE, $curpos, 0);
}
seekdirDIRHANDLE,POS
Sets the current position for threaddir routine onDIRHANDLE. POS must be a alue
returned bytelldir . Has the same weats about possible directory compaction as the
corresponding system library routine.
selectFILEHANDLE
select Returnghe currently selected filehandle. Sets the current default filehandle for output, if
FILEHANDLE is supplied. This has tweffects: first, avrite or aprint without a filehandle
will default to thisFILEHANDLE. Second, references to variables related to output will refer to
this output channelFor example, if you haee © st the top of form format for more than one
output channel, you might do the following:

select(REPORTL);
$" = reportl_top’;
select(REPORT?2);
$" = report2_top’;

FILEHANDLE may be an expression whose valugegithe name of the actual filehandle. Thus:
$oldfh = select(STDERR); $ O = 1; s elect($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write
the last example as:

use 10::Handle;
STDERR->autoflush(1);

selectRBITS,WBITS,EBITS, TIMEOUT
This calls theselec{(2) system call with the bit masks specified, which can be constructed using

fileno andvec, dong these lines:

$rin = $win = $ein = ;
vec($rin,fileno(STDIN),1) = 1,
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin O $win;

If you want to select on mgiilehandles you might wish to write a subroutine:

sub fhbits {
my(@fhlist) = split(*,$_[0]):
my($bits);
for (@fhlist) {
vec($bits,fileno($_),1) = 1;
}

$bits;

}
$rin = thbits(STDIN TTY SOCK);
The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this
$nfound = select($rout=%$rin, $wout=$win, $eout=%ein, undef);

Most systems do not bother to return anything usefitimeleft |, so @lling select()in scalar

perl v5.8.6 2004-11-05 125

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

context just return$nfound .

Any of the bit masks can also be unddhe timeout, if specified, is in seconds, which may be
fractional. Notenot all implementations are capable of returning$timeleft . If not, they
always return$timeleft equal to the suppliegtimeout

You can effect a sleep of 250 milliseconds this way:
select(undef, undef, undef, 0.25);

Note that whether select gets restarted after signals (saySIGALRM) is
implementation—dependent. Sa&so perlport for notes on the portabilitysalect

WARNING: One should not attempt to mixuffered 1/O (like read or <FH>) with select
except as permitted byOSIX, and even then only orPOSIXsystems. ¥Wu hae o usesysread
instead.

semctliD,SEMNUM,CMD,ARG

Calls the System WC functionsemctl . You'll probably hae o say
use IPC::SysV;

first to get the correct constant definitions CMD is IPC_STAT or GETALL, thenARG must be a
variable which will hold the returned semid_ds structure or semaphore value Retayns lile
ioctl : the undefined value for erfot0 but true " for zero, or the actual returralue
otherwise. Th&RG must consist of aactor of natie dhort integers, which may be created with
pack("s!",(0)x$nsem) . See also ‘SysV IPC" in perlipc, IPC:SysV |,
IPC::Semaphore documentation.

semgeKEY ,NSEMS,FLAGS

Calls the System \PC function semget. Returns the semaphore id, or the undefined value if
there is an errorSee also‘SysV IPC" i n perlipc, IPC::SysV , IPC::SysV::Semaphore
documentation.

semopKEY,OPSTRING

Calls the System WC function semop to perform semaphore operations such as signalling and
waiting. OPSTRINGmust be a packed array of semop structukesch semop structure can be
generated withpack("s!3", $semnum, $semop, $semflag) . The number of
semaphore operations is implied by the lengtdRETRING Returns true if successful, calée

if there is an error As an &le, the following code waits on semaph&semnum of
semaphore i$semid:

$semop = pack("s!3", $semnum, -1, 0);
die "Semaphore trouble: $1\n" unless semop($semid, $semop);

To dgnal the semaphore, replacg with 1. See also‘SysV IPC” i n perlipc, IPC::SysV , and
IPC::SysV::Semaphore documentation.

sendSOCKET,MSG,FLAGS,TO
sendSOCKET,MSG,FLAGS

Sends a message on a sckAttemptgo send the scalaiSG to theSOCKETfilehandle. &kes

the same flags as the system call of the same n@meinconnected sockets you must specify a
destination to send@O, in which case it does a €endto . Returns the number of characters
sent, or the undefined value if there is an erfine C system calbendmsg?) is currently
unimplemented. SeeUDP: Message Passirign perlipc for examples.

Note thecharacters depending on the status of the socket, either (8—bit) bytes or characters are
sent. Bydefault all sockets operate on bytes, but for example if the socket has been changed
usingbinmode()to operate with theutf8 1/O layer (see‘open’, or theopen pragma, open),

the 1/0O will operate onUTF-8 encoded Unicode characters, not bytes. Similarly for the
:encoding pragma: in that case pretty mucly@haracters can be sent.

setpgrpPID,PGRP

126

Sets the current process group for the spec#ied O for the current processwill produce a
fatal error if used on a machine that doésmplementPOSIX setpgid2) or BSD setpgrp(2). If

the arguments are omitted, it default90t0 . Note that theBSD 4.2 \ersion ofsetpgrp does
not accept anarguments, so onlgetpgrp(0,0) is portable. See ald@OSIX::setsid()

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

setpriorityWHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or .a ($sarsetpriority(2).) Wl
produce a fatal error if used on a machine that doeaplementsetpriority(2).

setsockopSOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an @PDOVAL may be
specified asindef if you dont want to pass an argument.

shift ARRAY

shift Shifts the first walue of the array 6fand returns it, shortening the array by 1 andvimg
evaything davn. If there are no elements in the arnagurns the undefinedalue. IfARRAY is
omitted, shifts the@ array within the lexical scope of subroutines and formats, an@#heGV
array at file scopes or within the lexical scopes established v#he , BEGIN {} , INIT
{} ,CHECK {} ,andEND {} constructs.

See alsanshift , push, andpop. shift andunshift do the same thing to the left end of
an array thapop andpush do to the right end.

shmctliD,CMD,ARG
Calls the System WC function shmctl. You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitions.CMD is IPC_STAT, thenARG must be a ariable
which will hold the returnedhmid_ds structure. Returngke ioctl: the undefined value for
error, "0 but true" for zero, or the actual returalue otherwise. See als&ysV IPC" i n perlipc
andIPC::SysV documentation.

shmgeKEY,SIZE,FLAGS
Calls the System MPC function shmget. Returns the shared memory segment id, or the
undefined value if there is an erroBee also ‘SysV IPC’ in perlipc and IPC::SysV
documentation.

shmreadD,VAR,POS,SIZE

shmwritelD,STRING,POS,SIZE
Reads or writes the System V shared memogynsatID starting at positiolPOSfor size SIZE
by attaching to it, copying in/out, and detaching fromVithen readingyAR must be a &riable
that will hold the data read. When writing,9fRING is too long, onlySIZE bytes are used; if
STRING s too short, nulls are written to fill o81ZE bytes. Returrrue if successful, or false if
there is an errorshmread()taints the variable. See als&ysV IPC" i n perlipc, IPC::SysV
documentation, and tHBC::Shareable module fromCPAN.

shutdownSOCKET,HOW
Shuts down a soek connection in the manner indicated Bpw, which has the same
interpretation as in the system call of the same name.

shutdown(SOCKET, 0); # | /we have stopped reading data
shutdown(SOCKET, 1); # | /we have stopped writing data
shutdown(SOCKET, 2); # | /we have stopped using this socket

This is useful with soats when you want to tell the other side you're done writing but not done
reading, or vice @rsa. It5 dso a more insistent form of close because it also disables the file
descriptor in apforked copies in other processes.

2:2 . Returnghe sine 0EXPR (expressed in radians). HXPRis omitted, returns sine & .
For the irnverse sine operation, you may use tfath::Trig::asin function, or use this
relation:
sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
sleepEXPR

sleep Causethe script to sleep faEXPR seconds, or foker if no EXPR May be interrupted if the
process recees a $sgnal such aSIGALRM Returns the number of seconds actually slefou
probably cannot mixalarm andsleep calls, becausesleep is often implemented using
alarm .

perl v5.8.6 2004-11-05 127

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

On some older systems, it may sleep up to a full second less than what you requested, depending
on haw it counts seconds. Most modern systemgags sleep the full amounfThey may appear

to sleep longer than that, Wever, because your process might not be scheduled righy & a

busy multitasking system.

For delays of finer granularity than one second, you may usesBgstall interface to access
setitimen(2) if your system supports it, or else s&select’ above. The Time::HiRes module
(from CPAN, and starting from Perl 5.8 part of the standard distribution) may also help.

See also theosiXmodule’spause function.

socketSOCKET,DOMAIN,TYPE,PROTOCOL
Opens a socket of the specified kind and attaches it to fileh@@dI€ET. DOMAIN, TYPE, and
PROTOCOL are specified the same as for the system call of the same amehould use
Socket first to get the proper definitions importeBlee the examples itsockets: Client/Sersr
Communicatiori’in perlipc.

On systems that support a close-aredlag on files, the flag will be set for thewig opened file
descriptoyas @termined by the value of $"Bee “$°F” in perlvar.

socketpailSOCKETL,SOCKET2,DOMAIN, TYPE,PRTOCOL
Creates an unnamed pair of seiskin the specified domain, of the specified typ@MAIN,
TYPE, and PROTOCOL are specified the same as for the system call of the same rnfime.
unimplemented, yields a fatal errdReturns true if successful.

On systems that support a close-aredlag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of e “$°F" in perlvar.

Some systems defingupe in terms ofsocketpair , in which a call topipe(Rdr, Wtr)
is essentially:
use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emula¢gpsacksingP
sockets to localhost if your system implements sockets but not socketpair.

SOrtSUBNAME LIST

SOrtBLOCK LIST

SOrtLIST
In list context, this sorts theIST and returns the sorted lisklue. Inscalar conte, the
behaviour ofort() is undefined.

If SUBNAME or BLOCK is omitted,sort s in gandard string comparison orddf SUBNAME is
specified, it gies the name of a subroutine that returns an integer less than, equal to, or greater
than0, depending on he the elements of the list are to be orderéthe <=> andcmp operators

are extremely useful in such routines3UBNAME may be a scalar variable name
(unsubscripted), in which case the value provides the name of (or a reference to) the actual
subroutine to use. In place ofSWBNAME, you can provide 8LOCK as an anonymous, in-line

sort subroutine.

If the subroutines prototype is($$) , the elements to be compared are passed by reference in
@, as br a normal subroutine. This is sler than unprototyped subroutines, where the elements
to be compared are passed into the subroutine as the package glaizdes$a and$b (see
example belw). Notethat in the latter case, it is usually courenductie to declare$a and

$b as lexicals.

In either case, the subroutine may not be reeairsihe values to be compared areals passed
by reference, so darrmodify them.

You dso cannot exit out of the sort block or subroutine usingdarthe loop control operators
described in perlsyn or wiftoto .

When use locale is in efect, sort LIST sortsLIST according to the current collation

128 2004-11-05 perl v5.8.6

PERLFUNC(1)

perl v5.8.6

PerProgrammers Reference Guide PERLFUNC(1)

locale. Segerllocale.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That algorithm was not stable,
andcouldgo quadratic.(A stablesort preserves the input order of elements that compare equal.
Although quicksors run time is O(NlogN) whenveraged oer al arrays of length N, the time

can be O(N**2),quadraticbehavior for some inputs.) In 5.7, the quicksort implementati@s w
replaced with a stable mergesort algorithm whos®stvcase behavior is O(NlogN)But
benchmarks indicated that for some inputs, on some platforms, the original quicksatteas f

5.8 has a sort pragma for limited control of the sttg.rather blunt control of the underlying
algorithm may not persist into future perlsit bhe ability to characterize the input or output in
implementation independent ways quite probably will. See sort.

Examples:

sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

now case-insensitively
@articles = sort {uc($a) cmp uc($b)} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

t his sorts the %age hash by value instead of key
using an in-line function
@eldest = sort { $age{$b} <=> $age{$a} } keys %age;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}

@sortedclass = sort byage @class;

sub backwards { $b cmp $a }
@harry = qw(dog cat x Cain Abel);
@george = qw(gone chased yz Punished Axed);
print sort @harry;
prints AbelCaincatdogx
print sort backwards @harry;
prints xdogcatCainAbel
print sort @george, 'to’, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

i nefficiently sort by descending numeric compare using
t he first integer after the first = sign, or the
whole record case-insensitively otherwise

@new = sort {
($b =" /=(\d+)N[0] <=> ($a =" /=(\d+)/)[0]
(m
uc($a) cmp uc($b)
} @old;

2004-11-05 129

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

same thing, but much more efficiently;
we'll build auxiliary indices instead
f or speed
@nums = @caps = ();
for (@old) {
push @nums, /=(\d+)/;
push @caps, uc($);
}

@new = @old[sort {
$nums[$b] <=> $nums[$a]
(I
$caps[$a] cmp $caps[$b]
} 0 ..$#old
I;
same thing, but without any temps
@new =map {$_->[0] }
sort { $b->[1] <=> $a->[1]
(I
$a->[2] cmp $b->[2]
} map {[$_, /=(\d+)/, uc($_)] } @old;

using a prototype allows you to use any comparison subroutine

as a s ort subroutine (including other package’s subroutines)

package other;

sub backwards ($$) { $_[1] cmp $_[O]; } # $a and $b are not set here

package main;
@new = sort other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable’;
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old,;

f orce use of mergesort (not portable outside Perl 5.8)
use sort’_mergesort’; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old,;

If you're using strict, youmust notdeclare$a and $b as licals. The are package globals.
That means if you're in thmain package and type

@articles = sort {$b <=> $a} @files;

then$a and $b are $main::a and $main::b (or $::a and $::b), but if youre in the
FooPack package, is the same as typing

@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behalf it returns inconsistent results (sometimes
saying$x[1] is less thar$x[2] and sometimes saying the opposite, for example) the results
are not well-defined.

Because<=> returnsundef when either operand iaN (not-a—number), and becausert

will trigger a fatal error unless the result of a comparison is defined, when sorting with a
comparison function li&$a <=> $b , be areful about lists that might containNaN The
following example tais advantage of the fact tiNéN != NaN to eliminate ap NaNs from the

input.

@result =sort { fa<=>3$b }grep{$_==9%_1} @input;

spliceARRAY,OFFSET,LENGTH,LIST
spliceARRAY ,OFFSET,LENGTH
spliceARRAY ,OFFSET

130 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

spliceARRAY
Remaes the elements designated ®FFSETandLENGTH from an arrayand replaces them with
the elements ofIST, if any. In list context, returns the elements resbfrom the array In
scalar context, returns the last element nesdpor undef if no elements are remed. The
array grows or shrinks as necessdfyOFFSETis nayative then it starts that far from the end of
the array If LENGTH is omitted, remees everything from OFFSET onward. If LENGTH is
negaive, removes the elements fronFFSETonward except for -LENGTH elements at the end
of the array If both OFFSETandLENGTH are omitted, remas everything. If OFFSETIs past the
end of the arrgyperl issues a warning, and splices at the end of the array.

The following equialences hold (assumir§] == 0 and $#a >= $i)
push(@a,$x,$y) splice(@a,@a,0,%x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,3y)
$a[$i] = By splice(@a,$i,1,%y)

Example, assuming array lengths are passed before arrays:

sub aeq { # compare two list values
my(@a) = splice(@_,0,shift);
my(@Db) = splice(@_,0,shift);

return O unless @a == @b; # same len?
while (@a) {
return 0 if pop(@a) ne pop(@b);
}
return 1;

}
if (&aeq($len,@foo[l..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT

split /PATTERN/,EXPR

split /PATTERN/

split Splitsthe stringEXPRinto a list of strings and returns that li®y default, empty leading fields
are preserved, and empty trailing ones are deleted. (If all fields are, #maptgre considered to
be trailing.)

In scalar conte, returns the number of fields found and splits into@erray Use of split in
scalar context is deprecated, hoarebecause it clobbers your subroutine arguments.

If EXPRis omitted, splits th&_ string. If PATTERN is also omitted, splits on whitespace (after
skipping aiy leading whitespace)Anything matchingPATTERN is taken to be a delimiter
separating the fields. (Note that the delimiter may be longer than one character.)

If LIMIT is specified and posit, it represents the maximum number of fields EX@R will be
split into, though the actual number of fields returned depends on the nhumber ctATTERN
matches withinEXPR If LIMIT is unspecified or zero, trailing null fields are stripped (which
potential users opop would do well to remember)If LIMIT is negaive, it is treated as if an
arbitrarily lage LIMIT had been specified. Note that splitting BXPR that evaluates to the
empty string aliays returns the empty list,gardless of the.IMIT specified.

A pattern matching the null string (not to be confused with a null paftermhich is just one
member of the set of patterns matching a null string) will split the val@&X®R into separate
characters at each point it matches that wey example:

print join(’:’, split(/ */, ’hi there"));
produces the output 'h:i:t:h:e:r:e’.

Using the empty patterft specifically matches the null string, and is not be confused with the
use of// to mean “the last successful pattern match”.

Empty leading (or trailing) fields are produced when there are y@sitdth matches at the
beginning (or end) of the string; a zero-width match at the beginning (or end) of the string does

perl v5.8.6 2004-11-05 131

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

not produce an empty fieldzor example:
print join(":’, split{(/(?=\w)/, ’hi there!"));
produces the output 'h:i :t:h:e:r:el’.
TheLIMIT parameter can be used to split a line partially
($login, $passwd, Sremainder) = split(/:/, $_, 3);

When assigning to a list, ifiMIT is omitted, or zero, Perl suppliedBMIT one larger than the
number of variables in the list, te@d unnecessary evk. For the list abge LIMIT would have
been 4 by defult. Intime critical applications it beh@es you not to split into more fields than
you really need.

If the PATTERN contains parentheses, additional list elements are created from each matching
substring in the delimiter.

split(/([,-])/, "1-10,20", 3);
produces the list value
(11 ,_,1 101 ,l,l 20)

If you had the entire header of a normal Unix email messafjbeader , you could split it up
into fields and their values this way:

$header =" s/\n\s+/ /g; # f ix continuation lines

%hdrs = (UNIX_FROM => split "(\S*?):\s*/m, $header);
The patter’PATTERN/ may be replaced with an expression to specify patterns dmatat
runtime. (© do untime compilation only once, uggvariable/o)
As a special case, specifyingPATTERN of space’(’) will split on white space just aplit
with no arguments doesThus, split(’ ") can be used to emulagevk’s default behaior,
whereassplit(/ /) will give you as may null initial fields as there are leading spacés.
split onAs+/ s like asplit(’ ") except that ay leading whitespace produces a null
first field. Asplit with no arguments really doesglit(" ’, $) internally.

A PATTERNoOf /"] s treated as if it werE/m , since it isnt much use otherwise.
Example:

open(PASSWD, 'letc/passwd);
while (<PASSWD>) {
chomp;
($login, $passwd, $uid, $gid,
$gcos, $home, $shell) = split(/:/);
#...
}

As with regular pattern matching,yaoapturing parentheses that are not matchedsiolit()
will be set toundef when returned:
@fields = split /(A) B/, "1A2B3";
@ieldsis (1, 'A’, 2, undef, 3)
sprintf FORMAT, LIST
Returns a string formatted by the uspiahtf ~ cornventions of the C library functiosprintf

See belws for more details and sesprintf(3) or printf(3) on your system for an explanation of
the general principles.

For example:

Format number with up to 8 leading zeroes
$result = sprintf("%08d", $number);

Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", $number);

132 2004-11-05 perl v5.8.6

PERLFUNC(1)

perl v5.8.6

PerProgrammers Reference Guide PERLFUNC(1)

Perl does itswn sprintf formatting — itemulates the C functiesprintf , but it doesnt use
it (except for floating-point numbers, angee then only the standard modifiers are whal). As
a result, ay non-standard extensions in your losplintf are not sailable from Perl.

Unlike printf , sprintf does not do what you probably mean when you pass it an array as
your first argument. The array isvgn scalar context, and instead of using the Oth element of the
array as the format, Perl will use the count of elements in the array as the format, which is almost
never useful.

Perl'ssprintf permits the following uwiersally-known comersions:

%% a percent sign

%c a character with the given number

%s a string

%d a signed integer, in decimal

%u an unsigned integer, in decimal

%0 an unsigned integer, in octal

%x an unsigned integer, in hexadecimal

%e a floating-point number, in scientific notation

%f a floating-point number, in fixed decimal notation
%g a floating-point number, in %e or %f notation

In addition, Perl permits the following widely-supported@sions:

%X like %X, but using upper-case letters

%E like %e, but using an upper-case "E"

%G like %g, but with an upper-case "E" (if applicable)

%b an unsigned integer, in binary

%p a pointer (outputs the Perl value’s address in hexadecimal)

%n special: *stores* the number of characters output so far
into the next variable in the parameter list

Finally, for backward (and we do meanbackward’) compatibility, Perl permits these
unnecessary but widely-supported wasions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%0 a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation producke, ByE %gand%G

for numbers with the modulus of the exponent less than 100 is system—dependent: it may be three
or less (zero—padded as necessary). In other words, 1.23 times ten to the 99th may be either
“1.23e99'or **1.23e099".

Between the% and the format letteryou may specify a number of additional attitids
controlling the interpretation of the format. In ordibese are:

format parameter index
An explicit format parameter index, such 28. By default sprintf will format the ne
unused argument in the list, but this allows you te tak arguments out of ordefy:

printf '%2%d %1$d’, 12, 34; # prints "34 12"
printf '%3%d %d %1$d’, 1, 2, 3; # prints"311"

flags
one or more of:

space prefiypositve rumber with a space

+ prefix positve rumber with a plus sign

- left-justify within the field

0 use zeros, not spaces, to right-justify

prefix non-zero octal with “0”, non-zero lewith “0Ox”,
non-zero binary with “Ob”

2004-11-05 133

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

For example:

printf '<% d>’, 12;
printf '<%+d>", 12;
printf '<%6s>', 12;
printf '<%-6s>’, 12;
printf '<%06s>", 12;
printf '<%#x>", 12;

vector flag
The vector flagy, optionally specifying the join string to use. This flag tells perl to interpret
the supplied string as a vector of integers, one for each character in the string, separated by a
given gring (a dot. by default). This can be useful for displaying ordinalues of
characters in arbitrary strings:

prints "< 12>"
prints "<+12>"
prints "< 12>"
prints "<12 >"
prints "<000012>"

#
#
#
#
#
prints "<Oxc>"

printf "version is v%vd\n", $7V; # Perl’'s version

Put an asterisk before thev to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # | Pv6 address
printf "bits are %0*v8b\n", " ", $bits; # r andom bitstring
You can also explicitly specify the gmument number to use for the join string using e
*2%v :
printf '%*4%vX %*4%vX %*4$vX’, @addr[1..3], ":"; # 3 | Pv6 addresses

(minimum) width
Arguments are usually formatted to be only as wide as required to displaydghe/ajue.
You can override the width by putting a number here, or get the width from tié ne
argument (with*) or from a specified argument (with &2f):

printf '<%s>’, "a"; # prints "<a>"

printf '<%6s>", "a"; # prints "< a>"

printf '<%%*s>’, 6, "a"; # prints "< a>"

printf '<%*2$s>’, "a", 6; # prints "< a>"

printf '<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through is negdive, it has the same effect as theflag:
left—justification.

precision, or maximum width
You can specify a precision (for numeric e@rsions) or a maximum width (for string
conversions) by specifying a followed by a numberFor floating point formats, with the
exception of 'g’ and 'G’, this specifies the number of decimal places to $tihee defult

being 6), eg:
t hese examples are subject to system-specific variation
printf '<%f>", 1; # prints "<1.000000>"
printf '<%.1f>", 1; # prints "<1.0>"
printf '<%.0f>", 1; # prints "<1>"
printf '<%e>’, 10; # prints "<1.000000e+01>"

printf '<%.1e>’, 10; # prints "<1.0e+01>"

For 'g’ and 'G’, this specifies the maximum number of digits toaghincluding prior to the
decimal point as well as after it, eg:

t hese examples are subject to system-specific variation

printf '<%g>’, 1; # prints "<1>"
printf '<%.10g>", 1; # prints "<1>"
printf '<%g>’, 100; # prints "<100>"
printf '<%.1g>’, 100; # prints "<le+02>"

printf '<%.2g>’, 100.01; # prints "<1e+02>"
printf '<%.5g>’, 100.01; # prints "<100.01>"
printf '<%.4g>’, 100.01; # prints "<100>"

134 2004-11-05 perl v5.8.6

PERLFUNC(1)

perl v5.8.6

PerProgrammers Reference Guide PERLFUNC(1)

For integer cowersions, specifying a precision implies that the output of the number itself
should be zero-padded to this width:

printf '<%.6x>", 1; # prints "<000001>"
printf '<%#.6x>", 1; # prints "<0x000001>"
printf '<%-10.6x>", 1; # prints "<000001 >"

For string corversions, specifying a precision truncates the string to fit in the specified
width:

printf '<%.5s>", "truncated"; # prints "<trunc>"
printf '<%10.5s>’, "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using

printf '<%.6x>", 1; # prints "<000001>"
printf '<%.*x>", 6, 1; # prints "<000001>"

You cannot currently get the precision from a specified nuptigrit is intended that this
will be possible in the future using €@$:

printf '<%.*2$x>’, 1, 6; # | NVALID, but in future will print "<000001>"

For numeric comersions, you can specify the size to interpret the number as lusmgyv,

g, L, or Il . Forinteger comersions il u 0 x X b i D U O), numbers are usually
assumed to be whatr the default intger size is on your platform (usually 32 or 64 bits),

but you can werride this to use instead one of the standard C types, as supported by the
compiler used to build Perl:

I i nterpret integer as C type "long" or "unsigned long"

h i nterpret integer as C type "short" or "unsigned short"

g, Lorll interpretinteger as C type "long long", "unsigned long long".
or "quads" (typically 64-bit integers)

The last will produce errors if Perl does not understapaids’ in your installation. (This
requires that either the platform naty supports quads or Perl was specifically compiled to
support quads.) You can find out whether your Perl supports quads via Config:

use Config;
($Config{useb4hbitint} eq 'define’ [$Config{longsize} >= 8) &&
print "quads\n";

For floating point cowersions € f g E F G), numbers are usually assumed to be the
default floating point size on your platform (double or long double), but you can forge ’
double’ withq, L, or Il if your platform supports them. You can find out whether your Perl
supports long doubles via Config:

use Config;
$Config{d_longdbl} eq 'define’ && print "long doubles\n";

You can find out whether Perl considers 'long double’ to be the default floating point size to
use on your platform via Config:

use Config;
($Config{uselongdouble} eq 'define’) &&
print "long doubles by default\n";

It can also be the case that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&
print "doubles are long doubles\n®;

The size specifiev has no effect for Perl code, but it is supported for compatibility Méth
code; it means 'use the standard size for a Perl integer (or floating-point number)’, which is
already the default for Perl code.

2004-11-05 135

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. If the format specification usedo require additional arguments, these are
consumed from the argument list in the order in whichy thgpear in the format
specificationbeforethe value to format. Where an argument is specified using@itie
index, this does not affect the normal order for thguaments (een when the gplicitly
specified inde would have keen the next argument inyacase).

So:
printf '<%*.*s>", $a, $b, $c;

would use$a for the width,$b for the precision anfic as the value to format, while:
print '<%*1$.*s>’, $a, $b;

would use$a for the width and the precision, afil as the value to format.

Here are some more examples wae that when using arxplicit index, the$ may need to

be escaped:
printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

If use locale is in efect, the character used for the decimal point in formatted real numbers
is affected by theC_NUMERIC locale. Segerllocale.

SQrtEXPR
sqrt Returnthe square root dEXPR If EXPRis omitted, returns square root ®f. Only works on
non-n@ative gerands, unless yal€ loaded the standard Math::Complaodule.

use Math::Complex;
print sqrt(-2); # prints 1.4142135623731i

srandeEXPR
srand Setthe random number seed for ttamd operator.

The point of the function is téseed’ therand function so thatand can produce a didrent
sequence each time you run your program.

If srand()is not called plicitly, it is called implicitly at the first use of theand operator.
However, this was not the case in versions of Perl before 5.004, so if your script will run under
older Perl versions, it should calland .

Most programs wn't even call srand() at all, except those that need a cryptographically-strong
starting point rather than the generally acceptablautefwhich is based on time of dgyocess
ID, and memory allocation, or thdev/urandondevice, if aailable.

You can call srand($seed) with the safiseed to reproduce theamesequence fromand(), but
this is usually reseed for generating predictable results for testing omudgimg. Otherwise,
don' call srand()more than once in your program.

Do not call srand() (i.e. without an ajument) more than once in a script. The internal state of
the random number generator should contain more gntham can be prxaded by ay seed, so
calling srand()again actuallyosesrandomness.

Most implementations o$rand take an nteger and will silently truncate decimal numbers.
This meansrand(42) will usually produce the same resultssaand(42.1) . To be sfe,
always passrand an integer.

In versions of Perl prior to 5.004 the default seed was just the cuimemt. This isnt a
particularly good seed, so maold programs supply their own seed value (ofiterte " $$ or
time " ($$ + ($$ << 15))), but that isrt necessary gnmore.

Note that you need something much more random than ttailtdeleed for cryptographic
purposes. Checksummirthe compressed output of one or more rapidly changing operating

136 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

system status programs is the usual mettad example:
srand (time ~ $$ "~ unpack "%L*", ‘ps axww O gzip);
If you're particularly concerned with this, see Math::TrulyRandom module inCPAN.
Frequently called programs (likaGl scripts) that simply use
time ~ $$
for a seed can fall pyeo the mathematical property that
a'b == (a+1)"(b+1)
one-third of the time. So dardo that.

statFILEHANDLE

statEXPR

stat Returna 13—-element list giving the status info for a file, either the file openediMaIANDLE,
or named byEXPR If EXPRis omitted, it stat$. Returns a null list if the statfls. Typically
used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev, $size,
$atime,$mtime,$ctime,$blksize,$blocks)
= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

0 dev device number of filesystem

1ino inode number

2 mode file mode (type and permissions)

3 nlink number of (hard) links to the file

4 uid numeric user ID of file’s owner

5 gid numeric group ID of file’s owner

6 rdev the device identifier (special files only)

7 size total size of file, in bytes

8 atime last access time in seconds since the epoch

9 mime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)

11 blksize preferred block size for file system I/O
12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1G¥(O.)

(*) Not all fields are supported on all filesystem types. Notahdy ctime field is non—portable.
In particular you cannot expect it to be a “creation timesee “Files and Filesystemis'n
perlport for detalils.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the Hat |, Istat , or filetest are returned. Example:

if (-x $file && (($d) = stat()) && $d < 0) {
print "$file is executable NFS file\n";
}

(This works on machines only for which the device numbergstive underNFS.)

Because the mode contains both the file type and its permissions, you should frilaskfilef
type portion and (s)printf using"&o0" if you want to see the real permissions.

$mode = (stat($filename))[2];
printf "Permissions are %040\n", $mode & 07777;

In scalar contet, stat returns a boolean value indicating success or failure, and, if successful,
sets the information associated with the special filehandle

The File::stat module provides a eenient, by-name access mechanism:

perl v5.8.6 2004-11-05 137

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use File::stat;

$sb = stat($filename);

printf "File is %s, size is %s, perm %040, mtime %s\n",
$filename, $sb->size, $sb->mode & 07777,
scalar localtime $sb->mtime;

You can import symbolic mode constantS (F*) and functions $_IS*) from the Fcntl
module:

use Fcntl :mode’;
$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S _IRGRP) >> 3;
$other_execute = $mode & S_IXOTH,;

printf "Permissions are %040\n", S_IMODE($maode), "\n";

$mode & S_ISUID;
S_ISDIR($mode);

You ocould write the last ter using the—u and—d operators. Theommonly a&ailable S_IF*
constants are

$is_setuid
$is_setgid

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S IRWXG S_IRGRP S_IWGRP S_IXGRP
S IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT
File types. Not necessarily all are available on your system.
S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.
S_IREAD S_IWRITE S_IEXEC
and theS_IF* functions are

S_IMODE($mode) the part of $mode containing the permission bits
and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit-anded with e.g. S_IFREG
or with the following functions

The operators -f, -d, -I, -b, -c, -p, and -S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct -X operator counterpart, but for the first one
t he -g operator is often equivalent. The ENFMT stands for
r ecord flocking enforcement, a platform-dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your nate chmod(2) andstat(2) documentation for more details about 8¢ constants.
To get status info for a symbolic link instead of thegtrfile behind the link, use thstat
function.

studySCALAR
study Takes extra time to studgCALAR ($_ if unspecified) in anticipation of doing mamattern
matches on the string before it isxhenodified. This may or may notwsaime, depending on

138 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

the nature and number of patterns you are searching on, and on the distribution of character
frequencies in the string to be searchegou probably vant to compare run times with and
without it to see which runsaster Those loops which scan for mashort constant strings
(including the constant parts of more comppatterns) will benefit mostYou may hae mly
onestudy active & a time —if you study a dferent scalar the first isuhstudied’. (The way

study works is this: a linked list ofwvery character in the string to be searched is made, so we
know, for example, where all th&’ characters are. From each search string, the rarest
character is selected, based on some static freguables constructed from some C programs

and English tet. Onlythose places that contain this “rarestiaracter are examined.)

For example, here is a loop that inserts ind®oducing entries before warline containing a
certain pattern:

while (<>) {
study;
print ".IX foo\n" if Abfoo\b/;
print ".IX bar\n" if Abbar\b/;
print ".IX blurfin" if Abblurfl\b/;
...
print;

}

In searching for\bfoo\b/ , only those locations ir$_ that containf will be looked at,

becausd is rarer tharo. In general, this is a big winxeept in pathological cases. The only
question is whether it 8es you more time than it took to build the linked list in the first place.

Note that if you hee o look for strings that you doinknow till runtime, you can build an entire
loop as a string anelval that to aoid recompiling all your patterns all the tim&ogether with
undefining $/ to input entire files as one record, this can leeyvfast, often faster than
specialized programs kkfgrep(1). Thefollowing scans a list of files@files) for a list of
words @words), and prints out the names of those files that contain a match:

$search =while (<>) { study;’;
foreach $word (@words) {
$search .= "++\$seen{\$ARGV} if N\bSword\\b/;\n";

}
$search .="}";
@ARGV = @files;
undef $/;
eval $search; # t his screams
$/="\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {
print $file, "\n";
}

SUbNAME BLOCK

subNAME (PROTO) BLOCK

SUbNAME : ATTRS BLOCK

SUbNAME (PROTO) : ATTRS BLOCK
This is subroutine definition, not a real functiper se Without aBLOCK it's just a forvard
declaration. Whout aNAME, it's an @orymous function declaration, and does actually return a
value: theCODE ref of the closure you just created.

See perlsub and perlref for details about subroutines and references, andesttabd
Attribute::Handlers for more information about attributes.

substrEXPR OFFSET,LENGTH,REPLACEMENT

substrEXPR OFFSET,LENGTH

SubstrEXPR OFFSET
Extracts a substring out &XPRand returns it. First character is atset0, or whatever you've
set$[to (but dont do that). If OFFSETis negaive (or more preciselMess thar$[), starts that
far from the end of the stringf LENGTH is omitted, returnswerything to the end of the string.
If LENGTH is negaive, leaves that many characters dfthe end of the string.

perl v5.8.6 2004-11-05 139

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

You can use thesubstr()function as an Ivalue, in which caB&PR must itself be an Blue. If
you assign something shorter the8NGTH, the string will shrink, and if you assign something
longer tharLENGTH, the string will grev to accommodate it.To keep the string the same length
you may need to pad or chop your value usimigntf

If OFFSETandLENGTH specify a substring that is partly outside the string, only the part within
the string is returned. If the substring isybed either end of the stringubstr() returns the
undefined value and produces arming. Wherused as an alue, specifying a substring that is
entirely outside the string is a fatal errdtere’s an eample showing the behavior for boundary

cases:
my $name = 'fred’;
substr($name, 4) = 'dy’; # $name is now 'freddy’
my $null = substr $name, 6, 2; # returns ” (no warning)
my $oops = substr $name, 7; # r eturns undef, with warning
substr($name, 7) = 'gap’; # f atal error

An alternatve © using substr() as an halue is to specify the replacement string as the 4th
argument. Thisallows you to replace parts of tlEXPR and return what was there before in one
operation, just as you can wiplice()

If the Ivalue returned by substr is used afterEx@Ris changed in gnway, the behaviour may

not be as expected and is subject to change. Thigatcaincludes code such as
print(substr($foo,$a,$b)=%$bar) or (substr($foo,$a,$b)=$bar)=$fud

(where $foo is changed via the substring assignment, and then the substr is aggd ag
where asubstr()is aliased via doreach loop or passed as a parameter or a reference to it is
taken and then the alias, paramgterderefd reference either is used after the origiBdPR has
been changed or is assigned to and then used a second time.

symlink OLDFILE,NEWFILE
Creates a ne filename symbolically linked to the old filenam®eturns1 for success0
otherwise. Orsystems that dohsupport symbolic links, produces atél error at run timeTo
check for that, useval:

$symlink_exists = eval { symlink(",""); 1 };

syscallNUMBER, LIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal éfh@r arguments are
interpreted as follows: if aggn algument is numeric, the argument is passed as aff inbt, the
pointer to the stringalue is passedYou are responsible to maksre a string is prextéended
long enough to receg any esult that might be written into a strinfou can't use a string literal
(or other read-only string) as an argumensyscall because Perl has to assume that an
string pointer might be written through. If your integeguaments are not literals andveareve
been interpreted in a numeric coxtteyou may need to addlto them to force them to look kk
numbers. Thigmulates theyswrite function (or vice versa):

require 'syscall.ph’; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only fisents to your system call, which in practice
should usually suffice.

Syscall returns whater value returned by the system call it calls. If the system cdh,f
syscall returns—-1 and setsp! (errno). Notethat some system calls can legitimately return
—-1. The proper way to handle such calls is to as$igQ; before the call and check thalue

of $! if syscall returns-1.

Theres a poblem withsyscall(&SYS_pipe) . it returns the file number of the read end of
the pipe it creates. There is no way to retidhe file number of the other endfou can avoid
this problem by usingipe instead.

140 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

sysoperFILEHANDLE,FILENAME,MODE

sysoperFILEHANDLE,FILENAME,MODE,PERMS
Opens the file whose filename ivegi by FILENAME, and associates it wWitRILEHANDLE. |f
FILEHANDLE is an expression, its value is used as the name of the real filehardeslw This
function calls the underlying operating systewpen function with the paramete SLENAME,
MODE, PERMS

The possible values and flag bits of the®DE parameter are system-dependenty thee
available via the standard moduientl . See the documentation of your operating syssem’
open to see which values and flag bits aveilable. You may combine seral flags using the
[}-operator.

Some of the most common values &eRDONLYfor opening the file in read-only mode,
O_WRONLY06r opening the file in write-only mode, a@ RDWRor opening the file in read-
write mode.

For historical reasons, some values work on almwustyesystem supported by perl: zero means
read-only one means write—on)yand two means read/writeWe know that these values dwot
work under0S/390& VM/ESA Unix and on the Macintosh; you probably domant to use them

in new code.

If the file named byFILENAME does not exist and thapen call creates it (typically because
MODE includes theO_CREATflag), then the value dPERMS specifies the permissions of the
newly created file. If you omit th€ERMS argument tosysopen , Perl uses the octalalue
0666 . These permission values need to be in octal, and are modified by your grocesst
umask.

In mary systems theD EXCLflag is aailable for opening files in>@lusive node. Thisis not
locking: eclusiveness means here that if the file alreasligts, sysopen(fails. O_EXCLmay
not work on netwrk filesystems, and has no effect unless GheCREATflag is set as well.
SettingO_CREATO_EXCLprevents the file from being opened if it is a symbolic link. It does
not protect against symbolic links in the flgath.

Sometimes you may want to truncate an already-existing file. This can be done using the
O_TRUNGIag. Thebehavior ofO_TRUNGvith O_RDONLYs undefined.

You should seldom if eer use 0644 as argument t@ysopen , because that takesvay the
users gotion to hae a nore permissie umask. Betteto omit it. See theerlfunc(l) entry on
umask for more on this.

Note thatsysopen depends on thédopen() C library function. On mayn UNIX systems,

fdopen()is known to fail when file descriptors exceed a certaine; typically 255. If you need
more file descriptors than that, consider rebuilding Perl to usithe library, or perhaps using
the POSIX::open(function.

See perlopentut for a kindeentler explanation of opening files.

sysread-ILEHANDLE,SCALAR,LENGTH,OFFSET

sysread-ILEHANDLE,SCALAR,LENGTH
Attempts to read ENGTH bytes of data intoariableSCALAR from the specifiedFILEHANDLE,
using the system catkad(2). It bypasses ufferediO, so mixing this with other kinds of reads,
print , write , seek, tell , or eof can cause confusion because the perlio or stdio layers
usually luffers data. Returns the number of bytes actually i@ad,end of file, or undef if there
was an eror (in the latter cas$! is also set).SCALAR will be gravn or shrunk so that the last
byte actually read is the last byte of the scalar after the read.

An OFFSETmay be specified to place the read data at some place in the string other than the
beginning. A negative OFFSETspecifies placement at that myatharacters counting baclkands

from the end of the stringA positive OFFSETgreater than the length 8CALAR results in the

string being padded to the required size with' bytes before the result of the read is
appended.

There is nayseof(¥unction, which is ok, sinceof() doesnt work very well on device files (lik
ttys) anyway Usesysread()and check for a return value for O to decide whether you're done.

perl v5.8.6 2004-11-05 141

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Note that if the filehandle has been markeduw® Unicode characters are read instead of
bytes (theLENGTH, OFFSET, and the return value dfysread()are in Unicode characters}he

:encoding(...) layer implicitly introduces theutf8 layer See ‘binmode’, ‘‘open’, and
theopen pragma, open.

sysseelEILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE's system position in bytes using the system saEl2). FILEHANDLE may
be an expression whose valugegithe name of the filehandle. The values\WHENCE are0 to
set the ne position toPOSITION 1 to set the it to the current position pROSITION and 2 to
set it toEOF plusPOSITION(typically negative).

Note thein bytes even if the filehandle has been set to operate on charactersx@opk by
using the:utf8 1/O layer), tell() will return byte offsets, not characterfs#ts (because
implementing that would rendsysseek(yery slow).

sysseek(bypasses normalulfered 10, so mxing this with reads (other thasysread , for
example >< orread() print , write , seek,tell , oreof may cause confusion.

For WHENCE, you may also use the constaBBSEK_SETSEEK CURand SEEK_END(start of
the file, current position, end of the file) from the Fcntl module. Use of the constants is also more
portable than relying on 0, 1, and Ror example to define a “systelff unction:

use Fcntl 'SEEK_CUR;
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the ne position, or the undefinedalue on &ilure. Aposition of zero is returned as the

string"0 but true" ; thussysseek returns true on success and false on failure, yet you can
still easily determine the meposition.
systemLIST

SystemPROGRAM LIST
Does exactly the same thing esec LIST , except that a fork is done first, and the parent
process waits for the child process to complétete that argument processing varies depending
on the number of guments. Ifthere is more than one argumenti8T, or if LIST is an array
with more than one value, starts the programergby the first element of the list with@uments
given by the rest of the list. If there is only one scalar argument, the argument issdheck
shell metacharacters, and if there arg #re entire agument is passed to the systemmmand
shell for parsing (this igbin/sh —c on Unix platforms, bt varies on other platforms)f
there are no shell metacharacters in the argument, it is split orebsvand passed directly to
execvp , which is more efficient.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before@eration
that may do a fork, but this may not be supported on some platforms (see peflipde)safe,
you may need to sek] (PAUTOFLUSH in English) or call thewutoflush() method of
I0::Handle on ary open handles.

The return value is thexié status of the program as returned bywhat call. To get the actual
exit value shift right by eight (see b&l)p. Seealso ‘exec”. This is notwhat you vant to use to
capture the output from a command, for that you should use merely backticis/ or as
described in“STRING" in perlop. Returrvalue of -1 indicates aaflure to start the program
(inspect $! for the reason).

Like exec, system allows you to lie to a program about its name if you useststem
PROGRAM LISTsyntax. Agin, see “aec”.

SinceSIGINT andSIGQUIT are ignored during thexecution ofsystem , if you expect your
program to terminate on receipt of these signals you will need to arrange to do so yourself based
on the return value.

@args = ("command", "argl", "arg2");
system(@args) ==
or die "system @args failed: $?"

You can check all the failure possibilities by inspecti#fylike this:

142 2004-11-05 perl v5.8.6

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

if ($7 ==-1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {
printf "child died with signal %d, %s coredump\n”,
($? & 127), ($? & 128) ? 'with’ : 'without’;
}
else {
printf "child exited with value %d\n", $? >> 8;
}

or more portably by using the W*() calls of tHOSIX extension; see perlport for more
information.

When the arguments geteeuted via the system shell, results and return codes will be subject to
its quirks and capabilities. SEeSTRING" in perlop and “eec” for details.

syswriteFILEHANDLE,SCALAR,LENGTH,OFFSET
syswriteFILEHANDLE,SCALAR,LENGTH
syswriteFILEHANDLE,SCALAR

Attempts to writeLENGTH bytes of data fromariable SCALAR to the specifiedFILEHANDLE,
using the system callrite (2). If LENGTH is not specified, writes wholeCALAR. It bypasses
bufferedlO, so mixing this with reads (other thaysread()) , print ,write ,seek,tell
oreof may cause confusion because the perlio and stdio layers uaufédisstlmiata. Returns the
number of bytes actually written, andef if there was an error (in this case the erradable
$! is also set). If theENGTH is greater than thevailable data in th&CALAR after theOFFSET,
only as much data as igalable will be written.

An OFFSETmay be specified to write the data from some part of the string other than the
beginning. A negative OFFSETspecifies writing that mancharacters counting baclknds from
the end of the string. In the case 8®ALAR is empty you can useFFSETbut only zero offset.

Note that if the filehandle has been natlas:utf8 , Unicode characters are written instead of
bytes (theLENGTH, OFFSET, and the return value afyswrite()are inUTF-8 encoded Unicode
characters). Theencoding(...) layer implicitly introduces the:utf8 layer See

" ow

“binmode”, “open”, and theopen pragma, open.

tell FILEHANDLE

tell

Returnsthe current positiom bytesfor FILEHANDLE, or —1 on eror. FILEHANDLE may be an
expression whose valuewgs the name of the actual filehandlef. FILEHANDLE is omitted,
assumes the file last read.

Note thein bytes even if the filehandle has been set to operate on charactersx@opk by
using the:utf8 open layer)tell() will return byte ofsets, not character offsets (because that
would renderseek(jandtell() rather slow).

The return value ofell() for the standard streams dikhe STDIN depends on the operating
system: it may return -1 or something elsgl() on pipes, fifos, and sockets usually returns —1.

There is nsystell function. Usesysseek(FH, 0, 1) for that.

Do not usgell() (or other hiffered I/O operations) on a file handle that has been manipulated by
sysread()syswrite()or sysseek() Those functions ignore the buffering, whidl() does not.

telldir DIRHANDLE

Returns the current position of theaddir routines orDIRHANDLE. Value may be gien to
seekdir to access a particular location in a directoHas the same weats about possible
directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST

perl v5.8.6

This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchant@dASSNAME is the name of a
class implementing objects of correct typ&ny additional arguments are passed to thesv
method of the class (meanin§IESCALAR, TIEHANDLE TIEARRAY, or TIEHASH).
Typically these are arguments such as might be passeddbrtheopen() function of C. The

2004-11-05 143

PERLFUNC(1)

144

PerProgrammers Reference Guide PERLFUNC(1)

object returned by theew method is also returned by the function, which would be useful if
you want to access other methodS€iMSSNAME.

Note that functions such &sys andvalues may return huge lists when used oryéapbjects,
like DBM files. You may prefer to use thlgach function to iterate wer such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File’, '/usr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' =", unpack(L’,$val), "\n";
}

untie(%HIST);
A class implementing a hash should/é#e following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this

EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this

UNTIE this

A class implementing an ordinary array shouldentae following methods:

TIEARRAY classname, LIST
FETCH this, key

STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this

PUSH this, LIST

POP this

SHIFT this

UNSHIFT this, LIST

SPLICE this, offset, length, LIST
EXTEND this, count
DESTROY this

UNTIE this

A class implementing a file handle shouldiédndne following methods:

2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this

GETC this

WRITE this, scalar, length, offset
PRINT this, LIST

PRINTF this, format, LIST
BINMODE this

EOF this

FILENO this

SEEK this, position, whence
TELL this

OPEN this, mode, LIST

CLOSE this

DESTROY this

UNTIE this

A class implementing a scalar shouldiédhe following methods:

TIESCALAR classname, LIST
FETCH this,

STORE this, value
DESTROY this

UNTIE this

Not all methods indicated ab® reed be implemented. See perltie, Tie::Hasig::Array,
Tie::Scalarand Tie::Handle.

Unlike dbmopen, thetie function will not use or require a module for yewyou need to do
that explicitly yourself. See DB_File or tl@nfigmodule for interestingie implementations.

For further details see perltie, “tiedARIABLE” .

tied VARIABLE
Returns a reference to the object underlWARIABLE (the same value that was originally
returned by theaie call that bound the variable to a package.) Returns the undefined value if
VARIABLE isn't tied to a package.

time Returnsthe number of non-leap seconds since wreatéme the system considers to be the
epoch, suitable for feeding ¢gtime andlocaltime . On nost systems the epoch is 00:00:00
UTC, January 1, 1970; a prominent exception being M Classic which uses 00:00:00,
January 1, 1904 in the current local time zone for its epoch.

For measuring time in better granularity than one second, you may use eithemtieHiRes
module (fromCPAN, and starting from Perl 5.8 part of the standard distribution), or if yeg ha
gettimeofday(2), you may be able to use thgscall interface of Perl. See perlfaq8 for details.

times Returna four-element list giving the user and system times, in seconds, for this process and the
children of this process.

(Buser,$system,$cuser,$csystem) = times;
In scalar contextimes returns$user .
trlll Thetransliteration operatorSame ag//// . See perlop.

truncateFILEHANDLE,LENGTH

truncateEXPRLENGTH
Truncates the file opened BLEHANDLE, or named byEXPR, to the specified lengthProduces
a fatal error if truncate ist’implemented on your system. Returns true if successful, the
undefined value otherwise.

The behavior is undefinediENGTH is greater than the length of the file.

uc EXPR
uc Returnsan uppercased version &XPR This is the internal function implementing thi
escape in double-quoted strings. Respects cut@ntTYPE locale if use locale in force.

perl v5.8.6 2004-11-05 145

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

See perllocale and perlunicode for more details about locale and Unicode support. It does not
attempt to do titlecase mapping on initial letters. S&fast for that.

If EXPRis omitted, use$_.

ucfirstEXPR

ucfirst Returnghe value oEXPRwith the first character in uppercase (titlecase in Unicode). This is the
internal function implementing th&u escape in double-quoted strings. Respects current
LC_CTYPE locale if use locale in force. See perllocale and perlunicode for more details
about locale and Unicode support.

If EXPRis omitted, use$_.

umaskEXPR
umask Setghe umask for the process EXPR and returns the previousalue. If EXPR is omitted,
merely returns the current umask.

The Unix permissiomwxr—x——— is represented as three sets of three bits, or three octal digits:
0750 (the leading O indicates octal and isohe of the digits). The umask vaue is such a
number representing disabled permissions bits. The permissiom(@me”) values you pass
mkdir or sysopen are modified by your umask, swen if you tell sysopen to create a file

with permissions0777, if your umask is0022 then the file will actually be created with
permissionD755. If your umask were 0027 (group cart write; others can’read, write, or
execute), then passingysopen0666 would create a file with mod@640 (0666 & 027 is
0640).

Heres asme advice: supply a creation mode0666 for regular files (irsysopen) and one of
0777 for directories (inmkdir) and executable files. This ges users the freedom of choice: if
they want protected files, tigemight choose process umasks @22, 027, or even the
particularly antisocial mask @77. Programs should rarely ifver make policy decisions better
left to the user The exception to this is when writing files that should be kep#tprimail files,
web browser cookiesshostsfiles, and so on.

If umask?2) is not implemented on your system and you are trying to restrict accesaifeelf
(i.e., EXPR& 0700) > 0), produces a fatal error at run tinleumask2) is not implemented and
you are not trying to restrict access for yourself, retuntef .

Remember that a umask is a numlosually given in octal; it isnota gring of octal digits. See
also “oct”, if all you have is a $ring.

undefEXPR

undef Undefineshe walue of EXPR, which must be an blue. Useonly on a scalar value, an array
(using @, a hash (usin§9, a subroutine (using), or a typeglob (using). (Sayingundef
$hash{$key} will probably not do what you expect on most predefined variablegr list
values, so dort’do that; see delete.Always returns the undefinecalue. You can omit the
EXPR, in which case nothing is undefined, but you still get an undefiakee that you could, for
instance, return from a subroutine, assign to a variable or pass as a parBrastgries:

undef $foo;

undef $bar{’blurfl’}; # Compare to: delete $bar{blurfl’};
undef @ary;

undef %hash;

undef &mysub;

undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.

return (wantarray ? (undef, $errmsg) : undef) if $they_blew _it;

select undef, undef, undef, 0.25;

($a, $b, undef, $c) = &foo; # | gnore third value returned

Note that this is a unary operatoot a list operator.

unlink LIST
unlink Deletesa list of files. Returns the number of files successfully deleted.

146 2004-11-05 perl v5.8.6

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

$cnt = unlink 'a’, 'b’, 'c’;
unlink @goners;
unlink <*.bak>;

Note:unlink will not delete directories unless you are superuser andUuHtag is supplied to
Perl. En if these conditions are met, barmed that unlinking a directory can inflict damage on
your filesystem. Usendir instead.

If LIST is omitted, use$_.

unpackTEMPLATE,EXPR

unpack does the neerse ofpack : it takes a string and expands it out into a list alues. (In
scalar context, it returns merely the first value produced.)

The string is broken into chunks described by WEMPLATE. Each chunk is corerted
separately to aalue. Typically, eéther the string is a result gfack , or the bytes of the string
represent a C structure of some kind.

The TEMPLATE has the same format as in thack function. Heres a sibroutine that does
substring:

sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s
sub ordinal { unpack("c",$_[0]); } # same as ord()

In addition to fields allowed ipack() you may prefix a field with a %<number> to indicate that
you want a <number>-bit checksum of the items instead of the items themsElgault is a
16-bit checksum.Checksum is calculated by summing numeric values of expanded values (for
string fields the sum afrd($char) is taken, for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

$checksum = do {
local $/; # slurp!
unpack("%32C*",<>) % 65535;
h
The following efficiently counts the number of set bits in a bit vector:
$setbits = unpack('%32b*", $selectmask);

The p andP formats should be used with carBince Perl has no way of checking whether the
value passed tainpack() corresponds to a valid memory location, passing a poirtiere v
that’s not known to be valid is likely to va dsastrous consequences.

If there are more pack codes or if the repeat count of a field or a grouges tlaan what the
remainder of the input string allows, the result is not well defined: in some cases, the repeat count
is decreased, ampack() will produce null strings or zeroes, or terminate with an etfohe

input string is longer than one described byTB®PLATE, the rest is ignored.

See “pack’ for more examples and notes.

untie VARIABLE

Breaks the binding between a variable and a packi@getie .) Hasno effect if the variable is
not tied.

unshiftARRAY,LIST

perl v5.8.6

Does the opposite of ghift . Or the opposite of gush, depending on he you look at it.
Prepends list to the front of the arragd returns the me number of elements in the array.

unshift(@ARGV, '-e") unless $ARGV[0] =" /"-/;

Note theLIST is prepended whole, not one element at a time, so the prepended elements stay in
the same orderUsereverse to do the reerse.

2004-11-05 147

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use ModuleVERSION LIST

use ModuleVERSION

use ModuleLIST

use Module

USeVERSION
Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactigleqtito

BEGIN { require Module; import Module LIST; }
except that Modulenustbe a barerord.

VERSION may be either a numeric argument such as 5.006, which will be compakddoa
literal of the form v5.6.1, which will be compared%d/ (aka$PERL_VERSION A fatal error

is produced ifVERSION is greater than theevsion of the current Perl interpreter; Perl will not
attempt to parse the rest of the file. Compare Wiglgiire”, which can do a similar check at run
time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally beided, because it leads
to misleading error messages under earlier versions of Perl which do not support thisByatax.
equiaent numeric version should be used instead.

use v5.6.1; # compile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version heferiag library modules
that hae changed in incompatible ways from older versions of P@kle try not to do this more
than we hee ©.)

The BEGINforces therequire andimport to happen at compile timelherequire makes
sure the module is loaded into memory if it hase'en yet. Theimport is not a hiiltin—it's
just an ordinary static method call into thi®dule package to tell the module to import the list
of features back into the current packagée module can implement iisiport method ap
way it likes, though most modules just choose tovdefieir import method via inheritance
from the Exporter class that is defined in thEexporter module. SeeExporter If no
import method can be found then the call is skipped.

If you do not want to call the packag@hport method (for instance, to stop your namespace
from being altered), explicitly supply the empty list:

use Module ();
That is exactly equalent to
BEGIN { require Module }

If the VERSION argument is present between Module andT, then theuse will call the
VERSION method in class Module with thevegn version as an gument. ThelefaultVERSION
method, inherited from theNIVERSAL class, croaks if the ggn version is larger than theale
of the variableModule::VERSION .

Again, there is a distinction between omittingT (import called with no arguments) and an
explicit emptyLIST () (import not called). Note that there is no comma afteRSION

Because this is a wide-open interface, pragmas (compiler da®ctire also implemented this
way. Currently implemented pragmas are:

148 2004-11-05 perl v5.8.6

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

use constant;

use diagnostics;

use integer;

use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);

use subs gw(afunc blurfl);
use warnings qw(all);
use sort gw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block soegériftik or
integer , unlike ardinary modules, which import symbols into the current package (which are
effective through the end of the file).

Theres a orrespondingno command that unimports meanings importedubg,, i.e., it calls
unimport Module LIST instead ofmport

no integer;
no strict 'refs’;
no warnings;

See perlmodlib for a list of standard modules and pragrSae perlrun for the-M and -m
command-line options to perl thavgiuse functionality from the command-line.

utimeLIST

Changes the access and modification times on each file of a list of files. Theofiggnents of

the list must be th&lUMERICAL access and modification times, in that ordBeturns the
number of files successfully changetihe inode change time of each file is set to the current
time. For example, this code has the same effect as the tdnich(1) command when the files
already existand belong to the user running the program:

#!/usr/bin/perl
$atime = $mtime = time;
utime $atime, $mtime, @ARGV;

Since perl 5.7.2, if the first tvdements of the list arendef , then theutime(2) function in the

C library will be called with a null second argument. On most systems, this will set tke file’
access and modification times to the current time (i.evagut to the example ake) and will

even work on other users’ files where yowkanrite permission:

utime undef, undef, @ARGV;

UnderNFSthis will use the time of theFS server not the time of the local machine. If there is a
time synchronization problem, tiNFS sener and local machine will ka dfferent times. The

Unix touch(1) command will in fact normally use this form instead of the one shown in the first
example.

Note that only passing one of the firsbtdements asindef will be equivalent of passing it as
0 and will not hare the same ééct as described when there bothundef . This case will also
trigger an uninitialized warning.

valuesHASH

perl v5.8.6

Returns a list consisting of all thelues of the named hash. (In a scalar context, returns the
number of values.)

The values are returned in an apparently random .oftieg actual random order is subject to
change in future aersions of perl, but it is guaranteed to be the same order as eitkeysher
each function would produce on the same (unmodified) h&ihce Perl 5.8.1 the ordering is
different @en between different runs of Perl for security reasons (#dgdrithmic Compleity
Attacks’ in perlsec).

As a side effect, callingalues()resets theHASH's internal iteratgrsee ‘each’. (In particulay
calling values()in void context resets the iterator with no othegrbead.)

Note that the values are not copied, which means modifying them will modify the contents of the
hash:

2004-11-05 149

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

for (values %hash) { s /foo/bar/g } # nodifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same
See alskeys , each, andsort .
vec EXPROFFSET,BITS

Treats the string iEXPRas a bit vector made up of elements of wilths, and returns thealue
of the element specified YFFSETas an unsigned irder. BITS therefore specifies the number
of bits that are reseed for each element in the b#éator This must be a power of twfrom 1 to
32 (or 64, if your platform supports that).

If BITSis 8, “elements’coincide with bytes of the input string.

If BITSis 16 or more, bytes of the input string are grouped into chunks oBI5ige8, and each
group is comerted to a number as witpack(Junpack() with big-endian formatsn/N (and
analogously for BITS==64). See “packor details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into
8/BITS groups. Bits of a byte are numbered in a little-endian-&sh as n 0x01 , 0x02 , 0x04 ,

0x08, 0x10, 0x20, 0x40, 0x80. For example, breaking the single input bgta(0x36)

into two groups gves a Ist (0x6, 0x3) ; breaking it into 4 groups gés (0x2, 0x1, 0x3,

0x0) .

vec may also be assigned to, in which case parentheses are needes th@ gixpression the
correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an elehtkatesfd of
the string is written to, Perl will first extend the string withfisiéntly mary zero bytes. Itis an
error to try to write dfthe beginning of the string (i.e. getive OFFSET).

The string should not contain yacharacter with the alue > 255 (which can only happen if
you're usingUTF-8 encoding). Ifit does, it will be treated as something which is UOF-8
encoded. Wherhe vec was @ssigned to, other parts of your program will also no longer
consider the string to bgTF-8 encoded. Irother words, if you do W& such characters in your
string,vec()will operate on the actual byte string, and not the conceptual character string.

Strings created witlvec can also be manipulated with the logical operafor&, ~, and ™.
These operators will assume a bit vector operation is desired when both operands aresstings.
“ Bitwise String Operatorsin perlop.

The following code will build up amScCIl string sayingPerlPerlPerl’ . The comments
shaw the string after each step. Note that this code works in the saynenbig-endian or little-
endian machines.

my $foo =";
vec($foo, O, 32) = 0x5065726C,; # ' Perl
$foo eq "Perl" eq "x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P’")
vec($foo, 2, 16) = 0x5065; # ' PerlPe’
vec($foo, 3, 16) = 0x726C; # ' PerlPerl
vec($foo, 8, 8) = 0x50; # ’'PerlPerlP’
vec($foo, 9, 8) = 0x65; # ’'PerlPerlPe’
vec($foo, 20, 4)=2; # ' PerlPerlPe’ . "\x02"
vec($foo, 21, 4)=7,; # ' PerlPerlPer

' ris"\x72"
vec($foo, 45, 2)=3; # ' PerlPerlPer . "\x0c"
vec($foo, 93, 1)=1, # ' PerlPerlPer . "\x2c"
vec($foo, 94, 1)=1, # ' PerlPerlPerl’

' I"is "\x6c"

To transform a bit vector into a string or list o6@hd 1's, use these:

150 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you knaw the exact length in bits, it can be used in place of the
Here is an example to illustrateviathe bits actually fall in place:
#!/usr/bin/perl -wl

print <<’EOT’;
0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {
for ($off=0; $off < 32/$width; ++$off) {

$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}

format STDOUT =
vec($_,@#,@#) = @<< == @H##HHHHHI @>>>>>>>>>>>>>555>>>>>>>>>>>>>>>
$off, Swidth, $bits, $val, $res

END__

Regardless of the machine architecture on which it is run, theealksmple should print the
following table:

perl v5.8.6 2004-11-05 151

PERLFUNC(1)

152

PerProgrammers Reference Guide PERLFUNC(1)

0 1 2 3

unpack("Vv",$_) 01234567890123456789012345678901

vec($ 3
vec($_, 4,
vec($_, 5,
vec($_, 6,
vec($_, 7,
vec($_, 8,
vec($_, 9,
vec($_,10,

vec($_,11,
vec($_,12,
vec($_,13,
vec($_,14,
vec($_,15,
vec($_,16,
vec($_,17,
vec($_,18,
vec($_,19,
vec($_,20,
vec($_,21,
vec($_,22,
vec($_,23,
vec($_,24,
vec($_,25,
vec($_,26,
vec($_,27,
vec($_,28,
vec($_,29,
vec($_,30,
vec($_,31,

vec($_, 0,
vec($_, 1,
vec($_, 2,
vec($_, 3,
vec($_, 4,
vec($_, 5,
vec($_, 6,
vec($_, 7,
vec($_, 8,
vec($_, 9,

vec($_,10,
vec($_,11,
vec($_,12,
vec($_,13,
vec($_,14,
vec($_,15,

vec($_, 0,
vec($_, 1,
vec($_, 2,
vec($_, 3,
vec($_, 4,
vec($_, 5,
vec($_, 6,
vec($_, 7,

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

2)
2)
2)
2)
2)
2)
2)
2)
2)
2)

2)
2)
2)
2)
2)
2)

NMNNNNOMNMNNN L L ppppPRPRRERERPRERERR L L p bR pRrRrRPRRrRRPRPRPRRRRPRPRRRRrRrERERERPRPRERERRRER

2)
2)
2)
2)
2)
2)
2)
2)

|
|
ORrNPE

== 16
== 32
== 64
== 128
== 256
== 512
== 1024
== 2048
== 4096
== 8192
== 16384
== 32768
== 65536
== 131072
== 262144
== 524288
== 1048576
== 2097152
== 4194304
== 8388608
== 16777216
== 33554432
== 67108864
== 134217728
== 268435456
== 536870912

10000000000000000000000000000000
01000000000000000000000000000000
00100000000000000000000000000000
00010000000000000000000000000000
00001000000000000000000000000000
00000100000000000000000000000000
00000010000000000000000000000000
00000001000000000000000000000000
00000000100000000000000000000000
00000000010000000000000000000000
00000000001000000000000000000000
00000000000100000000000000000000
00000000000010000000000000000000
00000000000001000000000000000000
00000000000000100000000000000000
00000000000000010000000000000000
00000000000000001000000000000000
00000000000000000100000000000000
00000000000000000010000000000000
00000000000000000001000000000000
00000000000000000000100000000000
00000000000000000000010000000000
00000000000000000000001000000000
00000000000000000000000100000000
00000000000000000000000010000000
00000000000000000000000001000000
00000000000000000000000000100000
00000000000000000000000000010000
00000000000000000000000000001000
00000000000000000000000000000100

= 1073741824 00000000000000000000000000000010
2147483648 00000000000000000000000000000001

- 1
== 4
== 16
== 64
== 256
== 1024
== 4096
== 16384
== 65536
== 262144
== 1048576
== 4194304
== 16777216
== 67108864
== 268435456

10000000000000000000000000000000
00100000000000000000000000000000
00001000000000000000000000000000
00000010000000000000000000000000
00000000100000000000000000000000
00000000001000000000000000000000
00000000000010000000000000000000
00000000000000100000000000000000
00000000000000001000000000000000
00000000000000000010000000000000
00000000000000000000100000000000
00000000000000000000001000000000
00000000000000000000000010000000
00000000000000000000000000100000
00000000000000000000000000001000

1073741824 00000000000000000000000000000010

== 2
== 8
== 32
== 128
== 512
== 2048
== 8192
== 32768

2004-11-05

01000000000000000000000000000000
00010000000000000000000000000000
00000100000000000000000000000000
00000001000000000000000000000000
00000000010000000000000000000000
00000000000100000000000000000000
00000000000001000000000000000000
00000000000000010000000000000000

perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

vec($_, 8,2)=2 == 131072 00000000000000000100000000000000
vec($_,9,2)=2 == 524288 00000000000000000001000000000000
vec($_,10,2) =2 == 2097152 00000000000000000000010000000000
vec($_,11,2) =2 == 8388608 00000000000000000000000100000000
vec($_,12,2) =2 == 33554432 00000000000000000000000001000000
vec($_,13,2) =2 == 134217728 00000000000000000000000000010000
vec($_,14,2) =2 == 536870912 00000000000000000000000000000100
vec($_,15,2) =2 2147483648 00000000000000000000000000000001

vec($_,0,4)=1 == 1 10000000000000000000000000000000
vec($_,1,4)=1 == 16 00001000000000000000000000000000
vec($_,2,4)=1 == 256 00000000100000000000000000000000
vec($_, 3,4)=1 == 4096 00000000000010000000000000000000
vec($_,4,4)=1 == 65536 00000000000000001000000000000000
vec($_,5,4)=1 == 1048576 00000000000000000000100000000000
vec($_,6,4)=1 == 16777216 00000000000000000000000010000000
vec($_,7,4)=1 == 268435456 00000000000000000000000000001000
vec($_,0,4)=2 == 2 01000000000000000000000000000000
vec($_,1,4)=2 == 32 00000100000000000000000000000000
vec($_,2,4)=2 == 512 00000000010000000000000000000000
vec($_, 3,4)=2 == 8192 00000000000001000000000000000000
vec($_,4,4)=2 == 131072 00000000000000000100000000000000
vec($_, 5,4)=2 == 2097152 00000000000000000000010000000000
vec($_, 6,4)=2 == 33554432 00000000000000000000000001000000
vec($_, 7,4)=2 == 536870912 00000000000000000000000000000100
vec($_,0,4)=4 == 4 00100000000000000000000000000000
vec($_,1,4)=4 == 64 00000010000000000000000000000000
vec($_, 2,4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
vec($_,5,4)=4 == 4194304 00000000000000000000001000000000
vec($_,6,4)=4 == 67108864 (00000000000000000000000000100000
vec($_,7,4)=4 1073741824 00000000000000000000000000000010

vec($_,0,4)=8 == 8 00010000000000000000000000000000
vec($_,1,4)=8 == 128 00000001000000000000000000000000
vec($_,2,4)=8 == 2048 00000000000100000000000000000000
vec($_,3,4)=8 == 32768 00000000000000010000000000000000
vec($_,4,4)=8 == 524288 00000000000000000001000000000000
vec($_,5,4)=8 == 8388608 00000000000000000000000100000000
vec($_, 6,4)=8 == 134217728 00000000000000000000000000010000
vec($_,7,4)=8 2147483648 00000000000000000000000000000001

vec($_,0,8)=1 == 1 10000000000000000000000000000000
vec($_,1,8)=1 == 256 00000000100000000000000000000000
vec($_,2,8)=1 == 65536 00000000000000001000000000000000
vec($_,3,8)=1 == 16777216 00000000000000000000000010000000
vec($_,0,8)=2 == 2 01000000000000000000000000000000
vec($_,1,8)=2 == 512 00000000010000000000000000000000
vec($_,2,8)=2 == 131072 00000000000000000100000000000000
vec($_, 3,8)=2 == 33554432 00000000000000000000000001000000
vec($_,0,8)=4 == 4 00100000000000000000000000000000
vec($_,1,8)=4 == 1024 00000000001000000000000000000000
vec($_, 2,8)=4 == 262144 00000000000000000010000000000000
vec($_, 3,8)=4 == 67108864 00000000000000000000000000100000
vec($_,0,8)=8 == 8 00010000000000000000000000000000
vec($_,1,8)=8 == 2048 00000000000100000000000000000000
vec($_,2,8)=8 == 524288 00000000000000000001000000000000
vec($_, 3,8)=8 == 134217728 00000000000000000000000000010000
vec($_, 0,8) =16 == 16 00001000000000000000000000000000
vec($_, 1,8) =16 == 4096 00000000000010000000000000000000
vec($_, 2,8) =16 == 1048576 00000000000000000000100000000000

perl v5.8.6 2004-11-05 153

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

vec($_, 3,8) =16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) =32 == 32 00000100000000000000000000000000
vec($_, 1, 8) =32 == 8192 00000000000001000000000000000000
vec($_, 2,8) =32 == 2097152 00000000000000000000010000000000
vec($_, 3,8) =32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) =64 == 64 00000010000000000000000000000000
vec($_, 1,8) =64 == 16384 00000000000000100000000000000000
vec($_, 2,8) =64 == 4194304 00000000000000000000001000000000
vec($_, 3,8) =64 ==1073741824 00000000000000000000000000000010
vec($_, 0,8) =128 == 128 00000001000000000000000000000000
vec($_, 1,8) =128 == 32768 00000000000000010000000000000000
vec($_, 2,8) =128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) =128 == 2147483648 00000000000000000000000000000001

wait Behaves like thewait(2) system call on your system: itiks for a child process to terminate and

returns the pid of the deceased process;loif there are no child processes. The status is
returned in$?. Note that a return value ofl could mean that child processes are being
automatically reaped, as described in perlipc.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased predess, or
if there is no such child process. On some systemalua vf O indicates that there are processes
still running. The status is returned$f. If you say

use POSIX ":sys_wait_h";
#...
do{
$kid = waitpid(-1, WNOHANG);
} u ntil $kid > O;

then you can do a non-blockingait for all pending zombie processes. Non-blocking wait is
available on machines supporting either thaitpid(2) or wait4(2) system calls.However,
waiting for a particular pid withFLAGS of 0 is implemented werywhere. (Perlemulates the
system call by remembering the status values of processes teaediad but hae rot been
harvested by the Perl script yet.)

Note that on some systems, a return value-bfcould mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

wantarray
Returns true if the conte of the currently gecuting subroutine oewal() block is looking for a
list value. Returngalse if the context is looking for a scaldReturns the undefined value if the
context is looking for no value (void context).

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

This function should he keen namedvantlist()instead.

warn LIST
Produces a message ®TDERRjust likedie , but doesrt exit or thrav an eception.

If LIST is empty andb@already contains a value (typically from a\poais eval) that value is

used after appendint...caught” to $@ This is useful for staying almostutnot entirely
similar todie .
If $@is empty then the strintyVarning: Something’s wrong" is used.

No message is printed if there isP&8IG{_WARN__} handler installed. It is the handler
responsibility to deal with the message as it sees fit (like, for instanegrtomnit into adie).
Most handlers must therefore nealirangements to actually display the warnings thay tine
not prepared to deal with, by callimgarn again in the handlerNote that this is quite safe and
will not produce an endless loop, sinceWARN__hooks are not called from inside one.

You will find this behavior is slightly different from that 851G{ DIE_} handlers (which

154 2004-11-05 perl v5.8.6

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

don't suppress the error text, but can insteaddiall again to change it).

Using a__ WARN__handler provides a powerfulay to silence all warnings\{en the so-called
mandatory ones). An example:

wipe out *all* compile-time warnings

BEGIN { $SIG{__WARN__"} = sub { warn $_[0] if SDOWARN }}

my $foo = 10;

my $foo = 20; # no warning about duplicate my $foo,
but hey, you asked for it!

no c ompile-time or run-time warnings before here

$DOWARN = 1;

r un-time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on settifgSIGentries, and for morexamples. Seéhe Carp module for
other kinds of warnings using itsrp() andcluck() functions.

write FILEHANDLE

write EXPR

write Writesa formatted record (possibly multi-line) to the specifi®idEHANDLE, using the format
associated with that file. By default the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (sesefbet function) may be set
explicitly by assigning the name of the format to $ievariable.

Top of form processing is handled automatically: if there is insufficient room on the current page
for the formatted record, the page is adsed by writing a form feed, a special top-of-page
format is used to format thewepage heademnd then the record is written. By default the top-
of-page format is the name of the filehandle witifOP” appended, but it may be dynamically

set to the format of your choice by assigning the name t§"theriable while the filehandle is
selected. Thaumber of lines remaining on the current page isaiiable$—, which can be set

to 0 to force a ne page.

If FILEHANDLE is unspecified, output goes to the currenadifoutput channel, which starts out
asSTDOUT but may be changed by trszlect operator If the FILEHANDLE is anEXPR, then

the expression isveluated and the resulting string is used to look up the name of the
FILEHANDLE at run time.For more on formats, see perlform.

Note that write isiotthe opposite ofead . Unfortunately.
ylil Thetransliteration operatorSame adr/// . See perlop.

perl v5.8.6 2004-11-05 155

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

NAME
perlvar — Perl predefined variables

DESCRIPTION
Predefined Names

The following names h& ecial meaning to Perl. Most punctuation names heasonable mnemonics,
or analogs in the shells. Ma&theless, if you wish to use long variable names, you need only say

use English;

at the top of your program. This aliases all the short names to the long names in the current package. Some
even havemedium names, generally borrowed framk. In general, it5 best to use the

use English '-no_match_vars’;

invocation if you dort need$PREMATCHEMATCHor $POSTMATCHas t avoids a certain performance
hit with the use of regular expressions. See English.

Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on the 10::Handle object, although this is less efficient than using the regular barigbies.
(Summary lines bele for this contain the worHANDLE.) First you must say

use |0::Handle;
after which you may use either
method HANDLE EXPR
or more safely,
HANDLE->method(EXPR)

Each method returns the oldlve of the 10::Handle attrite. Themethods each takan gtional EXPR
which, if supplied, specifies thewevalue for the 10::Handle attribute in questiolfi.not supplied, most
methods do nothing to the curremlve — ecept forautoflush() which will assume a 1 for you, just to be
different.

Because loading in the 10::Handle class is>gmeasve geration, you should learn Wdo use the rgular
built-in variables.

A few d these variables are considergddd—only’. This means that if you try to assign to theriable,
either directly or indirectly through a reference, you'll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in this
document. In most cases you want to localize thasahles before changing them, since if you don't, the
change may affect other modules which rely on the default values of the spe@hles that you e
changed. This is one of the correct ways to read the whole file at once:

open my $fh, "foo" or die $!;

local $/; # enable localized slurp mode
my $content = <$fh>;

close $fh;

But the following code is quite bad:

open my $fh, "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;

close $fh;

since some other module, may want to read data from some file in the default “line mode”, so if the code
we hae just presented has beereeuted, the global value &/ is nav changed for ay other code
running inside the same Perl interpreter.

Usually when a variable is localized yowant to mak are that this change affects the shortest scope
possible. So unless you are already inside some §hotilock, you should create one yourselbrF
example:

156 2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

my $content = ";
open my $fh, "foo" or die $!;

local $/;
$content = <$th>;

close $fh;
Here is an example of hoyour own code can go broken:

for (1..51
nasty break();
print"$_";

}

sub nasty_break {

$ =5

do something with $_
}

You probably expect this code to print:
12345
but instead you get:
55555
Why? Becauseasty break(Jnodifies$_ without localizing it first. The fix is to addcal():
local $_=5;

It's easy to notice the problem in such a short exampitjrnbomore complicated code you are looking for
trouble if you dort localize changes to the special variables.

The following list is ordered by scalar variables first, then the arrays, then the hashes.

$ARG
$_ Thedefault input and pattern-searching space. The following pairs anslegti

while (<>) {...} # equivalent only in while!
while (defined($_=<>)) {...}

["Subject:/
$_="/"Subject:/
trla-z/A-Z/
$ ="trla-z/IA-Z/

chomp
chomp($))

Here are the places where Perl will assdmeven if you dont use it:

* Various unary functions, including functionsdikrd() andint(), as well as the all file tests
(-f , —d) except for-t , which defaults t&sTDIN.

* Various list functions likgrint() andunlink().

* The pattern matching operatiomg/ , s/// , andtr/// when used without an™ operator.
* The default iterator variable infareach loop if no other variable is supplied.

* The implicit iterator variable in thgrep()andmap()functions.

* The deéult place to put an input record wherFH> operations result is tested by itself as
the sole criterion of while test. Outsidewhile test, this will not happen.

(Mnemonic: underline is understood in certain operations.)

$a
$b Speciapackage variables when usiagrt(), see ‘sort” in perlfunc. Becausef this specialness
$a and$b don't need to be declared (using usarsy orour()) even when using thestrict

perl v5.8.6 2004-11-05 157

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

'vars’ pragma. Dort'lexicalize them withmy $a or my $b if you want to be able to use
them in thesort() comparison block or function.

$<digits>
Contains the subpattern from the corresponding set of capturing parentheses from the last pattern
match, not counting patterns matched in nested blocks tha been exited already
(Mnemonic: like \digits.) Thesevariables are all read-only and dynamically scoped to the current
BLOCK.

$MATCH

$& The string matched by the last successful pattern match (not coungimgesches hidden within
a BLOCK or ewal() enclosed by the curreBLOCK). (Mnemonic:like & in some editors.)This
variable is read-only and dynamically scoped to the cuBe@ICK.

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matches. S&JGS’.

$PREMATCH

$ The string preceding whater was matched by the last successful pattern match (not counting
ary matches hidden within BLOCK or eval enclosed by the curre®LOCK). (Mnemonic:*
often precedes a quoted string.) This variable is read—only.

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matches. S&JGS’.

$POSTMATCH

$ The string following whateer was matched by the last successful pattern match (not counting
ary matches hidden within BLOCK or eval() enclosed by the curreBLOCK). (Mnemonic:’
often follows a quoted string.) Example:

local $_ ='abcdefghi’;
/def};
print "$:$&:$\n"; # prints abc:def:ghi

This variable is read-only and dynamically scoped to the cuBtemCK.

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matches. S&JGS’.

$LAST_PAREN_MATCH

$+ Thetext matched by the last bracket of the last successful search pattern. This is useful if you
don't know which one of a set of alternedi patterns matched. For example:
/Version: (.*) [Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positie and forward looking.) This variable is read-only and dynamically scoped
to the currenBLOCK.

$N The text matched by the used group most-recently closed (i.e. the group with the rightmost
closing parenthesis) of the last successful search pat(dtnemonic: the (possibly) Nested
parenthesis that most recently closed.)

This is primarily used insid€?{...}) blocks for examining text recently matchedrF
example, to dectively capture text to a variable (in addition®b, $2, etc.), replacd...) with

(Z:(..)(?{ $var=$'N 1)

By setting and then usingvar in this way reli#es you from having to worry aboutxactly
which numbered set of parenthesey tire.

This variable is dynamically scoped to the cur@&mdCK.

@LAST_MATCH_END

@+ Thisarray holds the offsets of the ends of the last successful submatches in the curreatly acti
dynamic scope$+[0] is the offset into the string of the end of the entire maiidhis is the
same value as what tipos function returns when called on the variable that was matched
agpinst. Thenth element of this array holds the offset of tiie submatch, s@+[1] is the
offset past wher81 ends $+[2] the offset past whei®2 ends, and so onYou can useb#+ to

158 2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

determine hav mary subgroups were in the last successful match. See the examysedagithe
@-variable.

$* Setto a non-zero integeralue to do multi-line matching within a string, 0 (or undefined) to tell
Perl that it can assume that strings contain a single line, for the purpose of optimizing pattern
matches. Bttern matches on strings containing multiple newlines can produce confusing results
when$* is 0 or undefined. Default is undefined. (Mnemonic: * matches multiple things.) This
variable influences the interpretation of ofilyand$. A literal newline can be searched foe®
when$* ==

Use of $* is deprecated in modern Perl, supplanted by/sheand /m modifiers on pattern
matching.

Assigning a non-numerical value & triggers a warning (and mek$* act if $* == 0),
while assigning a numerical value$d makes that an implicibt is applied on the value.

HANDLE->input_line_numbeEXPR)

SINPUT_LINE_NUMBER

SNR

$. Currentine number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that been read from it. (Depending on the
vaue of $/ , Perl’s idea of what constitutes a line may not match yours.) When a line is read
from a filehandle (viaeadline() or <>), or whentell() or seek()is called on it$. becomes an
alias to the line counter for that filehandle.

You can adjust the counter by assigningdto, but this will not actually mee the seek pointer
Localizing$. will not localize the filehandle’line count Instead, it will localize ped' notion of
which filehandleb. is currently aliased to.

$. is reset when the filehandle is closedt ot when an open filehandle is reopened without an
interveningclose() For more details, see "I/O Operators" in perl@ecause<> never does an
explicit close, line numbers increase acraBsV files (but see examples iieof” in perlfunc).

You can also usé¢HANDLE—>input_line_number(EXPR) to access the line counter for a
given filehandle without having to worry about which handle you last accessed.

(Mnemonic: mag programs use “.t 0 mean the current line number.)

|0::Handle—>input_record_separatexfR)

$INPUT_RECORD_SEPARFOR

$RS

$/ Theinput record separatonewline by defult. Thisinfluences Perd idea of what a'line’ is.
Works like awk’s RS variable, including treating empty lines as a terminator if set to the null
string. (Anempty line cannot contain wrspaces or tabs.)You may set it to a multi-character
string to match a multi-character terminatmrto undef to read through the end of fil&etting
it to "\n\n" means something slightly different than setting"to, if the file contains
consecutie enpty lines. Setting t¢" will treat two or nore consecwie enpty lines as a single
empty line. Setting td\n\n" will blindly assume that the next input character belongs to the
next paragraph, ven if it's a rewline. (Mnemonic:/ delimits line boundaries when quoting

poetry.)
local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
sA\n[\t]+/ /g;

Remember: the value &f is a string, not a regexawk has to be better for something. :-)

Setting$/ to a reference to an irger, scalar containing an inger, or scalar thats convertible to
an intgyer will attempt to read records instead of lines, with the maximum record size being the
referenced integerso this:

local $/ =\32768; # or \"32768", or \$var_containing_32768
open my $fh, $myfile or die $!;
local $_ = <$fh>;

perl v5.8.6 2004-11-05 159

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

160

will read a record of no more than 32768 bytes frabk. If you're not reading from a record-
oriented file (or youns doesnt haverecord-oriented files), then you'll likely get a full chunk of
data with gery read. If a record is larger than the record size yeukt, you'll get the record
back in pieces.

On VMS, record reads are done with the emlgnt of sysread , so t's best not to mix record

and non-record reads on the same f{lEhis is unlikely to be a problem, becausg e youd

want to read in record mode is probably unusable in line mode.) Non-VMS systems do normal
1/0, so it's safe to mix record and non-record reads of a file.

See also “Newlinesin perlport. Alsosee$. .

HANDLE->autoflushEXPR)

$OUTPUT_AUTOFLUSH

$0 If set to nonzero, forces a flush rightay and after gery write or print on the currently selected
output channelDefault is O (rgardless of whether the channel is reallyffered by the system or
not; $0tells you only whether youé asked Perl explicitly to flush after each write3TDOUT
will typically be line huffered if output is to the terminal and blockffered otherwise.Setting
this variable is useful primarily when you are outputting to a pipe or socket, such as when you are
running a Perl program undesh and want to see the output as lappening. Thikas no dect
on input liffering. Se€ getc’ in perlfunc for that.(Mnemonic: when you want your pipes to be
piping hot.)

|0::Handle—>output_field_separatéxPR

$OUTPUT_FIELD_SEPARAOR

$OFS

$, Theoutput field separator for the print operat@rdinarily the print operator simply prints out its
arguments without further adornmenio get beha&ior more like awk, set this variable as you
would setawk’s OFS variable to specify what is printed between fields. (Mnemonic: what is

printed when there is a™j n your print statement.)

I0::Handle—>output_record_separaEXPR

$OUTPUT_RECORD_SEPARFOR

$ORS

$\ Theoutput record separator for the print operatrdinarily the print operator simply prints out
its arguments as is, with no trailing newline or other end-of-record string addegkt behaior
more like awk, set this variable as you would setk’s ORSvariable to specify what is printed at
the end of the print. (Mnemonic: you $&t instead of adding\n’’ at the end of the printAlso,
it's just like$/ , but it's what you get “bacK’from Perl.)

$LIST_SEPARAOR

$" Thisis like $, except that it applies to array and slicalues interpolated into a double-quoted
string (or similar interpreted string). Default is a space. (Mnemonic: obvious, | think.)

$SUBSCRIPT_SEPARFOR
$SUBSEP
$; Thesubscript separator for multidimensional array emulation. If you refer to a hash element as

$foo{$a,$b,c}
it really means

$foofjoin($;, $a, $b, $c)}
But dont put

@foo{$a,$b,$c} # a slice--note the @
which means

($foo{$a},$foo{$b},Sfoo{sc})

Default is 034", the same aSUBSEPIn awk. If your keys contain binary data there might not
be ay safe value for$;. (Mnemonic: comma (the syntactic subscript separator) is a
semi-semicolon. &ah, | knavy, it's pretty lame, bt $, is already taken for something more
important.)

2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

Consider using “realmultidimensional arrays as described in perllol.

$# Theoutput format for printed numbers. This variable is a half-hearted attempt to eawlede
OFMT variable. Thereare times, haever, whenawk and Perl hae dffering notions of what
counts as numeric. The initial value is 1%, wheren is the value of the macmBL_DIG from
your systens float.h This is different fromawk’s default OFMT setting of “%.6g", so you need
to set$# explicitly to getawk’s value. (Mnemonict is the number sign.)

Use of$# is deprecated.

HANDLE->format_page_numbefkPR)

$FORMAT_FAGE_NUMBER

$% The current page number of the currently selected output channel. Used with formats.
(Mnemonic: % is page number mmoff.)

HANDLE->format_lines_per_pageXPR)

$FORMAT_LINES_PER_RGE

$= Thecurrent page length (printable lines) of the currently selected output chdyefalilt is 60.
Used with formats. (Mnemonic: = has horizontal lines.)

HANDLE->format_lines_leffEXPR)

$FORMAT_LINES_LEFT

$- Thenumber of lines left on the page of the currently selected output channel. Used with formats.
(Mnemonic: lines_on_page - lines_printed.)

@LAST_MATCH_START
@- $-[0]is the offset of the start of the last successful matef.n] is the offset of the start of the
substring matched hy-th subpattern, or undef if the subpattern did not match.

Thus after a match amst$_, $& coincides withsubstr $_, $-[0], $+[0] — $-[0] .
Similarly, $n coincides withsubstr $_, $-[n,$+[n] — $-[n] if $-[n] is defined,
and $+ coincides witsubstr $_, $-[$#-], $+[$#-] . One can us&#- to find the last
matched subgroup in the last successful match. ContrasB#iththe number of subgroups in
the regular @pression. Compangith @+

This array holds the offsets of the beginnings of the last successful submatches in the currently
active dynamic scope.$-[0] is the offset into the string of the beginning of the entire match.
Thenth element of this array holds the offset of tile submatch, sé—[1] is the ofset where

$1 begins$-[2] the offset wher&2 begins, and so on.

After a match against some variaBhar:

$' is the same asubstr($var, 0, $-[0])
$& is the same asubstr($var, $-[0], $+[0] — $-[0])
$' is the same asubstr($var, $+[0])
$1 is the same asubstr($var, $-[1], $+[1] - $-[1])
$2 is the same asubstr($var, $-[2], $+[2] - $-[2])
$3 is the same asubstr $var, $-[3], $+[3] — $-[3])
HANDLE->format_namefXPR)
$FORMAT_NAME
$ Thename of the current report format for the currently selected output chebeflult is the
name of the filehandle. (Mnemonic: brothefs{a)

HANDLE->format_top_nam&XPR)

$FORMAT_TOP_NAME

$ Thename of the current top-of-page format for the currently selected output ch@mfallt is
the name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

I0::Handle->format_line_break charactedPR

$FORMAT_LINE_BREAK_CHARACTERS

$: The current set of characters after which a string may be broken to fill continuation fields
(starting with 7) in a formatDefault is ‘ \n-", to break on whitespace oyphens. (Mnemonic:
a “colon” in poetry is a part of a line.)

perl v5.8.6 2004-11-05 161

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

162

I0::Handle->format_formfeedXPR
$FORMAT_FORMFEED

$L Whatformats output as a form feed. Default is \f.
$ACCUMULATOR
$A The current value of thevrite() accumulator forformat() lines. A format containdormline()

calls that put their result int§'A . After calling its formatwrite() prints out the contents &fA
and empties. So you ver really see the contents $fA unless you callormline() yourself and
then look at it. See perlform andormline()' i n perlfunc.

$CHILD_ERROR

$? Thestatus returned by the last pipe close, backtick command, successful call teait() or
waitpid(), or from thesystem(pperator This is just the 16-bit statusond returned by thevait()
system call (or else is made up to looleliy. Thus,the exit \alue of the subprocess is really
($? >> 8), and$? & 127 gives which signal, if ag, the process died from, ag? & 128
reports whether there was a core dump. (Mnemonic: simikramdksh.)

Additionally, if the h_errno variable is supported in C, its value is returned via $? ¥ an
gethost*() function fails.

If you have installed a signal handler f@IGCHLD the value of$? will usually be wrong
outside that handler.

Inside anENDsubroutine$? contains the &lue that is going to begn to exit() . You can
modify $? in anENDsubroutine to change the exit status of your prograon.example:

END {
$? =1if $? == 255; # die would make it 255
}

UnderVMS, the pragmaise vmsish 'status’ makes$? reflect the actualMs exit status,
instead of the default emulation®SIX status; see “$?in perlvms for detalils.

Also see “Error Indicators”.

${"ENCODING}
The object eferenceto the Encode object that is used towanthe source code to Unicode.
Thanks to this ariable your perl script does notveato be written in UTF-8. Default is undef
The direct manipulation of this variable is highly discouraged. See encoding for more details.

$0OS_ERROR

$ERRNO

$! If used numericallyyields the current value of the &@rno variable, or in other words, if a
system or library call fails, it sets thianable. Thismeans that the value &f is meaningful
only immediatelyafter afailure :

if (open(FH, $filename)) {
Here $! is meaningless.

} else{
ONLY here is $! meaningful.

Already here $! might be meaningless.

}

Since here we might have either success or failure,
here $!is meaningless.

In the abwe meaninglesstands for aything: zero, non-zerajndef . A successful system or
library call doesot set the variable to zero.

If used as a string, yields the corresponding system error stfmgcan assign a number $
to seterrnoif, for instance, you ant"$!" to return the string for errar, or you want to set the
exit value for thedie() operator (Mnemonic: What just went bang?)

Also see “Error Indicators”.

2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

%! Eachelement of4! has a true value only ! is set to that alue. Fr example, ${ENOENT}
is true if and only if the current value $f is ENOENTthat is, if the most recent error wado
such file or directory'(or its moral equialent: not all operating systemsvgithat exact errorand
certainly not all languages)To check if a particular &y is meaningful on your system, use
exists $!{the_key} ; for a list of lgd keys, usekeys %! . See Errno for more
information, and also see akofor the validity of$! .

$EXTENDED_OS_ERROR

$E Errorinformation specific to the current operating systekhthe moment, this differs frorg!
under onlyWwMS, 0S/2 and WIn32 (and for MacPerl). On all other platforn$8E is always just
the same a$! .

UndervMs, $°E provides thevMS status value from the last system errdhis is more specific
information about the last system error than that provide#l! byThis is particularly important
when$! is set toEVMSERR.

Under0S/2 $°E is set to the error code of the last callas/2 APIeither viaCRT, or drectly

from perl.
Under Wn32, $E always returns the last error information reported by the Win32 call
GetLastError() which describes the last error from within thein®2 API. Most

Win32-specific code will report errors V8E . ANSI C and Unix-like calls seterrno and so
most portable Perl code will report errors $la.

Caveats mentioned in the description $f generally apply t&°E, dso. (Mnemonic:Extra
error explanation.)

Also see “Error Indicators”.

$EVAL_ERROR

$@ ThePerl syntax error message from the legl() operator If $@ is te null string, the last
ewal() parsed andxecuted correctly (although the operations youoked may have failed in the
normal fishion). (MnemonicdWhere was the syntax error “at”?)

Warning messages are not collected in thésiable. Yu can, hwever, st up a routine to
process warnings by setti$&IG{ WARN__} as described belo

Also see “Error Indicators”.

$PROCESS_ID
$PID
$$ Theprocess number of the Perl running this scrifgu should consider thisariable read-only

although it will be altered acroark() calls. (Mnemonicsame as shells.)

Note for Linux users: on Linux, the C functiogstpid() andgetppid() return diferent
values from different threads. In order to be portable, this behavior is not reflect&d Wwhose
value remains consistent across threads. If yantwo call the underlyingetpid() , you may
use theCPAN moduleLinux::Pid

$REAL_USER_ID

$UID
$< Thereal uid of this process. (Mnemonic:sithe uid you caméom, if you're running setuid.)
You can change both the real uid and tHedaive ud at the same time by usiPSIX::setuid()
Since changes to $< require a system call, check $! after a change attempt to y¢tessible
errors.
$EFFECTIVE_USER_ID
$EUID
$> Theeffective ud of this process. Example:
$<=$>; # set real to effective uid
($<,$>) = ($>,9<); # swap real and effective uid

You can change both thefettive ud and the real uid at the same time by ush@S1X::setuid()
Changes to $> require a check to $! to detegtpassible errors after an attempted change.

(Mnemonic: its the uid you wento, if you're running setuid.$< and$> can be swapped only

perl v5.8.6 2004-11-05 163

PERLVAR(1)

164

PerlProgrammers Reference Guide PERR(1)

on machines supportirgetreuid()

$REAL_GROUP_ID

$GID
$(

Thereal gid of this processlf you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned bgegid(), and the subsequent ones ditgroups() one of which may be the same

as the first number.

However, a \alue assigned t(must be a single number used to set the real gid. Scathe v
given by $(shouldnotbe assigned back &(without being forced numeric, such as by adding
zero.

You can change both the real gid and tHedaive gd at the same time by usiPSIX::setgid()
Changes to $(require a check to $! to detegtpmssible errors after an attempted change.

(Mnemonic: parentheses are usedytoup things. Thereal gid is the group yoleft, if you're
running setgid.)

$EFFECTIVE_GROUP_ID

$EGID
$)

Theeffective gd of this processlIf you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned bygetegid(), and the subsequent onesdmggroups() one of which may be the same

as the first number.

Similarly, a value assigned t§) must also be a space-separated list of humbers. The first
number sets the fetctive gd, and the rest (if any) are passedéigroups() To get the effect of

an empty list foisetgroups()just repeat the meeffective gd; that is, to force an ffctive gd of

5 and an effectiely emptysetgroups()ist, say $) ="5 5"

You can change both thefettive gd and the real gid at the same time by us#@QSIX::setgid()
(use only a single numericqament). Change® $) require a check to $! to detecygwssible
errors after an attempted change.

(Mnemonic: parentheses are usedjtoup things. Theeffective gd is the group thad'right for
you, if you're running setgid.)

$<, $>, $(and$) can be set only on machines that support the corresposelifrg]lug]id()
routine. $(and$) can be swapped only on machines suppogeiggd().

$PROGRAM_NAME

$0

Containghe name of the program beingeeuted.

On some (read: not all) operating systems assigniff tmodifies the argument area that s
program sees. On some platforms you mayeha use speciaps options or a dferentps to
see the changes. Modifying t$® is more useful as aay of indicating the current program
state than it is for hiding the program you're running. (Mnemonic: sarsleasdksh.)

Note that there are platform specific limitations on the the maximum len@®. ofn the most
extreme case it may be limited to the space occupied by the oginal

In some platforms there may be arbitrary amount of paddingxéongle space characters, after
the modified name as shown pg. In some platforms this padding maytend all the way to
the original length of the argument area, no matter what you do (this is the casanfpteswith
Linux 2.2).

Note forBSD users: setting0 does not completely reme “perl” from theps(1) output. For

example, settings0 to "foobar" may result in'perl: foobar (perl)" (whether both
the"perl: " prefix and the'‘(perl)” suffix are shown depends on yowaetBSD variant and
version). Thisis an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so thétr@ad may modify its cgpof the
$0 and the change becomes visiblgpgfl) (assuming the operating system plays alomNpte
that the the vie of $0 the other threads @ will not change since tlyehavetheir own copies of
it.

2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

$[Theindex of the first element in an arragnd of the first character in a substringefault is 0,
but you could theoretically set it to 1 to nelkerl behae nore like awk (or Fortran) when
subscripting and whenvauating the index() and substr() functions. (Mnemonic] begns
subscripts.)
As of release 5 of Perl, assignmensfois treated as a compiler diraatj and cannot influence
the behavior of another file. (That's why you can only assign compile-time constants tolis)
use is highly discouraged.
Note that, unlik aher compile-time direotes (such as strict), assignment to $[can be seen from
outer lexical scopes in the same fildowever, you can uséocal() on it to strictly bound itsalue
to a lexical block.

$] The version + patchlieel / 1000 of the Perl interpretefThis variable can be used to determine
whether the Perl interpretereeuting a script is in the right range oérgions. (Mnemonicts
this version of perl in the right braet?) Example:

warn "No checksumming\n" if $] < 3.019;

See also the documentationusfe VERSION andrequire VERSION for a cowenient way
to fail if the running Perl interpreter is too old.
When testing theariable, to steer clear of floating point inaccuracies you might want to prefer
the inequality tests and> to the tests containing egaience:<=, ==, and>=.
The floating point representation can sometimes lead to inaccurate numeric comp&8e®ns.
$V for a more modern representation of the Pegtsion that allows accurate string
comparisons.

$COMPILING

$C Thecurrent value of the flag associated with tgeswitch. Mainlyof use with—-MO=... to allow
code to alter its behavior when being compiled, such asximge toAUTOLOAD at compile
time rather than normal, deferred loading. See per&etting$"C = 1 is similar to calling
B::minus_c

$DEBUGGING

$D Thecurrent value of the delgging flags. (Mnemonic: value eD switch.) May be read or set.

Like its command-line equalent, you can use numeric or symbolic values$ed = 10 or
$'D ="st"

$SYSTEM_FD_MAX

$F

$H

perl v5.8.6

Themaximum system file descriptardinarily 2. System file descriptors are passeexaz(ed
processes, while higher file descriptors are #dso, during anopen() system file descriptors
are preservedven if the open()fails. (Ordinaryfile descriptors are closed before thgen()is
attempted.) Thelose-on-gec gatus of a file descriptor will be decided according to tidaerof
$°F when the corresponding file, pipe, or socket was opened, not the timeegédle

WARNING: This variable is strictly for internal use onlits availability, behavior and contents
are subject to change without notice.

This variable contains compile-time hints for the Perl interpre&¢the end of compilation of a
BLOCK the value of this variable is restored to tladue when the interpreter started to compile
the BLOCK.

When perl begins to parseyablock construct that provides a lexical scope (e.gd body,
required file, subroutine bodpop body or conditional block), the existing value of $"H isved,
but its value is left unchangedVhen the compilation of the block is completed, dames the
saved value. Betweetthe points where its value isved and restored, code thatesutes within
BEGIN blocks is free to change the value of $"H.

This behavior provides the semantic ofiéal scoping, and is used in, for instance, tise
strict pragma.

The contents should be an igeg; different bits of it are used for different pragmatic flags.
Heres an gample:

2004-11-05 165

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

166

sub add_100 { $"H = 0x100}

sub foo {
BEGIN { add_100() }
bar->baz($boon);

}

Consider what happens duringeeution of theBEGIN block. Atthis point theBEGIN block has
already been compiled, but the bodyfad() is still being compiled. The mevalue of $H will
therefore be visible only while the bodyfob() is being compiled.

Substitution of the alw@ BEGIN block with:
BEGIN { require strict; strict->import('vars’) }

demonstrates ouse strict 'vars’ is implemented.Heres a onditional \ersion of the
same lexical pragma:

BEGIN { require strict; strict->import('vars’) if $condition }
%"H WARNING: This variable is strictly for internal use onlits availability, behavior and contents
are subject to change without notice.

The %"H hash provides the same scoping semantic as FHis makes it useful for
implementation of lexically scoped pragmas.

$INPLACE_EDIT
$l The current value of the inplace-editxtension. Useundef to disable inplace editing.
(Mnemonic: value ofi switch.)

™M By default, running out of memory is an untrappable, fatal efrtowevae, if suitably built, Perl
can use the contents $M as an emgeng memory pool aftedie()ing. Suppos¢hat your Perl
were compiled with —-DPERL_EMERGENCY_SBRK and used Pemilloc. Then

$™M ="a’ x (1 << 16);

would allocate a 64K ffer for use in an emgeng. See theNSTALLfile in the Perl distribtion
for information on ha to enable this option.To dscourage casual use of this advanced feature,
there is no English long name for this variable.

$OSNAME
$0 Thename of the operating system under which this/afgPerl was hiilt, as determined during
the configuration process. The value is identicad@onfig{’osname’} . See also Config

and the-V command-line switch documented in perlrun.

In Windows platforms, $°O is notery helpful: since it is alays MSWin32, it doesnt tell the
difference between 95/98/ME/NT/2000/XP/CE/.NET Use Win32::GetOSName() or
Win32::GetOSVersion(jsee Win32 and perlport) to distinguish between the variants.

${"OPEN}
An internal variable used by Perll@ string in two parts, separated by\@ byte, the first part
describes the input layers, the second part describes the output layers.

$PERLDB
$P Theinternal variable for debugging support. The meanings of the various bits are subject to
change, but currently indicate:

0x01 Delug subroutine enter/exit.

0x02 Line-by-linedebugging.

0x04 Switchoff optimizations.

0x08 Presem nore data for future interagé inspections.

0x10 Keep info about source lines on which a subroutine is defined.
0x20 Starwith single-step on.

0x40 Usesubroutine address instead of name when reporting.

2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

0x80 Reporgoto &subroutine as well.
0x100 Preide informatve “file’’ names for eas based on the place thevere compiled.

0x200 Preide informatve nrames to angmous subroutines based on the placey there
compiled.

0x400 Delng assertion subroutines enter/exit.

Some bits may be ralant at compile-time onlysome at run-time onlyThis is a n&v mechanism
and the details may change.

$LAST_REGEXP_CODE_RESULT
$R Theresult of @aluation of the last successf(#{ code }) regular expression assertion (see
perlre). Maybe written to.

$EXCEPTIONS_BEING_CAUGHT

$'S Currenstate of the interpreter.
$'S State
undef Parsing module/eval
true (1) Executing an eval

false (0) Otherwise
The first state may happen$8IG{ _DIE__}and$SIG{ _WARN_ _}handlers.

$BASETIME

$T Thetime at which the program gan running, in seconds since the epoch (beginning of 1970).
The values returned by thé, —A, and —C filetests are based on this value.

${"TAINT}

Reflects if taint mode is on orfofl for on (the program was run witfir), O for off, =1 when
only taint warnings are enabled (i.e. withor —TU).

${"UNICODE}
Reflects certain Unicode settings of Perl. See perlrun documentation fe€ gwitch for more
information about the possibleales. This variable is set during Perl startup and is thereafter

read-only.

$PERL_VERSION

Vv Therevision, version, and subrsion of the Perl interpreterepresented as a string composed of
characters with those ordinals. Thus in Perl v5.6.0 it equn($) . chr(6) . chr(0)
and will return true fol$"V eq v5.6.0 . Note that the characters in this stringlue can

potentially be in Unicode range.

This can be used to determine whether the Perl interpeadeuntang a script is in the right range
of versions. (Mnemoniaise "V for Version Control.) Example:

warn "No \"our\" declarations'\n" if $"V and $"V It v5.6.0;
To corvert $°V into its string representation usgrintf()s "%vd" conversion:
printf "version is v%vd\n“, $°V; # Perl’'s version

See the documentation w$e VERSION andrequire VERSION for a comwenient way to &il
if the running Perl interpreter is too old.

See als@®] for an older representation of the Perl version.

SWARNING
W The current value of the warning switch, initially true 4fv was wsed, false otherwise,ub
directly modifiable. (Mnemonic: related to thes switch.) Seealso warnings.

${"WARNING_BITS}
The current set of warning checks enabled by tise warnings pragma. Seethe
documentation ofvarnings for more details.

perl v5.8.6 2004-11-05 167

PERLVAR(1)

168

PerlProgrammers Reference Guide PERR(1)

$EXECUTABLE_NAME

$X

ARGV

$ARGV
@ARGV

Thename used toxecute the current cgpof Perl, from C’sargv[0]

Depending on the host operating system, tilgevof $°X may be a relgd o absolute pathname
of the perl program file, or may be the string usedtoki& perl but not the pathname of the perl
program file. Also, most operating systems permitdking programs that are not in timaTH
ervironment variable, so there is no guarantee that dheevof $°X is inPATH. For VMS, the
value may or may not include a version nhumber.

You usually can use thealue of $°X to re-imoke an independent cgpof the same perl that is
currently running, e.g.,

@first_run = ‘$"X -le "print int rand 100 for 1..100™;

But recall that not all operating systems support forking or capturing of the output of commands,
so this comple statement may not be portable.

It is not safe to use thele of $°X as a path name of a file, as some operating systemsvihat ha
a mandatory suffix onxecutable files do not require use of thefiguivhen invoking a command.
To corvert the value of $°X to a path name, use the following statements:

Build up a set of file names (not command names).
use Config;
$this_perl =§X;
if ($"0 ne VMS’)
{$this_perl .=$Config { exe}
unless$this_perl =" m/$Config{_ee}$/i;}

Because manoperating systems permit anyone with read access to the Perl program fileeto mak
a aopy of it, patch the cop and then gecute the cop the security-conscious Perl programmer
should tak care to iwvoke the installed cop of perl, not the cop referenced by $X.The
following statements accomplish this goal, and produce a pathname that caokied as a
command or referenced as a file.

use Config;
$secure_perl_path = $Config{perlpath};
if ($"0 ne 'VMS’)
{$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =~ m/$Config{ exe}$/i;}

The special filehandle that iterategsocommand-line filenames iI@ARGWSsually written as

the null filehandle in the angle operatof. Note that currenth ARGVonly has its magical ffct

within the<> operator; elsewhere it is just a plain filehandle corresponding to the last file opened
by <>. In particular passing\’*ARGV as a parameter to a function thapects a filehandle may

not cause your function to automatically read the contents of all the fl@ARGV

containghe name of the current file when reading from <>.

The array@ARG\ontains the command-line arguments intended for the scB#ARGVis
generally the number of arguments minus one, bec®AR&V[0] is the first agument,not the
programs command name itself. S&® for the command name.

ARGVOUT

@F

@INC

The special filehandle that points to the currently open output file when doing edit-in-place
processing with-i. Useful when you hae to do a bt of inserting and dob'want to leep
modifying$_. See perlrun for thei switch.

Thearray @Fcontains the fields of each line read in when autosplit mode is turne@em.
perlrun for the-a switch. Thisarray is package—specific, and must be declaredven gi full
package name if not in package main when running wtdet 'vars’

Thearray @INCcontains the list of places that tie EXPR, require , or use constructs look
for their library files. It initially consists of the arguments toyarl command-line switches,
followed by the default Perl librarprobably/usr/local/lib/per| followed by *.” , to represent the

“w o1

current directory (“.” will not be appended if taint checks are enabled, eithefTogr by -t .)

2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)
If you need to modify this at runtime, you should useuse lib pragma to get the machine-
dependent library properly loaded also:
use lib '/mypath/libdir/’;
use SomeMod;
You can also insert hooks into the file inclusion system by putting Perl code direct(@IMG
Those hooks may be subroutine references, array references or blessed objettqu8etin
perlfunc for details.
@_ Within a subroutine the arra®_contains the parameters passed to that subroutine. See perlsub.
%INC The hash%INC contains entries for each filename included via dbe require , or use
operators. Théey is the filename you specified (with module namesvedead to pathnames),
and the alue is the location of the file foundherequire operator uses this hash to determine
whether a particular file has already been included.
If the file was loaded via a hook (e.g. a subroutine reference;regeire” in perlfunc for a
description of these hooks), this hook is byadéf inserted intdINCin place of a filename.
Note, havever, that the hook may va %t the%INCentry by itself to provide some more specific
info.
%ENV
SENV{expr}
The hash%ENVcontains your current gimonment. Settinga value in ENV changes the
environment for aychild processes you subsequeritk() off.
%SIG
$SIG{expr}
The has®o6SIGcontains signal handlers for signalor example:
sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig--shutting down\n";
close(LOG);
exit(0);
}
$SIG{INT} = \&handler;
$SIG{'QUIT’} = \&handler;
$SIG{INT} = 'DEFAULT’; # restore default action
$SIG{'QUIT’} = "IGNORE’; # i gnore SIGQUIT

perl v5.8.6

Using a value ofl GNORE' usually has the effect of ignoring the signal, except forGh&D
signal. Seeerlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not recommended)
$SIG{"PIPE"} = \&Plumber; # | ust fine; assume current Plumber
$SIG{"PIPE"} = *Plumber; # somewhat esoteric

$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

Be sure not to use a bamrd as the name of a signal hanglest you inadvertently call it.

If your system has th&igaction()function then signal handlers are installed using it. This means
you get reliable signal handling.

The default deliery policy of signals changed in Perl 5.8.0 from immediate (alsowknas
“unsafe”) to deferred, also known as “safe signalSeeperlipc for more information.

Certain internal hooks can be also set using %®IG hash. Theroutine indicated by
$SIG{__WARN__} is called when a warning message is about to be prirfitad. warning
message is passed as the firguarent. Theoresence of a_ WARN___hook causes the ordinary
printing of warnings toSTDERR to be suppressedYou can use this to sa warnings in a
variable, or turn warnings into fatal errors,ditis:

2004-11-05 169

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

170

local $SIG{__WARN__}=sub {die $_[0] };
eval $proggie;

The routine indicated b$SIG{ DIE_} is called when a fatal exception is about to be

throvn. Theerror message is passed as the firguraent. Whera _ DIE__ hook routine

returns, the exception processing continues as it wowklihahe absence of the hook, unless the

hook routine itself exits via goto , a loop exit, or adie(). The __DIE__ handler is grplicitly

disabled during the call, so that you can die from aDIE__ handler Similarly for
WARN__.

Due to an implementation glitch, tI$SIG{_ DIE_} hook is called een inside anewal().

Do not use this to rewrite a pending exceptior$@ or as abizarre substitute forverriding
CORE::GLOBAL.::die() This strange action at a distance may be fixed in a future release so that
$SIG{_DIE_} is only called if your program is about taite as was the original intent.

Any other use is deprecated.

__DIE__/__WARN__handlers areeary special in one respect: yhmay be called to report
(probable) errors found by the parsémn such a case the parser may be in inconsistent state, so
ary attempt to galuate Perl code from such a handler will probably result ingéagl. This
means that arnings or errors that result from parsing Perl should be used with extreme caution,
like this:

require Carp if defined $°S;

Carp::confess("Something wrong") if defined &Carp::confess;

die "Something wrong, but could not load Carp to give backtrace...
To see backtrace try starting Perl with -MCarp switch";

Here the first line will load Carpnlessit is the parser who called the handl@he second line
will print backtrace and die if Carp wasadlable. Thethird line will be eecuted only if Carp
was ot available.

See ‘die” in perlfunc, ‘warn” in perlfunc, ‘eva’’ in perlfunc, and warnings for additional
information.

Error Indicators

The \ariables$@ $! , $°E , and $? contain information about different types of error conditions that may
appear during»cution of a Perl program. Theawables are shown ordered by tlistance’ between the
subsystem which reported the error and the Perl proddssy. correspond to errors detected by the Perl
interpretey C library, operating system, or an external program, resgegti

To illustrate the differences between these variables, consider theifigll®erl expression, which uses a
single-quoted string:

eval q{
open my $pipe, "/cdrom/install O or d ie$,
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";
2
After execution of this statement all 4 variables mayénbeen set.

$@is set if the string to beval —ed did not compile (this may happerojfen or close were imported
with bad prototypes), or if Perl codgeeuted during eduationdie()d . In these cases the value of $@ is
the compile errqror the argument tdie (which will interpolate$! and$?!). (Seealso Fatal, though.)

When theeval() expression abee is executed,open() <PIPE>, and close are translated to calls in the C
run-time library and thence to the operating systemmdd. $! is set to the C librarg’errno if one of
these calls fails.

Under a fev operating systemsf"E may contain a more verbose error indicasoch as in this case,
“ CDROM tray not closed. Systems that do not support extended error messagesdiea the same as
$! .

Finally, $? may be set to non-Calue if the external prograedrom/installfails. Theupper eight bits
reflect specific error conditions encountered by the program (the pregratf)’ value). Thelower eight
bits reflect mode of failure, l&k sgnal death and core dump informatiddee wait(2) for details. In

2004-11-05 perl v5.8.6

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

BUGS

contrast ta$! and$°E, which are set only if error condition is detected, theable$? is set on each
wait or pipeclose , overwriting the old alue. Thisis more like $@ which on @ery ewal() is aways set
on failure and cleared on success.

For more details, see the individual description$@t$! , $°E , and $?.

Technical Note on the Syntax of Variable Names

Variable names in Perl canvesveaal formats. Usually they must begin with a letter or underscore, in
which case thecan be arbitrarily long (up to an internal limit of 251 characters) and may contain letters,
digits, underscores, or the special sequencer’ . In this case, the part before the lastor’ is taken to

be apackaye qualifier; see perlmod.

Perl \ariable names may also be a sequence of digits or a single punctuation or control chiEtaster

names are all reserved for special uses by Perl;x@mmple, the all-digits names are used to hold data
captured by backreferences after a regular expression match. Perl has a special syntax for the single-
control-character names: It understaf¥s(caretX) to mean the controlx character For example, the
notation$"W (dollar-sign careW is the scalar ariable whose name is the single character corwol-

This is better than typing a literal contr¥into your program.

Finally, new in Perl 5.6, Perl variable names may be alphanumeric strings that begin with control characters
(or better yet, a caret). Thesariables must be written in the foi$§"Foo} ; the braces are not optional.
${"Foo} denotes the scalaakiable whose name is a contrBlfollowed by two 0’s. These variables are
resened for future special uses by Perkcept for the ones that begin with (control-underscore or
caret—underscore). Neoontrol-character name thatdies with™_ will acquire a special meaning inyan
future \ersion of Perl; such names may therefore be used safely in progfamsitself, havever, is
reserved.

Perl identifiers that begin with digits, control characters, or punctuation charactersram #om the
effects of thepackage declaration and arewdys forced to be in packageain ; they are also gempt

from strict 'vars’ errors. Afew other names are alsaanpt in these ways:
ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT _
SIG

In particular the nev special${"_XYZ} variables are alays taken to be in packageain , regadless of
anypackage declarations presently in scope.

Due to an unfortunate accident of Perimplementation,use English imposes a considerable
performance penalty on all regular expression matches in a proggamless of whether tlyeoccur in
the scope ofise English . For that reason, sayingse English in libraries is strongly discouraged.
See the Dedl::SavAmpersand module documentation from CPAN (
http://www.cpan.org/modules/by—moduleA2#) for more information.

Having to een think about the$'S variable in your exception handlers is simply wrong.
$SIG{_DIE_} as currently implementedviites griezous and difficult to track down errorgwoid it
and use aiEND{} or CORE::GLOBAL::die oerride instead.

perl v5.8.6 2004-11-05 171

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

NAME
perlrun — hev to execute the Perl interpreter
SYNOPSIS
perl [=sTtuUWX] [=hv][=V[:configval]

[—ew] [—d[t][:debuger]] [-D[number/lis}]

[-pna][—Fpattern] [—I[octal]] [—O[octal/hexadecimal

[=Idir][=m[-]module] [-M[-]’'module..] [-P] [-S] [=x[dir]]
[—i[extension] [—e’command’] [——] [programfile] [argument{...
[=C [number/list]] 1>

DESCRIPTION

172

The normal way to run a Perl program is by making it directég@able, or else by passing the name of
the source file as an argument on the command l{#n interactve Rerl environment is also
possible — seeerldelug for details on he to do that.) Uponstartup, Perl looks for your program in one
of the following places:

1. Specifiedine by line via—e switches on the command line.

2. Containedin the file specified by the first flename on the command lifdote that systems
supporting the #! notation\ioke interpreters this wayee “Location of Perl”.)

3. PRassed in implicitly via standard input. This works only if there are no filenagouenants — tgass
arguments to a STDIN-read program you must explicitly specify ‘& br'the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless pegified a—x
switch, in which case it scans for the first line starting with #! and containing the ‘pend,‘and starts
there instead. This is useful for running a program embedded igex laessage. (In this case yoauld
indicate the end of the program using theEND__ token.)

The #! line is alvays examined for switches as the line is being parsed. Thus, if you're on a machine that
allows only one argument with the #! line, oorge, doesth’even recognize the #! line, you still can get
consistent switch behaviorgadless of hw Perl was ivoked, even if —x was used to find the beginning of

the program.

Because historically some operating systems silently choppéetrofel interpretation of the #! line after

32 characters, some switches may be passed in on the command line, and some may not; yan could e
get a ="’ without its letter if you're not careful.You probably want to madk aure that all your switches

fall either before or after that 32—-character boundaWost switches domt’actually care if thg're
processed redundantlgut getting a‘~"’ instead of a complete switch could cause Perl to trxeoute
standard input instead of your program. And a parfiawitch could also cause odd results.

Some switches do care if there processed twice, for instance combinationslaind—-0. Either put all
the switches after the 32—character boundary (if applicable), or replace the-Qskigas by BEGIN{ $/

= "\Odigits"; }

Pasing of the #! switches starts whese'‘perl” is mentioned in the lineThe sequences* ' and “~ "
are specifically ignored so that you could, if you were so inclined, say

#l/bin/sh -- # -*- perl -*- -p
eval ‘exec perl -wS $0 ${1+"$@"}
if $running_under_some_shell;

to let Perl see thep switch.
A similar trick involves theenv program, if you hee i.
#!/usr/bin/env perl

The examples alve wse a relatie path to the perl interpretegetting whatger version is first in the usex’
path. Ifyou want a specific version of Perl, spgrl5.005 57, you should place that directly in the #! §ine’
path.

If the #! line does not contain the worderl”, the program named after the #! iseeuted instead of the
Perl interpreter This is slightly bizarre, Wt it helps people on machines that daio #, because thecan

tell a program that theisHELL is /usr/bin/per] and Perl will then dispatch the program to the correct
interpreter for them.

After locating your program, Perl compiles the entire program to an internal form. If thereyare an

2004-11-05 perl v5.8.6

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

compilation errors,»ecution of the program is not attempted. (This is wnifle typical shell script, which
might run part-way through before finding a syntax error.)

If the program is syntactically correct, it igseeuted. Ifthe program runs bthe end without hitting an
ext() or die() operatoran mplicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix's #! technique can be simulated on other systems:

0Ss/2
Put

extproc perl -S -your_switches

as the first line if.cmd file (-Sdue to a bug in cmdke's ‘extproc’ handling).

MS-DOS
Create a batch file to run your program, and codify RifERNATE_SHEBAN(Gee thelosish.Hile
in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the Agbtate installer for Perl, will modify the Registry to
associate thepl extension with the perl interpretetf you install Perl by other means (including
building from the sources), you mayveato modify the Registry yourself. Note that this means you
can no longer tell the difference between xecetable Perl program and a Perl library file.

Macintosh
A Macintosh perl program will va the appropriate Creator and Type, so that double-clicking them
will invoke te perl application.

VMS
Put

$ perl -mysw 'f$env("procedure”) 'pl’ 'p2’ 'p3’' 'p4’ 'p5’ 'p6’ 'p7’ 'p8’ !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, wherenysw are ay command line switches youant to pass to Perl.
You can nav invdcke the program directlyby saying perl program , or as aDCL procedure, by
saying@program (or implicitly via DCL$PATH by just using the name of the program).

This incantation is a bit much to remembbut Perl will display it for you if you sayerl
"-V:startperl!"

Command-interpreters on non-Unix systemeehather different ideas on quoting than Unix she¥eu'll
need to learn the special characters in your command-intergreterand" are common) and oto
protect whitespace and these characters to run one-linerse(setow).

On some systems, you mayhdao change single-quotes to double ones, which you matgto on Unix or
Plan 9 systemsYou might also hae o change a single % to a %%.

For example:

Unix
perl -e 'print "Hello world\n

MS-DOS, etc.
perl -e "print \"Hello world\n\

Macintosh
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

VMS
perl -e "print "'Hello world\n

The problem is that none of this is reliable: it depends on the command and it is entirely possible neither
works. If4DOSwere the command shell, this would probably work better:

perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

perl v5.8.6 2004-11-05 173

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

CMD.EXE in WindowsNT slipped a lot of standard Unix functionality in when nobodswvooking, bt
just try to find documentation for its quoting rules.

Under the Macintosh, it depends whiclviemnment you are using. The MacPerl shellM®w, is much
like Unix shells in its support for geral quoting variants, except that it neskfree use of the Macintosh’
non-ASCII characters as control characters.

There is no general solution to all of this.s|tist a mess.

Location of Perl

It may seem obvious to sayut Perl is useful only when users can easily find it. When possilslgpad

for both /usr/bin/perl and /usr/local/bin/perlto be symlinks to the actual binaryf that cant be dne,

system administrators are strongly encouraged to put (symlinks to) perl and its accompanying utilities into
a drectory typically found along a uselP&TH, or in some other obvious and camient place.

In this documentationg!/usr/bin/perl on the first line of the program will stand in for whese
method works on your systenYou are advised to use a specific path if you care about a specific version.

#!/usr/local/bin/perl5.00554
or if you just want to be running at least version, place a statemettitlat the top of your program:
use 5.005_54;

Command Switches
As with all standard commands, a single-character switch may be clustered with the following switch, if
ary.
#!/usr/bin/perl -spi.orig # same as -s -p -i.orig
Switches include:

—Q[octal/hexadecimal
specifies the input record separatdt X as an atal or h&adecimal numberlf there are no digits,
the null character is the separat@ther switches may precede or follthe digits. For example, if
you have a vesion offind which can print filenames terminated by the null charagter can say
this:

find . -name "*.orig’ -print0 O perl -n0Oe unlink

The special value 00 will cause Perl to slurp files in paragraph niddevalue 0777 will cause Perl
to slurp files whole because there is rgalbyte with that value.

If you want to specify anUnicode characteuse the headecimal format-OxHHH... , where theH
are valid hexadecimal digits. (This means that you cannot usextivéth a directory name that
consists of hexadecimal digits.)

—a turns on autosplit mode when used withraor —p. An implicit split command to th@Farray is
done as the first thing inside the implicit while loop produced by-thar —p.

perl -ane print pop(@F), "\n";’
is equvaent to

while (<>) {
@F = split(");
print pop(@F), "\n",

An alternate delimiter may be specified ustitg

—C [number/list]
The-Cflag controls some Unicode of the Perl Unicode features.

As of 5.8.1, the-C can be follaved either by a number or a list of option letters. The letters, their
numeric values, and effects are as follows; listing the letters is equal to summing the numbers.

174 2004-11-05 perl v5.8.6

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

I 1 STDIN is assumed to be in UTF-8

0] 2 STDOUT will be in UTF-8

E 4 STDERR will be in UTF-8

S 7 Il + O+ E

i 8 UTF-8 is the default PerllO layer for input streams

o} 16 UTF-8 is the default PerllO layer for output streams

D 24 i +o0

A 32 t he @ARGYV elements are expected to be strings encoded in UTF-8
L 64 normally the "IOEioA" are unconditional,

the L makes them conditional on the locale environment
variables (the LC_ALL, LC_TYPE, and LANG, in the order
of decreasing precedence) -- if the variables indicate
UTF-8, then the selected "IOEioA" are in effect

For example, —-COE and —-C6 will both turn on UTF-8-ness on boteTDOUT and STDERR
Repeating letters is just redundant, not cumedator toggling.

Theio options mean that grsubsequenbpen()(or similar 1/O operations) will hee the :utf8
PerllO layer implicitly applied to them, in othepwds,UTF-8is expected from gninput stream, and
UTF-8is produced to anoutput stream. This is just the default, with explicit layerspen()and
with binmode(Jone can manipulate streams as usual.

—C on its own (not followed by annumber or option list), or the empty strifg for the
PERL_UNICODEervironment variable, has the saméef as—-CSDL In cther words, the standard
I/O handles and the dailt open() layer are UTF-8-fiecbut only if the locale ewironment
variables indicate aJTF-8 locale. Thisbehaiour follows theimplicit (and problematicluTF-8
behaviour of Perl 5.8.0.

You can use-CO (or "0" for PERL_UNICODIto explicitly disable all the abge Unicode features.

The read-only magicariable ${"UNICODE} reflects the numeric value of this setting. This is
variable is set during Perl startup and is thereafter read—-dhlyou want runtime effects, use the
three-argopen()(see ‘open” in perlfunc), the tw-argbinmode()(see ‘binmode’ in perlfunc), and
theopen pragma (see open).

(In Perls earlier than 5.8.1 th€C switch was a Wh32-only switch that enabled the use of Unicode-
awae “wide system call' Win32 APIs. This feature was practically unusedwéer, and the
command line switch was therefore “recycled”.)

—c causes Perl to check the syntax of the program and Kiewithout executing it. Actually, it will
execute BEGIN, CHECK and use blocks, because these are considered as occurring outside the
execution of your programINIT andENDblocks, howeer, will be skipped.

—-d

—dt runs the program under the Perl dgger See perldebg. If t is specified, it indicates to the
debugger that threads will be used in the code being debugged.

—d:foo[=bar,baz]

—dt:foo[=bar,baz]
runs the program under the control of a debugging, profiling, or tracing module installed as
Devel::foo. E.g.,—d:DProf executes the program using the\Re:DProf profiler As with the -M
flag, options may be passed to thes@efoo package where thewill be receved and interpreted by
the Devel::foo::import routine. The comma-separated list of options mustvicdle: character If t
is specified, it indicates to the debugger that threads will be used in the code beigpgedebSee
perldebug.

-Dletters

—Dnumber
sets debugging flagsTo watch hev it executes your program, useDtls. (This works only if
delugging is compiled into your PerlAnother nice value isDx, which lists your compiled syntax
tree. And-Dr displays compiled regularxpressions; the format of the output is explained in
perldebguts.

As an alternatie, specify a number instead of list of letters (e-P14is equvalent to—Dtls):

perl v5.8.6 2004-11-05 175

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)
1 p Tokenizing and parsing
2 s Stack snapshots (with v, displays all stacks)
4 | C ontext (loop) stack processing
8 t T race execution
16 o Method and overloading resolution
32 ¢ String/numeric conversions
64 P Print profiling info, preprocessor command for -P, source file input state
128 m Memory allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 x Syntax tree dump
2048 u Tainting checks
4096 (Obsolete, previously used for LEAKTEST)
8192 H Hash dump -- usurps values()
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Thread synchronization
131072 T Tokenising
262144 R Include reference counts of dumped variables (eg when using -Ds)
524288 J Do not s,t,P-debug (Jump over) opcodes within package DB
1048576 v Verbose: use in conjunction with other flags
8388608 q quiet - ¢ urrently only suppresses the "EXECUTING" message

All these flags require-DDEBUGGING when you compile the Perlxecutable (but see
Devel::Peek, re which may change this). Seeltt&TALLfile in the Perl source distribution foro
to do this. This flag is automatically set if you inclugigoption whenConfigure asks you about
optimizer/debugger flags.

If you're just trying to get a print out of each line of Perl code agetwdes, the way thatsh —x
provides for shell scripts, you canise Perl's-D switch. Insteadio this

If y ou have "env" utility
env=PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS program)

See perldebug for details and variations.

—ecommandline
may be used to enter one line of prograifn—e is given, Perl will not look for a filename in the
argument list. Multiple —e commands may begin to kuild up a multi-line script.Make aure to use
semicolons where you would in a normal program.

—Fpattern
specifies the pattern to split onHé is also in eflect. Thepattern may be surrounded By,

", otherwise it will be put in single quotes.

, or

-h
—i[extension
specifies that files processed by #econstruct are to be edited in—place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file astiite def
for print() statements. Thextension, if supplied, is used to modify the name of the old file teraak
backup cop, following these rules:

prints a summary of the options.

If no extension is supplied, no backup is made and the current filerigristen.

If the extension doesintontain a*, then it is appended to the end of the current filename aida suf
If the extension does contain one or mdreharacters, then eac¢his replaced with the current
filename. InPerl terms, you could think of this as:

2004-11-05 perl v5.8.6

176

PERLRUN(1)

perl v5.8.6

PerlProgrammers Reference Guide

($backup = $extension) =~ s/*/$file_name/q;

PERLRUN(1)

This allows you to add a prefix to the backup file, instead of (or in addition to) a sulffix:

$ perl -pi'orig_* -e 's/bar/baz/’ fileA

backup to 'orig_fileA’

Or even to pace backup copies of the original files into another directory (provided the directory

already exists):

$ perl -pi'old/*.orig’ -e 's/bar/baz/’ fileA # backup to 'old/fileA.orig’

These sets of one-liners are eglént:

$ perl -pi -e 's/bar/baz/’ fileA
$ perl -pi’*' -e 's/bar/baz/’ fileA

$ perl -pi'.orig’ -e 's/bar/baz/’ fileA
$ perl -pi*.orig’ -e 's/bar/baz/’ fileA

From the shell, saying
$ perl -p -i.orig -e "s/foo/bar/; ... "
is the same as using the program:

#!/usr/bin/perl -pi.orig
s/foo/bar/;

which is equialent to

#!/usr/bin/perl
$extension = ".orig’;
LINE: while (<>) {
if (PARGV ne $oldargv) {
if ($extension I *¥/) {
$backup = $ARGV . $extension;
}

else {
($backup = $extension) =~ s/*/$ARGV/g;
}

rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $SARGV;
}
s/foo/bar/;
}
continue {
print; # this prints to original filename

}
select(STDOUT);

except that the-i form doesrt need to compar8ARGVto $oldargv

overwrite current file
overwrite current file

backup to ‘fileA.orig’
backup to ‘fileA.orig’

to knowv when the filename

has changed. It does, wever, use ARGVOUT for the selected filehandle. Note tH&IDOUT is

restored as the default output filehandle after the loop.

As shown abwee, Perl creates the backup file whether or nat amtput is actually changed. So this

is just a fang way to copy files:

$ perl -p -i'lsomeffile/path/* -e 1 filel file2 file3...
or
$ perl -p -i".orig’ -e 1 filel file2 file3...

You can usezof without parentheses to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see exampledfi’* in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified ixtireseon then it will skip

that file and continue on with the next one (if it exists).

2004-11-05

177

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

For a dscussion of issues surrounding file permissions dndee ‘Why does Perl let me delete
read-only files? WAndoes —i clobber protected files? Istiiis a bug in Perl?in perlfags.

You cannot use-i to create directories or to strip extensions from files.
Perl does not exparidin filenames, which is good, since some folks use it for their backup files:
$ perl -pi” -e 's/foo/bar/ filel file2 file3...

Note that becausel renames or deletes the original file before creating\fite of the same name,
UNIX-style soft and hard links will not be preserved.

Finally, the —i switch does not impedexecution when no files areg@n on he command lineln
this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds fronsTDIN to STDOUT as might be expected.

—ldirectory
Directories specified byl are prepended to the search path for mod@#(}, and also tells the C
preprocessor where to search for include files. The C preprocessaskisdimvith —P; by default it
searches /usr/include and /ustr/lib/perl.

—l[octnun}
enables automatic line-ending processitichas tw separate décts. Firstjt automatically chomps
$/ (the input record separator) when used withor —p. Second, it assign$\ (the output record
separator) to ha te value ofoctnumso that ap print statements will hae that separator added
back on. If octnumis omitted, set$\ to the current value &/ . For instance, to trim lines to 80
columns:

perl -lpe 'substr($_, 80) = ™"

Note that the assignmeft = $/ is done when the switch is processed, so the input record
separator can be different than the output record separatorif $haétch is followed by a0 switch:

gnufind / -print0 0 perl -InOe "print “found $_" if -p’
This setsb\ to newline and then se$é to the null character.
—m[-]module
—M[-]module
—-M[-]'module ...

—[mM] [-]module=arg|[,arq]...
—-mmoduleexecutesuse module(); before &ecuting your program.

—Mmoduleexecutesuse module; before &ecuting your program.You can use quotes to addtea
code after the module name, e:gMmodule qw(foo bar)’

If the first character after theM or —-m is a dash~) then the 'use’ is replaced with 'no’.

A little builtin syntactic sugar means you can also-saynodule=foo,baror -Mmodule=foo,bar as

a shortcut for'-Mmodule qw(foo bar)’ . This avoids the need to use quotes when importing
symbols. The actual code generated by-Mmodule=foo,bar is use module
split(/,/,q{foo,bar}) . Note that the= form remaes the distinction betweenam and-M.

-n causes Perl to assume the following loop around your program, which makes it iterdilemame
arguments somewhat lilked —nor awk:

LINE:
while (<>) {

}

Note that the lines are not printed by aléf. See-p to have lines printed. If a file named by an
argument cannot be opened for some reason, Perl warns you about ivesdmio he next file.

your program goes here

Here is an efficient way to delete all files thatdmat been modified for at least a week:
find . -mtime +7 -print O perl -nle unlink

This is faster than using thexecswitch offind because you donhaveto start a process owesy
filename found. It does suffer from the bug of mishandlinglines in pathnames, which you can fix

178 2004-11-05 perl v5.8.6

PERLRUN(1)

perl v5.8.6

PerlProgrammers Reference Guide PERLRUN(2)

if you follow the example undetO.

BEGIN andENDblocks may be used to capture control before or after the implicit program loop, just
as inawk.

causes Perl to assume the following loop around your program, which makes it ierdilemame
arguments somewhat lilsed

LINE:
while (<>) {
your program goes here
} ¢ ontinue {
print or die "-p destination: $!\n";
}

If a file named by an argument cannot be opened for some reasonaPerlyau about it, and mes
on to the next file. Note that the lines are printed automaticaltyerror occurring during printing is
treated asdtal. o suppress printing use tha switch. A—p overides a—n switch.

BEGIN and ENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

NOTE: Use of —P is stongly discouraged because of its inherent problems, including poor
portability.

This option causes your program to be run through the C preprocessor before compilation by Perl.
Because both comments aopp directives begn with the # characteryou should woid starting
comments with anwords recognized by the C preprocessor suclf'as , "else" , or "define"

If you're considering usingP, you might also want to look at the Filter::cpp module fiORAN.

The problems of —P include, but are not limited to:

* The#! line is stripped, so arswitches there dohapply.
* A —-Pona#! line doesrt work.
* All lines that begin with (whitespace andj dut do rot look like gp commands, are

stripped, including anything inside Perl strings, regular expressions, and here-docs .

* In some platforms the C preprocessor knows too much: it knows about-thest{le
until-end-of-line comments starting with" . This will cause problems with common
Perl constructs like

s/fooll;
because after —P this will becameglcode
s/foo

The workaround is to use some other quoting separatoft/tharike for example'"

slfoo!l;
* I't requires not only a working C preprocessor but alsmiking sed If not on UNIX,
you are probably out of luck on this.
* Script line numbers are not preserved.
* The-x does not work with-P.

enables rudimentary switch parsing for switches on the command line after the progranuname b
before ag filename arguments (or before an argument-§f This means you can kia switches

with two leading dashes-{help). Any switch found there is remvad from @ARGMNd sets the
corresponding variable in the Perl program. The following program ptiitsif't he program is
invoked with a—xyz switch, and “abc’if it is i nvoked with —xyz=abc

#!/usr/bin/perl -s
if ($xyz) { print "$xyz\n" }

Do note that—help creates the variable ${—help}, which is not compliant veitfict refs

2004-11-05 179

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

-S makes Perl use theATH ervironment variable to search for the program (unless the name of the
program contains directory separators).

On some platforms, this also makes Perl apperfikssfto the filename while searching for or
example, on Win32 platforms, thébat” and “.cmd” suffixes are appended if a lookup for the
original name fails, and if the name does not already end in one of théigessuffyour Perl vas
compiled with DEBUGGING turned on, using the -Dp switch to Perl showsvhibe search
progresses.

Typically this is used to emulate #! startup on platforms thattdopport #!. Its also carenient
when debugging a script that uses #!, and is thus normally found by the $R&ITH search
mechanism.

This example works on mgplatforms that hae a $iell compatible with Bourne shell:

#!/usr/bin/perl
eval 'exec /usr/bin/perl -wS $0 ${1+"$@"}
if $running_under_some_shell;

The system ignores the first line and feeds the prograbirtsh which proceeds to try toxecute

the Perl program as a shell script. The shaltetes the second line as a normal shell command, and
thus starts up the Perl interpret@n some system$0 doesnt always contain the full pathname, so
the—-Stells Perl to search for the program if necesséfger Perl locates the program, it parses the
lines and ignores them because thgable$running_under_some_shell is never true. Ifthe
program will be interpreted by csh, you will need to rep#{de-"$@"} with $*, even though that
doesnt understand embedded spaces (and such) in the argumefoligart up sh rather than csh,
some systems may V& b replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems datontrol that, and need a totallywi@us construct that

will work under amy of csh sh, or Perl, such as the following:

eval '(exit $70)’ && eval 'exec perl -wS $0 ${1+"'$@"}
& eval 'exec /usr/bin/perl -wS $0 $argv:q’
if $running_under_some_shell;

If the filename supplied contains directory separators (i.e., is an absolute ve @itithame), and if
that file is not found, platforms that append file extensions will do so and try to look for the file with
those extensions added, one by one.

On DOS-like datforms, if the program does not contain directory separators, it will first be searched
for in the current directory before being searched for orPAfiel. On Unix platforms, the program
will be searched for strictly on tH&TH.

-t Like -T, but taint checks will issue warnings rather than fatal errors. These warnings can be
controlled normally witmo warnings qw(taint)

NOTE: this is not a substitute for —T This is meant only to be used as a temporavgldpment aid
while securing lgacy code: for real production code and fomnsecure code written from scratch
always use the reaiT.

-T forces ‘taint” checks to be turned on so you can test them. Ordinarily these checks are done only
when running setuid or setgidt’s a gpod idea to turn them on explicitly for programs that run on
behalf of someone else whom you might not necessarily trust, suihl @sograms or aninternet
seners you might write in Perl. See perlsec for detalsr security reasons, this option must be
seen by Perl quite early; usually this means it must appear early on the command line or in the #! line
for systems which support that construct.

—u This obsolete switch causes Perl to dump core after compiling your proytantan then in theory
take this core dump and turn it into areeutable file by using thendump program (not supplied).
This speeds startup at the expense of some disk space (which you can minimize by stripping the
executable). (Still,a “hello world” executable comes out to about 200K on my machingyou
want to execute a portion of your program before dumping, usedtirap()operator insteadNote:
awailability of undump is platform specific and may not beasable for a specific port of Perl.

This switch has been supersededawaf of the nev Perl code generator backends to the compiler
See B and B::Bytecode for details.

180 2004-11-05 perl v5.8.6

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

-U allows Perl to do unsafe operation€urrently the only ‘insafe’ operations are the unlinking of
directories while running as superysard running setuid programs with fatal taint checks turned
into warnings. Notehat the-w switch (or the$"W variable) must be used along with this option to
actuallygeneratethe taint-check warnings.

—-v prints the version and patcli of your perl executable.
-V prints summary of the major perl configuration values and the current val@sIQr

-V: configvar
Prints to STDOUT the walue of the named configuration variable(s), with multiples when your
configvar argument looks kka egex (has non-letters)For example:

$ perl-V:libc
libc="/lib/libc-2.2.4.s0’;
$ perl -Viib.
libs="-Insl -lgdbm -Idb -IdI -Im -lcrypt -lutil -Ic’;
libc="/lib/libc-2.2.4.s0’;
$ perl-Viib.*
libpth="/usr/local/lib /lib /usr/lib’;
libs="-Insl -lgdbm -Idb -IdI -Im -lcrypt -lutil -Ic’;

lib_ext="a’;
libc="/lib/libc-2.2.4.s0’;

libperl=libperl.a’;

Additionally, extra colons can be used to control formattifgtrailing colon suppresses the linefeed
and terminator ’;’, allowing you to embed queries into shell commagmsemonic:PATH separator
1:1.)

$ echo "compression-vars: " ‘perl -V:z.*: * " are here !"

compression-vars: zcat=" zip='zip’ are here !

A leading colon remas the 'name=" part of the response, this allows you to map to the name you
need. (mnemoni@mpty label)

$ echo "goodvfork=
goodvfork=false;

Jperl -llib -V::usevfork'

Leading and trailing colons can be used together if you need positional parameter values without the
names. Not¢hat in the case belg the PERL_APIparams are returned in alphabetical order.

$ echo building_on ‘perl -V::osname: -V::PERL_API_.*: now
building_on ’linux’ '5’ ’'1’ '9’ now
-w prints warnings about dubious constructs, such as variable names that are mentioned only once and
scalar variables that are used before being set, redefined subroutines, references to undefined
filehandles or filehandles opened read-only that you are attempting to writaloes vused as a
number that doesnhlook like rumbers, using an array as though it were a saalaour subroutines
recurse more than 100 deep, and innumerable other things.

This switch really just enables the interalV variable. You can disable or promote intatél errors
specific warnings using_ WARN__hooks, as described in perlvar alvaarn” in perlfunc. Seelso
perldiag and perltrapA new, fine-grained warning facility is als@alable if you want to manipulate
entire classes of warnings; see warnings or perllexwarn.

-W Enables all warnings gerdless ofno warnings or $W. See perllexwarn.
—X Disables all warnings gerdless ofuse warnings or $W. See perllexwarn.

—x directory
tells Perl that the program is embedded in gdachunk of unrelatedSCll text, such as in a mail
message. Leadingabage will be discarded until the first line that starts with #! and contains the
string ‘perl”. Any meaningful switches on that line will be appliefla directory name is specified,
Perl will switch to that directory before running the prograifhe —x switch controls only the
disposal of leadingarbage. Therogram must be terminated with END__ if there is trailing

perl v5.8.6 2004-11-05 181

PERLRUN(1)

182

PerlProgrammers Reference Guide PERLRUN(2)

gabage to be ignored (the program can procegsoardl of the trailing garbage via thBATA
filehandle if desired).

ENVIRONMENT

HOME
LOGDIR
PATH
PERL5LIB

PERL50OPT

PERLIO

Used if chdir has no argument.
Used if chdir has no argument an@ME is not set.
Used in g&ecuting subprocesses, and in finding the progran$if used.

A list of directories in which to look for Perl library files before looking in the standard
library and the current directoryAny achitecture-specific directories under the specified
locations are automatically included if yhexist. If PERL5LIB is not definedPERLLIB is
used. Directoriesre separated (kkin PATH) by a ®lon on unixish platforms and by a
semicolon on Whdows (the proper path separator beingegi by the commandoerl
-V:path_sep).

When running taint checks (either because the program was running setuid or setgid, or the
—T switch was used), neither variable is used. The program should instead say:

use lib "/my/directory";

Command-line options (switchespwitches in this variable are taken as ifytlgere on

evay Perl command lineOnly the-[DIMUdmtw] switches are allsed. Whenrunning

taint checks (because the program was running setuid or setgid,-ar dtch was used),
this variable is ignoredlf PERL5OPTbegins with —T, tainting will be enabled, and wan
subsequent options ignored.

A space (or colon) separated list of PerllO layers. If perl is built to use PerllO syst&m for
(the default) these layers effect pers

It is corventional to start layer names with a colon eggrlio to emphasise their
similarity to variable ‘attributes’. But the code that parses layer specification strings (which
is also used to decode tAERLIO environment variable) treats the colon as a separator.

An unset or emptPERLIOis equvalent to:stdio

The list becomes the default falt perl’'s10. Consequently only built-in layers can appear in
this list, as external layers (such aacoding() needIO in orderto load them!. Seedpen
pragma’for how to add external encodings as defaults.

The layers that it mads sense to include in tHRERLIO ervironment variable are briefly
summarised belw. For more details see PerllO.

:bytes Apseudolayer that turnsf the :utf8 flag for the layer bels. Unlikely to be
useful on its own in the glob&ERLIO ervironment \ariable. You perhaps were
thinking of :crlf:bytes or :perlio:bytes

.crif A layer which doe€RLF to “\n’’ translation distinguishindtéxt” and “binary”
files in the manner of MS-DOS and similar operating systems. (It currently does
notmimic MS-DOS asdr as treating of Control-Z as being an end-of-file miayk

:mmap Alayer which implementsreading’ of files by usingnmap() to male (whole)
file appear in the processddress space, and then using that as Pertlaffer”.

:perlio Thisis a re-implementation ofstdio—like” buffering written as a PerllOlayer”.
As such it will call whateer layer is belw it for its operations (typicallyunix).

:pop Anexperimental pseudolayer that reves the topmost layerUse with the same
care as is reserved for nitroglycerin.

raw A pseudolayer that manipulates other layers. Applying :thev layer is
equivadent to callingbinmode($fh) . It makes the stream pass each byte as-is
without ary translation. InparticularCRLF translation, and/or :utf8 intuited from
locale are disabled.

Unlike in the earlier versions of Pemaw is not just the iverse of:crif -
other layers which would f&fct the binary nature of the stream are also wetho
or disabled.

2004-11-05 perl v5.8.6

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

:stdio Thislayer provides PerllO inteate by wrapping systesANSI C “stdio” library
calls. The layer provides bothuffering andiO. Note thatstdio layer doesot
do CRLF translation een if that is platforms normal betiaur. You will need a
crlf layer abee it to do hat.

:unix Low levd layer which callsead , write andlseek etc.

:utfg8 A pseudolayer that turns on a flag on the layenbédaell perl that output should
be in utf8 and that input should begaaded as already in utf8 form. May be
useful inPERLIO ervironment variable to makUTF-8 the default. (@ turn off
that behaviour usibytes layer.)

:win32 OnWin32 platforms thigxperimentallayer uses nate “handle” 10 rather than
unix-like numeric file descriptor layeKnown to be buggy in this release.

On all platforms the default set of layers shoulcgegcceptable results.

For UNIX platforms that will equialent of “unix perlio” or “‘stdio”. Configureis setup to
prefer ‘stdio” i mplementation if systers’library provides for fast access to thafter,
otherwise it uses the “unix perlia'mplementation.

On Win32 the default in this release is “unix &rlfWin32’s “stdio” has a number of
bugs/mis—features for petD which are somehat C compiler gndor/ersion dependent.
Using our evn crlf layer as the Wiffer avoids those issues and makes things more uniform.
Thecrlf layer providesCRLFto/from “\n”’ conversion as well as buffering.

This release usamix as the bottom layer on Win32 and so still uses C compitarheric
file descriptor routines. There is an experimentaveatin32 layer which is expected to be
enhanced and shoulgentually be the default under Win32.

PERLIO_DEBUG
If set to the name of a file or device then certain operations of PerllO sub-system will be

logged to that file (opened as append). Typical usegNibe
PERLIO_DEBUG=/devi/tty perl script ...
and Win32 approximate egalent:

set PERLIO_DEBUG=CON
perl script ...

PERLLIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directoryf PERL5LIB is defined PERLLIB is not used.

PERL5DB The command used to load the debugger code. The default is:
BEGIN { require 'perl5db.pl’ }

PERL5DB_THREADED
If set to a true value, indicates to the debugger that the code being debugged uses threads.

PERL5SHELL(specific to the Win32 port)
May be set to an alterned sell that perl must use internally fokeeuting ‘backtick”
commands or system() Default is cmd.exe /x/d/c on WndowsNT and
command.com /c on Wndows95. Thevaue is considered to be space-separated.
Precede ancharacter that needs to be protectece(bikpace or backslash) with a backslash.

Note that Perl doeshtise COMSPECfor this purpose becausEOMSPEChas a high dgree

of variability among users, leading to portability concef@ssides, perl can use a shell that
may not be fit for interacte wse, and settin@OMSPECto such a shell may interfere with
the proper functioning of other programs (which usually look@MSPECto find a shell fit
for interactve wse).

PERL_ALLOW_NON_IFS_LSKspecific to the Win32 port)
Set to 1 to allev the use of non-IFS compatibl&Ps. Perl normally searches for an IFS-
compatible LSP because this is required for its emulation ofintldws sockets as real
filehandles. Haever, this may cause problems if youveaa frewall such as McAfee
Guardian which requires all applications to use Li&® which is not IFS—-compatible,
because clearly Perl will normallywa@d using such arLSP. Setting this exironment

perl v5.8.6 2004-11-05 183

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

variable to 1 means that Perl will simply use the first suitaBleenumerated in the catalog,
which keeps McAfee Guardian hapiand in that particular case Perl stillorks too
because McAfee Guardia1 SP actually plays some otheames which alle applications
requiringlFS compatibility to work).

PERL_DEBUG_MSATS
Relevant only if perl is compiled with the malloc included with the perl distribution (that is,
if perl =V:d_mymalloc is 'define’). If set, this causes memory statistics to be dumped
after execution. If set to an intger greater than one, also causes memory statistics to be
dumped after compilation.

PERL_DESTRUCT_LEVEL
Relevant only if your perl gecutable was built with-DDEBUGGING, this controls the
behaior of global destruction of objects and other referencesSee
“ PERL_DESTRUCT_LEVEL i n perlhack for more information.

PERL_DL_NONLAZY
Set to one to he perl resole all undefined symbols when it loads a dynamic librariie
default behaviour is to resavg/mbols when the are used. Setting this variable is useful
during testing of tensions as it ensures that you get an error on misspelled function names
evan if the test suite doedreall it.

PERL_ENCODING
If using theencoding pragma without anxglicit encoding name, theERL_ENCODING
environment variable is consulted for an encoding name.

PERL_HASH_SEED
(Since Perl 5.8.1.) Used to randomise Reitliternal hash function.To emulate the
pre-5.8.1 behaour, st to an integer (zero meansaetly the same order as 5.8.0).
“ Pre—5.8.1"means, among other things, that haskskwill be ordered the same between
different runs of Perl.

The default behaviour is to randomise unlessPtBRL_HASH_SEEDSs set. If Perl has been
compiled with —-DUSE_HASH_SEED_EXPLICIT the default behaviour isot to
randomise unless tHRERL_HASH_SEEDS set.

If PERL_HASH_SEEDIS unset or set to a non-numeric string, Perl uses the pseudorandom
seed supplied by the operating system and libraries. This means that éaxemtditin of
Perl will hare a dfferent ordering of the results &&ys(), values() and each()

Please note that the hash seed is sengitinformation. Hashes are randomized to protect
against local and remote attacks against Perl code. By manually setting a seed this protection
may be partially or completely lost.

See ‘Algorithmic Complexity Attacks’in perlsec and‘PERL_HASH_SEED_DEBUGf or
more information.

PERL_HASH_SEED_ DEBUG
(Since Perl 5.8.1.) Set to one to display $IDERR the value of the hash seed at the
beginning of eecution. This,combined with “PERL_HASH_SEED i s intended to aid in
debugging nondeterministic behavior caused by hash randomization.

Note that the hash seed is sensié information: by knowing it one can craft a denial-of-
service attack against Perl codeereremotely see ‘Algorithmic Complexity Attacks'in
perlsec for more informationDo not disclose the hash seed people who don’need to
know it. Seealsohash_seed@f Hash::Util.

PERL_ROOT(specific to the/MS port)
A translation concealed rooted logical name that contains perl and the logical device for the
@INCpath onvMS only. Cther logical names thatfatt perl onvMS include PERLSHR
PERL_ENV_TABLES and SYS$TIMEZONE_DIFFERENTIALbut are optional and discussed
further in perlvms and iREADMEvVmsin the Perl source distribution.

PERL_SIGNALS
In Perls 5.8.1 and lateif set tounsafe the pre—Perl-5.8.0 signals behaviour (immediate
but unsafe) is restored. If set safe the safe (or deferred) signals are used. Sederred

184 2004-11-05 perl v5.8.6

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

Signals (Safe Signals)h perlipc.

PERL_UNICODE
Equivdent to the—C command-line switch. Note that this is not a booleariable —
setting this td'1" is not the right way to “enable Unicodéwhatever that would mean).
You can use'0" to “disable Unicode”, though (or alternaély unsetPERL_UNICODEIN
your shell before starting Perl). See the description of @switch for more information.

SYS$LOGIN(specific to thevMS port)

Used if chdir has no argument an@ME andLOGDIR are not set.
Perl also has eironment variables that control WwoPerl handles data specific to particular natural
languages. Seqmerllocale.
Apart from these, Perl uses no other environment variables, except ¢atraak aailable to the program
being eecuted, and to child processeldowever, programs running setuid would do well treeute the
following lines before doing anything else, just to keep people honest:

$ENV{PATH} = ‘'/bin:/usr/bin’; # or whatever you need
$ENV{SHELL} = '/bin/sh’ if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

perl v5.8.6 2004-11-05 185

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

NAME
perlreftut — Marks very short tutorial about references

DESCRIPTION
One of the most important wefeatures in Perl 5 was the capability to manage complicated data structures
like multidimensional arrays and nested hash&e. enable these, Perl 5 introduced a feature called
‘references’, and using references is they kb managing complicated, structured data in Perl.
Unfortunately theres a bt of funry syntax to learn, and the main manual page can be hard tw.follbe
manual is quite complete, and sometimes people find that a problem, because it can be hard to tell what is
important and what isn't.

Fortunately you only need to kne 10% of whats in the main page to get 90% of the benefit. This page
will show you that 10%.

Who Needs Complicated Data Structures?
One problem that came up all the time in Perl 4 was toaepresent a hash whose values were |iBexl
4 had hashes, of course, but the values had to be scalgrspthén't be lists.

Why would you want a hash of listsket's take a $mple example: You hee a fle of city and country
names, lile this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you vant to produce an output ékhis, with each country mentioned once, and then an alphabetical
list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is toveaa lash whose d&ys ae country names. Associated with each country
name ley is a ist of the cities in that countryEach time you read a line of input, split it into a country and
a dty, look up the list of cities already known to be in that coyrang append the mecity to the list.
When you're done reading the input, iterat@rahe hash as usual, sorting each list of cities before you
print it out.

If hash values cahbe lists, you lose. In Perl 4, hashlues can’be lists; thg can only be stringsYou
lose. You'd probably hae o combine all the cities into a single string somehand then when time came
to write the output, yod' haveto break the string into a list, sort the list, and turn it back into a stfihig.
is messy and error—prone. Andsiffrustrating, because Perl already has perfectly good lists thatw
solve the problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must beTualars.
solution to this is references.

A reference is a scalar value thefiers to an entire array or an entire hash (or to just about anything else).
Names are one kind of reference that you're already familiar Wittink of the President of the United
States: a messyncorvenient bag of blood and bone&ut to talk about him, or to represent him in a
computer program, all you need is the easgenient scalar string “George Bush”.

References in Perl are éklames for arrays and hashéhey're Perls private, internal names, so you can
be sure thgre unambiguousUnlike “George Bush’, a reference only refers to one thing, and youegs
know what it refers to. If you hae a eference to an arrayou can receer the entire array from it. If you
have a eference to a hash, you can nedhe entire hashBut the reference is still an easgmpact scalar
value.

You can't havea hash whose values are arrays; hash values can only be stséams.guck with that. But
a dngle reference can refer to an entire grrand references are scalars, so you care ha fash of
references to arrays, and it'll act a loglix Fash of arrays, and it'll be just as useful as a hash of arrays.

WE'll come back to this city-country problem lataiter weve sen some syntax for managing references.

186 2004-11-05 perl v5.8.6

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

Syntax
There are just tarways to mak a eference, and just ways to use it once you V&it.
Making References
Make Rule 1
If you put a\ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array
$href = \Y%hash; # $href now holds a reference to %hash

Once the reference is stored in a variable $firef or $href , you can cop it or store it just the same as
ary other scalar value:

$xy = $aref; # $xy now holds a reference to @array
$p[3] = Shref; # 3$p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash

These examples sivchow to make references to variables with names. Sometimes you want te anak
array or a hash that doeshavea nrame. Thiss analogous to the way you dito be &le to use the string
“\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[I TEMS] makes a ne, anornymous arrayand returns a reference to that arrfgyl TEMS } males a
new, anonymous hash, and returns a reference to that hash.

$aref =[1, "foo", undef, 13];
$aref now holds a reference to an array

$href = { APR =>4, AUG =>8 };
$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

This:
Saref=[1,2,3];

Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbvation for the following tve lines, except that it doesrereate the superfluous
array variable@array .

If you write just[] , you get a n&, empty anonymous arraylf you write just{} , you get a n&, empty
anonymous hash.
Using References

What can you do with a reference once yoweht? It's a €alar value, and weé ®en that you can store it
as a scalar and get it back again just Bty scalar There are just tavymore ways to use it:

UseRulel

You can alvays use an array reference, in curly braces, in place of the name of anFaratample,
@{$aref} instead of@array .

Here are some examples of that:

Arrays:
@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are twexpressions that do the same thing. The left-hardions operate on the arr@a
The right-hand &rsions operate on the array that is referred t®dogf . Once thg find the array thgre
operating on, both versions do the same things to the arrays.

Using a hash referencedsactly the same:

perl v5.8.6 2004-11-05 187

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

188

%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{red’} ${$href{’red’} An element of the hash

$h{red} =17 ${Shref{red’} =17 Assigning an element

Whatever you want to do with a referenddse Rule 1tells you hev to do it. You just write the Perl code
that you would hee written for doing the same thing to aytdar array or hash, and then replace the array
or hash name witfreference} . “How do | loop over an array when all | hae is a eference? Well,

to loop aver an aray, you would write

for my $element (@array) {

}

so replace the array nan@array , with the reference:
for my $element (@{$aref}) {

}

“How do | print out the contents of a hash when all vén& a eference?’ First write the code for printing
out a hash:

for my $key (keys %hash) {
print "$key => $hash{$key}n";
}

And then replace the hash name with the reference:

for my $key (keys %{$href}) {
print "$key => ${$href{Skeyhn";
}
UseRule2
Use Rule 1is all you really need, because it tells yowho to absolutely &erything you @er need to do

with references. But the most common thing to do with an array or a hash is to extract a single element,
and theUse Rule Inotation is cumbersome. So there is an abbreviation.

${$aref}[3] is too hard to read, so you can wiga@ef->[3] instead.
${$hrefH{red} is too hard to read, so you can witeref—>{red} instead.

If $aref holds a reference to an arralien $aref—>[3] is the fourth element of the arrapon’t
confuse this with$aref(3] , which is the fourth element of a totally different arrage deceptiely
named@aref . $aref and@aref are unrelated the same way thaem and@item are.

Similarly, $href->{’red’} is part of the hash referred to by the scakiable$href , perhaps een

one with no name$href{’red’} is part of the decepigly named%href hash. It5 easy to forget to

leave aut the—>, and if you do, youl get bizarre results when your program gets array and hash elements
out of totally unexpected hashes and arrays that wehenbnes you wanted to use.

An Example
Let's £e a quick example of hwall this is useful.

First, remember thdt, 2, 3] makes an anonymous array containifig 2, 3) , and gives you a
reference to that array.

Now think about
@a=([1,2,3],

[4,5, 6],

[7,8,9]

);

@a is an array with three elements, and each one is a reference to another array.

$a[l] is one of these references. It refers to an ath@yarray containin4, 5, 6) , and because it is
a reference to an arrayse Rule 2says that we can writga[1]->[2] to get the third element from that
array. $a[1]->[2] is the 6. Similarly, $a[0]->[1] is the 2. What we hae tere is like a two-

2004-11-05 perl v5.8.6

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

dimensional array; you can wriga[ROW]->[COLUMN] to get or set the element inyarow and ary
column of the array.

The notation still looks a little cumbersome, so theeocee more abbreviation:

Arr ow Rule
In between twaubscripts, the arrov is optional.

Instead offa[1]->[2] , we @an write$a[1][2] ; it means the same thing. Insteadbaf0]->[1] =
23, we @n write$a[0][1] = 23 ; it means the same thing.

Now it really looks like two-dimensional arrays!
You can see wi the arrows are importaniVithout them, we would va had to write${$a[1]}[2]

instead of$a[l][2] . For three-dimensional arrays, théet us write $x[2][3][5] instead of the
unreadabl&{${$x[2]}[3]}[5]
Solution
Here’s the answer to the problem | posed eartiéreformatting a file of city and country names.
1 nmy %able;
2 while (<>){
3 chomp;
4 nmy ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7}
8 f oreach $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join’, ", sort @cities;
12 print "\n";
13 }

The program has twpieces: Lines 2——7 read the input andldb a data structure, and lines 8-13 analyze
the data and print out the repoW/e’re going to hae a lash,%table , whose leys ae country names, and
whose values are references to arrays of city names. The data structure willddiis:lik

Y%table
R — +---t
0 [[i R — S —— +
[(GermanyOd *----> [Frankfurt O Berlin O
0 [[i R — S —— +
R — +---t
O O 0O +--- +
[(Finland 0O *----> 0O Helsinki O
O O 0O +-- +
R — +--t
0 0 o+ + + +
O USA 0O*--> 0O Chicago 0O Washington O New York 0O
0 0 o+ + + +
R — +--t

WE'll look at output first. Supposing we alreadyénthis structure, ho do we pint it out?
8 f oreach $country (sort keys %table) {

9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join’, ", sort @cities;
12 print "An";
13 }
%table is an ordinary hash, and we get a list efkfrom it, sort the &ys, and loop eer the leys &
usual. Theonly use of references is in line 18table{$country} looks up the &y $country in the

perl v5.8.6 2004-11-05 189

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

hash and gets thelue, which is a reference to an array of cities in that caubtsg Rule 1says that we

can recwer the array by sayin@{$table{$country}} . Line 10 is just like
@cities = @array;
except that the namarray has been replaced by the referef@ble{$country}} . The @tells

Perl to get the entire arrajdaving gotten the list of cities, we sort it, join it, and print it out as usual.
Lines 2-7 are responsible for building the structure in the first place. Hgrar¢hagain:

while (<>) {
chomp;
nmy ($city, $country) = split/, /;
$table{$Scountry} = [] unless exists $table{$country};
push @{$table{$country}}, $city;

}
Lines 2-4 acquire a city and country name. Line 5 looks to see if the country is already presegtias a k

the hash. If it mot, the program uses tH¢ notation Make Rule 2) to manufacture a ne, empty
anonymous array of cities, and installs a reference to it into the hash under the appm@priate k

~NOoO o~ WN

Line 6 installs the city name into the appropriate arf&table{$country} now holds a reference to
the array of cities seen in that country so fane 6 is exactly like

push @array, $city;

except that the namarray has been replaced by the referefS@ble{$country}} . The push
adds a city name to the end of the referred-to array.

Theres ane fine point | skipped. Line 5 is unnecessang we can get rid of it.

2 while (<>){

3 chomp;

4 nmy ($city, $country) = split /, /;

5 #### S$table{$country} = [] u nless exists $table{$Scountry};

6 push @{$table{$country}}, $city;

7}
If there's dready an entry ifotable for the currentbcountry , then nothing is dférent. Line6 will
locate the value it$table{$country} , Which is a reference to an arrand push$city into the

array But what does it do wheBcountry holds a ley, say Greece , that is not yet i®otable ?

This is Perl, so it does the exact right thing. It sees that you want toApishs onto an array that
doesnt exist, so it helpfully makes a me empty, anorymous array for you, installs it int¥table , and
then pusheéthens onto it. This is called ‘autavification’——bringing things to life automaticallyPerl

sav that theg key wasnt in the hash, so it created ambash entry automaticallyerl sav that you vanted

to use the hash value as an greayit aeated a ng& empty array and installed a reference to it in the hash
automatically And as usual, Perl made the array one element longer to holdittotyneame.

The Rest

190

| promised to gie you 90% of the benefit with 10% of the details, and that means | left out 90% of the
details. Nev that you hae an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:
* You can mak references to anything, including scalars, functions, and other references.

 In Use Rule 1 you can omit the curly brackets whgeethe thing inside them is an atomic scalar
variable like $aref . For exkample,@$aref is the same a@{$aref} , and $$aref[1l] is the same
as ${$aref}[1] . If you're just starting out, you may want to adopt the habitwéad including
the curly brackets.

e This doesrt copy the underlying array:
$aref2 = $arefl;

You get two references to the same arralf you modify $arefl->[23] and then look at
$aref2—>[23] you'll see the change.

2004-11-05 perl v5.8.6

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

To ocopy the arrayuse
$aref2 = [@{$arefl}];

This useq...] notation to create a weanorymous arrayand $aref2 is assigned a reference to
the nev array. The nev array is initialized with the contents of the array referred t@dmgfl

Similarly, to copy an anonymous hash, you can use
$href2 = {%{$hrefl}};

« To see if a variable contains a reference, useréfie function. Itreturns true if its gument is a
reference. Actuallyt's a ittle better than that: It returntdASHfor hash references amkRRAYfor
array references.

« Ifyou try to use a referencedila $ring, you get strings like
ARRAY(0x80f5dec) or HASH(0x826afc0)
If you ever see a string that looks kkthis, you'll know you printed out a reference by mistake.

A side effect of this representation is that you canecsdo see if tvo references refer to the same
thing. (Butyou should usually use= instead becausestiuch faster.)

* You can use a string as if it were a refererifgou use the stringfoo" as an array reference sit’
taken to be a reference to the ar@yoo. This is called a&oft referenceor symbolic eference The
declarationuse strict 'refs’ disables this feature, which can cause all sorts of trouble if you
use it by accident.

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional arrays
in detail. After that, you should mie o to perldsc; its a Data Structure Cookbook that shows recipes for
using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get them is with refétesrecare
four important rules for managing referencesoTor making references and dvwior using them.Once
you knaw these rules you can do most of the important things you need to do with references.

Credits
Author: Mark Jason Dominus, Rier Systems knjd—perl-ref+@plover.com)

This article originally appeared ifhe Perl durnal (http://www.tpj.com/) wlume 3, #2. Reprinted with
permission.

The original title wasJnderstand References Today

Distribution Conditions
Copyright 1998 The Perl Journal.
This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespectve d its distribution, all code examples in these files are hereby placed into the public domain.
You are permitted and encouraged to use this code in wenmpoograms for fun or for profit as you see fit.
A simple comment in the code giving credit would be courteous but is not required.

perl v5.8.6 2004-11-05 191

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

NAME
perldsc — Perl Data Structures Cookbook

DESCRIPTION

The single feature most sorely lacking in the Perl programming language prior to its 5.0 release w
comple data structuresEven without direct language support, some valiant programmers did manage to
emulate them, but it was hard work and not for the faint of h&ar.could occasionally getveay with the
$m{$A0A,$b} notation borrowed fromawk in which the leys ae actually more lig a d$ngle
concatenated stringAoA$b" , but traversal and sorting were diult. Moredesperate programmerngen

hacled Perls internal symbol table directlp drategy that preed hard to deelop and maintair—to put it

mildly.

The 5.0 release of Perl let usvbaomplex data structuresYou may nav write something lik this and all
of a sudden, yod'havean array with three dimensions!

for $x (1 .. 10) {
for y (1 .. 10) {
for $z (1 .. 10) {
SACA[SX][$Y][$z] =
$x ** By + $z;

}

Alas, havever simple this may appeaunderneath is a nuch more elaborate construct than meets yeé e

How do you print it out? Why can't you say jusprint @AoA ? How do you sort it? How can you pass
it to a function or get one of these back from a functith®t an object? Can youwait to disk to read
back later?How do you access whole rows or columns of that matrix? Do all the values thabe
numeric?

As you see, is qlite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementatios,réally more due to a lack of existing documentation
with examples designed for the beginner.

This document is meant to be a detailedl inderstandable treatment of the gndiiferent sorts of data
structures you might want toviop. It should also seevas a ookbook of @amples. Thatvay, when you
need to create one of these complata structures, you can just pinch, pilf@rpurloin a drop-in gample
from here.

Let's look at each of these possible constructs in detail. There are separate sections on each of the
following:

* arrays of arrays

* hashes of arrays

* arrays of hashes

* hashes of hashes

* more elaborate constructs

But for naw, let’s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in—Peéncluding multidimensional
arrays — isthat even though thg might appear otherwise, PEARRASand %oHASHESs are all internally
one—-dimensional. Tlyecan hold only scalaralues (meaning a string, numper a ieference). The
cannot directly contain other arrays or hashes, but instead crefea@ncedo other arrays or hashes.

You can't use a reference to an array or hash in quite the same way thabyttbarreal array or haslor
C or G+ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. Ifso, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references ipéhe=f(1) man page Briefly, references are rather
like pointers that kner what the point to. (Objects are also a kind of reference, but wa'thbe reeding
them right avay — if ever.) This means that when youvesmething which looks to you lékan @cess to

a two-or-more-dimensional array and/or hash, whaally going on is that the base type is merely a one-
dimensional entity that contains references to the nesit I&t’s just that you canseit as though it were a

192 2004-11-05 perl v5.8.6

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

two-dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$array[7][12] # array of arrays
$array[7}{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{’another string’} # hash of hashes

Now, because the top Vel contains only references, if you try to print out your array in with a simple
print() function, you'll get something that doestook very nice, like this:

@AoA = ([2, 3], [4,5,7],10]);
print $A0A[1][2];
7
print @AOA;
ARRAY(0x83c38)ARRAY (0x8b194)ARRAY (0x8b1d0)

That's because Perl doedr{eve) implicitly dereference yourariables. Ifyou want to get at the thing a
reference is referring to, then youvkatob do tis yourself using either prefix typing indicators,elik
${sblah} , @{$blah} , @{$blah[$i]} , or dse postfix pointer arrows, B&a—>[3] , $h—>{fred}
or even $ob—>method()—>[3]

COMMON MISTAKES
The two most common mistakes made in constructing something dik aray of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly Heres the case where you just get the count instead of a nested array:

for $i (1..10) {

@array = somefunc($i);

$A0A[$i] = @array; # WRONG!
}

That's just the simple case of assigning an array to a scalar and getting its element couns. wh#tatou
really and truly want, then you might do well to consider being a tad more explicit abowt tjdik

for $i (1..10) {
@array = somefunc($i);
$counts[$i] = scalar @array;

}

Heres the case of taking a reference to the same memory location again and again:

for $i (1..10) {

@array = somefunc($i);

$A0A[$I] = \@array; # WRONG!
}

So, whats the big problem with that? It looks right, doesit? Afterall, | just told you that you need an
array of references, so by golfyou’ve made me one!

Unfortunately while this is true, i gill broken. All the references i@AoAefer to thevery same plage
and thg will therefore all hold whateer was last in@array ! It's smilar to the problem demonstrated in
the following C program:

#include <pwd.h>

main() {
struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam('root");
dp = getpwnam("daemon");
printf("daemon name is %s\nroot name is %s\n",

dp->pw_name, rp->pw_name);
}
Which will print

daemon name is daemon
root name is daemon

The problem is that bottp anddp are pointers to the same location in memory! In C, gdaiveto

perl v5.8.6 2004-11-05 193

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

remember tanalloc() yourself some ne memory In Perl, you'll want to use the array construcfpr or
the hash construct§f instead. Here'the right way to do the preceding broken code fragments:

for $i (1..10) {
@array = somefunc($i);
$A0A[$I] = [@array |;

The square brackets nahk eference to a mearray with acopyof what's in @array at the time of the
assignment. This what you want.

Note that this will produce something simjlawt it's much harder to read:

for $i (1..10) {
@array =0 .. $i;
@{$A0A[$i]} = @array;
}

Is it the same2Vell, maybe se—and maybe not. The subtle difference is that when you assign something
in square brackets, you kndor sure its dways a brand ne reference with a me copy of the data.
Something else could be going on in thisymase with the@{$A0A[$i]}} dereference on the left-hand-
side of the assignment. It all depends on whepierA[$i] had been undefined to start with, or whether

it already contained a reference. If you had already poput@tkoAwith references, as in

$A0A[3] = \@another_array;

Then the assignment with the indirection on the left-hand-sméddause the existing reference thasw
already there:

@{$A0A[3]} = @array;

Of course, thisvould have the ‘interesting’ effect of clobbering@another_array . (Have you ever
noticed hav when a programmer says somethingirgeresting’, that rather than meaningntriguing”,
they’re disturbingly more apt to mean thas ithnnoying”, “difficult”, or both? :-)

So just rememberahbys to use the array or hash constructors fittor {} , and you'll be fine, although
it's not aways optimally efficient.

Surprisingly the following dangerous-looking construct will actually work out fine:

for $i (1..10) {
my @array = somefunc($i);
$A0A[S$I] = \@array;

}

That's becausemy() is more of a run-time statement than it is a compile-time declarpgorse This
means that theny() variable is remade afresh each time through the loop. vBo though itlooks as
though you stored the same variable reference each time, you actually dithi®is a subtle distinction

that can produce morefiefent code at the risk of misleading all but the most experienced of programmers.
So | usually advise against teaching it tgibhaers. Infact, except for passing guments to functions, |
seldom lile to ®e the gimme-a-reference operator (backslash) used much at all inlestgad, | advise
beginners that the (and most of the rest of us) should try to use the much more easily understood
constructorg] and{} instead of relying upon lexical (or dynamic) scoping and hidden reference-counting
to do the right thing behind the scenes.

In summary:
$A0A[$I] = [@array]; # usually best
$A0A[$I] = \@array; # perilous; just how my() was that array?
@{ $A0A[SI] } = @array; # way too tricky for most programmers

CAVEAT ON PRECEDENCE

194

Speaking of things lik@{$A0A[$i]} , the following are actually the same thing:

$aref->[2][2] # clear
$3aref[2][2] # confusing

That's because Ped'precedence rules on its éiyrefix dereferencers (which look komeone swearing:
$ @ * % &make them bind more tightly than the postfix subscripting brackets or braces! This will no

2004-11-05 perl v5.8.6

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

doubt come as a great shock to the Ciep&grammerwho is quite accustomed to usitefi] to mean
what's pointed to by thé'th element ofa. That is, thg first tale the subscript, and only then dereference
the thing at that subscript. Thafine in C, but this ist'C.

The seemingly equalent construct in Perfs$aref[$i] first does the deref dfaref , making it tale

$aref as a reference to an arrapd then dereference that, and finally tell youitthevalue of the array
pointed to by$AoA. If you wanted the C notion, yalrhave to write ${$A0A[Si]} to force the
$A0A[$I] to get @aluated first before the leadifgdereferencer.

WHY YOU SHOULD AL WAY S use strict
If this is starting to sound scarier thars itlorth, relax. Perl has some features to help y®uoi@ its most
common pitélls. Thebest way tooid getting confused is to stanteey program lile this:

#!/usr/bin/perl -w
use strict;

This way, you'll be forced to declare all youmviables withmy() and also disall accidental “symbolic
dereferencing’ Thereforeif you'd done this:

my $aref = [
[" fred", "barney", "pebbles”, "bambam", "dino",],
[" homer", "bart", "marge", "maggie",],
[" george", "jane", "elroy", "judy",],

I;

print $aref[2][2];

The compiler would immediately flag that as an eabrcompile time because you were accidentally
accessing@aref , an undeclared variable, and it would thereby remind you to write instead:

print $aref->[2][2]

DEBUGGING
Before \ersion 5.002, the standard Perl debugger tlido’a \ery nice job of printing out compledata
structures. Wh 5.002 or abwee, the debugger includes\aeal nev features, including command line
editing as well as the command to dump out compléelata structuresFor example, given the assignment
to $A0A above, here’s the debugger output:

DB<1> x $A0A
$A0A = ARRAY(0x13b5a0)
0 ARRAY(0x1f0a24)
" fred’
" barney’
' pebbles’
' bambam’
" dino’
RRAY (0x13b558)
" homer’
" bart’
" marge’
" maggie’
RRAY (0x13b540)
' george’
' jane’
" elroy’
' judy’

1

2

WNPFRPOD>PWNROIIRAWNERO

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are showroptEse
illustrating access of various types of data structures.

ARRAYS OF ARRAYS

perl v5.8.6 2004-11-05 195

PERLDSC(1) PerProgrammers Reference Guide

Declaration of anARRAY OF ARRAYS

@AO0A = (
[" fred", "barney"],
[" george", "jane", "elroy"],
[" homer", "marge", "bart"],

);

Generation of anARRAY OF ARRAYS

r eading from file
while (<>) {

push @AOA, [split];
}

calling a function
for$i(1.. 10){

$A0A[SI] = [somefunc($i)];
}

using temp vars
for$i(1.. 10){
@tmp = somefunc($i);
$AO0A[SI] =[@tmp];
}

add to an existing row
push @{ $A0A[0] }, "wilma", "betty";

Access and Printing of aml@ARRAY OF ARRAYS

one element
$A0A[0][0] = "Fred";

another element
$A0A[L][1] =" s/(\W)N\u$1/;

print the whole thing with refs
for $aref (@A0A) {

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#A0A) {

print "\t [@{$ACA[$i]}].\n";
}

print the whole thing one at a time
for $i (0 .. $#A0A) {
for $j (0 .. $#{ $A0A[$I] }) {
print "elt $i $j is SAOA[SI][Fj]\n";
}

}

HASHES OF ARRAYS

196

Declaration of aHASH OF ARRAYS

%HOoA = (
flintstones => [" fred", "barney"],
jetsons => [" george", "jane", "elroy"],
simpsons => [" homer", "marge", "bart"],
);

2004-11-05

PERLDSC(1)

perl v5.8.6

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

Generation of aHASH OF ARRAYS

r eading from file
f lintstones: fred barney wilma dino
while (<>) {
next unless s/"(.*?):\s*//;
$SHOA{$1} = [split];
}

r eading from file; more temps

f lintstones: fred barney wilma dino

while ($line = <>) {
($who, $rest) = split /:\s*/, $line, 2;
@fields = split * ’, $rest;
$HoA{$who} = [@fields];

}

calling a function that returns a list

for $group ("simpsons”, "jetsons", "flintstones") {
$HoA{$group} = [get_family($group) ;
}

| ikewise, but using temps

for $group ("simpsons"”, "jetsons", "flintstones") {
@members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty":

Access and Printing of &HASH OF ARRAYS

one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] = s/(\wW)A\u$1/;

print the whole thing
foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing with indices
foreach $family (keys %HoA) {
print "family: ";
foreach $i (0 .. $#{ $HoA{$family} }) {
print " $i = $HoA{Sfamily}[$i]";
}

print "\n";
}

print the whole thing sorted by number of members

foreach $family (sort { @{$HOA{$b}} <=> @{$HOA{$a}} } keys %HOA) {
print "$family: @{ $HoA{$family} }\n"

}

perl v5.8.6 2004-11-05 197

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

print the whole thing sorted by number of members and name
foreach $family (sort {
@{$HOA{$b}} <=> @{$HoA{$a}}

{m
$a cmp $b
} k eys %HOA)
{
print "$family: ", join(", ", sort @{ $HoA{Sfamily} }), "\n";
}

ARRAYS OF HASHES
Declaration of anARRAY OF HASHES

@AoH = (

{
Lead = "fred",
Friend => "barney",

|3

{
Lead => "george",
Wife => "jane",
Son => ‘"elroy",

|3

{
Lead => "homer",
Wife => "marge",
Son => "bart",

}

);
Generation of anARRAY OF HASHES

r eading from file
f ormat: LEAD=fred FRIEND=barney
while (<>){
$rec = {};
for $field (split) {
($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
push @AoH, $rec;
}

r eading from file
f ormat: LEAD=fred FRIEND=barney
no t emp
while (<>) {
push @AoH, { split /[\s+=]/ };
}

calling a function that returns a key/value pair list, like
" lead","fred","daughter","pebbles"
while (%fields = getnextpairset()) {

push @AoH, { %fields };

}
| ikewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($) };
}

198 2004-11-05 perl v5.8.6

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

add key/value to an element
$AoH[O{pet} = "dino";
$AOH[2){pet} = "santa’s little helper";

Access and Printing of am@ARRAY OF HASHES

one element
$AoH[O[{lead} = "fred";

another element
$AoH[1[{lead} =~ s/(\W)\u$1/;

print the whole thing with refs
for $href (@AoH) {
print "{";
for $role (keys %S$href) {
print "$role=$href->{$role} ";
}

print "A\n";
}
print the whole thing with indices
for $i (0 .. $#AoH) {
print "$iis { ";
for $role (keys %{ $AoH[$i] }) {
print "$role=$AoH[$i]{$role} *;
}

print "A\n";
}
print the whole thing one at a time
for $i (0 .. $#A0oH) {
for $role (keys %{ $AoH[$i] }) {
print "elt $i $role is $AoH[$il{$role}\n";
}

}

HASHES OF HASHES
Declaration of aHASH OF HASHES

%HoH = (
flintstones => {
lead = "fred",
pal => "barney",
2
jetsons => {
lead => ‘"george",
wife => 'jane",
"his boy" => "elroy",
2
simpsons = {
lead => "homer",
wife => "marge",
kid => "bart",
3
);

Generation of aHASH OF HASHES

perl v5.8.6 2004-11-05 199

PERLDSC(1) PerProgrammers Reference Guide

200

r eading from file
f lintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {
next unless s/"(.*?):\s*//;
$who = $1;
for $field (split) {
($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;
}

r eading from file; more temps
while (<>){
next unless s/"(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {
($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}

calling a function that returns a key,value hash

for $group ("simpsons”, "jetsons", "flintstones") {
$HoH{$group} = { get_family($group) };

}

| ikewise, but using temps

for $group ("simpsons”, "jetsons", "flintstones") {
%members = get_family($group);
$HoH{$group} = { Yomembers };

}

append new members to an existing family
%new_folks = (
wife => "wilma",
pet => "dino",
);
for $what (keys %new_folks) {
$HoH({flintstones{$what} = $new_folks{$what};

}

Access and Printing of aHASH OF HASHES

one element
$HoH({flintstones}H{wife} = "wilma";

another element
$HoH{simpsons}Klead} =" s/(\w)\u$1/;

print the whole thing
foreach $family (keys %HoH) {
print "$family: { ";
for $role (keys %{ $HoH{$family} }) {
print "$role=$HoH{$familyH$role} ";

}
print "A\n";

2004-11-05

PERLDSC(1)

perl v5.8.6

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {
print "$family: {";
for $role (sort keys %{ $HoH{Sfamily} }) {
print "$role=$HoH{$familyH$role} ";
}
print "An";
}
print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH) {
print "$family: {";
for $role (sort keys %{ $HoH{Sfamily} }) {
print "$role=$HoH{$familyH$role} ";

}

print "A\n";
}
establish a sort order (rank) for each role
$i=0;

for (qw(lead wife son daughter pal pet)) { $rank{$ } = ++$i }

now print the whole thing sorted by number of members

foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH) {
print "$family: {";
and print these according to rank order
for $role (sort { $rank{$a} <=> $rank{$b}} keys %{ $HoH{$family}}) {

print "$role=$HoH{$familyH$role} ";

}
print "An";

}

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here's a sample showing hwe to create and use a record whose fields are ofyrdiffierent sorts:

$rec ={
TEXT => $string,
SEQUENCE =>[@old_values],
LOOKUP => { %some_table },
THATCODE =>\&some_function,
THISCODE => sub{$_[0]**$ [1]},
HANDLE => *STDOUT,

2

print $rec->{TEXT};

print $rec->{SEQUENCE}[0];
$last = pop @ { $rec->{SEQUENCE} };

print $rec->{LOOKUP}"key"};

($first_k, $first_v) = each %{ $rec->{LOOKUP} };
$answer = $rec->{THATCODE}->($arg);
$answer = $rec->{THISCODE}->($argl, $arg2);
careful of extra block braces on fh ref

print { $rec->{HANDLE} } "a string\n";

use FileHandle;
$rec->{HANDLE}->autoflush(1);
$rec->{HANDLE}->print(" a string\n");

perl v5.8.6 2004-11-05 201

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

Declaration of aHASH OF COMPLEX RECORDS

%TV = (
flintstones =>{
series => "flintstones",
nights => [g w(monday thursday friday)],
members => |

{ n ame => "fred", role =>"lead", age => 36, },
{ name =>"wilma", role => "wife", age =>31,},
{ n ame => "pebbles", role => "kid", age => 4, H
1,
2
jetsons => {
series => "jetsons",
nights => [g w(wednesday saturday)],
members => |
{ name =>"george", role=>"lead", age =>41,},
{ name =>"jane", role => "wife", age =>39,},
{ n ame =>"elroy", role => "kid", age => 9, H
1,
2
simpsons = {
series => "simpsons",
nights => [g w(monday)],
members => |
{ name =>"homer", role => "lead", age => 34, },
{ name =>"marge", role => "wife", age => 37, },
{ name =>"bart", role =>"kid", age => 11, H
1,
2

Generation of aHASH OF COMPLEX RECORDS

r eading from file

t his is most easily done by having the file itself be

in t he raw data format as shown above. perl is happy
to p arse complex data structures if declared as data, so
sometimes it's easiest to do that

here’s a piece by piece build up
$rec = {};

$rec->{series} = "flintstones";
$rec->{nights} = [find_days() J;

@members = ();
assume this file in field=value syntax
while (<>) {
%fields = split /[\s=]+/;
push @members, { %fields };
}

$rec->{members} = [@members |;

now remember the whole thing
$TV{ $rec->{series} } = $rec;

202 2004-11-05 perl v5.8.6

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

HHEHH R R R T T R R R
now, you might want to make interesting extra fields that
i nclude pointers back into the same data structure so if
change one piece, it changes everywhere, like for example
if y ou wanted a {kids} field that was a reference
to an a rray of the kids’ records without having duplicate
r ecords and thus update problems.
BRI R
foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer

@kids = ();
for $person (@{ $rec->{members} }) {
if ($person->{role} =" /kid [son Cdaughter/) {

push @kids, $person;
}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec->{kids} = [@kids J;
}

you copied the array, but the array itself contains pointers
to u ncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0{age}++;

t hen this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsonsHkids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {
print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family{members}}) {
print " $who->{name} ($who->{role}), age $who->{age}\n";
}

print “it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}{kids} }), " kids named ";
print join (", ", map {$_->{name} } @{ $TV{$familyHkids} });
print "\n";
}
Database Ties
You cannot easily tie a multilel data structure (such as a hash of hashes) to a dbm file. The first problem
is that all lut GDBM and Berleley DB have sze limitations, but beyond that, you alsovégroblems with
how references are to be represented on disk. One experimental module that does partially attempt to
address this need is thd.DBM module. Checkyour nearestCPAN site as described in perlmodlib for
source code tBILDBM .

SEE ALSO
perlref(1), perllol (1), perldata(1), perlobj(1)

AUTHOR
Tom Christiansen tchrist@perl.corm

Last update: Wed Oct 23 04:57:8ET DST 1996

perl v5.8.6 2004-11-05 203

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

NAME
perlrequick — Perl regular expressions quick start

DESCRIPTION
This page ceers the very basics of understanding, creating and using regydeessions (egexes’) in
Perl.

The Guide

Simple word matching

The simplest rgex is smply a word, or more generallg dring of charactersA regex ansisting of a wrd
matches anstring that contains that word:

"Hello World" =~ /World/; # matches

In this statemeniVorld is a rggex and the// enclosingWorld/ tells perl to search a string for a match.
The operator=™ associates the string with thegeg match and produces a true value if thgekematched,
or false if the rgex did not match. In our cas®orld matches the second word"idello World" , S0
the expression is true. This idea hagesa variations.

Expressions lig this are useful in conditionals:
print "It matches\n" if "Hello World" =~ /World/;
The sense of the match can beersed by usindg™ operator:
print "It doesn’t match\n" if "Hello World" ! /World/;
The literal string in the regecan be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =" /$greeting/;

If you're matching against_, the$_ =~ part can be omitted:

$_="Hello World";
print "It matches\n" if /World/;

Finally, the// default delimiters for a match can be changed to arbitrary delimiters by putting aout
front:

"Hello World" =~ m!World!; # matches, delimited by 'V’
"Hello World" =~ m{World}; # matches, note the matching '{}’
"fusr/bin/per!l" =~ m"/perl"; # matches after '/usr/bin’,

' I’ becomes an ordinary char

o o

Regees must match a part of the striegactly in order for the statement to be true:

"Hello World" =" /world/; # doesn’t match, case sensitive
"Hello World" =" /o WV, # matches, ' " is an ordinary char
"Hello World" =~ /World /; # doesn’t match, no ’’ at end

perl will always match at the earliest possible point in the string:

"Hello World" =" /o/; # matches '0’ in 'Hello’
"That hat is red" = /hat/; # matches 'hat’ in "'That’

Not all characters can be used 'as is’ in a match. Some charactersnustibetharacters are reserved for
use in rege notation. Themetacharacters are

{10°s. OF+2\
A metacharacter can be matched by putting a backslash before it:

"2+2=4" =" [2+2]; # doesn't match, + is a metacharacter
"2+2=4" =" [2\+2/, # matches, \+ is treated like an ordinary +
'C:\WIN32' =7 /C:\WIN/; # matches
"fusr/bin/per!" =~ Musr\/binVperl/; # matches

In the last regex, the forward sldgh is also backslashed, because it is used to delimit the regex.

Non-printableASCII characters are representeddsgape sequencesCommon gamples ardt for a tab,
\n for a newline, andr for a carriage returnArbitrary bytes are represented by octal escape sequences,
e.9.,\033 , or hexadecimal escape sequences, &GB :

204 2004-11-05 perl v5.8.6

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

"1000\t2000" =~ m(0\t2) # matches

cat" = N143\x61\x74/ # matches, but a weird way to spell cat

Regees ae treated mostly as double quoted strings, so variable substitution works:

$foo = 'house’;
‘cathouse’ =™ /cat$foo/; # matches
'housecat’ =" /${foo}cat/; # matches

With all of the rgexes aove, if the rggex matched aywhere in the string, it was considered a mafth.
specify whereit should match, we would use th@chor metacharacters and$. The anchof means
match at the beginning of the string and the anghoreans match at the end of the string, or before a
newline at the end of the string. Some examples:

"housekeeper" =" /keeper/; # matches
"housekeeper" =" I"keeper/; # doesn’t match
"housekeeper" =" /keeper$/; # matches
"housekeeper\n" =~ /keeper$/; # matches
"housekeeper" =" "housekeeper$/; # matches

Using character classes

A character classallows a set of possible characters, rather than just a single chataat&tch at a
particular point in a Igex. Characteclasses are denoted by brats{...] , with the set of characters to
be possibly matched inside. Here are some examples:

[catl; # matches 'cat’

/[ber]at/; # matches 'bat’, 'cat’, or 'rat’

"abc" =" /[cab]/; # matches 'a’
In the last statementyen though’c’ is the first character in the class, the earliest point at whichdbg re
can match is&’

/[lyY][eE][sS]/; # match 'yes’ in a case-insensitive way

' yes’,’Yes', 'YES, etc.

lyesli; # also match 'yes’ in a case-insensitive way

The last example shows a match withian modifier, which makes the match case-insensiti

Character classes alsoveaxrdinary and special charactersitbhe sets of ordinary and special characters
inside a character class are different than those outside a character class. The special characters for a
character class ard\"$ and are matched using an escape:

/\c]ldef/; # matches ']def’ or 'cdef’

$x = "ber;
/[$x]at/; # matches 'bat, 'cat’, or rat’
N\$x]at/; # matches "$at’ or 'xat’

/\$x]at/; # matches "\at’, 'bat, 'cat’, or 'rat’

The special charactér’ acts as a range operator within character classes, so that the unwieldy
[0123456789] and[abc...xyz] become the svelf®-9] and[a-z]

/item[0-9)/; # matches 'itemQ’ or ... or 'item9’
/[0-9a-fA-F]/; # matches a hexadecimal digit
If '=" is the first or last character in a character class, it is treated as an ordinary character.

The special charactérin the first position of a character class denotasgated character classwhich
matches ancharacter but those in the bratk Both|...] and["...] must match a character the
match &ils. Then

["alat/; # doesn’t match 'aat’ or 'at’, but matches
all other ’bat’, 'cat, 'Oat’, '%at’, etc.

0-9); # matches a non-numeric character

/[aat/; # matches 'aat’ or "at’; here " is ordinary

Perl has seeral abbreviations for common character classes:
* \dis adgit and represents

perl v5.8.6 2004-11-05 205

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

206

[0-9]

» \sis awvhitespace character and represents
[\ \\rAn\f]

* \wis aword character (alphanumeric or _) and represents
[0-9a-zA-Z]

 \Dis aregded \d; it represents wrcharacter but a digit
[[0-9]

» \Sisaregded\s; it represents mmon-whitespace character
M\s]

 \Wis aregded \w; it represents gmon-word character
(W]

e The period .matches aycharacter but “\n”

The \d\s\W\D\S\W abbreviations can be used both inside and outside of character clddses.are
some in use:

Nd\d:\d\d:\d\d/; # matches a hh:mm:ss time format

/N\d\s)/; # matches any digit or whitespace character
AWAWAWY; # matches a word char, followed by a

non-word char, followed by a word char
[.rtl; # matches any two chars, followed by 'rt’
/end\./; # matches 'end.’
lend[.J/; # same thing, matches 'end.’

The word anchor \b matches a boundary between a word character and a aronearactelw\W or
\WAw :

$x = "Housecat catenates house and cat";

$x =" Nbcat/; # matches cat in 'catenates’
$x =" /cat\b/; # matches cat in 'housecat’
$x =" N\bcat\b/; # matches 'cat’ at end of string

In the last example, the end of the string is considered a word boundary.

Matching this or that

We @an match different character strings with #iernation metacharacterd . To matchdog or cat ,
we form the rgexdog [tat . As before, perl will try to match the gex at the earliest possible point in the
string. Ateach character position, perl will first try to match the first altemyadiog. If dog doesn’t
match, perl will then try the wé alternatve, cat . If cat doesnt match eitherthen the match fails and
perl moves to he next position in the string. Some examples:

“cats and dogs" =" /cat Cdog [hird/; # matches "cat"
"cats and dogs" =" /dog Ctat [hird/; # matches "cat"
Even thougtdog is the first alternate in the second regegat is able to match earlier in the string.
"cats" = /c [taltat [tats/; # matches "c"
"cats" = /cats [tat [talt/; # matches "cats"

At a given character position, the first alternagithat allows the mgex match to succeed will be the one that
matches. Here, all the alterna$8 match at the first string position, so the first matches.
Grouping things and hierarchical matching

The grouping metacharacter§ allow a part of a rgex to be teated as a single uniPats of a rgex are
grouped by enclosing them in parenthes&be regyex house(cat [keeper) means matcthouse
followed by eithercat or keeper . Some more examples are

2004-11-05 perl v5.8.6

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

/(a [b)bl; # matches 'ab’ or 'bb’
/[Ca [b)c/; # matches 'ac’ at start of string or 'bc’ anywhere

/house(cat 0)f; # matches either 'housecat’ or 'house’
/house(cat(s DO 0O/; # matches either 'housecats’ or 'housecat’ or
' house’. Note groups can be nested.

"20" =" /(19 200O\d\d/; # matches the null alternative '(\d\d’,
because '20\d\d’ can’'t match
Extracting matches

The grouping metacharactg))s also allav the extraction of the parts of a string that matchéa. each
grouping, the part that matched inside goes into the spetiables$l, $2, eic. They can be used just as
ordinary variables:

extract hours, minutes, seconds

$time =" /(\d\d): (\d\d):(\d\d)/; # match hh:mm:ss format
$hours = $1;

$minutes = $2;

$seconds = $3;

In list context, a matchregex/ with groupings will return the list of matchedlues($1,%2,...)
So we could rewrite it as

($hours, $minutes, $second) = ($time =" /(\d\d):(\d\d): (\d\d)/);

If the groupings in a gex are nested$l gets the group with the leftmost opening parenth&gishe net
opening parenthesis, etEor example, here is a compleegex and the matching variables indicated lvelo
it:
/(ab(cd Cef)((gi) O));
1 2 34

Associated with the matching@rables$l, $2, ... are thebackreferences\l ,\2 , ... Backreferenceare
matching variables that can be usesidea regex

/(W \WwWA\W)\s\1/; # find sequences like 'the the’ in string
$1, $2, ... should only be used outside of a regex,\dnd?2 , ... only inside a regex.

Matching repetitions

The quantifier metacharacters, *, +, and{} allow us to determine the number of repeats of a portion of
a regex we aonsider to be a matchQuantifiers are put immediately after the charadtearacter class, or
grouping that we want to specifirhey havethe following meanings:

e a?=match’a 1 or 0times

e a* =match 'a’ 0 or more times, i.e., mnumber of times
 at+=match’a 1 or more times, i.e., at least once

« a{n,m} =match at leash times, but not more thantimes.
« a{n,} =match at leash or more times

« a{n} =match exactlyn times

Here are some examples:

[[a-z]+H\sH\d*/; # match a lowercase word, at least some space, and
any number of digits

[(w+)\s+\1/; # match doubled words of arbitrary length

$year =" \d{2,4}/; # make sure year is at least 2 but not more

t han 4 digits
$year =" \d{4} Od{2}y,; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing¢earenatch.
So we hge

perl v5.8.6 2004-11-05 207

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

208

$x = 'the cat in the hat’;
$x =" I"(.*)(at)(.*)$/; # matches,

$1 = ' thecatintheh’
$2 = at’
$3 = (0 matches)

The first quantifier* grabs as much of the string as possible while stiliffgathe rgex match. The
second quantifier has no string left to it, so it matches 0 times.

Mor e matching
There are a f& more things you might want to kmoabout matching operators. In the code

$pattern = 'Seuss’;
while (<>) {

print if /$pattern/;
}

perl has to rea@luate $pattern each time through the loogf $pattern won’t be danging, use the
/lo madifier, to only perform variable substitutions oncH.you dont want ary substitutions at all, use
the special delimitem” :

@pattern = ('Seuss’);
m/@pattern/; # matches 'Seuss’
m’@pattern’; # matches the literal string '@pattern’

The global modifief/g allows the matching operator to match within a string asyntiares as possible.
In scalar context, succegsimatches aginst a string will hae /g jump from match to match,eleping
track of position in the string as it goes alongu can get or set the position with tphes() function.
For example,

$x = "cat dog house"; # 3 words
while ($x =7 /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If yotiwant the position reset after
failure to match, add théc , as n/regex/gc

In list context, //g returns a list of matched groupings, or if there are no groupings, a list of matches to the
whole reg&. So

@words = ($x =" /(\w+)/g); # matches,
$word[0] = cat’
$word[1] ='dog’
$word[2] = 'house’

Search and replace

Search and replace is performed usifrggex/replacement/modifiers . Thereplacement is
a Ferl double quoted string that replaces in the string whate matched with theegex . The operator
=" is also used here to associate a string @/ith . If matching aginst$_, the$ =" can be dropped.

If there is a matchs/// returns the number of substitutions made, otherwise it retalss. fHereare a
few examples:

$x = "Time to feed the cat!";

$x =" s/cat/hacker/; # $x c ontains "Time to feed the hacker!"
$y = "quoted words™;
By =" s/7(*)'$/$1/; # strip single quotes,

$y c ontains "quoted words"
With thes/// operatoy the matched ariables$1, $2, etc. areimmediately &ailable for use in the

2004-11-05 perl v5.8.6

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

BUGS

replacement expression. With the global modifség will search and replace all occurrences of the
rege in the string:

$x ="| batted 4 for 4";

$x =" s/4/fourl, # $x c ontains "l batted four for 4"
$x ="l batted 4 for 4";
$x =" s/4/four/g; # $x c ontains "l batted four for four"
The erduation modifiers//le wraps aneval{...} around the replacement string and thdwated

result is substituted for the matched substring. Some examples:

r everse all the words in a string
$x = "the cat in the hat";
$x =" s/(\w+)/reverse $1/ge; # $x c ontains "eht tac ni eht tah"

convert percentage to decimal
$x = "A 39% hit rate";
$x =" s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows tt</ can use other delimiters, suchsdd ands{}{} , and even s{}//
If single quotes are used’ , then the regeand replacement are treated as single quoted strings.

The split operator

split /regex/, string splits string into a list of substrings and returns that list. Thgere
determines the character sequencedtratg is split with respect toFor example, to split a string into
words, use

$x = "Calvin and Hobbes";

@word = split \s+/, $x; # $word[0] = 'Calvin’
$word[1] ="and’
$word[2] = 'Hobbes’

To extract a comma-delimited list of numbers, use

$x="1.618,2.718, 3.142";

@const = split /,\s*/, $x; # $const[0] ='1.618’
$const[1] ='2.718
$const[2] ='3.142

If the empty rgex// is used, the string is split into individual characters. If tlgeedas groupings, then
the list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!(/)!, $x; # $parts[0] ="
$parts[1] ="/
$parts[2] = "usr’
$parts[3] ="/
$parts[4] = 'bin’

Since the first character 8k matched the regegplit prepended an empty initial element to the list.

None.

SEE ALSO

This is just a quick start guidd=or a more in-depth tutorial on gexes, see perlretut and for the reference
page, see perlre.

AUTHOR AND COPYRIGHT

Copyright (c) 2000 Mark Kvale All rights reserved.
This document may be distributed under the same terms as Perl itself.

perl v5.8.6 2004-11-05 209

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

Acknowledgments

The author would li to hank Mark-Jason Dominus, Tom Christiansen, llya Zakiene Brad Hughes,
and Mike Giroux for all their helpful comments.

210 2004-11-05 perl v5.8.6

PERLSTYLE(1) PerProgrammers Reference Guide PERLSTYLE(1)

NAME
peristyle — Perl style guide

DESCRIPTION
Each programmer will, of course,\ahs or her own preferences ingaeds to formatting, but there are
some general guidelines that will neeyour programs easier to read, understand, and maintain.

The most important thing is to run your programs under-theflag at all times.You may turn it of

explicitly for particular portions of code via the warnings pragma or th& W variable if you must.
You should also akays run undeuse strict or knowv the reason whnot. Theuse sigtrap and
even use diagnostics pragmas may also pre wseful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-lin8LOCK should line up with the égword that started the construdBeyond
that, he has other preferences that am¥rong:

e 4-column indent.

» Opening curly on same line asykvord, if possible, otherwise line up.
» Space before the opening curly of a multi-IBigOCK.

* One-lineBLOCK may be put on one line, including curlies.

* No gace before the semicolon.

* Semicolon omitted in “shortone-lineBLOCK.

* Space around most operators.

e Space around a “complexsubscript (inside brackets).

» Blank lines between chunks that do different things.

* Uncuddled elses.

* No space between function name and its opening parenthesis.
* Space after each comma.

» Long lines broken after an operator (except “aadd “or”).

e Space after last parenthesis matching on current line.

» Line up corresponding items vertically.

e Omit redundant punctuation as long as clarity ddesffer.

Larry has his reasons for each of these thingshb doesr’claim that @eryone elses mind works the
same as his does.

Here are some other more substantiyle issues to think about:

e Just because yoGQAN do something a particular way dodsmiean that yolSHOULD do it that vay.
Perl is designed to g you seeral ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) [die "Can't open $foo: $!";
is better than
die "Can’t open $foo: $!" unless open(FOO,$foo);
because the second way hides the main point of the statement in a mauiifiee other hand
print "Starting analysis\n" if $verbose;
is better than
$verbose && print "Starting analysis\n®;
because the main point ismlhether the user typed/ or not.

Similarly, just because an operator lets you assume default arguments dwssnthat you he o
malke wse of the defults. Thedefaults are there for lazy systems programmers writing one-shot
programs. lfyou want your program to be readable, consider supplying the argument.

perl v5.8.6 2004-11-05 211

PERLSTYLE(1) PerProgrammers Reference Guide PERLSTYLE(1)

212

Along the same lines, just because YIAN omit parentheses in mamplaces doesm’'mean that you
ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce ondiidn% k
Vi.

Even if you arert' in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parentheses in the wrong place.

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl providastthe
operator so you can exit in the middle. Just “outdétrd’ |ittle to male it more visible:

LINE:
for (3;) {
statements;
last LINE if $foo;
next LINE if /"#/,
statements;
}

Don't be draid to use loop labels-they're there to enhance readability as well as tonaltwltilevel
loop breaks. See the previous example.

Avoid usinggrep() (or map() or ‘backticks’ in a void context, that is, when you just ¥hiavay their
return \alues. Thoséunctions all hae return values, so use them. Otherwise ugmeach()loop or
thesystem(function instead.

For portability when using features that may not be implementedreny enachine, test the construct
in an &a to see if it fails. If you knawv what version or patchlel a particular feature was
implemented, you can te$] ($PERL_VERSIONin English) to se if it will be there. The
Config module will also let you interrogate values determined byCinafigure program when Perl
was installed.

Choose mnemonic identifiers. If you caremember what mnemonic means, yeupt a problem.

While short identifiers lie $gotit are probably ok, use underscores to separatesy It is
generally easier to redbvar_names_like_this than $VarNamesLikeThis , especially for
non-natve <ealers of English. 18 dso a simple rule that works consistently with
VAR_NAMES_LIKE_THIS

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module
names for ‘pragma’ modules lile integer andstrict . Other modules should begin with a
capital letter and use mixed case, but probably without underscores due to limitations imepfimiti
systems’ representations of module names as files that must fit imis@afse bytes.

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best asnadidase. E.g$obj —>as_string()

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

If you hare a eally hairy regular expression, use themodifier and put in some whitespace to mak
it look a little less lile line noise. Don't use slash as a delimiter when yougaee has slashes or
backslashes.

Use the ne “and” and “or’’ operators toeoid having to parenthesize list operators so much, and to
reduce the incidence of punctuation operators 8i& and . Call your subroutines as if thievere
functions or list operators towvaid excessie anpersands and parentheses.

Use here documents instead of repeatat() statements.

2004-11-05 perl v5.8.6

PERLSTYLE(1) PerProgrammers Reference Guide PERLSTYLE(1)

perl v5.8.6

Line up corresponding things verticalégpecially if it'd be bo long to fit on one line anyway.
$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;

$IDX = $ST_CTIME if $opt_c;

$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’'t mkdir $tmpdir: $!";
chdir($tmpdir) or die "can’t chdir $tmpdir: $!";

mkdir 'tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

Always check the return codes of system cali®od error messages should ge8®DERR include
which program caused the problem, what taidefl system call and arguments were, aviiRY
IMPORTANT) should contain the standard system error message for what went wiergs a smple
but sufficient example:

opendir(D, $dir) or die "can't opendir $dir: $!";
Line up your transliterations when it makes sense:
tr [abc]
[xyzl;

Think about reusability Why waste brainpower on a one-shot when you miggnttvio do something
like it agan? Considegeneralizing your code. Consider writing a module or object classsider
making your code run cleanly witkse strict anduse warnings (or —w) in effect. Consider
giving awvay your code. Consider changing your whole worldwieConsider... oh, ngr mind.

Be monsistent.
Be nice.

2004-11-05 213

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

NAME
perltrap — Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting tse warnings or use the-w switch; see perlbevarn and perlrun.
The second biggest trap is not making your entire program runnable uselestrict . The third

biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomedawk users should takgpecial note of the following:

» A Perl programecutes only once, not once for each input liveu can do an implicit loop with-n
or —p.

e The English module, loaded via
use English;

allows you to refer to special variables @di®/) with names (lile $RS), as though thewere inawk;
see perlvar for details.

» Semicolons are required after all simple statements in Perl (except at the end of a Wdie is
not a statement delimiter.

e Curly brackets are required @n s andwhile s.

» Variables begin with “$”, “@’ or ‘%'’ in Perl.

e Arrays inde from 0. Likewise string positions isubstr()andindex()

* You hae b decide whether your array has numeric or string indices.

» Hash values do not spring into existence upon mere reference.

* You hae b decide whether you want to use string or numeric comparisons.

» Reading an input line does not split it for yovdou get to split it to an array yourself. And tbplit()
operator has different arguments tlzavk's.

* The current input line is normally #_, not $0. It generally does not ke the newline stripped($0
is the name of the programeeuted.) Segerlvar.

» $<digit> does not refer to fields-it refers to substrings matched by the last match pattern.

e Theprint() statement does not add field and record separators unless fouaset$\ . You can set
$OFSand$ORSIf you're using the English module.

* You must open your files before you print to them.
* The range operator is *., not comma. The comma operator works as in C.

* The match operator is “=™", not

ur

" (""" is the ones complement operatpas in C)

why Ny

 The «ponentiation operator is**' ', not is the XOR operator as in C (You know, one
could get the feeling thatwk is basically incompatible with C.)

 The concatenation operator is'; not the null string. (Using the null string would rendépat/
/pat/ unparsable, because the third slastuld be interpreted as a division operatethe tolenizer
is in fact slightly context sensi for operators lig “/'’, **?”, and *>"". And in fact, *.” i tself can be
the beginning of a number.)

e« Thenext ,exit ,andcontinue keywords work differently.
* The following variables work differently:

214 2004-11-05 perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Awk Perl

ARGC scalar @ARGV (compare with $#ARGV)
ARGV[0] $0

FILENAME $ARGV

FNR $. - s omething

FS (whatever you like)
NF $#FId, or some such
NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/

RSTART length($")

SUBSEP $;

* You cannot seRSto a pattern, only a string.
* When in doubt, run thawk construct througla2p and see what it gés you.

C/C+Traps

Cerebral C and-€programmers should takote of the following:
* Curly brackets are required @n's andwhile 's.

* You must uselsif rather tharelse if

» Thebreak andcontinue keywords from C become in Pddst andnext , respectiely. Unlike
in C, these dmotwork within ado { } while construct. SeéLoop Control’in perlsyn.

e Theres no witch statement. (But & easy to lild one on the flysee “Basic BLOCKs and Switch
Statementsin perlsyn)

» Variables begin with “$”, “@’ or ‘%'’ in Perl.

e« Comments begin with'#"’, not “/*' or “/I'". Perl may interpret C/& comments as dision
operators, unterminated regular expressions or the defined-or operator.

* You cant take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

* ARGMnust be capitalizedbARGVI[0] is C'sargv[l] ,andargv[0] ends up ir$0.

» System calls such abnk(), unlink(), rename() etc. return nonzero for success, not ysfem()
however, returns zero for success.)

e Signal handlers deal with signal names, not humbérse kill -l to find their names on your
system.
Sed Traps

Seasonededprogrammers should takote of the following:

» A Perl programecutes only once, not once for each input liYeu can do an implicit loop withn
or —p.

» Backreferences in substitutions use’ t&ither than “\".
* The pattern matching metacharacters “(”, “)”, and@™d o not have backslashes in front.
* The range operator is , rather than comma.

Shell Traps
Sharp shell programmers shoulddakte of the following:

» The backtick operator does variable interpolation withogdrceto the presence of single quotes in the
command.

» The backtick operator does no translation of the return value, wslike

perl v5.8.6 2004-11-05 215

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

e Shells (especiallcsh) do sveal levels of substitution on each command line. Perl does substitution
in only certain constructs such as double quotes, backticks, angle brackets, and search patterns.

e Shells interpret scripts a little bit at a time. Perl compiles the entire program befsmatieg it
(except foBEGIN blocks, which gecute at compile time).

e The arguments arevalable via@ARG\hot $1, $2, etc.
* The environment is not automatically madeilable as separate scalar variables.

Perl Traps
Practicing Perl Programmers shouldgakte of the following:

 Remember that mgmoperations beheae dfferently in a list conte than thg do in a €alar one.See
perldata for details.

» Avoid barevords if you can, especially allwercase onesYou can't tell by just looking at it whether
a haravord is a function or a stringBy using quotes on strings and parentheses on function calls, you
won't ever get them confused.

* You cannot discern from mere inspection which builtins are unary operatershgi() and chdir())
and which are list operators (@ilprint() andunlink()). (Unlessprototyped, user-defined subroutines
canonly be list operators, mer unary ones.) See perlop and perlsub.

» People hae a fard time remembering that some functions default tpor @ ARG\Mor whatever, but
that others which you might expect to do not.

 The <H> construct is not the name of the filehandle, it is a readline operation on that h@hele.
data read is assigned$o only if the file read is the sole condition in a while loop:

while (<FH>) {1}
while (defined($_ = <FH>)) {}..
<FH>; # data discarded!

 Remember not to usewhen you need™ ; these tw constructs are quite different:

$x = [fool;
$x =" [fool;

e Thedo{} constructisrt'a real loop that you can use loop control on.

e Usemy() for local variables whewer you can getway with it (but see perlform for where you
cant). Usinglocal() actually gves a bcal value to a global variable, which Vea you open to
unforeseen side-effects of dynamic scoping.

» Ifyou localize an exported variable in a module, its exporédaewvill not change. The local name
becomes an alias to amm&alue but the external name is still an alias for the original.

Perl4 to Perl5 Traps

Practicing Perl4 Programmers shouldetalite of the following Perl4-to—Perl5 specific traps.

They're crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps
Anything thats been fixed as a perl4 bug, reved as a prl4 feature or deprecated as a perl4 feature
with the intent to encourage usage of some other perl5 feature.

Pasing Traps
Traps that appear to stem from thevrmrser.

Numerical Traps
Traps having to do with numerical or mathematical operators.

General data type traps
Traps ivolving perl standard data types.

Context Traps — scaldist contexts
Traps related to context within lists, scalar statements/declarations.

216 2004-11-05 perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Precedence Traps
Traps related to the precedence of parsinguation, and gecution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps
Traps related to the use of signals and signal handlers, general subroutines, and sorting, along with
sorting subroutines.

OSTraps
OS-specific traps.
DBM Traps
Traps specific to the use dibmopen() , and specific dom implementations.

Unclassified Traps
Everything else.

If you find an example of a ceersion trap that is not listed here, please submit itperbug@perl.org
for inclusion. Also note that at least some of these can be caught witls¢éhevarnings pragma or the
—-w switch.

Discontinuance, Deprecation, and BugFix traps
Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

* Discontinuance
Symbols starting with' *’* are no longer forced into package main, exceptfoitself (and@ , etc.).

package test;
$ legacy = 1;

package main;
print "\$_legacy is ",$_legacy,"\n";
perl4d prints: $_legacy is 1
perl5 prints: $_legacy is
* Deprecation
Double-colon is n@ a valid package separator in a variable name. Thus thesgebdfi@rently in
perl4 vs. perl5, because the packagestdmist.
$a=1;$b=2;$c=3;$var=4;
print "$a::$b::$c ";
print "$var::abc::xyz\n";
perld prints: 1::2::3 4::abc::xyz
perl5 prints: 3
Given that:: is now the preferred package delimitéris debatable whether this should be classed as
a kbug or not. (The older package delimjtelis used here)

$x=10;
print "x=${x}\n" ;

perl4 prints: x=10
perl5 prints: Can't find string terminator

anywhere before EOF

You can aoid this problem, and remain compatible with perl4, if yowagts explicitly include the
package name:

$x=10;
print "x=${main’x}\n" ;

Also see precedence traps, for parsing

* BugFix
The second and third argumentsspiice() are nov evaluated in scalar context (as the Camel
says) rather than list context.

perl v5.8.6 2004-11-05 217

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

sub subl{return(0,2) } # return a 2-element list
sub sub2{ return(1,2,3)} # r eturn a 3-element list
@al = ("a","b","c","d","e");

@a2 = splice(@al,&subl,&sub2);

print join(’ ’,@az2),"\n";

perld prints: ab
perl5prints: cd e

* Discontinuance
You can't do agoto into a block that is optimizediay. Darn.

goto markerl;

for(1){
markerl:
print "Here | ish\n";

}

perl4 prints: Here | is!
perl5 errors: Can't "goto” into the middle of a foreach loop

* Discontinuance
It is no longer syntactically ¢&l to use whitespace as the name of a variable, or as a delimiteryfor an
kind of quote construct. Double darn.

$a = ("foo bar");
$b=qbaz;
print "a is $a, b is $b\n";

perl4 prints: a is foo bar, b is baz
perl5 errors: Bareword found where operator expected

* Discontinuance
The archaic while/iBLOCK BLOCK syntax is no longer supported.

if{1}{

print "True!";
}

else {
print "False!";

}

perl4 prints: True!
perl5 errors: syntax error at test.pl line 1, near "if {"

* BugFix
The ** operator nw binds more tightly than unary minus. Itaw documented to work thisayw
before, but didn't.

print -4**2 "\n";

perl4 prints: 16
perl5 prints: -16

* Discontinuance

The meaning oforeach{} has changed slightly when it is iteratingeoa list which is not an array
This used to assign the list to a temporary atpay no longer does so (forfefiency). This means
that you'll now be iterating oer the actual values, notver copies of the alues. Modificationso the
loop variable can change the original values.

@list = ('ab’,’abc’,’bcd’,'def’);

foreach $var (grep(/ab/,@list)){

$var = 1;
}
print (join(:’,@list));

218 2004-11-05 perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

perld prints: ab:abc:bcd:def
perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then iterate
over that. For example, you might need to change

foreach $var (grep(/ab/,@list)){
to
foreach $var (@tmp = grep(/ab/,@list){

Otherwise changingvar will clobber the alues of@list . (This most often happens when you use
$_for the loop variable, and call subroutines in the loop thattgooperly localizes .)

* Discontinuance
split with no arguments o behaves like split "’ (which doesrt'return an initial null field if
$_ starts with whitespace), it used to behdike split \s+/ (which does).

$_="hi mom’;
print join(’:’, split);

perl4 prints: :hi:mom
perl5 prints: hi:mom

* BugFix
Perl 4 would ignore antext which was attached to are switch, alvays taking the code snippet from
the following ag. Additionally it would silently accept ane switch without a following ar. Bothof
these behaviors ke been fixed.

perl -e'print "attached to -e" 'print "separate arg

perl4 prints: separate arg
perl5 prints: attached to -e

perl -e

perl4 prints:
perl5 dies: No code specified for -e.

* Discontinuance
In Perl 4 the return value glush was undocumented, but it was actually the last value being pushed
onto the target list. In Perl 5 the return valuepokh is documented, but has changed, it is the
number of elements in the resulting list.
@x = (existing”;
print push(@x, 'first new’, 'second new’);
perl4 prints: second new
perl5 prints: 3
* Deprecation
Some error messages will be different.

* Discontinuance
In Perl 4, if in list context the delimiters to the firsgament ofsplit() were??, the result wuld
be placed i@ _as well as being returned. Perl 5 has more respect for your subroutine arguments.

* Discontinuance

Some bugs may ka been inadvertently renved. :-)
Parsing Traps
Perl4-to—Perl5 traps from having to do with parsing.

* Parsing
Note the space between . and =

$string . = "more string";
print $string;

perl v5.8.6 2004-11-05 219

PERLTRAP(1) PerlProgrammers Reference Guide

perl4 prints: more string
perl5 prints: syntax error at - line 1, near ". ="

* Parsing
Better parsing in perl 5

sub foo {}
&foo
print("hello, world\n");

perl4 prints: hello, world
perl5 prints: syntax error

* Parsing
“if it looks like a function, it is a functionrule.

print
($foo == 1) ? "is one\n" : "is zero\n";

perl4 prints: is zero

perl5 warns: "Useless use of a constant in void context” if using -w

* Parsing

PERLTRAP(1)

String interpolation of th&#array construct differs when braces are to used around the name.

@a = (1..3);
print "${#a}";

perl4 prints: 2
perl5 fails with syntax error

@ = (1.3);
print "$#{a}";

perl4 prints: {a}
perl5 prints: 2

* Parsing

When perl seesnap { (or grep {), it has to guess whether thestarts aBLOCK or a hash
reference. If it guesses wrong, it will report a syntax error negr trel the missing (or urpected)

comma.

Use unary+ before{ on a hash reference, and unargpplied to the first thing in BLOCK (after{),

for perl to guess right all the time. (See “map’perlfunc.)

Numerical Traps

Perl4-to—Perl5 traps having to do with numerical operators, operands, or output from same.

* Numerical

Formatted output and significant digits. In general, Perl 5 tries to be more precisxample, on a

Solaris Sparc:

print 7.373504 - 0, "\n";
printf "%20.18f\n", 7.373504 - 0O;

Perl4 prints:
7.3750399999999996141
7.375039999999999614

Perl5 prints:
7.373504
7.375039999999999614

Notice hav the first result looks better in Perl 5.

Your results may ary, since your floating point formatting routines aneere floating point format

may be slightly different.

220 2004-11-05

perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

* Numerical
This specific item has been deleted. It demonstratedthe auto-increment operator would not
catch when a number wenten the signed int limit.Fixed in version 5.003_04. Butvedys be vary
when using large inggers. Ifin doubt:

use Math::Biglint;

* Numerical
Assignment of return values from numeric equality tests does adk i perl5 when the test
evduates to false (0). Logical testsmoeturn a null, instead of 0

$p = (Btest == 1);
print $p,"\n";

perl4 prints: 0
perl5 prints:

Also see “General Regular Expression Traps using s///; dtor another example of this we
feature...

* Bitwise string ops
When bitwise operators which can operate upon either numbers or s&irigs (") are given only
strings as arguments, perléwd treat the operands as bitstrings so long as the program contained a
call to thevec() function. perl5 treats the string operands as bitstrings. (See “Bitwise String
Operators’in perlop for more details.)

$fred ="10";

$bharney = "12";

$betty = $fred & $barney;

print "$betty\n";

Uncomment the next line to change perl4’s behavior
($dummy) = vec("dummy", 0, 0);

Perl4 prints:
8

Perl5 prints:
10

If v ec() is used anywhere in the program, both print:
10

General data type traps
Perl4—to—Perl5 traps wlving most data-types, and their usage within certain expressions and/or context.

* (Arrays)
Negaive aray subscripts n@ count from the end of the array.

@a=(1,23,4,5)
print "The third element of the array is $a[3] also expressed as $a[-2] \n";

perl4 prints: The third element of the array is 4 also expressed as
perl5 prints: The third element of the array is 4 also expressed as 4

* (Arrays)
Setting$#array lower naw discards array elements, and makes them impossible teereco
@a = (a,b,c,d,e);
print "Before: ",join("’,@a);
$#a =1,
print ", After: " join(",@a);
$#a =3;

print ", Recovered: "join(’,@a),"\n";

perl4 prints: Before: abcde, After: ab, Recovered: abcd
perl5 prints: Before: abcde, After: ab, Recovered: ab

perl v5.8.6 2004-11-05 221

PERLTRAP(1) PerlProgrammers Reference Guide

* (Hashes)
Hashes get defined before use

local($s,@a,%h);

die "scalar \$s defined" if defined($s);
die "array \@a defined" if defined(@a);
die "hash \%h defined" if defined(%h);

perl4 prints:
perl5 dies: hash %h defined

Perl will nov generate a warning when it sees defined(@a) and defined(%h).

* (Globs)

PERLTRAP(1)

glob assignment from variable taniable will fail if the assigned variable is localized subsequent to

the assignment
@a = ("This is Perl 4);
*b = *a,
local(@a);
print @b,"\n";

perl4 prints: This is Perl 4
perl5 prints:

* (Globs)

Assigningundef to a glob has no effect in Perl 5. In Perl 4 it undefines the associated satlar (b

may hae aher side effects including SEGVs). Perl 5 will also warmrifief

is assigned to a

typeglob (Note that assigningndef to a typeglob is diérent than calling thandef function on a

typeglob (indef *foo), which has quite a feeffects.

$foo = "bar";
*foo = undef;
print $foo;

perl4 prints:

perld warns: "Use of uninitialized variable" if using -w

perl5 prints: bar

perl5 warns: "Undefined value assigned to typeglob" if using -w

* (Scalar String)

Changes in unary getion (of strings) This change effects both the return value and what it does to

auto(magic)increment.

$x = "aaa";
print ++$x," : ";
print -$x," : *;
print ++$x,"\n";

perld prints:aab:-0:1
perl5 prints: aab : -aab : aac

* (Constants)
perl 4 lets you modify constants:

$foo = "x";

&mod($foo);

for ($x = 0; $x < 3; $x++) {
&mod("a");

}

sub mod {
print "before: $_[0]";
$ 0] ="m"
print" after: $_[0]\n";

222 2004-11-05

perl v5.8.6

PERITRAP(1)

* (Scalars)

PerlProgrammers Reference Guide

The behavior is slightly different for:

* (Variable

print "$x", defined $x

perl4:1
perl 5: <no output, $x is not called into existence>

Suicide)

perl4:

before: x after:m

before:a after:m

before:m after:m

before:m after:m

Perl5:

before: x after:m

Modification of a read-only value attempted at foo.pl line 12.
before: a

PERLTRAP(1)

Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the samiorbfdra
hashes and scalars, that perl4 exhibits for only scalars.

$aGlobal{ "aKey" } = "global value";
print "MAIN:", $aGlobal{"aKey"}, "\n";
$GloballLevel = 0;

&test(*aGlobal);

sub test {
local(*theArgument) = @_;
local(%aNewLocal); # perl 4 '= 5.001l,m

$aNewLocal{"aKey"} = "this should never appear";

print "SUB: ", $theArgument{"aKey"}, "\n";
$aNewLocal{"aKey"} = "level $GlobalLevel";
$GlobalLevel++;
if($GlobalLevel<4) {

&test(*aNewLocal);
}

Perl4:
MAIN:global value
SUB: global value
SUB: level 0
SUB: level 1
SUB: level 2

Perl5:

MAIN:global value

SUB: global value

SUB: this should never appear
SUB: this should never appear
SUB: this should never appear

RS R R RW R

Context Traps — scalar list contexts

* (list context)
The elements of argument lists for formats arey eealuated in list conte&t. This means you can
interpolate list values mo

perl v5.8.6

2004-11-05

what should print

223

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

@fmt = ("foo","bar","baz");
format STDOUT=

@< @I @>>>>>
@fmt;

write;

perld errors: Please use commas to separate fields in file
perl5 prints: foo bar baz

* (scalar context)
The caller() function nav returns a falsealue in a scalar context if there is no call€his lets

library files determine if they're being required.
caller() ? (print "You rang?\n") : (print "Got a 0\n");

perld errors: There is no caller
perl5 prints: Gota 0

* (scalar context)
The comma operator in a scalar context i goaranteed to gée a salar context to its arguments.

@y= (a','b’,’c);
$x=(1, 2 @y);
print "x = $x\n";

hinks list context interpolates list
nows scalar uses length of list

c
3

Perl4 prints: X
Perl5 prints: X
* (list, builtin)
sprintf() is prototyped as ($;@), so its first argument \&mgiscalar context. Thus, if passed an
array it will probably not do what you want, unék=erl 4:

@z = ("%s%s’, 'foo’, 'bar’);
$x = sprintf(@z);
print $x;

#T
K

perl4 prints: foobar
perl5 prints: 3

printf() works the same as it did in Perl 4, though:

@z = ("%s%s’, 'foo’, 'bar’);
printf STDOUT (@2);

perl4 prints: foobar
perl5 prints: foobar

Precedence Traps

Perl4—to—Perl5 traps wolving precedence order.

Perl 4 has almost the same precedence rules as Perl 5 for the operatorg budi thae. Perl 4 havever,
seems to hae had some inconsistencies that made the behavior differ from what was documented.

* Precedence
LHS vs. RHS of ary assignment operatonLHS is evaluated first in perl4, second in perl5; this can

affect the relationship between side-effects in sub—expressions.
@arr = ('left’, right’);
$a{shift @arr} = shift @arr;
print join(", keys %a);
perld prints: left
perl5 prints: right

* Precedence
These are n@ semantic errors because of precedence:

224 2004-11-05 perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

@list = (1,2,3,4,5);
%map = ("a",1,"b",2,"c",3,"d",4);

$n = shift @list + 2; # firstitem in list plus 2
print "nis $n, *;
$m = keys %map + 2; # number of items in hash plus 2

print "m is $m\n";

perld prints: nis 3, mis 6
perl5 errors and fails to compile

* Precedence
The precedence of assignment operators ¢ the same as the precedence of assignment. Perl 4

mistalenly gavethem the precedence of the associated oper&toyou nav must parenthesize them
in expressions like

ffool ? ($a +=2) : ($a -= 2);
Otherwise
ffoo/ ? $a+=2:%a-=2
would be erroneously parsed as
(/fool ? $a +=2: $a) -= 2;
On the other hand,
$a +=/foo/ ?1:2;
now works as a C programmer would expect.

* Precedence
open FOO [die;

is now incorrect. Yu need parentheses around the filehandle. Otherwise, pedS fea statement
as its default precedence:

open(FOO @ die);

perld opens or dies
perl5 opens FOO, dying only if 'FOQO’ is false, i.e. never

* Precedence
perl4 gves the special variablé: precedence, where perl5 tredts as mainpackage

$a = "x"; print "$::a";
perl 4 prints: -:a
perl 5 prints: x
* Precedence
perl4 had buggy precedence for the file test operators vis-a-vis the assignment opétatsrs.
although the precedence table for perl4 leads one tovbele $foo .= "g" should parse as

((—e $foo) .="g") , it actually parses ag-e ($foo .= "g")) . In perl5, the precedence
is as documented.

-e $foo .= "qg"

perl4 prints: no output
perl5 prints: Can’t modify -e in concatenation

* Precedence
In perl4,keys(), each()andvalues()were special high-precedence operators that operated on a single
hash, but in perl5, tiyeare regular named unary operators. As documented, named unary operators
have lower precedence than the arithmetic and concatenation operators, but the perl4 ariants
of these operators actually bind tighter thar- . . Thus, for:

%foo = 1..10;
print keys %foo - 1

perl v5.8.6 2004-11-05 225

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

perld prints: 4
perl5 prints: Type of arg 1 to keys must be hash (not subtraction)

The perl4 behavior was probably more useful, if less consistent.

General Regular Expression Traps using s///, etc.
All types of RE traps.
* Reqular Expression

s'lhs'rhs’ now does no interpolation on either sid#. used to interpolat&lhs but not
$rhs . (And still does not match a literal '$’ in string)
$a=1;$b=2;

$string ='1 2 $a $b’;
$string =~ s'$a’'$b’;

print $string,"\n";

perld prints: $b 2 $a $b
perl5 prints: 1 2 $a $b

* Reqular Expression
m//g now attaches its state to the searched string rather thanghlarexpression. (Oncthe scope
of a block is left for the sub, the state of the searched string is lost)

$_="ababab";
while(m/ab/g){

&doit("blah");
}

sub doit{local($_) = shift; print "Got $_ "}

perld prints: Got blah Got blah Got blah Got blah
perl5 prints: infinite loop blah...

* Reqular Expression
Currently if you use them//o qualifier on a regular expression within an anonymous allib,
closures generated from that anonymous sub will use the regular expression as it was compiled when
it was used the very first time inyasuch closure.For instance, if you say

sub build_match {
my($left,$right) = @ _;
return sub { $_[0] =" /$left stuff $right/o; };

}

$good = build_match('foo’,’bar’);

$bad = build_match(’baz’,’blarch’);

print $good->('foo stuff bar’) ? "ok\n" : "not ok\n";
print $bad->('baz stuff blarch’) ? "ok\n" : "not ok\n";
print $bad->("foo stuff bar’) ? "not ok\n" : "ok\n";

For most builds of Perl5, this will print: ok not ok not ok

build_match()will always return a sub which matches the content$leit and$right as thg
were thdfirst time thatbuild_match()was called, not as theare in the current call.

* Reqular Expression
If no parentheses are used in a match, Perl4psetis the whole match, just likg&. Perl5 does not.

"abcdef" =" /b.*e/,
print "\$+ = $+\n";

perl4 prints: bcde
perl5 prints:

* Reqular Expression
substitution nas returns the null string if it fails

226 2004-11-05 perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

$string = "test";
$value = ($string =" s/fool/);
print $value, "\n";

perl4 prints: 0
perl5 prints:

Also see “Numerical Trapsfor another example of thiswdeature.

* Reqular Expression

s'lhs‘rhs’ (using backticks) is M a normal substitution, with no backtick expansion
$string ="";
$string =~ s”*hostname;

print $string, "\n";

perl4 prints: <the local hostname>
perl5 prints: hostname

* Reqular Expression
Stricter parsing of variables used in regular expressions

s/"(["$grpcl*$grpc[$optdSplussrep]?)//o;

perld: compiles w/o error
perl5: with Scalar found where operator expected ..., near "optplus”

an added component of this example, apparently from the same script, is the alotuaff the «
string after the substitutiorf$opt] is a character class in perl4 and an array subscript in perl5
$grpc ='a’;
$opt = 1}
$_='bar;
s/"(["$grpcl*$grpc[$opt]?)/fool,
print ;

perl4 prints: foo
perl5 prints: foobar

* Reqular Expression
Under perl5m?x? matches only once, &k?x?. Under perl4, it matched repeatedike /x/ or
mix! .

$test = "once";
sub match { $test =~ m?once?; }
&match();
if(&match()) {
n?x? matches more then once
print "perl4\n“;
} else{
n?x? matches only once
print "perl5\n";
}

perl4 prints: perl4
perl5 prints: perl5

* Reqular Expression
Unlike in Ruby, failed matches in Perl do not reset the match variable$2$1,,$, ...).
Subroutine, Signal, Sorting Traps

The general group of Perl4—to—Perl5 traps having to do with Signals, Sorting, and their related subroutines,
as well as general subroutine traps. Includes some OS-Specific traps.

* (Signals)
Barevords that used to look likgrings to Perl will nav look like subroutine calls if a subroutine by
that name is defined before the compiler sees them.

perl v5.8.6 2004-11-05 227

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

sub SeeYa { warn"Hasta la vista, baby!" }
$SIG{TERM'} = SeeYa;
print "SIGTERM is now $SIG{ TERMAn";

perl4 prints: SIGTERM is now main’'SeeYa
perl5 prints: SIGTERM is now main::1 (and warns "Hasta la vista, baby!")

Use—-w to catch this one

* (Sort Subroutine)
reverse is no longer allowed as the name of a sort subroutine.

sub reverse{ print "yup "; $a <=> $b }
print sort reverse (2,1,3);

perl4 prints: yup yup 123
perl5 prints: 123
perl5 warns (if using -w): Ambiguous call resolved as CORE::reverse()

* warn() won't let you specify a filehandle.
Although it _aWays printed toSTDERR warn() would let you specify a filehandle in perl4Vith
perl5 it does not.

warn STDERR "Foo!";
perl4 prints: Foo!
perl5 prints: String found where operator expected

OSTraps

*(SysV)
Under HPUX, and some other SysV OSes, one had to resetsignal handlerwithin the signal
handler function, each time a signal was handled with paiith perl5, the reset is modone
correctly Any code relying on the handler _not_ being reset wiliehia be ewaked.

Since version 5.002, Perl ussgaction()under SysV.

sub gotit {
print"Got @ _... ";
}
$SIG{INT’} = 'gotit’;
$0 = 1;
$pid = fork;
if ($pid) {
KillCINT’, $pid);
sleep(1);
KillCINT’, $pid);
} else{

while (1) {sleep(10);}

}
perld4 (HPUX) prints: Got INT...
perl5 (HPUX) prints: Got INT... Got INT...
*(SysV)
Under SysV OSeseek() on a file opened to appenrt now does the right thing wt. thefopen()
manpage. e.g., — When a file is opened for appénid, impossiblego overwrite information already
in the file.

228 2004-11-05 perl v5.8.6

PERITRAP(1)

PerlProgrammers Reference Guide PERLTRAP(1)

open(TEST,">>seek.test");
$start = tell TEST ;
foreach(1 .. 94

print TEST "$_";
}

$end = tell TEST ;
seek(TEST,$start,0);
print TEST "18 characters here";

perl4 (solaris) seek.test has: 18 characters here
perl5 (solaris) seek.testhas: 123456 7 89 18 characters here

Interpolation Traps

Perl4-to—Perl5 traps having to do withvhthings get interpolated within certain expressions, statements,
contexts, or whateer.

* | nterpolation

@ rnow dways interpolates an array in double-quotish strings.

print "To: someone@somewhere.com\n";

perl4 prints: To:someone@somewhere.com
perl <5.6.1, error : In string, @somewhere now must be written as \@somewhere
perl >=5.6.1, warning : Possible unintended interpolation of @somewhere in string

* | nterpolation

Double-quoted strings may no longer end with an unescaped $.

$foo = "foo$";
print "foo is $foo\n";

perl4 prints: foo is foo$
perl5 errors: Final $ should be \$ or $name

Note: perl5SDOES NO error on the terminating @ Bbar

* | nterpolation

Perl nav sometimes ealuates arbitrary xpressions inside braces that occur within double quotes
(usually when the opening brace is precededi by @.

@www = "buz";

$foo = "foo";

$bar = "bar";

sub foo { return "bar" };

print" [@{w.w.w} (b{main'foo} [;

perl4 prints: @{w.w.w} [(foo O
perl5 prints: (buz [bar O
Note that you canse strict; to ward of such trappiness under perl5.

* | nterpolation

The construct “this is $$xUsed to interpolate the pid at that point, butvrides to dereferencex.
3 by itself still works fine, howeer.

$s = "a reference";
$x = *s;
print "this is $$x\n";

perld prints: this is XXXx (XXX is the current pid)
perl5 prints: this is a reference

* | nterpolation

perl v5.8.6

Creation of hashes on the fly withal "EXPR" now requires either botfi's to be potected in the
specification of the hash name, or both curlies to be protelftbdth curlies are protected, the result
will be compatible with perl4 and perl5his is a very common practice, and should be changed to
use the block form odval{} if possible.

2004-11-05 229

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

$hashname = "foobar";

$key = "baz";

$value = 1234;

eval "\$$hashname{'$key’} = q Chvalue [
(defined($foobar{’baz’})) ? (print "Yup") : (print "Nope");

perld prints: Yup
perl5 prints: Nope

Changing

eval "\$$hashname{'$key’} = q Chvalue [
to

eval "\$\$hashname{'$key'} = q Chvalue [

causes the following result:

perl4 prints: Nope
perl5 prints: Yup

or, changing to
eval "\$$hashname\{"$key'\} = q Chvalue [
causes the following result:

perl4 prints: Yup
perl5 prints: Yup
and is compatible for both versions

* | nterpolation
perl4 programs which unconsciously rely on the bugs in earlier perl versions.

perl -e "$bar=g/not/; print "This is $foo{$bar} perl5"

perl4 prints: This is not perl5
perl5 prints: This is perl5

* | nterpolation
You dso have o be areful about array and hash brackets during interpolation.

print "$fool["

perl 4 prints: [
perl 5 prints: syntax error

print "$foo{"

perl 4 prints: {
perl 5 prints: syntax error

Perl 5 is expecting to find an inder key rame following the respegt lrackets, as well as an
ending bracket of the appropriate tyga.order to mimic the behavior of Perl 4, you must escape the
bracket lile .
print "$foo\[";
print "$foo\{";
* | nterpolation
Similarly, watch out for:

$foo = "baz";
print "\$$foo{barj\n";

perl4 prints: $baz{bar}
perl5 prints: $

Perl 5 is looking foi$foo{bar} = which doesrt exist, but perl 4 is happjust to &pand$foo to
“baz’ by itself. Watch out for this especially &val 's.

230 2004-11-05 perl v5.8.6

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

* | nterpolation
gq() string passed teval

eval qq(
foreach \$y (keys %\$x\) {
\$count++;
}
)i
perl4 runs this ok
perl5 prints: Can't find string terminator ")"

DBM Traps
GeneraDBM traps.

* DBM
Existing dbm databases created under perl4 otrer dom/ndbm tool) may cause the same script,
run under perl5, toafl. Thebuild of perl5 must hee keen linked with the same dbm/ndbm as the
default fordbmopen() to function properly withoutie 'ing to an extension dbm implementation.

dbmopen (%dbm, "file", undef);
print "ok\n";

perl4 prints: ok
perl5 prints: ok (IFF linked with -ldbm or -Indbm)

* DBM
Existing dbm databases created under perl4 otrer dom/ndbm tool) may cause the same script,
run under perl5, todil. Theerror generated when exceeding the limit on tegualue size will
cause perl5 to exit immediately.

dbmopen(DB, "testdb",0600) [0 die "couldn’'t open db! $!";
$DB{’trap’} = "x" x 1024, # value too large for most dom/ndbm
print "YUP\n";

perl4 prints:
dbm store returned -1, errno 28, key "trap" at - line 3.
YUP

perl5 prints:

dbm store returned -1, errno 28, key "trap" at - line 3.
Unclassified Traps
Everything else.

* require /do trap using returned value
If the file doit.pl has:

sub foo {
$rc = do "./do.pl";
return 8;

}

print &foo, "\n";

And the do.pl file has the following single line:
return 3;

Running doit.pl gres the following:

perl 4 prints: 3 (aborts the subroutine early)
perl 5 prints: 8

Same behavior if you replade with require

perl v5.8.6 2004-11-05 231

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

* split on empty string with.IMIT specified
$string = 7,
@list = split(/foo/, $string, 2)

Perl4 returns a one element list containing the empty string but Perl5 returns an empty list.
As always, if ary of these areer officially declared as bugs, they'll be fixed and rgeao

232 2004-11-05 perl v5.8.6

PERLBOOK(1) PerProgrammers Reference Guide PERLBOOK(1)

NAME
perlbook — Perl book information

DESCRIPTION
The Camel Book, officially known d@rogramming Perl, Thid Edition, by Larry Wall et al, is the definitie
reference work ogering nearly all of Perl. You can order it and other Perl books from O'Reilly &
Associates, 1-800-998-993&8.ocal/overseas is +1 707 829 0515. If you can locate an O'Reilly order
form, you can alsoaik to +1 707 829 0104. If you're web—connected, you cen enose/ on over to
http://www.oreilly.com/ for an online order form.

Other Perl books from various publishers and authors can be found listed in perlfag2.

perl v5.8.6 2004-11-05 233

