
Information Retrieval

Lecture 6: Information Extraction and Bootstrapping

Computer Science Tripos Part II

Simone Teufel
Natural Language and Information Processing (NLIP) Group

sht25@cl.cam.ac.uk

Last time 2

• Range of problems that make named entity recognition (NE) hard
• Mikheev et al’s (1998) cascading NE system
• NE is the simplest kind of IE task: no relations between entities must

be determined
• NIST MUC conferences pose three kinds of harder IE tasks
• Today: more of the full task (scenario templates), and on learning

Lexico-semantic patterns 3

• “Flattened-out” semantic representations with lexemes directly hard-
wired into them

• String-based matching with type of semantic category to be found di-
rectly expressed in lexical pattern

• Problem with all string-based mechanisms: generalisation to other strings
with similar semantics, and to only those

• Do generalisation by hand...
– <Perpetrator> (APPOSITION) {blows/blew/has blown} {himself/herself} up
– <Perpetrator> detonates
– {blown up/detonated} by <Perpetrator>

• Manual production of patterns is time-consuming, brittle, and not portable
across domains

Learning of lexico-semantic patterns (Riloff 1993) 4

• UMASS participant system in MUC-4: AutoSlog
• Lexico-semantic patterns for MUC-3 took 1500 person hours to build →

knowledge engineering bottleneck
• AutoSlog achieved 98% performance of manual system; AutoSlog dic-

tionary took 5 person hours to build
• “Template mining:”

– Use MUC training corpus (1500 texts + human answer keys; 50%
non-relevant texts) to learn contexts

– Have human check the resulting templates (30% - 70% retained)

Lexico-syntactic-semantic patterns (Riloff 1993) 5

• 389 Patterns (“concept nodes”) with enabling syntactic conditions, e.g.
active or passive:
– kidnap-passive: <VICTIM> expected to be subject
– kidnap-active: <PERPETRATOR> expected to be subject

• Hard and soft constraints for fillers of slots
– Hard constraints: selectional restrictions; soft constraints: semantic

preferences
• Semantic lexicon with 5436 entries (including semantic features)

Heuristics for supervised template mining (Riloff 1993) 6

• Stylistic conventions: relationship between entity and event made ex-
plicit in first reference to the entity

• Find key word there which triggers the pattern: kidnap, shot,
• Heuristics to find these trigger words
• Given: filled template plus raw text. Algorithm:

– Find first sentence that contains slot filler
– Suggest good conceptual anchor point (trigger word)
– Suggest a set of enabling conditions

“the diplomat was kidnapped” + VICTIM: the diplomat

Suggest: <SUBJECT> passive-verb + trigger=kidnap

Learning of lexico-semantic patterns (Riloff 1993) 7

System uses 13 “heuristics” (= syntactic patterns):
EXAMPLE PATTERN
<victim> was murdered <subject> passive-verb
<perpetrator> bombed <subject> active-verb
<perpetrator> attempted to kill <subject> verb infinitive
<victim> was victim subject auxiliary <noun>

killed <victim> passive-verb <dobj>
bombed <target> active-verb <dobj>
to kill <victim> infinitive <dobj>
threatened to attack <target> verb infinitive <dobj>
killing <victim> gerund <dobj>
fatality was <victim> noun auxiliary <dobj>
bomb against <target> noun prep <np>

killed with <instrument> active-verb prep <np>

was aimed at <target> passive-verb prep <np>

Riloff 1993: a good concept node 8

ID: DEV-MUC4-0657
Slot Filler: “public buildings”
Sentence: IN LA OROYA, JUNIN DEPARTMENT, IN THE CENTRAL PERUVIAN MOUN-
TAIN RANGE, PUBLIC BUILDINGS WERE BOMBED AND A CAR-BOMB WAS DETO-
NATED.

CONCEPT NODE
Name: target-subject-passive-verb-bombed
Trigger: bombed
Variable slots: (target (*S* 1))
Constraints: (class phys-target *S*)
Constant slots: (type bombing)
Enabling Conditions: ((passive))

Riloff 1993: another good concept node 9

ID: DEV-MUC4-0071
Slot Filler: “guerrillas
Sentence: THE SALVADORAN GUERRILLAS ON MAR 12 89, TODAY, THREATENED
TO MURDER INDIVIDUALS INVOLVED IN THE MAR 19 88 PRESIDENTIAL ELEC-
TIONS IF THEY DO NOT RESIGN FROM THEIR POSTS.

CONCEPT NODE
Name: perpetrator-subject-verb-infinitive-threatened-to-murder
Trigger: murder
Variable slots: (perpetrator (*S* 1))
Constraints: (class perpetrator *S*)
Constant slots: (type perpetrator)
Enabling Conditions: ((active) (trigger-preceded-by? ’to ’threatened))

Riloff 1993: a bad concept node 10

ID: DEV-MUC4-1192
Slot Filler: “gilberto molasco
Sentence: THEY TOOK 2-YEAR-OLD GILBERTO MOLASCO, SON OF PATRICIO RO-
DRIGUEZ, AND 17-OLD ANDRES ALGUETA, SON OF EMIMESTO ARGUETA.

CONCEPT NODE
Name: victim-active-verb-dobj-took
Trigger: took
Variable slots: (victim (*DOBJ* 1))
Constraints: (class victim *DOBJ*)
Constant slots: (type kidnapping)
Enabling Conditions: ((active))

Riloff 1993: evaluation 11

System/Test Set Recall Prec F-measure
MUC-4/TST3 46 56 50.5
AutoSlog/TST3 43 56 48.7
MUC-4/TST4 44 40 41.9
AutoSlog/TST4 39 45 41.8

• 5 hours of sifting through AutoSlog’s patterns
• Porting to new domain in less than 10 hours of human interaction
• But: creation of training corpus ignored in this calculation

Agichtein, Gravano (2000): Snowball 12

• Find locations of headquarters of a company and the corresponding
company name (< o, l > tuples)

Organisation Location of Headquarters
Microsoft Redmond
Exxon Irving
IBM Armonk
Boeing Seattle
Intel Santa Clara

“Computer servers at Microsoft’s headquarters in Redmond”
• Use minimal human interaction (handful of positive examples)

– no manually crafted patterns
– no large annotated corpus (IMass system at MUC-6)

• Automatically learn extraction patterns
• Less important to find every occurrence of patterns; only need to fill

table with confidence

Agichtein, Gravano (2000): Bootstrapping 13

Generate new tuples

Find occurrences of current tuples

Generate extraction patterns

PatternsTupelsSeed Tuples

Evaluate extraction patterns

Evaluate new tuples
Augment table

Agichtein, Gravano (2000): Overall process 14

• Start from table containing some < o, l > tuples (which must exist in
document collection)

• Perform NE (advantage over prior system DIPRE (Brin 98))
• System searches for occurrences of the example < o, l > tuples in

documents
• System learns extraction patterns from these example contexts, e.g.:

<ORGANIZATION> ’s headquarters in <LOCATION>

<LOCATION>-based <ORGANIZATION>

• Evaluate patterns; use best ones to find new < o, l > tuples
• Evaluate new tuples, choose most reliable ones as new seed tuples
• Iteratively repeat the process

Agichtein, Gravano (2000): Context generalisation and pat-
terns 15

A SNOWBALL pattern is a 5-tuple <left,tag1,middle,tag2,right>

left Tag1 middle Tag2 right
The Irving -based Exxon Corporation
<{<the, 0.2>}, LOCATION, {<-,0.5> <based, 0.5>}, ORGANIZATION, {} >

• Associate term weights as a function of frequency of term in context
• Normalize each vector so that norm is 1; then multipy with weights

Wleft,Wright, Wmid.
• Degree of match between two patterns tp =< lp, t1, mp, t2, rp > and

ts =< ls, t
′
1, ms, t

′
2, rs >:

match(tp, ts) = lpls + mpms + rprs (if tags match, 0 otherwise)

Agichtein, Gravano (2000): Pattern generation 16

• Similar contexts form a pattern
– Cluster vectors using a clustering algorithm (minimum similarity thresh-

old τsim)
– Vectors represented as cluster centroids l̄s, m̄s, r̄s

• Generalised Snowball pattern defined via centroids:

< l̄s, tag1, m̄s, tag2, r̄s >

• Remember for each Generalised Snowball pattern
– All contexts it came from
– The distances of contexts from centroid

Agichtein, Gravano (2000): Productivity/Reliability 17

• We want productive and reliable patterns
– productive but not reliable:

< {}, ORGANIZATION, {<′′,′′ , 1 >}, LOCATION, {} >

“Intel, Santa Clara, announced that. . . ”
“Invest in Microsoft, New York-based analyst Jane Smith said. . . ”

– reliable but not productive:
< {}, ORGANIZATION, {< whose, 0.1 >, < headquarter, 0.4 >, < is, 0.1 ><

located, 0.3 >, < in, 0.09 >, < nearby, 0.01 >}, LOCATION, {} >

“Exxon, whose headquarter is located in nearby Irving. . . ”

• Eliminate patterns supported by less than τsup < o, l > tuples

Agichtein, Gravano (2000): Pattern reliability 18

• If P predicts tuple t =< o, l > and there is already tuple t′ =< o, l′ > with
high confidence, then: if l = l′ → P.positive++, otherwise P.negative++
(uniqueness constraints: organization is key).

• Pattern reliability: Conf(P) = P.positive
P.positive+P.negative

(range [0..1])
• Example:

P43 =< {}, ORGANIZATION, {<′′,′′ , 1 >}, LOCATION, {} > matches
1. Exxon, Irving, said... (CORRECT: in table)
2. Intel, Santa Clara, cut prices (CORRECT: in table)
3. invest in Microsoft, New York-based analyst (INCORRECT, contradicted by entry

<Microsoft, Redmont>)
4. found at ASDA, Irving. (????, unknown, no contradiction → disregard evidence)

• disregard unclear evidence such as 4.
• Thus, Conf(P43) = 2

2+1

Agichtein, Gravano (2000): Pattern confidence 19

• Consider productivity, not just reliability:

ConfRlogF (P) = Conf(P)log2(P.positive)

• Normalized ConfRlogFNorm(P):

ConfRlogFNorm(P) =
ConfRlogF (P)

maxi∈PConf(i)

(this brings ConfRlogFNorm(P) into range [0...1])
• maxi∈PConf(i) is the largest confidence value seen with any pattern
• ConfRlogFNorm(P) is a rough estimate of the probability of pattern P

producing a valid tuple (called Conf(P) hereafter)

Agichtein, Gravano (2000): Tuple evaluation I 20

• Confidence of a tuple T is probability that at least one valid tuple is
produced:

Conf(T) = 1 −
|P |∏

i=0

(1 − Conf(Pi)Match(Ci, Pi))

P = {Pi} is the set of patterns that generated T

Ci is the context associated with an occurrence of T

Match(Ci, Pi) is goodness of match between Pi and Ci

• Explanation: probability of every pattern matched incorrectly:

Prob(T is NOT valid) =
|P |∏

i=0

(1 − P (i))

• Formula due to the assumption that for an extracted tuple T to be valid,
it is sufficient that at least one pattern matched the “correct” text context
of T.

Agichtein, Gravano (2000): Tuple evaluation II 21

• Then reset confidence of patterns:

Conf(P) = Confnew(P)Wupdt + Confold(P)(1 − Wupdt)

Wupdt controls learning rate: does system trust old or new occurrences
more? Here: Wupdt = 0.5

• Throw away tuples with confidence < τt

Agichtein, Gravano (2000): Results 22

Conf middle right
1 <based, .53>, <in, .53> <”,” ,.01>

.69 <””’, .42>,<s, .42>,<headquarters, .42>,<in,.42>

.61 <(,.93> <),.12>

• Use training corpus to set parameters: τsim, τt, τsup, Imax,Wleft, Wright,

Wmiddle

• Only input: 5 < o, l > tuples
• Punctuation matters: performance decreases when punctuation is re-

moved
• Recall b/w .78 and .87 (τsup > 5); precision .90 (τsup > > 4)
• High precision possible (.96 with τt = .8); remaining problems come

from NE recognition
• Pattern evaluation step responsible for most improvement over DIPRE

Summary: IE and template matching, learning 23

• Possible to learn simple relations from positive examples (Snowball)
• Possible to learn more diverse relations from annotated training corpus

(Riloff)
• Even modest performance can be useful

– Later manual verification
– In circumstances where there would be no time to review source

documents, so incomplete extracted information is better than none

Summary: IE Performance 24

Current methods perform well if

• Information to be extracted is expressed directly (no complex inference
is required)

• Information is predominantly expressed in a relatively small number of
forms

• Information is expressed locally within the text

Difference between IE and QA (next time):

• IE is domain dependent, open-domain QA is not

Literature 25

• Ellen Riloff, Automatically constructing a dictionary for information ex-
traction tasks. In Proc. 11th Ann. Conference of Artificial Intelligence,
p 811-816, 1993

• Eugene Agichtein, Luis Gravano: Snowball: Extracting Relations from
Large Plain-Text Collections, Proceedings of the Fifth ACM Interna-
tional Conference on Digital Libraries, 2000

