
1

Error control

An Engineering Approach to Computer NetworkingAn Engineering Approach to Computer Networking

CRC

DetectsDetects
all single bit errorsall single bit errors
almost all 2almost all 2--bit errorsbit errors
any odd number of errorsany odd number of errors
all bursts up to M, where generator length is Mall bursts up to M, where generator length is M
longer bursts with probability 2^longer bursts with probability 2^--mm

Implementation

HardwareHardware
onon--thethe--fly with a shift registerfly with a shift register
easy to implement with ASIC/FPGAeasy to implement with ASIC/FPGA

SoftwareSoftware
precompute remainders for 16precompute remainders for 16--bit wordsbit words
add remainders to a running sumadd remainders to a running sum
needs only one lookup per 16needs only one lookup per 16--bit blockbit block

Software schemes

Efficiency is importantEfficiency is important
touch each data byte only oncetouch each data byte only once

CRCCRC
TCP/UDP/IPTCP/UDP/IP

all use same schemeall use same scheme
treat data bytes as 16treat data bytes as 16--bit integersbit integers
add with endadd with end--around carryaround carry
oneone’’s complement = checksums complement = checksum
catches all 1catches all 1--bit errorsbit errors
longer errors with prob 1/65536longer errors with prob 1/65536

2

Packet errors

Different from bit errorsDifferent from bit errors
typestypes

not just erasure, but also duplication, insertion,etc.not just erasure, but also duplication, insertion,etc.
correctioncorrection

retransmission, instead of redundancyretransmission, instead of redundancy

Types of packet errors

LossLoss
due to uncorrectable bit errorsdue to uncorrectable bit errors
buffer loss on overflowbuffer loss on overflow

especially with bursty trafficespecially with bursty traffic
•• for the same load, the greater the burstiness, the more the for the same load, the greater the burstiness, the more the

lossloss
loss rate depends on burstiness, load, and buffer sizeloss rate depends on burstiness, load, and buffer size

fragmented packets can lead to error multiplicationfragmented packets can lead to error multiplication
longer the packet, more the loss longer the packet, more the loss

Types of packet errors (cont.)

DuplicationDuplication
same packet received twicesame packet received twice

usually due to retransmissionusually due to retransmission
InsertionInsertion

packet from some other conversation receivedpacket from some other conversation received
header corruptionheader corruption

ReorderingReordering
packets received in wrong orderpackets received in wrong order

usually due to retransmissionusually due to retransmission
some routers also reordersome routers also reorder

Packet error detection and correction

DetectionDetection
Sequence numbersSequence numbers
TimeoutsTimeouts

CorrectionCorrection
RetransmissionRetransmission

3

Sequence numbers

In each headerIn each header
Incremented for nonIncremented for non--retransmitted packetsretransmitted packets
Sequence spaceSequence space

set of all possible sequence numbersset of all possible sequence numbers
for a 3for a 3--bit seq #, space is {0,1,2,3,4,5,6,7}bit seq #, space is {0,1,2,3,4,5,6,7}

Using sequence numbers

LossLoss
gap in sequence space allows gap in sequence space allows receiver receiver to detect lossto detect loss

e.g. received 0,1,2,5,6,7 => lost 3,4e.g. received 0,1,2,5,6,7 => lost 3,4
acks carry acks carry cumulativecumulative seq #seq #
redundant information redundant information
if no ack for a while, if no ack for a while, sendersender suspects losssuspects loss

ReorderingReordering

DuplicationDuplication
InsertionInsertion

if the received seq # is if the received seq # is ““very differentvery different”” from what is expectedfrom what is expected
more on this latermore on this later

Sequence number size

Long enough so that sender does not confuse sequence Long enough so that sender does not confuse sequence
numbers on acksnumbers on acks
E.g, sending at < 100 packets/sec (R)E.g, sending at < 100 packets/sec (R)

wait for 200 secs before giving up (T)wait for 200 secs before giving up (T)
receiver may dally up to 100 sec (A)receiver may dally up to 100 sec (A)
packet can live in the network up to 5 minutes (300 s) packet can live in the network up to 5 minutes (300 s)
((maximum packet lifetime)maximum packet lifetime)
can get an ack as late as 900 seconds after packet sent outcan get an ack as late as 900 seconds after packet sent out
sent out 900*100 = 90,000 packetssent out 900*100 = 90,000 packets
if seqence space smaller, then can have confusionif seqence space smaller, then can have confusion
so, sequence number > log (90,000), at least 17 bitsso, sequence number > log (90,000), at least 17 bits

In general 2^seq_size > R(2 MPL + T + A)In general 2^seq_size > R(2 MPL + T + A)

MPL

How can we bound it?How can we bound it?
Generation time in headerGeneration time in header

too complex!too complex!
Counter in header decremented per hopCounter in header decremented per hop

crufty, but workscrufty, but works
used in the Internetused in the Internet
assumes max. diameter, and a limit on forwarding timeassumes max. diameter, and a limit on forwarding time

4

Sequence number size (cont.)

If no acks, then size depends on two thingsIf no acks, then size depends on two things
reordering span: how much packets can be reorderedreordering span: how much packets can be reordered

e.g. span of 128 => seq # > 7 bitse.g. span of 128 => seq # > 7 bits
burst loss span: how many consecutive pkts. can be lostburst loss span: how many consecutive pkts. can be lost

e.g. possibility of 16 consecutive lost packets => seq # > 4 bite.g. possibility of 16 consecutive lost packets => seq # > 4 bitss
In practice, hope that technology becomes obselete before In practice, hope that technology becomes obselete before
worst case hits!worst case hits!

Packet insertion

Receiver should be able to distinguish packets from other Receiver should be able to distinguish packets from other
connectionsconnections
Why?Why?

receive packets on VCI 1receive packets on VCI 1
connection closesconnection closes
new connection also with VCI 1new connection also with VCI 1
delayed packet arrivesdelayed packet arrives
could be acceptedcould be accepted

SolutionSolution
flush packets on connection closflush packets on connection clos
cancan’’t do this for connectionless networks like the Internett do this for connectionless networks like the Internet

Packet insertion in the Internet

Packets carry source IP, dest IP, Packets carry source IP, dest IP, source port number, source port number,
destination port numberdestination port number
How we can have insertion?How we can have insertion?

host A opens connection to B, source port 123, dest port 456host A opens connection to B, source port 123, dest port 456
transport layer connection terminatestransport layer connection terminates
new connection opens, A and B assign the same port new connection opens, A and B assign the same port
numbersnumbers
delayed packet from old connection arrivesdelayed packet from old connection arrives
insertion!insertion!

Solutions

PerPer--connection connection incarnation numberincarnation number
incremented for each connection from each hostincremented for each connection from each host
-- takes up header spacetakes up header space
-- on a crash, we may repeaton a crash, we may repeat

need stable storage, which is expensiveneed stable storage, which is expensive
Reassign port numbers only after 1 MPLReassign port numbers only after 1 MPL

-- needs stable storage to survive crashneeds stable storage to survive crash

5

Solutions (cont.)

Assign port numbers serially: new connections have new portsAssign port numbers serially: new connections have new ports
Unix starts at 1024Unix starts at 1024
this fails if we wrap around within 1 MPLthis fails if we wrap around within 1 MPL
also fails of computer crashes and we restart with 1024also fails of computer crashes and we restart with 1024

Assign initial sequence numbers seriallyAssign initial sequence numbers serially
new connections may have same port, but seq # differsnew connections may have same port, but seq # differs
fails on a crashfails on a crash

Wait 1 MPL after boot up (30s to 2 min)Wait 1 MPL after boot up (30s to 2 min)
this flushes old packets from networkthis flushes old packets from network
used in most Unix systemsused in most Unix systems

3-way handshake

Standard solution, then, is Standard solution, then, is
choose port numbers seriallychoose port numbers serially
choose initial sequence numbers from a clockchoose initial sequence numbers from a clock
wait 1 MPL after a crashwait 1 MPL after a crash

Needs communicating ends to tell each other initial sequence Needs communicating ends to tell each other initial sequence
numbernumber
Easiest way is to tell this in a Easiest way is to tell this in a SYNchronizeSYNchronize packet (TCP) that packet (TCP) that
starts a connectionstarts a connection
22--way handshakeway handshake

3-way handshake

Problem really is that SYNs themselves are not protected with Problem really is that SYNs themselves are not protected with
sequence numberssequence numbers
33--way handshake protects against delayed SYNsway handshake protects against delayed SYNs

Loss detection

At receiver, from a gap in sequence spaceAt receiver, from a gap in sequence space
send a send a nacknack to the senderto the sender

At sender, by looking at cumulative acks, and timeing out if no At sender, by looking at cumulative acks, and timeing out if no
ack for a whileack for a while

need to choose timeout intervalneed to choose timeout interval

6

Nacks

Sounds good, but does not work wellSounds good, but does not work well
extra load during loss, even though in reverse directionextra load during loss, even though in reverse direction

If nack is lost, receiver must retransmit itIf nack is lost, receiver must retransmit it
moves timeout problem to receivermoves timeout problem to receiver

So we need timeouts anywaySo we need timeouts anyway

Timeouts

Set timer on sending a packetSet timer on sending a packet
If timer goes off, and no ack, resend If timer goes off, and no ack, resend
How to choose timeout value?How to choose timeout value?
Intuition is that we expect a reply in about one round trip timeIntuition is that we expect a reply in about one round trip time
(RTT)(RTT)

Timeout schemes

Static schemeStatic scheme
know RTT know RTT a prioria priori
timer set to this valuetimer set to this value
works well when RTT changes littleworks well when RTT changes little

Dynamic schemeDynamic scheme
measure RTTmeasure RTT
timeout is a function of measured RTTstimeout is a function of measured RTTs

Old TCP scheme

RTTs are measured periodicallyRTTs are measured periodically
Smoothed RTT (Smoothed RTT (srttsrtt))
srtt = a * srtt + (1srtt = a * srtt + (1--a) * RTTa) * RTT
timeout =timeout = b * srttb * srtt
a = 0.9, b = 2a = 0.9, b = 2
sensitive to choice of a sensitive to choice of a

a = 1 => timeout = 2 * initial srtta = 1 => timeout = 2 * initial srtt
a = 0 => no historya = 0 => no history

doesndoesn’’t work too well in practice t work too well in practice

7

New TCP scheme (Jacobson)

introduce new term = mean deviation from mean (m)introduce new term = mean deviation from mean (m)
m = | srtt m = | srtt -- RTT |RTT |
sm = a * sm + (1sm = a * sm + (1--a) * ma) * m
timeout = srtt + b * smtimeout = srtt + b * sm

Intrinsic problems

Hard to choose proper timers, even with new TCP schemeHard to choose proper timers, even with new TCP scheme
What should initial value of srtt be?What should initial value of srtt be?
High variability in RHigh variability in R
Timeout => loss, delayed ack, or lost ackTimeout => loss, delayed ack, or lost ack

hard to distinguishhard to distinguish

Lesson: use timeouts rarelyLesson: use timeouts rarely

Retransmissions

Sender detects loss on timeoutSender detects loss on timeout
Which packets to retransmit?Which packets to retransmit?
Need to first understand concept of error control windowNeed to first understand concept of error control window

Error control window

Set of packets sent, but not ackedSet of packets sent, but not acked
1 2 1 2 3 4 5 6 73 4 5 6 7 8 9 8 9 (original window)(original window)
1 2 3 1 2 3 4 5 6 74 5 6 7 8 9 8 9 (recv ack for 3)(recv ack for 3)
1 2 3 1 2 3 4 5 6 7 84 5 6 7 8 9 9 (send 8)(send 8)

May want to restrict max size = window sizeMay want to restrict max size = window size

Sender blocked until ack comes backSender blocked until ack comes back

8

Go back N retransmission

On a timeout, retransmit the entire error control windowOn a timeout, retransmit the entire error control window
Receiver only accepts inReceiver only accepts in--order packetsorder packets
+ simple+ simple
+ no buffer at receiver+ no buffer at receiver
-- can add to congestioncan add to congestion
-- wastes bandwidthwastes bandwidth
used in TCPused in TCP
if packet loss rate is if packet loss rate is pp, and , and

Selective retransmission

Somehow find out which packets lost, then only retransmit themSomehow find out which packets lost, then only retransmit them
How to find lost packets?How to find lost packets?

each ack has a bitmap of received packetseach ack has a bitmap of received packets
e.g. cum_ack = 5, bitmap = 101 => received 5 and 7, but not 6e.g. cum_ack = 5, bitmap = 101 => received 5 and 7, but not 6
wastes header spacewastes header space

sender periodically asks receiver for bitmapsender periodically asks receiver for bitmap
fast retransmitfast retransmit

Fast retransmit

Assume cumulative acksAssume cumulative acks
If sender sees repeated cumulative acks, packet likely lostIf sender sees repeated cumulative acks, packet likely lost
1, 2, 3, 4, 5 , 61, 2, 3, 4, 5 , 6
1, 2, 3 3 31, 2, 3 3 3
Send cumulative_ack + 1 = 4Send cumulative_ack + 1 = 4
Used in TCPUsed in TCP

SMART

Ack carries cumulative sequence numberAck carries cumulative sequence number
Also sequence number of packet causing ackAlso sequence number of packet causing ack
1 2 3 4 5 6 71 2 3 4 5 6 7
1 2 3 3 3 31 2 3 3 3 3
1 2 3 5 6 71 2 3 5 6 7
Sender creates bitmapSender creates bitmap
No need for timers!No need for timers!
If retransmitted packet lost, periodically check if cumulative aIf retransmitted packet lost, periodically check if cumulative ack ck
increased. increased.

