Error control

An Engineering Approach to Computer Networking

CRC

= Detects
all single bit errors
almost all 2-bit errors
any odd number of errors
all bursts up to M, where generator length is M
longer bursts with probability 2”-m

Implementation

= Hardware
on-the-fly with a shift register
easy to implement with ASIC/FPGA
= Software
precompute remainders for 16-bit words
add remainders to a running sum
needs only one lookup per 16-bit block

Software schemes

= Efficiency is important
touch each data byte only once
= CRC
= TCP/UDP/IP
all use same scheme
treat data bytes as 16-bit integers
add with end-around carry
one's complement = checksum
catches all 1-bit errors
longer errors with prob 1/65536

Packet errors

u Different from bit errors
types

= not just erasure, but also duplication, insertion,etc.

correction
= retransmission, instead of redundancy

Types of packet errors

= Loss

due to uncorrectable bit errors
buffer loss on overflow

= especially with bursty traffic

« for the same load, the greater the burstiness, the more the
loss

= loss rate depends on burstiness, load, and buffer size
fragmented packets can lead to error multiplication

= longer the packet, more the loss

Types of packet errors (cont.)

= Duplication
same packet received twice
= usually due to retransmission
= Insertion
packet from some other conversation received
= header corruption
= Reordering
packets received in wrong order
= usually due to retransmission
= some routers also reorder

Packet error detection and correction

= Detection
Sequence numbers
Timeouts

= Correction
Retransmission

Sequence numbers

= In each header
= Incremented for non-retransmitted packets
= Sequence space
set of all possible sequence numbers
for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}

Using sequence numbers

= Loss
gap in sequence space allows receiver to detect loss
= e.g. received 0,1,2,5,6,7 => lost 3,4
acks carry cumulative seq #
redundant information
if no ack for a while, sender suspects loss

= Reordering

= Duplication
= Insertion
if the received seq # is “very different” from what is expected
= more on this later

Sequence number size

m Long enough so that sender does not confuse sequence
numbers on acks

= E.g, sending at < 100 packets/sec (R)
wait for 200 secs before giving up (T)
receiver may dally up to 100 sec (A)

packet can live in the network up to 5 minutes (300 s)
(maximum packet lifetime)

can get an ack as late as 900 seconds after packet sent out
sent out 900*100 = 90,000 packets
if seqence space smaller, then can have confusion
S0, sequence number > log (90,000), at least 17 bits
m In general 2"seq_size > R(2 MPL + T + A)

MPL

= How can we bound it?
= Generation time in header
too complex!
= Counter in header decremented per hop
crufty, but works
used in the Internet
assumes max. diameter, and a limit on forwarding time

Sequence number size (cont.)

= If no acks, then size depends on two things
reordering span: how much packets can be reordered
= e.g. span of 128 => seq # > 7 bits
burst loss span: how many consecutive pkts. can be lost
= e.g. possibility of 16 consecutive lost packets => seq # > 4 bits

In practice, hope that technology becomes obselete before
worst case hits!

Packet insertion

= Receiver should be able to distinguish packets from other
connections

= Why?
receive packets on VCI 1
connection closes
new connection also with VCI 1
delayed packet arrives
could be accepted
= Solution
flush packets on connection clos
can't do this for connectionless networks like the Internet

Packet insertion in the Internet

m Packets carry source IP, dest IP, source port number,
destination port number

= How we can have insertion?
host A opens connection to B, source port 123, dest port 456
transport layer connection terminates

new connection opens, A and B assign the same port
numbers

delayed packet from old connection arrives
insertion!

Solutions

= Per-connection incarnation number
incremented for each connection from each host
- takes up header space
- on a crash, we may repeat
= need stable storage, which is expensive
= Reassign port numbers only after 1 MPL
- needs stable storage to survive crash

Solutions (cont.)

= Assign port numbers serially: new connections have new ports
Unix starts at 1024
this fails if we wrap around within 1 MPL
also fails of computer crashes and we restart with 1024
= Assign initial sequence numbers serially
new connections may have same port, but seq # differs
fails on a crash
= Wait 1 MPL after boot up (30s to 2 min)
this flushes old packets from network
used in most Unix systems

3-way handshake

Standard solution, then, is
choose port numbers serially
choose initial sequence numbers from a clock
wait 1 MPL after a crash

= Needs communicating ends to tell each other initial sequence
number

= Easiest way is to tell this in a SYNchronize packet (TCP) that
starts a connection

= 2-way handshake

3-way handshake

m Problem really is that SYNs themselves are not protected with
sequence numbers

= 3-way handshake protects against delayed SYNs

Loss detection

= Atreceiver, from a gap in sequence space
send a nack to the sender

= At sender, by looking at cumulative acks, and timeing out if no
ack for a while

need to choose timeout interval

Nacks

= Sounds good, but does not work well

extra load during loss, even though in reverse direction
= If nack is lost, receiver must retransmit it

moves timeout problem to receiver
= So we need timeouts anyway

Timeouts

= Set timer on sending a packet
= If timer goes off, and no ack, resend
= How to choose timeout value?

= Intuition is that we expect a reply in about one round trip time
(RTT)

Timeout schemes

m Static scheme
know RTT a priori
timer set to this value
works well when RTT changes little
= Dynamic scheme
measure RTT
timeout is a function of measured RTTs

Old TCP scheme

®» RTTs are measured periodically

= Smoothed RTT (srtt)

®m srit= a*srit+(1-a) *RTT

= timeout = b * srtt

= a=09,b=2

= sensitive to choice of a
a =1 =>timeout = 2 * initial srtt
a =0 => no history

= doesn't work too well in practice

New TCP scheme (Jacobson)

= introduce new term = mean deviation from mean (m)
m m=|srt-RTT|

m sm=a*sm+(l-a)*m

= timeout = srtt + b *sm

Intrinsic problems

= Hard to choose proper timers, even with new TCP scheme

What should initial value of srtt be?

High variability in R

Timeout => loss, delayed ack, or lost ack
= hard to distinguish

= Lesson: use timeouts rarely

Retransmissions

= Sender detects loss on timeout
= Which packets to retransmit?
= Need to first understand concept of error control window

Error control window

= Set of packets sent, but not acked

m 123456789 (original window)
m 123456789 (recv ack for 3)
m 123456789 (send 8)

= May want to restrict max size = window size

= Sender blocked until ack comes back

Go back N retransmission

= On atimeout, retransmit the entire error control window
= Receiver only accepts in-order packets

= +simple

=+ no buffer at receiver

= - can add to congestion

= - wastes bandwidth

= usedin TCP

= if packet loss rate is p, and

Selective retransmission

= Somehow find out which packets lost, then only retransmit them
= How to find lost packets?
each ack has a bitmap of received packets
= e.g. cum_ack =5, bitmap = 101 => received 5 and 7, but not 6
= wastes header space
sender periodically asks receiver for bitmap
fast retransmit

Fast retransmit

m Assume cumulative acks

m If sender sees repeated cumulative acks, packet likely lost
m 1,23/45,6

= 1,23 3 3

= Send cumulative_ack + 1 =4

m Usedin TCP

SMART

= Ack carries cumulative sequence number
= Also sequence number of packet causing ack

= 1234567
= 123 333
= 123 567

= Sender creates bitmap
= No need for timers!

= If retransmitted packet lost, periodically check if cumulative ack
increased.

