
˜
Appendix to
Lecture VII ˜

An introduction to SML Modules

by Claudio Russoa

References:

� ML for the Working Programmer by Larry Paulson,
Cambridge University Press. [A textbook for
undergraduates and postgraduates.]

a〈http://research.microsoft.com/∼crusso〉

/ 1

� The Standard ML Basis Library by Reppy et al.,
Cambridge University Press. [A useful introduction to ML
standard libraries, and a good example of Modular
programming.]

� The Definition of Standard ML by Milner et al., MIT Press.
[A formal definition of SML, using structured operational
semantics. Useful for language implementors and
researchers.]

� Purely Functional Data Structures by Chris Okasaki,
Cambridge University Press. [Contains clever functional
data structures, implemented in Haskell and SML
Modules.]

� 〈http://www.standardml.org〉

/ 2

Outline

Aim: To provide a gentle introduction to SML Modules.

� Review Core features related to Modules.

� Introduce the Modules Language, using small examples.

� Briefly relate Modules constructs to the Core language.

� Highlight some limitations of Modules.

NB: Only the important features of Modules are covered.

/ 3

The Core and Modules languages

SML consists of two sub-languages:

� The Core language is for programming in the small, by
supporting the definition of types and expressions
denoting values of those types.

� The Modules language is for programming in the large, by
grouping related Core definitions of types and expressions
into self-contained units, with descriptive interfaces.

The Core expresses details of data structures and algorithms.
The Modules language expresses software architecture. Both
languages are largely independent.

/ 4



The Core language

The SML Core is a strongly-typed call-by-value functional
language with impure features (state and exceptions).

Types are mostly implicit and inferred by the compiler.

SML programs must be statically well-typed before being
evaluated.

The Core is type sound: evaluation of a well-typed expression
is guaranteed to be free of run-time type errors.

/ 5

Core features

The SML Core has a number of other features:

� a rich collection of primitive types (e.g. int, real,

Int16.int, Word32.word);

� mutually recursive polymorphic functions and datatypes;

� dynamically allocated, mutable references (type ’a ref);

� exceptions;

� pattern matching on values.

Most of these features have little or no interaction with
Modules.

/ 6

The Modules language
Writing a real program as an unstructured sequence of Core
definitions quickly becomes unmanageable.

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i =

if i = zero then b

else f (iter b f (i-1))

...

(* thousands of lines later *)

fun even (n:nat) = iter true not n

The SML Modules language lets one split large programs into
separate units with descriptive interfaces.

/ 7

Structures
In Modules, one can encapsulate a sequence of Core type
and value definitions into a unit called a structure.
We enclose the definitions in between the keywords

struct ... end.
Example: A structure representing the natural numbers, as
positive integers.
struct

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i = if i = zero then b

else f (iter b f (i-1))

end

/ 8



The dot notation

One can name a structure by binding it to an identifier.
structure IntNat =

struct

type nat = int

...

fun iter b f i = ...

end

Components of a structure are accessed with the dot notation.
fun even (n:IntNat.nat) = IntNat.iter true not n

NB: Type IntNat.nat is statically equal to int.
Value IntNat.iter dynamically evaluates to a closure.

/ 9

Nested structures

Structures can be nested inside other structures, in a hierarchy.
structure IntNatAdd =

struct

structure Nat = IntNat

fun add n m = Nat.iter m Nat.succ n

end

...

fun mult n m =

IntNat.Nat.iter IntNatAdd.Nat.zero (IntNatAdd.add m) n

The dot notation (IntNatAdd.Nat) accesses a nested structure.
Sequencing dots provides deeper access (IntNatAdd.Nat.zero).
Nesting and dot notation provides name-space control.

/ 10

Structure inclusion

To avoid nesting structures and dot notation, one can also
directly open a structure identifier, importing its components:

struct open Nat

fun add n m = iter m succ n end

NB: This is equivalent to the following
struct type nat = Nat.nat

val zero = Nat.zero

val succ = Nat.succ

val iter = Nat.iter

fun add n m = iter m succ n end

Though convenient, it’s bad style: the origin of an identifier is
no longer clear and bindings are silently re-exported.

/ 11

Concrete signatures

Signature expressions specify the types of structures by listing
the specifications of their components.

A signature expression consists of a sequence of component
specifications, enclosed in between the keywords sig . . . end.

sig type nat = int

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

This signature fully describes the type of IntNat.

The specification of type nat is concrete: it must be int.

/ 12



Opaque signatures

On the other hand, the following signature
sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

specifies structures that are free to use any implementation for
type nat (perhaps int, or word or some recursive datatype).

This specification of type nat is opaque.

/ 13

Named and nested signatures

Signatures may be named and referenced, to avoid repetition:
signature NAT =

sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

Nested signatures specify named sub-structures:
signature Add =

sig structure Nat: NAT (* references NAT *)

val add: Nat.nat -> Nat.nat -> Nat.nat

end

/ 14

Signature inclusion

To avoid nesting, one can also directly include a signature
identifier:

sig include NAT

val add: nat -> nat ->nat

end

NB: This is equivalent to the following signature.
sig type nat

val zero: nat

val succ: nat -> nat

val ’a iter: ’a -> (’a->’a) -> nat -> ’a

val add: nat -> nat -> nat

end

/ 15

Signature matching

Q: When does a structure satisfy a signature?
A: The type of a structure matches a signature whenever it

implements at least the components of the signature.
• The structure must realise (i.e. define) all of the opaque

type components in the signature.
• The structure must enrich this realised signature,

component-wise:
? every concrete type must be implemented equivalently;
? every specified value must have a more general type

scheme;
? every specified structure must be enriched by a

substructure.

/ 16



Properties of signature matching

The components of a structure can be defined in a different
order than in the signature; names matter but ordering does
not.

A structure may contain more components, or components
of more general types, than are specified in a matching
signature.

Signature matching is structural. A structure can match many
signatures and there is no need to pre-declare its matching
signatures (unlike “interfaces” in Java and C#).

Although similar to record types, signatures actually play a
number of different roles . . .

/ 17

Using signatures to restrict access

The following structure uses a signature constraint to provide
a restricted view of IntNat:

structure ResIntNat =

IntNat : sig type nat

val succ : nat->nat

val iter : nat->(nat->nat)->nat->nat

end

NB: The constraint str:sig prunes the structure str

according to the signature sig:

� ResIntNat.zero is undefined;

� ResIntNat.iter is less polymorphic that IntNat.iter.

/ 18

Transparency of :

Although the : operator can hide names, it does not conceal
the definitions of opaque types.

Thus, the fact that ResIntNat.nat = IntNat.nat = int remains
transparent.

For instance the application ResIntNat.succ(~3) is still
well-typed, because ~3 has type int . . . but ~3 is negative, so
not a valid representation of a natural number!

/ 19

Using signatures to hide
types identities

With different syntax, signature matching can also be used to
enforce data abstraction:

structure AbsNat =

IntNat :> sig type nat

val zero: nat

val succ: nat->nat

val ’a iter: ’a->(’a->’a)->nat->’a

end

The constraint str :> sig prunes str but also generates a
new, abstract type for each opaque type in sig.

/ 20



Now, the actual implementation of AbsNat.nat by int is
hidden, so that AbsNat.nat 6= int.

AbsNat is just IntNat, but with a hidden type representation.

AbsNat defines an abstract datatype of natural numbers:
the only way to construct and use values of the abstract type
AbsNat.nat is through the operations, zero, succ, and iter.

For example, the application AbsNat.succ(~3) is ill-typed:
~3 only has type int, not AbsNat.nat. This is what we want,
since ~3 is not a natural number in our representation.

In general, abstractions can also prune and specialise
components.

/ 21

Datatype and exception specifications
Signatures can also specify datatypes and exceptions:
structure PredNat =

struct datatype nat = zero | succ of nat

fun iter b f i = ...

exception Pred

fun pred zero = raise Pred

| pred (succ n) = n end

:> sig datatype nat = zero | succ of nat

val iter: ’a->(’a->’a)->(nat->’a)

exception Pred

val pred: nat -> nat (* raises Pred *) end

This means that clients can still pattern match on datatype
constructors, and handle exceptions.

/ 22

Functors

Modules also supports parameterised structures, called
functors.

Example: The functor AddFun below takes any
implementation, N, of naturals and re-exports it
with an addition operation.

functor AddFun(N:NAT) =

struct

structure Nat = N

fun add n m = Nat.iter n (Nat.succ) m

end

/ 23

A functor is a function mapping a formal argument structure to
a concrete result structure.

The body of a functor may assume no more information about
its formal argument than is specified in its signature.

In particular, opaque types are treated as distinct type
parameters.

Each actual argument can supply its own, independent
implementation of opaque types.

/ 24



Functor application

A functor may be used to create a structure by applying it to
an actual argument:

structure IntNatAdd = AddFun(IntNat)

structure AbsNatAdd = AddFun(AbsNat)

The actual argument must match the signature of the formal
parameter—so it can provide more components, of more
general types.

Above, AddFun is applied twice, but to arguments that differ in
their implementation of type nat (AbsNat.nat 6= IntNat.nat).

/ 25

Why functors?

Functors support:
Code reuse.
AddFun may be applied many times to different
structures, reusing its body.

Code abstraction.
AddFun can be compiled before any
argument is implemented.

Type abstraction.
AddFun can be applied to different types N.nat.

/ 26

Type propagation through functors

Each functor application propagates the actual realisation of
its argument’s opaque type components.
Thus, for

structure IntNatAdd = AddFun(IntNat)

structure AbsNatAdd = AddFun(AbsNat)

the type IntNatAdd.Nat.nat is just another name for int, and
AbsNatAdd.Nat.nat is just another name for AbsNat.nat.

Examples: IntNatAdd.Nat.succ(0)
√

IntNatAdd.Nat.succ(IntNat.Nat.zero)
√

AbsNatAdd.Nat.succ(AbsNat.Nat.zero)
√

AbsNatAdd.Nat.succ(0) ×
AbsNatAdd.Nat.succ(IntNat.Nat.zero) ×

/ 27

Structures as records

Structures are like Core records, but can contain definitions of
types as well as values.

What does it mean to project a type component from a
structure, e.g. IntNatAdd.Nat.nat?

Does one needs to evaluate the application AddFun(IntNat)

at compile-time to simplify IntNatAdd.Nat.nat to int?

No! Its sufficient to know the compile-time types of AddFun
and IntNat, ensuring a phase distinction between
compile-time and run-time.

/ 28



Generativity
The following functor almost defines an identity function, but
re-abstracts its argument:

functor GenFun(N:NAT) = N :> NAT

Now, each application of GenFun generates a new abstract
type: For instance, for

structure X = GenFun(IntNat)

structure Y = GenFun(IntNat)

the types X.nat and Y.nat are incompatible, even though
GenFun was applied to the same argument.
Functor application is generative: abstract types from the
body of a functor are replaced by fresh types at each
application. This is consistent with inlining the body of a
functor at applications.

/ 29

Why should functors be generative?

It is really a design choice. Often, the invariants of the body of
a functor depend on both the types and values imported from
the argument.

functor OrdSet(O:sig type elem

val compare: (elem * elem) -> bool

end) = struct

type set = O.elem list (* ordered list of elements *)

val empty = []

fun insert e [] = [e]

| insert e1 (e2::s) = if O.compare(e1,e2)

then if O.compare(e2,e1) then e2::s else e1::e2::s

else e2::insert e1 s

end :> sig type set

val empty: set

val insert: O.elem -> set -> set

end

/ 30

For
structure S = OrdSet(struct type elem=int fun compare(i,j)= i <= j end)

structure R = OrdSet(struct type elem=int fun compare(i,j)= i >= j end)

we want S.set 6= R.set because their representation
invariants depend on the compare function: the set {1, 2, 3}

is [1,2,3] in S.set, but [3,2,1] in R.set).

/ 31

Why functors?

� Functors let one decompose a large programming task
into separate subtasks.

� The propagation of types through application lets one
extend existing abstract data types with type-compatible
operations.

� Generativity ensures that applications of the same functor
to data types with the same representation, but different
invariants, return distinct abstract types.

/ 32



Are signatures types?

The syntax of Modules suggests that signatures are just the
types of structures . . . but signatures can contain opaque types.

In general, signatures describe families of structures, indexed
by the realisation of any opaque types.

The interpretation of a signature really depends on how it is
used!

In functor parameters, opaque types introduce polymorphism;
in signature constraints, opaque types introduce abstract types.

Since type components may be type constructors, not just
types, this is really higher-order polymorphism and
abstraction.

/ 33

Subtyping

Signature matching supports a form of subtyping not found in
the Core language:

� A structure with more type, value and structure
components may be used where fewer components are
expected.

� A value component may have a more general type
scheme than expected.

/ 34

Sharing specifications

Functors are often used to combine different argument
structures.

Sometimes, these structure arguments need to communicate
values of a shared type.

For instance, we might want to implement a sum-of-squares
function (n,m 7→ n2 + m2) using separate structures for
naturals with addition and multiplication . . .

/ 35

Sharing violations
functor SQ(structure AddNat: sig

structure Nat: sig type nat end

val add:Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat: sig

structure Nat: sig type nat end

val mult:Nat.nat -> Nat.nat -> Nat.nat

end) =

struct fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m) ×

end

The above piece of code is ill-typed: the types
AddNat.Nat.nat and MultNat.Nat.nat are opaque, and thus
different. The add function cannot consume the results of mult.

/ 36



Sharing specifications

The fix is to declare the type sharing directly at the specification
of MultNat.Nat.nat, using a concrete, not opaque, specification:
functor SQ(

structure AddNat:

sig structure Nat: sig type nat end

val add: Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat:

sig structure Nat: sig type nat = AddNat.Nat.nat end

val mult: Nat.nat -> Nat.nat -> Nat.nat

end) =

struct fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m)
√

end

/ 37

Sharing constraints

Alternatively, one can use a post-hoc sharing specification to
identify opaque types.
functor SQ(

structure AddNat: sig structure Nat: sig type nat end

val add:Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat: sig structure Nat: sig type nat end

val mult:Nat.nat -> Nat.nat -> Nat.nat

end

sharing type MultNat.Nat.nat = AddNat.Nat.nat ) =

struct fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m)
√

end

/ 38

Limitations of modules

Modules is great for expressing programs with a complicated
static architecture, but it’s not perfect:

� Functors are first-order: unlike Core functions, a functor
cannot be applied to, nor return, another functor.

� Structure and functors are second-class values, with very
limited forms of computation (dot notation and functor
application): modules cannot be constructed by
algorithms or stored in data structures.

� Module definitions are too sequential: splitting mutually
recursive types and values into separate modules is
awkward.

/ 39


