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Main books

� J. C. Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

� T. W. Pratt and M. V. Zelkowitz. Programming Languages:
Design and implementation (3RD EDITION). Prentice Hall,
1999.

� R. Sethi. Programming languages: Concepts & constructs
(2ND EDITION). Addison-Wesley, 1996.
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˜ Lecture I ˜
Introduction and motivation

References:

� Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

� Chapter 1 of Programming languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.
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Practicalities
� Lectures.

[1] Introduction and motivation.
[2] The first procedural language: FORTRAN (1954–58).
[3] The first declarative language: LISP (1958–62).
[4] Block-structured procedural languages: Algol (1958–68),

BCPL (1967), Pascal (1970), C (1971–78).
[5] Object-oriented languages — Concepts and origins:

Simula (1964–67), Smalltalk (1971–80).
[6,7] Types, data abstraction, and modularity: C++ (1983–98),

SML (1984–97).
[8] The state of the art: Java (1996), C# (2000). (? Andrew Kennedy ?)
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� 2 exam questions.
� Course web page:

〈www.cl.cam.ac.uk/Teaching/2006/ConceptsPL/〉
with lecture slides and reading material.
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Goals

� Critical thinking about programming languages.
? What is a programming language!?

� Study programming languages.
� Be familiar with basic language concepts.
� Appreciate trade-offs in language design.

� Trace history, appreciate evolution and diversity of ideas.

� Be prepared for new programming methods, paradigms.
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Why study programming languages?

� To improve the ability to develop effective algorithms.

� To improve the use of familiar languages.

� To increase the vocabulary of useful programming
constructs.

� To allow a better choice of programming language.

� To make it easier to learn a new language.

� To make it easier to design a new language.
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What makes a good language?

� Clarity, simplicity, and unity.

� Orthogonality.

� Naturalness for the application.

� Support of abstraction.

� Ease of program verification.

� Programming environments.

� Portability of programs.
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� Cost of use.
� Cost of execution.
� Cost of program translation.
� Cost of program creation, testing, and use.
� Cost of program maintenance.
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Influences

� Computer capabilities.

� Applications.

� Programming methods.

� Implementation methods.

� Theoretical studies.

� Standardisation.
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Applications domains

Era Application Major languages Other languages
1960s Business COBOL Assembler

Scientific FORTRAN ALGOL, BASIC, APL
System Assembler JOVIAL, Forth
AI LISP SNOBOL

Today Business COBOL, SQL, spreadsheet C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal

Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,

MODULA
AI LISP, Prolog
Publishing TEX, Postcript,

word processing
Process UNIX shell, TCL, Perl Marvel, Esterel
New paradigms Smalltalk, ML, Haskell, Java Eifell, C#

Python, Ruby
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?> =<89 :;Motivating application in language design

A specific purpose provides focus for language designers; it
helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one of the
hardest problems in programming language design: deciding
which features to leave out.
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Examples: Good languages designed with a specific purpose
in mind.

� LISP: symbolic computation, automated reasoning
� FP: functional programming, algebraic laws
� BCPL: compiler writing
� Simula: simulation
� C: systems programming
� ML: theorem proving
� Smalltalk: Dynabook
� Clu, ML module system: modular programming
� C++: object orientation
� Java: Internet applications
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Program execution model

Good language design presents abstract machine.
� FORTRAN: Flat register machine; memory arranged as

linear array
� LISP: cons cells, read-eval-print loop
� Algol family: stack of activation records; heap storage
� BCPL, C: underlying machine + abstractions
� Simula: Object references
� FP, ML: functions are basic control structure
� Smalltalk: objects and methods, communicating by

messages
� Java: Java virtual machine
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Theoretical foundations

Examples:

� Formal-language theory.

� Automata theory.

� Algorithmics.

� λ-calculus.

� Semantics.

� Formal verification.

� Type theory.

� Complexity theory.
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Standardisation

� Proprietary standards.

� Consensus standards.
� ANSI.
� IEEE.
� BSI.
� ISO.
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Language standardisation

Consider: int i; i = (1 && 2) + 3 ;

? Is it valid C code? If so, what’s the value of i?

? How do we answer such questions!?

! Read the reference manual.

! Try it and see!

! Read the ANSI C Standard.
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Language-standards issues

Timeliness. When do we standardise a language?

Conformance. What does it mean for a program to adhere to
a standard and for a compiler to compile a standard?
Ambiguity and freedom to optimise — Machine
dependence — Undefined behaviour.

Obsolescence. When does a standard age and how does it
get modified?
Deprecated features.
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Language standards
C

? What does the following mean?

#include <stdio.h>

main() {

int t = 1 ;

int t0 = 0 ;

t0 = (t=t+1) + ++t ;

printf("t0=%d t=%d\n",t0,t) ;

int u = 1 ;

int u0 = 0 ;

u0 = ++u + (u=u+1) ;

printf("u0=%d u=%d\n",u0,u) ;
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int w = 1 ;

int w0 = 0 ;

w0 = (w=w+1) + (w=w+1) ;

printf("w0=%d w=%d\n",w0,w) ;

int x = 1 ;

int x0 = 0 ;

x0 = ++x + ++x ;

printf("x0=%d x=%d\n",x0,x) ;
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int y = 1 ;

int y0 = 0 ;

int ppy() { return ++y; } ;

y0 = ppy() + ppy() ;

printf("y0=%d y=%d\n",y0,y) ;

int z = 1 ;

int z0 = 0 ;

z0 = ++z ;

z0 += ++z ;

printf("z0=%d z=%d\n",z0,z) ; }
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Answer:
Linux (gcc, cc) t0=5 u0=6 w0=5 x0=6 y0=5 z0=5

Mips
(gcc) t0=5 u0=5 w0=5 x0=5 y0=5 z0=5

(cc) t0=5 u0=6 w0=5 x0=6 y0=5 z0=5

DEC Alpha
and Sun4

(gcc,cc) t0=5 u0=5 w0=5 x0=5 y0=5 z0=5
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Language standards
PL/1

? What does the following
9 + 8/3

mean?
− 11.666... ?
− Overflow ?
− 1.666... ?
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DEC(p,q) means p digits with q after the decimal point.

Type rules for DECIMAL in PL/1:

DEC(p1,q1) + DEC(p2,q2)

=> DEC(MIN(1+MAX(p1-q1,p2-q2)+MAX(q1,q2),15),MAX(q1,q2))

DEC(p1,q1) / DEC(p2,q2)

=> DEC(15,15-((p1-q1)+q2))
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For 9 + 8/3 we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)

=> DEC(1,0) + DEC(15,15-((1-0)+0))

=> DEC(1,0) + DEC(15,14)

=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15),MAX(0,14))

=> DEC(15,14)

So the calculation is as follows

9 + 8/3

= 9 + 2.66666666666666

= 11.66666666666666 - OVERFLOW

= 1.66666666666666 - OVERFLOW disabled
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History

1951–55: Experimental use of expression compilers.

1956–60: FORTRAN, COBOL, LISP, Algol 60.

1961–65: APL notation, Algol 60 (revised), SNOBOL, CPL.

1966–70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,
Algol 68, Algol-W, BCPL.

1971–75: Pascal, PL/1 (Standard), C, Scheme, Prolog.

1976–80: Smalltalk, Ada, FORTRAN 77, ML.
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1981–85: Smalltalk-80, Prolog, Ada 83.

1986–90: C++, SML, Haskell.

1991–95: Ada 95, TCL, Perl.

1996–2000: Java.

2000–05: C#, Python, Ruby.
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Language groups

� Multi-purpose languages
� C#, Java, C++, C
� Haskell, ML, Scheme, LISP

� Scripting languages
� Perl, TCL, UNIX shell

� Special-purpose languages
� SQL
� LATEX
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Things to think about

� What makes a good language?

� The role of
1. motivating applications,
2. program execution,
3. theoretical foundations
in language design.

� Language standardisation.

/ 29

˜ Lecture II ˜
FORTRAN : A simple procedural language

References:

� Chapter 10(§1) of Programming Languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.
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FORTRAN = FORmula TRANslator
(1957)

� The first high-level programming language to become
widely used.

� Developed in the 1950s by an IBM team led by John
Backus.

� At the time the utility of any high-level language was open
to question!
The main complain was the efficiency of compiled code.
This heavily influenced the designed, orienting it towards
providing execution efficiency.

� Standards:
1966, 1977 (FORTRAN 77), 1990 (FORTRAN 90).
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John Backus

As far as we were aware, we simply made up the
language as we went along. We did not regard
language design as a difficult problem, merely a
simple prelude to the real problem: designing a
compiler which could produce efficient programs.a

aIn R. L.Wexelblat, History of Programming Languages, Academic Press,

1981, page 30.
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Overview
Execution model

� FORTRAN program = main program + subprograms
� Each is compiled separate from all others.
� Translated programs are linked into final executable

form during loading.

� All storage is allocated statically before program execution
begins; no run-time storage management is provided.

� Flat register machine. No stacks, no recursion. Memory
arranged as linear array.
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Overview
Data types

� Numeric data: Integer, real, complex, double-precision
real.

� Boolean data. called logical

� Arrays. of fixed declared length

� Character strings. of fixed declared length

� Files.
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Overview
Control structures

� FORTRAN 66
Relied heavily on statement labels and GOTO

statements.

� FORTRAN 77
Added some modern control structures
(e.g., conditionals).
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Example

PROGRAM MAIN

PARAMETER (MaXsIz=99)

REAL A(mAxSiZ)

10 READ (5,100,END=999) K

100 FORMAT(I5)

IF (K.LE.0 .OR. K.GT.MAXSIZ) STOP

READ *,(A(I),I=1,K)

PRINT *,(A(I),I=1,K)

PRINT *,’SUM=’,SUM(A,K)

GO TO 10

999 PRINT *, "All Done"

STOP

END
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C SUMMATION SUBPROGRAM

FUNCTION SUM(V,N)

REAL V(N)

SUM = 0.0

DO 20 I = 1,N

SUM = SUM + V(I)

20 CONTINUE

RETURN

END
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Example
Commentary

� Columns and lines are relevant.

� Blanks are ignored (by early FORTRANs).

� Variable names are from 1 to 6 characters long, begin with
a letter, and contain letters and digits.

� Programmer-defined constants.

� Arrays: when sizes are given, lower bounds are assumed
to be 1; otherwise subscript ranges must be explicitly
declared.

� Variable types may not be declared: implicit naming
convention.
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� Data formats.

� FORTRAN 77 has no while statement.

� Functions are compiled separately from the main program.
Information from the main program is not used to pass
information to the compiler. Failure may arise when the
loader tries to merge subprograms with main program.

� Function parameters are uniformly transmitted by
reference (or value-result).
Recall that allocation is done statically.

� DO loops by increment.

� A value is returned in a FORTRAN function by assigning a
value to the name of a function.
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On syntax

A misspelling bug . . .

do 10 i = 1,100 vs. do 10 i = 1.100

. . . that is reported to have caused a rocket to explode
upon launch into space!
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Types

� FORTRAN has no mechanism for creating user types.

� Static type checking is used in FORTRAN, but the
checking is incomplete.
Many language features, including arguments in
subprogram calls and the use of COMMON blocks,
cannot be statically checked (in part because
subprograms are compiled independently).
Constructs that cannot be statically checked are
ordinarily left unchecked at run time in FORTRAN
implementations.
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Storage
Representation and Management

� Storage representation in FORTRAN is sequential.

� Only two levels of referencing environment are provided,
global and local.
The global environment may be partitioned into separate
common environments that are shared amongst sets of
subprograms, but only data objects may be shared in this
way.
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The sequential storage representation is critical in the
definition of the EQUIVALENCE and COMMON declarations.

� EQUIVALENCE

This declaration allows more than one simple or
subscripted variable to refer to the same storage
location.
? Is this a good idea?

Consider the following:
REAL X

INTEGER Y

EQUIVALENCE (X,Y)
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� COMMON

The global environment is set up in terms of sets of
variables and arrays, which are termed COMMON blocks.
A COMMON block is a named block of storage and may
contain the values of any number of simple variables and
arrays.
COMMON blocks may be used to isolate global data to only
a few subprograms needing that data.
? Is the COMMON block a good idea?

Consider the following:
COMMON/BLK/X,Y,K(25) in MAIN

COMMON/BLK/U,V,I(5),M(4,5) in SUB
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/. -,
() *+Aliasing

Aliasing occurs when two names or expressions
refer to the same object or location.

� Aliasing raises serious problems for both the user
and implementor of a language.

� Because of the problems caused by aliasing, new
language designs sometimes attempt to restrict or
eliminate altogether features that allow aliases to
be constructed.a

aIn what regards to the problem of checking for aliasing, interested stu-

dents may wish to investigate the work on the programming language Euclid

and/or the work of John Reynolds and followers on Syntactic Control of

Interference.
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/. -,
() *+Parameters

There are two concepts that must be clearly distinguished.

� The parameter names used in a function declaration are
called formal parameters.

� When a function is called, expressions called actual
parameters are used to compute the parameter values
for that call.
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FORTRAN subroutines and functions

� Actual parameters may be simple variables, literals,
array names, subscripted variables, subprogram
names, or arithmetic or logical expressions.
The interpretation of a formal parameter as an array
is done by the called subroutine.

� Each subroutine is compiled independently and no
checking is done for compatibility between the
subroutine declaration and its call.
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� The language specifies that if a formal parameter is
assigned to, the actual parameter must be a variable, but
because of independent compilation this rule cannot be
checked by the compiler.
Example:

SUBROUTINE SUB(X,Y)

X = Y

END

CALL SUB(-1.0,1.0)

� Parameter passing is uniformly by reference.
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˜ Lecture III ˜
LISP : functions, recursion, and lists

References:

� Chapter 3 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

� Chapters 5(§4.5) and 13(§1) of Programming languages:
Design and implementation (3RD EDITION) by T. W. Pratt
and M. V. Zelkowitz. Prentice Hall, 1999.
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� J. McCarthy. Recursive functions of symbolic expressions
and their computation by machine. Communications of
the ACM, 3(4):184–195, 1960.a

aAvailable on-line from 〈http://www-formal.stanford.edu/jmc/
recursive.html〉.
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LISP = LISt Processing
(±1960)

� Developed in the late 1950s and early 1960s by a team
led by John McCarthy in MIT.

� McCarthy described LISP as a “a scheme for representing
the partial recursive functions of a certain class of
symbolic expressions”.

� Motivating problems: Symbolic computation (symbolic
differentiation), logic (Advice taker ), experimental
programming.

� Software embedding LISP: Emacs (text editor),
GTK (linux graphical toolkit), Sawfish (window manager),
GnuCash (accounting software).
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/. -,
() *+Programming-language phrases

� Expressions. A syntactic entity that may be evaluated to
determine its value.

� Statement. A command that alters the state of the
machine in some explicit way.

� Declaration. A syntactic entity that introduces a new
identifier, often specifying one or more attributes.
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Innovation in the design of LISP

� LISP is an expression-based language.
Conditional expressions that produce a value were
new in LISP.

� Pure LISP has no statements and no expressions
with side effects. However, LISP also supports
impure constructs.
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Some contributions of LISP

� Lists.

� Recursive functions.

� Garbage collection.

� Programs as data.
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Overview

� LISP syntax is extremely simple. To make parsing easy, all
operations are written in prefix form (i.e., with the operator
in front of all the operands).

� LISP programs compute with atoms and cells.

� The basic data structures of LISP are dotted pairs, which
are pairs written with a dot between the components.
Putting atoms or pairs together, one can write symbolic
expressions in a form traditionally called S-expressions.
Most LISP programs use lists built out of S-expressions.

� LISP is an untyped programming language.
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� Most operations in LISP take list arguments and return list
values.

Example:
( cons ’(a b c) ’(d e f) ) cons-cell representation

Remark: The function (quote x), or simply ’x, just
returns the literal value of its argument.
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? How does one recognise a LISP program?

( defvar x 1 ) val x = 1 ;

( defun g(z) (+ x z) ) fun g(z) = x + z ;

( defun f(y) fun f(y)

( + ( g y ) = g(y) +

( let let

( ( x y) ) val x = y

( in

g x ) g(x)

) ) ) end ;

( f (+ x 1) ) f(x+1) ;

! It is full of parentheses!
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Historically, LISP was a dynamically scoped language . . .

( defvar x T )

( defun test(y) (eq x y) )

( cond

( x ( let ( (z 0) ) (test z) ) )

)

vs.
( defvar x T )

( defun test(y) (eq x y) )

( cond

( x ( let ( (x 0) ) (test x) ) )

)

. . . when Scheme was introduced in 1978, it was a statically
scoped variant of LISP.
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/. -,
() *+Static and dynamic scope

Static scope rules relate references with declarations of names
in the program text; dynamic scope rules relate references
with associations for names during program execution.

There are two main rules for finding the declaration of a global
identifier:

� Static scope. A global identifier refers to the identifier with
that name that is declared in the closest enclosing scope
of the program text.

� Dynamic scope. A global identifier refers to the identifier
associated with the most recent environment.
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/. -,
() *+Renaming of local variables

Lexical scope is deeply related to renaming of variables. It
should not matter whether a program uses one name or
another one for a local variable. Let us state this supposition
as a principle:

Consistent renaming of local names in the source text
has no effect on the computation set up by a program.

This renaming principle motivates static scope because a
language that obeys the renaming principle uses lexical
scope. The reason is that the renaming principle can be
applied to rename local variables until each name has only
one declaration in the entire program. This one declaration is
the one obtained under lexical scope.
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/. -,
() *+The importance of static scope

Static scope rules play an important part in the design and
implementation of most programming languages.

� Static scope rules allow many different sorts of
connections to be established between references to
names and their declarations during translation.
For instance, relating a variable name to a declaration for
the variable and relating a constant name to a declaration
for the constant.
Other connections include relating names to type
declarations, relating formal parameters to formal
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parameter specifications, relating subprogram calls to
subprogram declarations, and relating statement labels
referenced in goto statements to labels on particular
statements.
In each of these cases, a different set of simplications may
be made during translation that make execution of the
program more efficient.

� Static scope rules are also important for the programmer
in reading a program because they make it possible to
relate a name referenced in a program to a declaration for
the name without tracing the course of program execution.
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/. -,
() *+Abstract machines

The terminology abstract machine is generally used to refer to
an idealised computing device that can execute a specific
programming language directly.

Typically an abstract machine may not be fully implementable.
However, an abstract machine should be sufficiently realistic
to provide useful information about the real execution of
programs.

An important goal in discussing abstract machines is to
identify the mental model of the computer that a programmer
uses to write and debug programs.
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LISP abstract machine

The abstract machine for Pure LISP has four parts:
1. A LISP expression to be evaluated.

2. A continuation, which is a function representing the
remaining of the program to evaluate when done with
the current expression.

3. An association list, also know as the A-list.
The purpose of the A-list is to store the values of variables
that may occur either in the current expression to be
evaluated or in the remaining expressions in the program.

4. A heap, which is a set of cons cells (or dotted pairs) that
might be pointed to by pointers in the A-list.
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Recursion
McCarthy (1960)

( defun subst ( x y z )

( cond

( ( atom z ) ( cond ( ( eq z y ) x ) ( T z ) ) )

( T ( cons (subst x y (car z) ) (subst x y (cdr z)) ) )

)

)

In general . . . , the routine for a recursive function uses itself as a
subroutine. For example, the program for subst x y z uses itself as
a subroutine to evaluate the result of substituting into the
subexpression car z and cdr z. While subst x y (cdr z) is being
evaluated, the result of the previous evaluation of
subst x y (car z) must be saved in a temporary storage register.
However, subst may need the same register for evaluating
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subst x y (cdr z). This possible conflict is resolved by the SAVE
and UNSAVE routines that use the public push-down list a. The
SAVE routine has an index that tells it how many registers in the
push-down list are already in use. It moves the contents of the
registers which are to be saved to the first unused registers in the
push-down list, advances the index of the list, and returns to the
program form which control came. This program may then freely use
these registers for temporary storage. Before the routine exits it
uses UNSAVE, which restores the contents of the temporary
registers from the push-down list and moves back the index of this
list. The result of these conventions is described, in programming
terminology, by saying that the recursive subroutine is transparent to
the temporary storage registers.

a1995: now called a stack
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Garbage collection
McCarthy (1960)

. . . When a free register is wanted, and there is none
left on the free-storage list, a reclamation† cycle starts.

———
† We already called this process “garbage collection”,
but I guess that I chickened out of using it in the
paper—or else the Research Laboratory of
Electronics grammar ladies wouldn’t let me.
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/. -,
() *+Garbage collection

In computing, garbage refers to memory locations that are not
accessible to a program.

At a given point in the execution of a program P, a
memory location ` is garbage if no completed
execution of P from this point can access location `. In
other words, replacing the contents of ` or making this
location inaccessible to P cannot affect any further
execution of the program.

Garbage collection is the process of detecting garbage during
the execution of a program and making it available.
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Programs as data

� LISP data and LISP program have the same syntax and
internal representation. This allows data structures to be
executed as programs and programs to be modified as
data.

� One feature that sets LISP apart from many other
languages is that it is possible for a program to build a
data structure that represents an expression and then
evaluates the expression as if it were written as part of
the program. This is done with the function eval.
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Parameter passing in LISP

The actual parameters in a function call are always
expressions, represented as lists structures.
LISP provides two main methods of parameter passing:

� Pass/Call-by-value. The most common method is to
evaluate the expressions in the actual-parameter list, and
pass the resulting values.

� Pass/Call-by-name.? A less common method is to transmit
the expression in the actual parameter list unevaluated,
and let the call function evaluate them as needed using
eval.
The programmer may specify transmission by name using
nlambda in place of lambda in the function definition.
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Strict and lazy evaluation

Example: Consider the following function definitions with
parameter-passing by value.

( defun CountFrom(n) ( CountFrom(+ n 1) ) )

( defun FunnyOr(x y)

( cond ( x 1) ( T y ) )

)

( defun FunnyOrelse(x y)

( cond ( (eval x) 1) ( T (eval y) ) )

)
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? What happens in the following calls?

( FunnyOr T (CountFrom 0) )

( FunnyOr nil T )

( FunnyOrelse ’T ’(CountFrom 0) )

( FunnyOrelse ’nil ’T )
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˜ Lecture IV ˜

Block-structured procedural languages

Algol and Pascal

References:

� Chapters 5 and 7, of Concepts in programming
languages by J. C. Mitchell. CUP, 2003.

� Chapters 10(§2) and 11(§1) of Programming languages:
Design and implementation (3RD EDITION) by T. W. Pratt
and M. V. Zelkowitz. Prentice Hall, 1999.
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� Chapter 5 of Programming languages: Concepts &
constructs by R. Sethi (2ND EDITION). Addison-Wesley,
1996.

� Chapter 7 of Understanding programming languages by
M Ben-Ari. Wiley, 1996.
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/. -,
() *+Parameters

There are two concepts that must be clearly distinguished:

� A formal parameter is a declaration that appears in the
declaration of the subprogram. (The computation in the
body of the subprogram is written in terms of formal
parameters.)

� An actual parameter is a value that the calling program
sends to the subprogram.

Example: Named parameter associations.

Normally the actual parameters in a subprogram call are just
listed and the matching with the formal parameters is done by
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position:

procedure Proc(First: Integer; Second: Character);

Proc(24,’h’);

In Ada it is possible to use named association in the call:

Proc(Second => ’h’, First => 24);

? What about in ML? Can it be simulated?

This is commonly used together with default parameters:

procedure Proc(First: Integer := 0; Second: Character := ’*’);

Proc(Second => ’o’);
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Named associations and default parameters are commonly used in
the command languages of operating systems, where each
command may have dozens of options and normally only a few
parameters need to be explicitly changed. However, there are
dangers with this programming style. The use of default parameters
can make a program hard to read because calls whose syntax is
different actually call the same subprogram. Name associations are
problematic because they bind the subprogram declaration and the
calls more tightly than is usually needed. If you use only positional
parameters in calling subprograms from a library, you could buy a
competing library and just recompile or link. However, if you use
named parameters, then you might have to do extensive
modifications to your program to conform to the new parameter
names.
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/. -,
() *+Parameter passing

The way that actual parameters are evaluated and passed to
procedures depends on the programming language and the
kind of parameter-passing mechanisms it uses.

The main distinction between different parameter-passing
mechanisms are:

� the time that the actual parameter is evaluated, and

� the location used to store the parameter value.

NB: The location of a variable (or expression) is called its
L-value, and the value stored in this location is called the
R-value of the variable (or expression).
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/. -,
() *+Parameter passing

Pass/Call-by-value

� In pass-by-value, the actual parameter is evaluated. The
value of the actual parameter is then stored in a new
location allocated for the function parameter.

� Under call-by-value, a formal parameter corresponds to
the value of an actual parameter. That is, the formal x of a
procedure P takes on the value of the actual parameter.
The idea is to evaluate a call P(E) as follows:

x := E;
execute the body of procedure P;
if P is a function, return a result.
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/. -,
() *+Parameter passing

Pass/Call-by-reference

1. In pass-by-reference, the actual parameter must have an
L-value. The L-value of the actual parameter is then
bound to the formal parameter.

2. Under call-by-reference, a formal parameter becomes a
synonym for the location of an actual parameter. An actual
reference parameter must have a location.
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Example:

program main;

begin

function f( var x: integer; y: integer): integer;

begin

x := 2;

y := 1;

if x = 1 then f := 1 else f:= 2

end;

var z: integer;

z := 0;

writeln( f(z,z) )

end
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The difference between call-by-value and call-by-reference is
important to the programmer in several ways:

� Side effects. Assignments inside the function body may
have different effects under pass-by-value and
pass-by-reference.

� Aliasing. Aliasing occurs when two names refer to the
same object or location.
Aliasing may occur when two parameters are passed by
reference or one parameter passed by reference has the
same location as the global variable of the procedure.
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� Efficiency. Pass-by-value may be inefficient for large
structures if the value of the large structure must be
copied. Pass-by-reference maybe less efficient than
pass-by-value for small structures that would fit directly on
stack, because when parameters are passed by reference
we must dereference a pointer to get their value.
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/. -,
() *+Parameter passing

Pass/Call-by-value/result

Call-by-value/result is also known as copy-in/copy-out
because the actuals are initially copied into the formals and
the formals are eventually copied back out to the actuals.
Actuals that do not have locations are passed by value.
Actuals with locations are treated as follows:
1. Copy-in phase. Both the values and the locations of the

actual parameters are computed. The values are
assigned to the corresponding formals, as in call-by-value,
and the locations are saved for the copy-out phase.

2. Copy-out phase. After the procedure body is executed,
the final values of the formals are copied back out to the
locations computed in the copy-in phase.
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Examples:

� A parameter in Pascal is normally passed by value. It is
passed by reference, however, if the keyword var appears
before the declaration of the formal parameter.
procedure proc(in: Integer; var out: Real);

� The only parameter-passing method in C is call-by-value;
however, the effect of call-by-reference can be achieved
using pointers. In C++ true call-by-reference is available
using reference parameters.
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� Ada supports three kinds of parameters:
1. in parameters, corresponding to value parameters;
2. out parameters, corresponding to just the copy-out phase

of call-by-value/result; and
3. in out parameters, corresponding to either reference

parameters or value/result parameters, at the discretion of
the implementation.
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/. -,
() *+Parameter passing

Pass/Call-by-name

The Algol 60 report describes call-by-name as follows:

1. Actual parameters are textually substituted for the formals.
Possible conflicts between names in the actuals and local
names in the procedure body are avoided by renaming the
locals in the body.

2. The resulting procedure body is substituted for the call.
Possible conflicts between nonlocals in the procedure
body and locals at the point of call are avoided by
renaming the locals at the point of call.
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Block structure

� In a block-structured language, each program or
subprogram is organised as a set of nested blocks.
A block is a region of program text, identified by begin and
end markers, that may contain declarations local to this
region.

� In-line (or unnamed) blocks are useful for restricting the
scope of variables by declaring them only when needed,
instead of at the beginning of a subprogram. The trend in
programming is to reduce the size of subprograms, so the
use of unnamed blocks is less useful than it used to be.
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Nested procedures can be used to group statements that
are executed at more than one location within a
subprogram, but refer to local variables and so cannot be
external to the subprogram. Before modules and
object-oriented programming were introduced, nested
procedures were used to structure large programs.

� Block structure was first defined in Algol. Pascal contains
nested procedures but not in-line blocks; C contains in-line
blocks but not nested procedures; Ada supports both.

� Block-structured languages are characterised by the
following properties:

� New variables may be declared at various points in a
program.
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� Each declaration is visible within a certain region of
program text, called a block.

� When a program begins executing the instructions
contained in a block at run time, memory is allocated for
the variables declared in that block.

� When a program exits a block, some or all of the memory
allocated to variables declared in that block will be
deallocated.

� An identifier that is not delcared in the current block is
considered global to the block and refers to the entity with
this name that is declared in the closest enclosing block.
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Algol

had a major effect on language design

� The Algol-like programming languages evolved in parallel
with the LISP family of languages, beginning with Algol 58
and Algol 60 in the late 1950s.

� The most prominent Algol-like programming languages
are Pascal and C, although C differs from most of the
Algol-like languages in some significant ways. Further
Algol-like languages are: Algol 58, Algol W, Euclid, etc.
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� The main characteristics of the Algol family are:
� the familiar semicolon-separated sequence of statements,
� block structure,
� functions and procedures, and
� static typing.

/ 92



Algol 60

� Designed by a committee (including Backus, McCarthy,
Perlis) between 1958 and 1963.

� Intended to be a general purpose programming language,
with emphasis on scientific and numerical applications.

� Compared with FORTRAN, Algol 60 provided better ways
to represent data structures and, like LISP, allowed
functions to be called recursively.
Eclipsed by FORTRAN because of the lack of I/O
statements, separate compilation, and library; and
because it was not supported by IBM.
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Algol 60
Features

� Simple statement-oriented syntax.

� Block structure.

� Recursive functions and stack storage allocation.

� Fewer ad hoc restrictions than previous languages
(e.g., general expressions inside array indices,
procedures that could be called with procedure
parameters).

� A primitive static type system, later improved in
Algol 68 and Pascal.
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Algol 60
Some trouble spots

� The Algol 60 type discipline had some shortcomings.
For instance:

� Automatic type conversions were not fully specified
(e.g., x := x/y was not properly defined when x and y

were integers—is it allowed, and if so was the value
rounded or truncated?).

� The type of a procedure parameter to a procedure
does not include the types of parameters.

� An array parameter to a procedure is given type array,
without array bounds.
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� Algol 60 was designed around two parameter-passing
mechanisms, call-by-name and call-by-value.
Call-by-name interacts badly with side effects;
call-by-value is expensive for arrays.

� There are some awkward issues related to control flow,
such as memory management, when a program jumps
out of a nested block.
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Algol 60 procedure typesa

In Algol 60, the type of each formal parameter of a procedure must be
given. However, proc is considered a type (the type of procedures). This is
much simpler than the ML types of function arguments. However, this is
really a type loophole; because calls to procedure parameters are not fully
type checked, Algol 60 programs may produce run-time errors.
Write a procedure declaration for Q that causes the following program
fragment to produce a run-time type error:

proc P ( proc Q )

begin Q(true) end;

P(Q);

where true is a Boolean value. Explain why the procedure is statically type
correct, but produces a run-time type error. (You may assume that adding
a Boolean to an integer is a run-time error.)

aExercise 5.1 of Concepts in programming languages by J. Mitchell, CUP,

2003.
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Algol 60 pass-by-name

Copy rule

real procedure sum(E,i,low,high); value low, high;

real E; integer i, low, high;

begin

sum:=0.0; for i := low step 1 until high do sum := sum+E;

end

integer j; real array A[1:10]; real result;

for j:= 1 step 1 until 10 do A[j] := j;

result := sum(A[j],j,1,10)

By the Algol 60 copy rule, the function call to sum above is equivalent to:

begin

sum:=0.0; for j := 1 step 1 until 10 do sum := sum+A[j];

end
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Algol 60 pass-by-namea

The following Algol 60 code declares a procedure P with one pass-by-name
integer parameter. Explain how the procedure call P(A[i]) changes the
values of i and A by substituting the actual parameters for the formal
parameters, according to the Algol 60 copy rule. What integer values are
printed by the program? And, by using pass-by-value parameter passing?
begin

integer i; i:=1;

integer array A[1:2]; A[1]:=2; A[2]:=3;

procedure P(x); integer x;

begin i:=x; x:=1 end

P(A[i]); print(i,A[1],A[2])

end

aExercise 5.2 of Concepts in programming languages by J. Mitchell, CUP,

2003.
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Algol 68
� Intended to remove some of the difficulties found in

Algol 60 and to improve the expressiveness of the
language.
It did not entirely succeed however, with one main
problem being the difficulty of efficient compilation
(e.g., the implementation consequences of higher-order
procedures where not well understood at the time).

� One contribution of Algol 68 was its regular, systematic
type system.
The types (referred to as modes in Algol 68) are either
primitive (int, real, complex, bool, char, string, bits,
bytes, semaphore, format, file) or compound (array,
structure, procedure, set, pointer).
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Type constructions could be combined without restriction.
This made the type system seem more systematic than
previous languages.

� Algol 68 memory management involves a stack for local
variables and heap storage. Algol 68 data on the heap are
explicitly allocated, and are reclaimed by garbage
collection.

� Algol 68 parameter passing is by value, with
pass-by-reference accomplished by pointer types. (This
is essentially the same design as that adopted in C.)

� The decision to allow independent constructs to be
combined without restriction also led to some complex
features, such as assignable pointers.
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Algol innovations

� Use of BNF syntax description.
� Block structure.
� Scope rules for local variables.
� Dynamic lifetimes for variables.
� Nested if-then-else expressions and statements.
� Recursive subroutines.
� Call-by-value and call-by-name arguments.
� Explicit type declarations for variables.
� Static typing.
� Arrays with dynamic bounds.
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Pascal

� Designed in the 1970s by Niklaus Wirth, after the design
and implementation of Algol W.

� Very successful programming language for teaching, in
part because it was designed explicitly for that purpose.
Also designed to be compiled in one pass. This hindered
language design; e.g., it forced the problematic forward

declaration.

� Pascal is a block-structured language in which static
scope rules are used to determine the meaning of
nonlocal references to names.
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� A Pascal program is always formed from a single main
program block, which contains within it definitions of the
subprograms used.
Each block has a characteristic structure: a header giving
the specification of parameters and results, followed by
constant definitions, type definitions, local variable
declarations, other nested subprogram definitions, and the
statements that make up the executable part.

� Pascal is a quasi-strong, statically typed programming
language.
An important contribution of the Pascal type system is the
rich set of data-structuring concepts: e.g. enumerations,
subranges, records, variant records, sets, sequential files.
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� The Pascal type system is more expressive than the
Algol 60 one (repairing some of its loopholes), and simpler
and more limited than the Algol 68 one (eliminating some
of the compilation difficulties).
A restriction that made Pascal simpler than Algol 68:
procedure Allowed( j,k: integer );

procedure AlsoAllowed( procedure P(i:integer);

j,k: integer );

procedure

NotAllowed( procedure MyProc( procedure P(i:integer) ) );
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� Pascal was the first language to propose index checking.

� Problematically, in Pascal, the index type of an array is
part of its type. The Pascal standard defines conformant
array parameters whose bounds are implicitly passed to a
procedure. The Ada programmig language uses so-called
unconstrained array types to solve this problem.
The subscript range must be fixed at compile time
permitting the compiler to perform all address calculations
during compilation.
procedure

Allowed( a: array [1..10] of integer ) ;

procedure

NotAllowed( n: integer; a: array [1..n] of integer ) ;
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� Pascal uses a mixture of name and structural equivalence
for determining if two variables have the same type.
Name equivalence is used in most cases for determining
if formal and actual parameters in subprogram calls have
the same type; structural equivalence is used in most
other situations.

� Parameters are passed by value or reference.
Complete static type checking is possible for
correspondence of actual and formal parameter types in
each subprogram call.
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Pascal variant records
Variant records have a part common to all records of that type,
and a variable part, specific to some subset of the records.
type

kind = ( unary, binary) ;

type { datatype }

UBtree = record { ’a UBtree = record of }

value: integer ; { ’a * ’a UBkind }

case k: kind of { and ’a UBkind = }

unary: ^UBtree ; { unary of ’a UBtree }

binary: record { | binary of }

left: ^UBtree ; { ’a UBtree * }

right: ^UBtree { ’a UBtree ; }

end

end ;
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Variant records introduce weaknesses into the type system for
a language.

1. Compilers do not usually check that the value in the tag
field is consistent with the state of the record.

2. Tag fields are optional. If omitted, no checking is possible
at run time to determine which variant is present when a
selection is made of a field in a variant.
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Summary

� The Algol family of languages established the
command-oriented syntax, with blocks, local declarations,
and recursive functions, that are used in most current
programming languages.

� The Algol family of languages is statically typed, as each
expression has a type that is determined by its syntactic
form and the compiler checks before running the program
to make sure that the types of operations and operands
agree.
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˜
Appendix to
Lecture IV ˜

Block-structured procedural languages

BCPL and C

References:

� Chapters 1 to 3 of BCPL, the language and its compiler
by M. Richards and C. Whitby-Strevens. CUP, 1979.
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BCPL
LET BCPL BE

$( LET CPL = "Combined Programming Language"

WRITEF("Basic %S", CPL) $)

� Designed by Martin Richards in 1967 at MIT.

� Originally developed as a compiler-writing tool, has also
proved useful as a systems-programming tool.

� BCPL adopted much of the syntactic richness of CPL;
however, in order to achieve the efficiency necessary for
systems-programming, its scale and complexity is far
less than that of CPL.

� BCPL has only one data type: the bit-pattern.
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BCPLa

Philosophy

� Abstract machine.
The most important feature is the store: a set of numbered
storage cells arranged so that the numbers labelling
adjacent cells differ by one.
All storage cells are of the same size and each of them
holds a value (= bit-pattern). A value is the only kind of
object that can be manipulated directly in BCPL, and
every variable and expression in that language will always
evaluate to one of these.

aNotes from Chapter 1 of BCPL, the language and its compiler by

M.Richards and C. Whitby-Strevens. CUP, 1979.
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Many basic operations on values are provided. One of
these, of fundamental importance, is indirection. This
operation takes one operand with is interpreted as an
integer and yields the contents of the storage cell labelled
by that integer.

� Data types.
The design of BCPL distinguishes between two classes of
data types.
1. Conceptual types. The kind of abstract object the

programmer had in mind.
2. Internal types. Basic types for modelling conceptual types.
Much of the flavour of BCPL is the result of the conscious
design decision to provide only one internal type. The
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most important effects on language design are:
1. There is no need for type declarations in the language.

This helps to make programs concise and also simplifies
problems such as the handling of actual/formal parameter
correspondence and separate compilation.

2. It gives the language nearly the same power as one with
dynamically varying types (as in LISP), and yet retains the
efficiency of a language (like FORTRAN) with manifest
types. In languages (such as Algol) where the elements of
arrays must all have the same type, one needs some other
linguistic device in order to handle dynamically varying data
structures.

3. Since there is only one internal type in the language there
can be no automatic type checking, and it is possible to
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write nonsensical programs which the compiler will
translate without complaint.

� Variables.
The purpose of a declaration in BCPL is: to introduce a
name and specify its scope; to specify its extent; to specify
its initial value.
In BCPL, variables may be divide into two classes:
1. Static variables. The extent of a static variable is the entire

execution time of the program. The storage cell is allocated
prior to execution and continues to exist until execution is
complete.

2. Dynamic variables. A dynamic variable is one whose extent
starts when its declaration is executed and continues until
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execution leaves the scope of the variable. Dynamic
variables are usually necessary when using routines
recursively.

� Recursion.
Procedures may be used recursively, and in order to allow
for this and yet maintain very high execution efficiency,
there is the restriction that the free variables of a
procedure must be static.

� Modularity.
BCPL uses a form of static storage, called global vector,
which allows separately compiled modules to reference
and call each other and to share data. This facility is not
unlike the FORTRAN COMMON storage area.
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Pointers and arrays

� A pointer in BCPL is the address of a word of store.

� The unary operator @ is used to produce the address of a
variable.

� The unary operator ! is used to access the store cell
pointed to by an address.

� The array declaration
LET V = VEC 2

establishes: (i) an array of three consecutive locations,
and (ii) a separate variable V which is initialised to the
address of the first location of the array:
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V • // V!0

V!1

V!2

(V!E =def !(V+E))

Here V behaves like any other local variable, the main
difference being that it is initialised by the compiler as a
pointer. Hence its value can be copied into another
variable (which as a result will also point to the same
array), or passed as a parameter to a procedure.
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Parameter passing

The BCPL procedure call uses the call-by-value technique for
parameter passing.

As simple variables are passed by value, a copy is made of
the actual parameters for the called procedure to use.
Assigning to the formal parameters will not change the values
of the original variables specified as actual parameters. This is
similar to the Algol call-by-value mechanism, and in contrast to
the FORTRAN parameter-passing mechanism.

The effect of the parameter-passing mechanism in BCPL is
that simple variables are passed by value, and vectors by
reference.
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Procedures
LET COUNT(ARRAY, SIZE) = VALOF

$( LET NUMBER = 0

FOR I = 0 TO SIZE DO ARRAY!I := 0

$( LET C = READN()

IF C < 0 RESULTIS NUMBER

IF C > SIZE THEN C := SIZE

ARRAY!C := ARRAY!C + 1

NUMBER := NUMBER + 1

$) REPEAT

$)

Note that there is no mention that ARRAY is an array. It is the
programmer’s responsibility to make sure that if a parameter is
treated as an array inside a procedure, then an array is
provided in the procedure call.
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Procedures as values

� BCPL has been carefully designed so that it is possible to
represent a procedure by a simple BCPL value, called the
procedure value. The procedure value is placed in a
variable bearing the name of the procedure.

� Procedure values can be assigned to ordinary variables.
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...

LET CH = GETBYTE(FORMAT, P)

SWITCHON CH INTO

$( ...

CASE ‘S’: F:= WRITES; GOTO L

CASE ‘C’: F:= WRCH; GOTO L

...

$)

...

L: F(ARG, N)

Thus, a procedure may be passed as a parameter to
another procedure, or returned as the result of a function
call.
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Example: I/O streams
LET NEXT(S) = (S!0)(S)

LET OUT(S,X) BE (S!1)(S,X)

The relevant information concerning a particular stream S

is stored in an array to which S points. The first few items
in this array are procedure values. The array takes the
following form

S −→ NEXT.SOURCE

OUT.SINK
...

The procedure value held in the zeroth element of S
represents the function which implements NEXT, etc.
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C

� Designed and implemented from 1969 to 1973, as part of
the Unix operating system project at Bell Labs.

� C was designed by Dennis Ritchie, as an evolution of
Ritchie and Ken Thompson’s language B, which was in
turn based on BCPL.
B was a pared-down version of BCPL, designed to run on
the small computer used by the Unix project. The main
difference between B and C is that B was untyped
whereas C has types and type-checking rules.
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� An important feature of C has been the tolerance of C
compilers to type errors. This is partly because C evolved
from typeless languages. As C evolved further and was
later standardised by an ANSI committee in the
mid-1980s, backward compatibility with the then-existing
C code also prevented strong typing restriction. One of the
most commonly cited advantages of C++ over C is the fact
that C++ provides better type checking.
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Summary

� The C programming language is similar to Algol 60,
Algol 68, and Pascal in some respects: command-oriented
syntax, blocks, local declarations, and recursive functions.
However, C also shares some features with its untyped
precursor BCPL, such as pointer arithmetic. C is also
more restricted than most Algol-based languages in that
functions cannot be declared inside nested blocks: All
functions are declared outside the main program. This
simplifies storage management.
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˜ Lecture V ˜

Object-oriented languages : Concepts and origins

SIMULA and Smalltalk

References:

? Chapters 10 and 11 of Concepts in programming
languages by J. C. Mitchell. CUP, 2003.

� Chapters 8, and 12(§§2 and 3) of Programming
languages: Design and implementation (3RD EDITION) by
T. W. Pratt and M. V. Zelkowitz. Prentice Hall, 1999.
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� Chapter 7 of Programming languages: Concepts &
constructs by R. Sethi (2ND EDITION). Addison-Wesley,
1996.

� Chapters 14 and 15 of Understanding programming
languages by M Ben-Ari. Wiley, 1996.

? B. Stroustrup. What is “Object-Oriented Programming”?
(1991 revised version). Proc. 1st European Conf. on
Object-Oriented Programming. (Available on-line from
〈http://public.research.att.com/∼bs/papers.html〉.)
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Objects in ML !?
exception Empty ;

fun newStack(x0)

= let val stack = ref [x0]

in ref{ push = fn(x)

=> stack := ( x :: !stack ) ,

pop = fn()

=> case !stack of

nil => raise Empty

| h::t => ( stack := t; h )

}end ;

exception Empty

val newStack = fn :

’a -> {pop:unit -> ’a, push:’a -> unit} ref
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val BoolStack = newStack(true) ;

val BoolStack = ref {pop=fn,push=fn}

: {pop:unit -> bool, push:bool -> unit} ref

val IntStack0 = newStack(0) ;

val IntStack0 = ref {pop=fn,push=fn}

: {pop:unit -> int, push:int -> unit} ref

val IntStack1 = newStack(1) ;

val IntStack0 = ref {pop=fn,push=fn}

: {pop:unit -> int, push:int -> unit} ref
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IntStack0 := !IntStack1 ;

val it = () : unit

#pop(!IntStack0)() ;

val it = 1 : int

#push(!IntStack0)(4) ;

val it = () : unit
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map ( #push(!IntStack0) ) [3,2,1] ;

val it = [(),(),()] : unit list

map ( #pop(!IntStack0) ) [(),(),(),()] ;

val it = [1,2,3,4] : int list

NB:

� ! The stack discipline for activation records fails!

� ? Is ML an object-oriented language?
! Of course not!
? Why?
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Basic concepts in

object-oriented languagesa

Four main language concepts for object-oriented languages:

1. Dynamic lookup.

2. Abstraction.

3. Subtyping.

4. Inheritance.

aNotes from Chapter 10 of Concepts in programming languages by

J. C. Mitchell. CUP, 2003.
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/. -,
() *+Dynamic lookup

� Dynamic lookup means that when a message is sent to an
object, the method to be executed is selected dynamically,
at run time, according to the implementation of the object
that receives the message. In other words, the object
“chooses” how to respond to a message.
The important property of dynamic lookup is that different
objects may implement the same operation differently, and
so may respond to the same message in different ways.
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� Dynamic lookup is sometimes confused with overloading,
which is a mechanism based on static types of operands.
However, the two are very different. ? Why?

There is a family of object-oriented languages that is
based on the “run-time overloading” view of dynamic
lookup. The most prominent design of this form is
CLOS (= Common Lisp Object System), which features
multiple dispatch.
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/. -,
() *+Abstraction

� Abstraction means that implementation details are hidden
inside a program unit with a specific interface. For objects,
the interface usually consists of a set of methods that
manipulate hidden data.

� Abstraction based on objects is similar in many ways to
abstraction based on abstract data types: Objects and
abstract data types both combine functions and data, and
abstraction in both cases involves distinguishing between
a public interface and private implementation.
Other features of object-oriented languages, however,
make abstraction in object-oriented languages more
flexible than abstraction with abstract data types.
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/. -,
() *+Subtyping

� Subtyping is a relation on types that allows values of one
type to be used in place of values of another. Specifically,
if an object a has all the functionality of another object b,
then we may use a in any context expecting b.

� The basic principle associated with subtyping is
substitutivity: If A is a subtype of B, then any expression of
type A may be used without type error in any context that
requires an expression of type B.
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� The primary advantage of subtyping is that it permits
uniform operations over various types of data.
For instance, subtyping makes it possible to have
heterogeneous data structures that contain objects that
belong to different subtypes of some common type.

� Subtyping in an object-oriented language allows
functionality to be added without modifying general parts
of a system.
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/. -,
() *+Inheritance

� Inheritance is the ability to reuse the definition of one kind
of object to define another kind of object.

� The importance of inheritance is that it saves the effort of
duplicating (or reading duplicated) code and that, when
one class is implemented by inheriting form another,
changes to one affect the other. This has a significant
impact on code maintenance and modification.
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Inheritance is not subtypinga

Subtyping is a relation on interfaces,
inheritance is a relation on implementations.

One reason subtyping and inheritance are often confused is
that some class mechanisms combine the two. A typical
example is C++, in which A will be recognized by the compiler
as a subtype of B only if B is a public base class of A.
Combining subtyping and inheritance is an elective design
decision.

aInterested students may consult the POPL’90 paper Inheritance is not

subtyping by W.R.Cook, W.L.Hill and P. S.Canning available on-line from

〈http://www.cs.utexas.edu/users/wcook/publications.htm〉.
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History of objects
SIMULA and Smalltalk

� Objects were invented in the design of SIMULA and
refined in the evolution of Smalltalk.

� SIMULA: The first object-oriented language.
The object model in SIMULA was based on procedures
activation records, with objects originally described as
procedures that return a pointer to their own activation
record.

� Smalltalk: A dynamically typed object-oriented language.
Many object-oriented ideas originated or were popularised
by the Smalltalk group, which built on Alan Kay’s
then-futuristic idea of the Dynabook.
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SIMULA

� Extremely influential as the first language with classes
objects, dynamic lookup, subtyping, and inheritance.

� Originally designed for the purpose of simulation by
O.-J. Dahl and K. Nygaard at the Norwegian Computing
Center, Oslo, in the 1960s.

� SIMULA was designed as an extension and modification
of Algol 60. The main features added to Algol 60 were:
class concepts and reference variables (pointers to
objects); pass-by-reference; input-output features;
coroutines (a mechanism for writing concurrent programs).
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� A generic event-based simulation program
Q := make_queue(initial_event);

repeat

select event e from Q

simulate event e

place all events generated by e on Q

until Q is empty

naturally requires:
� A data structure that may contain a variety of kinds of

events. ; subtyping
� The selection of the simulation operation according to the

kind of event being processed. ; dynamic lookup
� Ways in which to structure the implementation of related

kinds of events. ; inheritance
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Objects in SIMULA

Class: A procedure returning a pointer to its activation
record.

Object: An activation record produced by call to a class,
called an instance of the class. ; a SIMULA object

is a closure

� SIMULA implementations place objects on the heap.

� Objects are deallocated by the garbage collector (which
deallocates objects only when they are no longer
reachable from the program that created them).
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SIMULA
Object-oriented features

� Objects: A SIMULA object is an activation record
produced by call to a class.

� Classes: A SIMULA class is a procedure that returns a
pointer to its activation record. The body of a class may
initialise the objects it creates.

� Dynamic lookup: Operations on an object are selected
from the activation record of that object.
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� Abstraction: Hiding was not provided in SIMULA 67 but
was added later and used as the basis for C++.

� Subtyping: Objects are typed according to the classes that
create them. Subtyping is determined by class hierarchy.

� Inheritance: A SIMULA class may be defined, by class
prefixing, as an extension of a class that has already been
defined including the ability to redefine parts of a class in
a subclass.
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SIMULA 67 did not distinguish between public and private
members of classes.

A later version of the language, however, allowed attributes to
be made “protected”, which means that they are accessible for
subclasses (but not for other classes), or “hidden”, in which
case they are not accessible to subclasses either.
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SIMULA
Further object-related features

� Inner, which indicates that the method of a subclass
should be called in combination with execution of
superclass code that contains the inner keyword.

� Inspect and qua, which provide the ability to test the type
of an object at run time and to execute appropriate code
accordingly. (inspect is a class (type) test, and qua is a
form of type cast that is checked for correctness at run
time.)
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SIMULA
Sample code

a

CLASS POINT(X,Y); REAL X, Y;

COMMENT***CARTESIAN REPRESENTATION

BEGIN

BOOLEAN PROCEDURE EQUALS(P); REF(POINT) P;

IF P =/= NONE THEN

EQUALS := ABS(X-P.X) + ABS(Y-P.Y) < 0.00001;

REAL PROCEDURE DISTANCE(P); REF(POINT) P;

IF P == NONE THEN ERROR ELSE

DISTANCE := SQRT( (X-P.X)**2 + (Y-P.Y)**2 );

END***POINT***
aSee Chapter 4(§1) of SIMULA begin (2nd edition) by G.Birtwistle,

O.-J. Dahl, B.Myhrhug, and K. Nygaard. Chartwell-Bratt Ltd., 1980.
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CLASS LINE(A,B,C); REAL A,B,C;

COMMENT***Ax+By+C=0 REPRESENTATION

BEGIN

BOOLEAN PROCEDURE PARALLELTO(L); REF(LINE) L;

IF L =/= NONE THEN

PARALLELTO := ABS( A*L.B - B*L.A ) < 0.00001;

REF(POINT) PROCEDURE MEETS(L); REF(LINE) L;

BEGIN REAL T;

IF L =/= NONE and ~PARALLELTO(L) THEN

BEGIN

...

MEETS :- NEW POINT(...,...);

END;

END;***MEETS***
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COMMENT*** INITIALISATION CODE

REAL D;

D := SQRT( A**2 + B**2 )

IF D = 0.0 THEN ERROR ELSE

BEGIN

D := 1/D;

A := A*D; B := B*D; C := C * D;

END;

END***LINE***
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SIMULA
Subclasses and inheritance

SIMULA syntax for a class C1 with subclasses C2 and C3 is

CLASS C1

<DECLARATIONS1>;

C1 CLASS C2

<DECLARATIONS2>;

C1 CLASS C3

<DECLARATIONS3>;

When we create a C2 object, for example, we do this by first
creating a C1 object (activation record) and then appending a
C2 object (activation record).
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Example:

POINT CLASS COLOREDPOINT(C); COLOR C;

BEGIN

BOOLEAN PROCEDURE EQUALS(Q); REF(COLOREDPOINT) Q;

...;

END***COLOREDPOINT**

REF(POINT) P; P :- NEW POINT(1.0,2.5);

REF(COLOREDPOINT) CP; CP :- NEW COLOREDPOINT(2.5,1.0,RED);

NB: SIMULA 67 did not hide fields. Thus,

CP.C := BLUE;

changes the color of the point referenced by CP.
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SIMULA
Object types and subtypes

� All instances of a class are given the same type. The
name of this type is the same as the name of the class.

� The class names (types of objects) are arranged in a
subtype hierarchy corresponding exactly to the subclass
hierarchy.

Examples:

1. CLASS A; A CLASS B;

REF(A) a; REF(B) b;

a :- b; COMMENT***legal since B is a subclass of A

...
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b :- a; COMMENT***also legal, but checked at run

***time to make sure that a points

***to a B object, so as to avoid a

***type error

2. inspect a

when B do b :- a

otherwise ...

3. An error in the original SIMULA type checker surrounding
the relationship between subtyping and inheritance:
CLASS A; A CLASS B;

SIMULA subclassing produces the subtype relation B<:A.
REF(A) a; REF(B) b;

SIMULA also uses the semantically incorrect principle
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that, if B<:A then REF(B)<:REF(A).
This code . . .
PROCEDURE ASSIGNa( REF(A) x )

BEGIN x :- a END;

ASSIGNa(b);

. . . will statically type check, but may cause a type error
at run time.

P.S. The same type error occurs in the original
implementation of Eiffel.a

aInterested students may consult A proposal for making Eiffel type-safe

by W.Cook in The Computer Journal, 32(4):305-311, 1989. Available on-line

from 〈http://www.cs.utexas.edu/users/wcook/publications.htm〉.
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Smalltalk

� Developed at XEROX PARC in the 1970s.

� Major language that popularised objects; very flexible and
powerful.

� The object metaphor was extended and refined.
� Used some ideas from SIMULA; but it was a

completely new language, with new terminology and
an original syntax.

� Abstraction via private instance variables (data
associated with an object) and public methods (code
for performing operations).

� Everything is an object; even a class. All operations
are messages to objects.
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Smalltalk
Motivating application : Dynabook

� Concept developed by Alan Kay.
� Influence on Smalltalk:

� Objects and classes as useful organising concepts
for building an entire programming environment
and system.

� Language intended to be the operating system
interface as well as the programming language for
Dynabook.

� Syntax designed to be used with a special-purpose
editor.

� The implementation emphasised flexibility and ease
of use over efficiency.
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Smalltalk
Terminology

� Object: A combination of private data and functions. Each
object is an instance of some class.

� Class: A template defining the implementation of a set of
objects.

� Subclass: Class defined by inheriting from its superclass.
� Selector: The name of a message (analogous to a

function name).
� Message: A selector together with actual parameter

values (analogous to a function call).
� Method: The code in a class for responding to a message.
� Instance variable: Data stored in an individual

object (instance class).
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Smalltalk
Classes and objects

class name Point

super class Object

class var pi

instance var x, y

class messages and methods
〈. . . names and codes for methods . . . 〉

instance messages and methods
〈. . . names and codes for methods . . . 〉

Definition of Point class

/ 161

A class message and method for point objects

newX:xvalue Y:yvalue ||

^ self new x: xvalue y: yvalue

A new point at coordinates (3, 4) is created when the message

newX:3 Y:4

is sent to the Point class.

For instance:

p <- Point newX:3 Y:4
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Some instance messages and methods

x || ^x

y || ^y

moveDx: dx Dy: dy ||

x <- x+dx

y <- y+dy

Executing the following code

p moveDX:2 Y:1

the value of the expressions p x and p y is the object 5.
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Smalltalk
Inheritance

class name ColoredPoint

super class Point

class var
instance var color

class messages and methods
newX:xv Y:yv C:cv 〈. . . code . . . 〉
instance messages and methods
color ||^color

draw 〈. . . code . . . 〉
Definition of ColoredPoint class
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� ColoredPoint inherits instance variables x and y,
methods x, y, moveDX:Dy:, etc.

� ColoredPoint adds an instance variable color and a
method color to return the color of a ColoredPoint.

� The ColoredPoint draw method redefines (or overrides)
the one inherited from Point.

� An option available in Smalltalk is to specify that a
superclass method should be undefined on a subclass.
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Example: Consider

newX:xv Y:yv C:cv ||

^ self new x:xv y:yv color:cv

cp <- ColoredPoint newX:1 Y:2 C:red

cp moveDx:3 Dy:4

The value of cp x is the object 4, and the value of the
expression cp color is the object red.

Note that even though moveDx:Dy: is an inherited method,
defined originally for points without color, the result of moving
a ColoredPoint is again a ColoredPoint.
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Smalltalk
Abstraction

Smalltalk rules:
� Methods are public.

Any code with a pointer to an object may send any
message to that object. If the corresponding method is
defined in the class of the object, or any superclass, the
method will be invoked. This makes all methods of an
object visible to any code that can access the object.

� Instance variables are protected.
The instance variables of an object are accessible only to
methods of the class of the object and to methods of its
subclasses.
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Smalltalk
Dynamic lookup

The run-time structures used for Smalltalk classes and objects
support dynamic lookup in two ways.

1. Methods are selected through the receiver object.

2. Method lookup starts with the method dictionary of the
class of the receiver and then proceeds upwards through
the class hierarchy.
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Smalltalk
Self and super

� The special symbol self may be used in the body of a
Smalltalk method. The special property of self is that it
always refers to the object that contains this method,
whether directly or by inheritance.

� The special symbol super is similar to self, except that,
when a message is sent to super, the search for the
appropriate method body starts with the superclass of the
object instead of the class of the object. This mechanism
provides a way of accessing a superclass version of a
method that has been overridden in the subclass.
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Example: A factorial method

factorial ||

self <= 1

ifTrue: [^1]

ifFalse: [^ (self-1) factorial * self]

in the Integer class for

Integer

SmallInt

ppppppppppp

LargeInt

NNNNNNNNNNN
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Smalltalk
Interfaces as object types

Although Smalltalk does not use any static type checking,
there is an implicit form of type that every Smalltalk
programmer uses in some way.

The type of an object in Smalltalk is its interface, i.e. the set of
messages that can be sent to the object without receiving the
error “message not understood”.

The interface of an object is determined by its class, as a class
lists the messages that each object will answer. However,
different classes may implement the same messages, as there
are no Smalltalk rules to keep different classes from using the
same selector names.
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Smalltalk
Subtyping

Type A is a subtype of type B if any context
expecting an expression of type B may take any

expression of type A without introducing a type error.

Semantically, in Smalltalk, it makes sense to associate
subtyping with the superset relation on class interfaces.

? Why?
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� In Smalltalk, the interface of a subclass is often a subtype
of the interface of its superclass. The reason being that a
subclass will ordinarily inherit all of the methods of its
superclass, possibly adding more methods.

� In general, however, subclassing does not always lead to
subtyping in Smalltalk.
1. Because it is possible to delete a method from a

superclass in a subclass, a subclass may not produce
a subtype.

2. On the other hand, it is easy to have subtyping without
inheritance.
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Smalltalk
Object-oriented features

� Objects: A Smalltalk object is created by a class.
At run time, an object stores its instance variables and a
pointer to the instantiating class.

� Classes: A Smalltalk class defines variables, class
methods, and the instance methods that are shared by all
objects of the class.
At run time, the class data structure contains pointers to
an instance variable template, a method dictionary, and
the superclass.
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� Abstraction: Abstraction is provided through protected
instance variables. All methods are public but instance
variables may be accessed only by the methods of the
class and methods of subclasses.

� Subtyping: Smalltalk does not have a compile-time type
system. Subtyping arises implicitly through relations
between the interfaces of objects. Subtyping depends on
the set of messages that are understood by an object, not
the representation of objects or whether inheritance is
used.

� Inheritance: Smalltalk subclasses inherit all instance
variables and methods of their superclasses. Methods
defined in a superclass may be redefined in a subclass or
deleted.

/ 175

˜ Lecture VI ˜
Types

References:

� Chapter 6 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

� Sections 4.9 and 8.6 of Programming languages:
Concepts & constructs by R. Sethi (2ND EDITION).
Addison-Wesley, 1996.
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/. -,
() *+Types in programming

� A type is a collection of computational entities that share
some common property.

� There are three main uses of types in programming
languages:
1. naming and organizing concepts,
2. making sure that bit sequences in computer memory

are interpreted consistently,
3. providing information to the compiler about data

manipulated by the program.
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� Using types to organise a program makes it easier for
someone to read, understand, and maintain the program.
Types can serve an important purpose in documenting the
design and intent of the program.

� Type information in programs can be used for many kinds
of optimisations.
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/. -,
() *+Type systems

A type system for a language is a set of rules for associating a
type with phrases in the language.

Terms strong and weak refer to the effectiveness with which
a type system prevents errors. A type system is strong if it
accepts only safe phrases. In other words, phrases that are
accepted by a strong type system are guaranteed to evaluate
without type error. A type system is weak if it is not strong.
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/. -,
() *+Type safety

A programming language is type safe if no program is allowed
to violate its type distinctions.

Safety Example language Explanation

Not safe C, C++ Type casts,
pointer arithmetic

Almost safe Pascal Explicit deallocation;
dangling pointers

Safe LISP, SML, Smalltalk, Java Type checking
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/. -,
() *+Type checking

A type error occurs when a computational entity is used in a
manner that is inconsistent with the concept it represents.
Type checking is used to prevent some or all type errors,
ensuring that the operations in a program are applied properly.

Some questions to be asked about type checking in a
language:

� Is the type system strong or weak?

� Is the checking done statically or dynamically?

� How expressive is the type system; that is, amongst safe
programs, how many does it accept?
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/. -,
() *+Static and dynamic type checking

Run-time type checking: The compiler generates code so
that, when an operation is performed, the code checks to
make sure that the operands have the correct types.
Examples: LISP, Smalltalk.

Compile-time type checking: The compiler checks the
program text for potential type errors.
Example: SML.

NB: Most programming languages use some combination of
compile-time and run-time type checking.
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Static vs. dynamic type checking

Main trade-offs between compile-time and run-time checking:

Form of type Advantages Disadvantages
checking
Run-time Prevents type errors Slows program

execution
Compile-time Prevents type errors May restrict

Eliminates run-time programming
tests because tests

Finds type errors before are conservative
execution and run-time
tests
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/. -,
() *+Type equality

The question of type equality arises during type checking.

? What does it mean for two types to be equal!?

Structural equality. Two type expressions are structurally
equal if and only if they are equivalent under the following
three rules.
SE1. A type name is structurally equal to itself.
SE2. Two types are structurally equal if they are

formed by applying the same type constructor
to structurally equal types.

SE3. After a type declaration, say type n = T, the
type name n is structurally equal to T.
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Name equality. Pure name equality. A type name is equal
to itself, but no constructed type is equal to any other
constructed type.

Transitive name equality. A type name is equal to itself
and can be declared equal to other type names.

Type-expression equality. A type name is equal only to
itself. Two type expressions are equal if they are
formed by applying the same constructor to equal
expressions. In other words, the expressions have to
be identical.
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Examples:
� Type equality in Pascal/Modula-2. Type equality was left

ambiguous in Pascal. Its successor, Modula-2, avoided
ambiguity by defining two types to be compatible if
1. they are the same name, or
2. they are t1 and t2, and s = t is a type declaration, or
3. one is a subrange of the other, or
4. both are subranges of the same basic type.

� Type equality in C/C++. C uses structural equivalence for
all types except for records (structs). struct types are
named in C and C++ and the name is treated as a type,
equal only to itself. This constraint saves C from having to
deal with recursive types.
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/. -,
() *+Type declarations

There are two basic forms of type declarations:

Transparent. An alternative name is given to a type that can
also be expressed without this name.

Opaque. A new type is introduced into the program that is not
equal to any other type.

/ 187

/. -,
() *+Type inference

� Type inference is the process of determining the types
of phrases based on the constructs that appear in them.

� An important language innovation.

� A cool algorithm.

� Gives some idea of how other static analysis algorithms
work.
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/. -,
() *+Polymorphism

Polymorphism, which literally means “having multiple forms”,
refers to constructs that can take on different types as needed.

Forms of polymorphism in contemporary programming
languages:

Parametric polymorphism. A function may be applied to any
arguments whose types match a type expression involving
type variables.
Parametric polymorphism may be:
Implicit. Programs do not need to contain types; types

and instantiations of type variables are computed.
Example: SML.
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Explicit. The program text contains type variables that
determine the way that a construct may be treated
polymorphically.
Explicit polymorphism often involves explicit
instantiation or type application to indicate how type
variables are replaced with specific types in the use of
a polymorphic construct.
Example: C++ templates.

Ad hoc polymorphism or overloading. Two or more
implementations with different types are referred to by the
same name.

Subtype polymorphism. The subtype relation between
types allows an expression to have many possible types.
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Polymorphic exceptions

Example: Depth-first search for finitely-branching trees.
datatype

’a FBtree = node of ’a * ’a FBtree list ;

fun dfs P (t: ’a FBtree)

= let

exception Ok of ’a;

fun auxdfs( node(n,F) )

= if P n then raise Ok n

else foldl (fn(t,_) => auxdfs t) NONE F ;

in

auxdfs t handle Ok n => SOME n

end ;

val dfs = fn : (’a -> bool) -> ’a FBtree -> ’a option
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When a polymorphic exception is declared, SML ensures
that it is used with only one type. The type of a top level
exception must be monomorphic and the type variables
of a local exception are frozen.

Consider the following nonsense:

exception Poly of ’a ; (*** ILLEGAL!!! ***)

(raise Poly true) handle Poly x => x+1 ;
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˜ Lecture VII ˜

Data abstraction and modularity

SML Modules

Reference:

� Chapter 7 of ML for the working programmer (2ND
EDITION) by L. C. Paulson. CUP, 1996.
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SML Modules
Signatures and structures

� An abstract data type is a type equipped with a set of
operations, which are the only operations applicable to
that type.
Its representation can be changed without affecting the
rest of the program.

� Structures let us package up declarations of related types,
values, and functions.

� Signatures let us specify what components a structure
must contain.
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Example: Polymorphic functional stacks.

signature STACK =

sig

exception E

type ’a reptype (* <-- INTERNAL REPRESENTATION *)

val new: ’a reptype

val push: ’a -> ’a reptype -> ’a reptype

val pop: ’a reptype -> ’a reptype

val top: ’a reptype -> ’a

end ;

/ 195

structure MyStack: STACK =

struct

exception E ;

type ’a reptype = ’a list ;

val new = [] ;

fun push x s = x::s ;

fun split( h::t ) = ( h , t )

| split _ = raise E ;

fun pop s = #2( split s ) ;

fun top s = #1( split s ) ;

end ;
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val MyEmptyStack = MyStack.new ;

val MyStack0 = MyStack.push 0 MyEmptyStack ;

val MyStack01 = MyStack.push 1 MyStack0 ;

val MyStack0’ = MyStack.pop MyStack01 ;

MyStack.top MyStack0’ ;

val MyEmptyStack = [] : ’a MyStack.reptype

val MyStack0 = [0] : int MyStack.reptype

val MyStack01 = [1,0] : int MyStack.reptype

val MyStack0’ = [0] : int MyStack.reptype

val it = 0 : int

/ 197

SML Modules
Information hiding

In SML, we can limit outside access to the components of
a structure by constraining its signature in transparent or
opaque manners.

Further, we can hide the representation of a type by means
of an abstype declaration.

The combination of these methods yields abstract structures.
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Opaque signature constraints

structure MyOpaqueStack :> STACK = MyStack ;

val MyEmptyOpaqueStack = MyOpaqueStack.new ;

val MyOpaqueStack0 = MyOpaqueStack.push 0 MyEmptyOpaqueStack ;

val MyOpaqueStack01 = MyOpaqueStack.push 1 MyOpaqueStack0 ;

val MyOpaqueStack0’ = MyOpaqueStack.pop MyOpaqueStack01 ;

MyOpaqueStack.top MyOpaqueStack0’ ;

val MyEmptyOpaqueStack = - : ’a MyOpaqueStack.reptype

val MyOpaqueStack0 = - : int MyOpaqueStack.reptype

val MyOpaqueStack01 = - : int MyOpaqueStack.reptype

val MyOpaqueStack0’ = - : int MyOpaqueStack.reptype

val it = 0 : int
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abstypes

structure MyHiddenStack: STACK =

struct

exception E ;

abstype ’a reptype = S of ’a list (* <-- HIDDEN *)

with (* REPRESENTATION *)

val new = S [] ;

fun push x (S s) = S( x::s ) ;

fun pop( S [] ) = raise E

| pop( S(_::t) ) = S( t ) ;

fun top( S [] ) = raise E

| top( S(h::_) ) = h ;

end ;

end ;
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val MyHiddenEmptyStack = MyHiddenStack.new ;

val MyHiddenStack0 = MyHiddenStack.push 0 MyHiddenEmptyStack ;

val MyHiddenStack01 = MyHiddenStack.push 1 MyHiddenStack0 ;

val MyHiddenStack0’ = MyHiddenStack.pop MyHiddenStack01 ;

MyHiddenStack.top MyHiddenStack0’ ;

val MyHiddenEmptyStack = - : ’a MyHiddenStack.reptype

val MyHiddenStack0 = - : int MyHiddenStack.reptype

val MyHiddenStack01 = - : int MyHiddenStack.reptype

val MyHiddenStack0’ = - : int MyHiddenStack.reptype

val it = 0 : int
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SML Modules
Functors

� An SML functor is a structure that takes other structures
as parameters.

� Functors let us write program units that can be combined
in different ways. Functors can also express generic
algorithms.
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Example: Generic imperative stacks.

signature STACK =

sig

type itemtype

val push: itemtype -> unit

val pop: unit -> unit

val top: unit -> itemtype

end ;
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exception E ;

functor Stack( T: sig type atype end ) : STACK =

struct

type itemtype = T.atype

val stack = ref( []: itemtype list )

fun push x

= ( stack := x :: !stack )

fun pop()

= case !stack of [] => raise E

| _::s => ( stack := s )

fun top()

= case !stack of [] => raise E

| t::_ => t

end ;
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structure intStack

= Stack(struct type atype = int end) ;

structure intStack : STACK

intStack.push(0) ;

intStack.top() ;

intStack.pop() ;

intStack.push(4) ;

val it = () : unit

val it = 0 : intStack.itemtype

val it = () : unit

val it = () : unit
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map ( intStack.push ) [3,2,1] ;

map ( fn _ => let val top = intStack.top()

in intStack.pop(); top end )

[(),(),(),()] ;

val it = [(),(),()] : unit list

val it = [1,2,3,4] : intStack.itemtype list
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˜
Appendix to
Lecture VII ˜

An introduction to SML Modules

by Claudio Russoa

References:

� ML for the Working Programmer by Larry Paulson,
Cambridge University Press. [A textbook for
undergraduates and postgraduates.]

a〈http://research.microsoft.com/∼crusso〉
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� The Standard ML Basis Library by Reppy et al.,
Cambridge University Press. [A useful introduction to ML
standard libraries, and a good example of Modular
programming.]

� The Definition of Standard ML by Milner et al., MIT Press.
[A formal definition of SML, using structured operational
semantics. Useful for language implementors and
researchers.]

� Purely Functional Data Structures by Chris Okasaki,
Cambridge University Press. [Contains clever functional
data structures, implemented in Haskell and SML
Modules.]

� 〈http://www.standardml.org〉
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Outline

Aim: To provide a gentle introduction to SML Modules.

� Review Core features related to Modules.

� Introduce the Modules Language, using small examples.

� Briefly relate Modules constructs to the Core language.

� Highlight some limitations of Modules.

NB: Only the important features of Modules are covered.
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The Core and Modules languages

SML consists of two sub-languages:

� The Core language is for programming in the small, by
supporting the definition of types and expressions
denoting values of those types.

� The Modules language is for programming in the large, by
grouping related Core definitions of types and expressions
into self-contained units, with descriptive interfaces.

The Core expresses details of data structures and algorithms.
The Modules language expresses software architecture. Both
languages are largely independent.
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The Core language

The SML Core is a strongly-typed call-by-value functional
language with impure features (state and exceptions).

Types are mostly implicit and inferred by the compiler.

SML programs must be statically well-typed before being
evaluated.

The Core is type sound: evaluation of a well-typed expression
is guaranteed to be free of run-time type errors.
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Core features

The SML Core has a number of other features:

� a rich collection of primitive types (e.g. int, real,

Int16.int, Word32.word);

� mutually recursive polymorphic functions and datatypes;

� dynamically allocated, mutable references (type ’a ref);

� exceptions;

� pattern matching on values.

Most of these features have little or no interaction with
Modules.
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The Modules language
Writing a real program as an unstructured sequence of Core
definitions quickly becomes unmanageable.

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i =

if i = zero then b

else f (iter b f (i-1))

...

(* thousands of lines later *)

fun even (n:nat) = iter true not n

The SML Modules language lets one split large programs into
separate units with descriptive interfaces.
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Structures
In Modules, one can encapsulate a sequence of Core type
and value definitions into a unit called a structure.
We enclose the definitions in between the keywords

struct ... end.
Example: A structure representing the natural numbers, as
positive integers.
struct

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i = if i = zero then b

else f (iter b f (i-1))

end

/ 214

The dot notation

One can name a structure by binding it to an identifier.
structure IntNat =

struct

type nat = int

...

fun iter b f i = ...

end

Components of a structure are accessed with the dot notation.
fun even (n:IntNat.nat) = IntNat.iter true not n

NB: Type IntNat.nat is statically equal to int.
Value IntNat.iter dynamically evaluates to a closure.
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Nested structures

Structures can be nested inside other structures, in a hierarchy.
structure IntNatAdd =

struct

structure Nat = IntNat

fun add n m = Nat.iter m Nat.succ n

end

...

fun mult n m =

IntNat.Nat.iter IntNatAdd.Nat.zero (IntNatAdd.add m) n

The dot notation (IntNatAdd.Nat) accesses a nested structure.
Sequencing dots provides deeper access (IntNatAdd.Nat.zero).
Nesting and dot notation provides name-space control.
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Structure inclusion

To avoid nesting structures and dot notation, one can also
directly open a structure identifier, importing its components:

struct open Nat

fun add n m = iter m succ n end

NB: This is equivalent to the following
struct type nat = Nat.nat

val zero = Nat.zero

val succ = Nat.succ

val iter = Nat.iter

fun add n m = iter m succ n end

Though convenient, it’s bad style: the origin of an identifier is
no longer clear and bindings are silently re-exported.
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Concrete signatures

Signature expressions specify the types of structures by listing
the specifications of their components.

A signature expression consists of a sequence of component
specifications, enclosed in between the keywords sig . . . end.

sig type nat = int

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

This signature fully describes the type of IntNat.

The specification of type nat is concrete: it must be int.
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Opaque signatures

On the other hand, the following signature
sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

specifies structures that are free to use any implementation for
type nat (perhaps int, or word or some recursive datatype).

This specification of type nat is opaque.
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Named and nested signatures

Signatures may be named and referenced, to avoid repetition:
signature NAT =

sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

Nested signatures specify named sub-structures:
signature Add =

sig structure Nat: NAT (* references NAT *)

val add: Nat.nat -> Nat.nat -> Nat.nat

end
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Signature inclusion

To avoid nesting, one can also directly include a signature
identifier:

sig include NAT

val add: nat -> nat ->nat

end

NB: This is equivalent to the following signature.
sig type nat

val zero: nat

val succ: nat -> nat

val ’a iter: ’a -> (’a->’a) -> nat -> ’a

val add: nat -> nat -> nat

end
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Signature matching

Q: When does a structure satisfy a signature?
A: The type of a structure matches a signature whenever it

implements at least the components of the signature.
• The structure must realise (i.e. define) all of the opaque

type components in the signature.
• The structure must enrich this realised signature,

component-wise:
? every concrete type must be implemented equivalently;
? every specified value must have a more general type

scheme;
? every specified structure must be enriched by a

substructure.
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Properties of signature matching

The components of a structure can be defined in a different
order than in the signature; names matter but ordering does
not.

A structure may contain more components, or components
of more general types, than are specified in a matching
signature.

Signature matching is structural. A structure can match many
signatures and there is no need to pre-declare its matching
signatures (unlike “interfaces” in Java and C#).

Although similar to record types, signatures actually play a
number of different roles . . .
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Using signatures to restrict access

The following structure uses a signature constraint to provide
a restricted view of IntNat:

structure ResIntNat =

IntNat : sig type nat

val succ : nat->nat

val iter : nat->(nat->nat)->nat->nat

end

NB: The constraint str:sig prunes the structure str

according to the signature sig:

� ResIntNat.zero is undefined;

� ResIntNat.iter is less polymorphic that IntNat.iter.
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Transparency of :

Although the : operator can hide names, it does not conceal
the definitions of opaque types.

Thus, the fact that ResIntNat.nat = IntNat.nat = int remains
transparent.

For instance the application ResIntNat.succ(~3) is still
well-typed, because ~3 has type int . . . but ~3 is negative, so
not a valid representation of a natural number!
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Using signatures to hide
types identities

With different syntax, signature matching can also be used to
enforce data abstraction:

structure AbsNat =

IntNat :> sig type nat

val zero: nat

val succ: nat->nat

val ’a iter: ’a->(’a->’a)->nat->’a

end

The constraint str :> sig prunes str but also generates a
new, abstract type for each opaque type in sig.
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Now, the actual implementation of AbsNat.nat by int is
hidden, so that AbsNat.nat 6= int.

AbsNat is just IntNat, but with a hidden type representation.

AbsNat defines an abstract datatype of natural numbers:
the only way to construct and use values of the abstract type
AbsNat.nat is through the operations, zero, succ, and iter.

For example, the application AbsNat.succ(~3) is ill-typed:
~3 only has type int, not AbsNat.nat. This is what we want,
since ~3 is not a natural number in our representation.

In general, abstractions can also prune and specialise
components.
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Datatype and exception specifications
Signatures can also specify datatypes and exceptions:
structure PredNat =

struct datatype nat = zero | succ of nat

fun iter b f i = ...

exception Pred

fun pred zero = raise Pred

| pred (succ n) = n end

:> sig datatype nat = zero | succ of nat

val iter: ’a->(’a->’a)->(nat->’a)

exception Pred

val pred: nat -> nat (* raises Pred *) end

This means that clients can still pattern match on datatype
constructors, and handle exceptions.
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Functors

Modules also supports parameterised structures, called
functors.

Example: The functor AddFun below takes any
implementation, N, of naturals and re-exports it
with an addition operation.

functor AddFun(N:NAT) =

struct

structure Nat = N

fun add n m = Nat.iter n (Nat.succ) m

end
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A functor is a function mapping a formal argument structure to
a concrete result structure.

The body of a functor may assume no more information about
its formal argument than is specified in its signature.

In particular, opaque types are treated as distinct type
parameters.

Each actual argument can supply its own, independent
implementation of opaque types.
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Functor application

A functor may be used to create a structure by applying it to
an actual argument:

structure IntNatAdd = AddFun(IntNat)

structure AbsNatAdd = AddFun(AbsNat)

The actual argument must match the signature of the formal
parameter—so it can provide more components, of more
general types.

Above, AddFun is applied twice, but to arguments that differ in
their implementation of type nat (AbsNat.nat 6= IntNat.nat).
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Why functors?

Functors support:
Code reuse.
AddFun may be applied many times to different
structures, reusing its body.

Code abstraction.
AddFun can be compiled before any
argument is implemented.

Type abstraction.
AddFun can be applied to different types N.nat.
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Type propagation through functors

Each functor application propagates the actual realisation of
its argument’s opaque type components.
Thus, for

structure IntNatAdd = AddFun(IntNat)

structure AbsNatAdd = AddFun(AbsNat)

the type IntNatAdd.Nat.nat is just another name for int, and
AbsNatAdd.Nat.nat is just another name for AbsNat.nat.

Examples: IntNatAdd.Nat.succ(0)
√

IntNatAdd.Nat.succ(IntNat.Nat.zero)
√

AbsNatAdd.Nat.succ(AbsNat.Nat.zero)
√

AbsNatAdd.Nat.succ(0) ×
AbsNatAdd.Nat.succ(IntNat.Nat.zero) ×
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Structures as records

Structures are like Core records, but can contain definitions of
types as well as values.

What does it mean to project a type component from a
structure, e.g. IntNatAdd.Nat.nat?

Does one needs to evaluate the application AddFun(IntNat)

at compile-time to simplify IntNatAdd.Nat.nat to int?

No! Its sufficient to know the compile-time types of AddFun
and IntNat, ensuring a phase distinction between
compile-time and run-time.

/ 234

Generativity
The following functor almost defines an identity function, but
re-abstracts its argument:

functor GenFun(N:NAT) = N :> NAT

Now, each application of GenFun generates a new abstract
type: For instance, for

structure X = GenFun(IntNat)

structure Y = GenFun(IntNat)

the types X.nat and Y.nat are incompatible, even though
GenFun was applied to the same argument.
Functor application is generative: abstract types from the
body of a functor are replaced by fresh types at each
application. This is consistent with inlining the body of a
functor at applications.
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Why should functors be generative?

It is really a design choice. Often, the invariants of the body of
a functor depend on both the types and values imported from
the argument.

functor OrdSet(O:sig type elem

val compare: (elem * elem) -> bool

end) = struct

type set = O.elem list (* ordered list of elements *)

val empty = []

fun insert e [] = [e]

| insert e1 (e2::s) = if O.compare(e1,e2)

then if O.compare(e2,e1) then e2::s else e1::e2::s

else e2::insert e1 s

end :> sig type set

val empty: set

val insert: O.elem -> set -> set

end
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For
structure S = OrdSet(struct type elem=int fun compare(i,j)= i <= j end)

structure R = OrdSet(struct type elem=int fun compare(i,j)= i >= j end)

we want S.set 6= R.set because their representation
invariants depend on the compare function: the set {1, 2, 3}

is [1,2,3] in S.set, but [3,2,1] in R.set).
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Why functors?

� Functors let one decompose a large programming task
into separate subtasks.

� The propagation of types through application lets one
extend existing abstract data types with type-compatible
operations.

� Generativity ensures that applications of the same functor
to data types with the same representation, but different
invariants, return distinct abstract types.
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Are signatures types?

The syntax of Modules suggests that signatures are just the
types of structures . . . but signatures can contain opaque types.

In general, signatures describe families of structures, indexed
by the realisation of any opaque types.

The interpretation of a signature really depends on how it is
used!

In functor parameters, opaque types introduce polymorphism;
in signature constraints, opaque types introduce abstract types.

Since type components may be type constructors, not just
types, this is really higher-order polymorphism and
abstraction.
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Subtyping

Signature matching supports a form of subtyping not found in
the Core language:

� A structure with more type, value and structure
components may be used where fewer components are
expected.

� A value component may have a more general type
scheme than expected.

/ 240



Sharing specifications

Functors are often used to combine different argument
structures.

Sometimes, these structure arguments need to communicate
values of a shared type.

For instance, we might want to implement a sum-of-squares
function (n,m 7→ n2 + m2) using separate structures for
naturals with addition and multiplication . . .
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Sharing violations
functor SQ(structure AddNat: sig

structure Nat: sig type nat end

val add:Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat: sig

structure Nat: sig type nat end

val mult:Nat.nat -> Nat.nat -> Nat.nat

end) =

struct fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m) ×

end

The above piece of code is ill-typed: the types
AddNat.Nat.nat and MultNat.Nat.nat are opaque, and thus
different. The add function cannot consume the results of mult.
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Sharing specifications

The fix is to declare the type sharing directly at the specification
of MultNat.Nat.nat, using a concrete, not opaque, specification:
functor SQ(

structure AddNat:

sig structure Nat: sig type nat end

val add: Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat:

sig structure Nat: sig type nat = AddNat.Nat.nat end

val mult: Nat.nat -> Nat.nat -> Nat.nat

end) =

struct fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m)
√

end
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Sharing constraints

Alternatively, one can use a post-hoc sharing specification to
identify opaque types.
functor SQ(

structure AddNat: sig structure Nat: sig type nat end

val add:Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat: sig structure Nat: sig type nat end

val mult:Nat.nat -> Nat.nat -> Nat.nat

end

sharing type MultNat.Nat.nat = AddNat.Nat.nat ) =

struct fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m)
√

end
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Limitations of modules

Modules is great for expressing programs with a complicated
static architecture, but it’s not perfect:

� Functors are first-order: unlike Core functions, a functor
cannot be applied to, nor return, another functor.

� Structure and functors are second-class values, with very
limited forms of computation (dot notation and functor
application): modules cannot be constructed by
algorithms or stored in data structures.

� Module definitions are too sequential: splitting mutually
recursive types and values into separate modules is
awkward.
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