
Caching

• Caches exploit the temporal and spatial locality of access exhibited by
most programs

• Cache equation:

Access T imeAvg = (1− P ) ∗ CostHit + P ∗ CostMiss

Where P consists of:

– Compulsory misses

– Capacity misses (size)

– Conflict misses (associativity)

– Coherence misses (multi-proc/DMA)

8 Caches can increase CostMiss

• Build using fast (small and expensive) SRAM

• Tag RAM and Data RAM
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Associativity

• Direct Mapped (1-way, no choice)

– potentially fastest: tag check can be done in parallel

with speculatively using data

• n-way Set Associative (choice of n e.g. 2/4/8)

• Fully associative (full choice)

– many-way comparison is slow
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Replacement Policy

• Associative caches need a replacement policy

• FIFO

8 Worse than random

• Least Recently Used (LRU)

8 Expensive to implement

8 Bad degenerate behaviour

∗ sequential access to large arrays

• Random
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– Use an LFSR counter

4 No history bits required

4 Almost as good as LRU

4 Degenerate behaviour unlikely

• Not Last Used (NLU)

– Select randomly, but NLU

4 log2n bits per set

4 Better than random



Caching Writes

• Write-Back vs. Write Through

• Read Allocate vs. Read/Write Allocate

• Allocate only on reads and Write-Through

– Writes update cache only if line already present

– All writes are passed on to next level

– Normally combined with a Write Buffer

• Read/Write Allocate and Write-Back

– On write misses: allocate and fetch line, then modify

– Cache holds the only up-to-date copy

– Dirty bit to mark line as modified

4 Helps to reduce write bandwidth to next level

– Line chosen for eviction may be dirty

∗ Victim writes to next level

∗ need fast victim writes to avoid double latency read

∗ e.g. write victim, read new line, modify
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∗ exclusive: swap with next level

• May have different policies depending on special instructions or TLB
entries



Write Buffers

• Small high-bandwidth resource for receiving

store data

• Give reads priority over writes to reduce load latency

– All loads that miss must check write buffer

– If RaW hazard detected:

∗ flush buffer to next level cache and replay

∗ or, service load from buffer (PPro, 21264)

• Merge sequential writes into a single transaction

• Collapse writes to same location
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• Drain write buffer when bus otherwise idle

• 21164: 6 addresses, 32 bytes per address

• ARM710: 4 addresses, 32 bytes total



Cache Miss Rate Example.

• SPEC 92 on MIPS

• 32 byte lines

• LRU replacement

• Write allocate/write back
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L1 Caches

• L1 I-cache

– Single-ported, read-only (but may snoop)

– Wide access (e.g. block of 4 instrs)

– (trace caches)

• L1 D-cache

– Generally 8-64KB 1/2/4-way on-chip

∗ Exception: HP PA-8200

– Fully pipelined, Low latency (1-3cy), multi-ported

– Size typ constrained by propagation delays
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– Trade miss rate for lower hit access time

∗ May be direct-mapped

∗ May be write-through

– Often virtually indexed

∗ Access cache in parallel with TLB lookup

∗ Need to avoid virtual address aliasing

· Enforce in OS

· or, Ensure index size < page size

(add associativity)



Enhancing Performance :1

• Block size (Line size)

– Most currently 32 or 64

4 Increasing block size reduces # compulsory misses

4 Typically increases bandwidth

8 Can increase load latency and # conflict misses

• Fetch critical-word-first and early-restart

– Return requested word first, then wrap

– Restart execution as soon as word ready

4 Reduces missed-load latency
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– Widely used. Intel order vs. linear wrap

• Nonblocking caches

– Allow hit under miss (nonblocking loads)

– Don’t stall on first miss: allow multiple outstanding

misses

∗ merge misses to same line

– Allow memory system to satisfy misses out-of-order

4 Reduces effective miss penalty



Enhancing Performance :2

• Victim caches

– Small highly associative cache to backup up a larger

cache with limited associativity

4 Reduces the cost of conflict misses

• Victim buffers

– A small number of cache line sized buffers used for

temporarily holding dirty victims before they are written

to Ln+1

– Allows victim to be written after the requested line has

been fetched

4 Reduces average latency of misses that evict dirty lines
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• Sub-block presence bits

– Allows size of tag ram to be reduced without increasing

block size

– Sub-block dirty bits can avoid cache line fills on write

misses

∗ (would break coherence on multiprocessors)



L2 caches

• L2 caches help hide poor DRAM latency

– large write-back cache

• L2 caches used to share the system bus pins (e.g. Pentium)

8 electrical loading limits performance

• now, a dedicated ‘backside bus’ is used

• L2 on same die (21164)

4 low latency and wider bus

4 associativity easier
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8 limited die size, so may need an L3

∗ (e.g. 21164 has 2-16MB L3)

• L2 in CPU package (Pentium Pro)

4 lower latency than external

• L2 in CPU ‘cartridge’ (Pentium II)

4 controlled layout

4 use standard SSRAM

• L2 on motherboard

8 requires careful motherboard design

• L1/L2 inclusive vs. exclusive



Hierarchy Examples
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Performance Examples
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L3 Caches

• A third level of cache on chip.

• Use a denser memory technology than L2.

• Just a way to fill up silicon ?

• Perhaps moves bottleneck to TLB misses.
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Main Memory

• Increasing sequential bandwidth

– Wide memory bus

– Interleave memory chips

⇒ DDR SDRAM or RAMBUS

• Access latency can impair bandwidth

– Larger cache block sizes help

• Reducing average latency

– Keep memory banks ‘open’

∗ Quick response if next access is to same DRAM Row
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– Multiple independent memory banks

∗ Access to an open row more likely

∗ SDRAM/RAMBUS chips contain multiple banks

internally

– System bus that supports multiple outstanding

transaction requests

∗ Service transactions out-of-order as banks become

ready



Programming for caches

• Design algorithms so working set fits in cache

– Large lookup tables may be slower than performing the calculation

• Organise data for spatial locality

– Merge arrays accessed with the same index

• Fuse together loops that access the same data

• Prefer sequential accesses to non-unit strides

– innermost loop should access array sequentially

• If row and column access to 2D arrays is necessary, use cache blocking

– divide problem into sub-matrices that fit cache

– e.g. matrix multiply C = C + A×B

for (kb=0;kb<N;kb+=b){
for (jb=0;jb<N;jb+=b){

for (ib=0;ib<N;ib+=b){
for(k=kb;k<kb+b;++k){

for(j=jb;j<jb+b;++j){
for(i=ib;i<ib+b;++i){

C[k][i] = C[k][i] + ( A[k][j] * B[j][i] );
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} } } } } }

• Avoid access patterns that are likely to cause conflict misses (aliasing)

– e.g. large powers of 2

• Large strides can thrash the TLB



Special Instructions

• Prefetch

– fetch data into L1, suppressing any exceptions

– enables compiler to speculate more easily
e.g. Alpha: ld r0 ← [r1]

• ‘Two-part loads’ (e.g. IA-64)

– speculative load suppresses exceptions

– ‘check’ instruction collects any exception

– enables compiler to ‘hoist’ loads to as early as possible, across
multiple basic blocks

– ld.s r4 ← [r5]
chk.s r4

• Load with bypass hint

– indicates that the load should bypass the cache, and thus not
displace data already there

– e.g. random accesses to large arrays

• Load with spatial-locality-only hint (non-temporal)
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– fetch line containing the specified word into a special buffer aside
from the main cache

∗ or, into set’s line that will be evicted next

• Store with spatial-locality-only hint (non-temporal)

• Write invalidate

– allocate a line in cache, & mark it as modified

– avoids mem read if whole line is to be updated


