
Caching

• Caches exploit the temporal and spatial locality of access exhibited by
most programs

• Cache equation:

Access T imeAvg = (1− P) ∗ CostHit + P ∗ CostMiss

Where P consists of:

– Compulsory misses

– Capacity misses (size)

– Conflict misses (associativity)

– Coherence misses (multi-proc/DMA)

8 Caches can increase CostMiss

• Build using fast (small and expensive) SRAM

• Tag RAM and Data RAM

1

Associativity

• Direct Mapped (1-way, no choice)

– potentially fastest: tag check can be done in parallel

with speculatively using data

• n-way Set Associative (choice of n e.g. 2/4/8)

• Fully associative (full choice)

– many-way comparison is slow

2

3821

0

511

12499024

8x64 bits21bits 21bits21bits

8:1 mux 8:1 mux 8:1 mux

480

3:1 mux
hit/miss

hit result

0

511

025143440
Tag

e.g.1249
Index

e.g.480
Line

IndexAddress

A 96KB 3-way set associative cache with 64 byte lines
(supporting 2 bytes of cacheable memory)35

64

data1 data2 data3

valid?

3920

ignored

32KB 32KB 32KB
8x64 bits 8x64 bits

Replacement Policy

• Associative caches need a replacement policy

• FIFO

8 Worse than random

• Least Recently Used (LRU)

8 Expensive to implement

8 Bad degenerate behaviour

∗ sequential access to large arrays

• Random

3

– Use an LFSR counter

4 No history bits required

4 Almost as good as LRU

4 Degenerate behaviour unlikely

• Not Last Used (NLU)

– Select randomly, but NLU

4 log2n bits per set

4 Better than random

Caching Writes

• Write-Back vs. Write Through

• Read Allocate vs. Read/Write Allocate

• Allocate only on reads and Write-Through

– Writes update cache only if line already present

– All writes are passed on to next level

– Normally combined with a Write Buffer

• Read/Write Allocate and Write-Back

– On write misses: allocate and fetch line, then modify

– Cache holds the only up-to-date copy

– Dirty bit to mark line as modified

4 Helps to reduce write bandwidth to next level

– Line chosen for eviction may be dirty

∗ Victim writes to next level

∗ need fast victim writes to avoid double latency read

∗ e.g. write victim, read new line, modify

4

∗ exclusive: swap with next level

• May have different policies depending on special instructions or TLB
entries

Write Buffers

• Small high-bandwidth resource for receiving

store data

• Give reads priority over writes to reduce load latency

– All loads that miss must check write buffer

– If RaW hazard detected:

∗ flush buffer to next level cache and replay

∗ or, service load from buffer (PPro, 21264)

• Merge sequential writes into a single transaction

• Collapse writes to same location

5

• Drain write buffer when bus otherwise idle

• 21164: 6 addresses, 32 bytes per address

• ARM710: 4 addresses, 32 bytes total

Cache Miss Rate Example.

• SPEC 92 on MIPS

• 32 byte lines

• LRU replacement

• Write allocate/write back

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 16 32 64 128

Capacity Misses

Compulsory Misses

8-way

4-way

2-way

1-way

M
iss

 ra
te

 p
er

 ty
pe

Cache size (KB)

A direct-mapped cache of size N has about the same miss rate

as a 2-way set-associative cache of size N/2

L1 Caches

• L1 I-cache

– Single-ported, read-only (but may snoop)

– Wide access (e.g. block of 4 instrs)

– (trace caches)

• L1 D-cache

– Generally 8-64KB 1/2/4-way on-chip

∗ Exception: HP PA-8200

– Fully pipelined, Low latency (1-3cy), multi-ported

– Size typ constrained by propagation delays

7

– Trade miss rate for lower hit access time

∗ May be direct-mapped

∗ May be write-through

– Often virtually indexed

∗ Access cache in parallel with TLB lookup

∗ Need to avoid virtual address aliasing

· Enforce in OS

· or, Ensure index size < page size

(add associativity)

Enhancing Performance :1

• Block size (Line size)

– Most currently 32 or 64

4 Increasing block size reduces # compulsory misses

4 Typically increases bandwidth

8 Can increase load latency and # conflict misses

• Fetch critical-word-first and early-restart

– Return requested word first, then wrap

– Restart execution as soon as word ready

4 Reduces missed-load latency

8

– Widely used. Intel order vs. linear wrap

• Nonblocking caches

– Allow hit under miss (nonblocking loads)

– Don’t stall on first miss: allow multiple outstanding

misses

∗ merge misses to same line

– Allow memory system to satisfy misses out-of-order

4 Reduces effective miss penalty

Enhancing Performance :2

• Victim caches

– Small highly associative cache to backup up a larger

cache with limited associativity

4 Reduces the cost of conflict misses

• Victim buffers

– A small number of cache line sized buffers used for

temporarily holding dirty victims before they are written

to Ln+1

– Allows victim to be written after the requested line has

been fetched

4 Reduces average latency of misses that evict dirty lines

9

• Sub-block presence bits

– Allows size of tag ram to be reduced without increasing

block size

– Sub-block dirty bits can avoid cache line fills on write

misses

∗ (would break coherence on multiprocessors)

L2 caches

• L2 caches help hide poor DRAM latency

– large write-back cache

• L2 caches used to share the system bus pins (e.g. Pentium)

8 electrical loading limits performance

• now, a dedicated ‘backside bus’ is used

• L2 on same die (21164)

4 low latency and wider bus

4 associativity easier

10

8 limited die size, so may need an L3

∗ (e.g. 21164 has 2-16MB L3)

• L2 in CPU package (Pentium Pro)

4 lower latency than external

• L2 in CPU ‘cartridge’ (Pentium II)

4 controlled layout

4 use standard SSRAM

• L2 on motherboard

8 requires careful motherboard design

• L1/L2 inclusive vs. exclusive

Hierarchy Examples

Pentium

L1-D
8KB

2-way
WT
16B

L1-I
8KB

2-way
16B

L2
256KB
1-way
WB
32B

64b
66MHz

Pentium Pro

L1-D
8KB

2-way
WB
32B

L1-I
8KB

2-way
32B

64b
66MHz

L2, 256KB, 4-way,
WB 32B

64b 200Mhz

L1-D
16KB
4-way
WB
32B

L1-I
16KB
4-way
32B

L2, 512KB, 4-way,
WB 32B

64b 150Mhz

64b
66/100MHz

dual cavity
package

cartridge
slot-1

Pentium II

L1-D
8KB

1-way
WT
32B

L1-I
8KB

1-way
32B

128b
100MHz

Alpha 21164
L2, 96KB, 3-way

WB 64B

L3
2MB

1-way
WB
64B

L1-D
8KB

1-way
WT
32B

L1-I
16KB
1-way
32B

128b
100MHz

Alpha 21164-PC

L2, 2MB, 1-way,
WB 64B

128b 150Mhz

L1-D
64KB
2-way
WT
64B

L1-I
64KB
2-way
64B

64b
300MHz

Alpha 21264

L2, 8MB, 1-way,
WB 64B

128b 300Mhz

cartridge
slot-A

11

Performance Examples

�� �� � � � � �� 	
� � � �� � � �
� � �� 	 �
� � � � �
 � �� � � � � � � � � � � �

�� �� � � �� �� � � � � �� � �

� � ! � � � ! � � � " � ! ! � � � �

� � � � � �� � � ! � � � � � � � � � � �� �

� � � � � � ! �! � � � � � � �

266MHz

21164 EB164 (Alcor/CIA)

�� �� � � � � �� 	
� � � �� � � �
� � �� 	 �
� � � � �
 � � � � � � � � � � � � �

�� �� � � � ! �� � � ! � � ��

� � � � ! � � � � � �� � � � � � � ��

� � � � � � � � � � � � � � ��

200MHz

Pentium 430HX

�� �� � � � � �� 	
� � � �� � � �
� � �� 	 �
� � � � �
 � �� � � � � � � � � � � �

�� �� � � �� � � � � � ! � � "�

� � � � ! � � � �� � � ! � � � � ! � � !

� � � � � � � � � � � � " � "

200MHz PPro 440FX

12

#$ %&' ($) *+ , -& $ (*. & / (-+ / 0�1 , 2 -+ / 0$ % 2 - 3 0�4 5 6 % 2 % / 0�4 5 6 % 2

#7 7 89 5 : ;< = 5 < > 7 ? : @ > ;A

< A 7 < 9 5 : ;< = 5 7 A A ? A : A < @<

4 4)))) 8 : < 7 ; < ;7 7 7 8

300MHz PII

440LX

0

200

400

600

800

1000

1200

1400

1000 10000 100000 1e+06

M
B/

s

Array size in bytes

Alpha 21164 275MHz. 8KB L1, 96KB L2, 2MB L3

’load-loop’
’store-loop’
’sum-loop’

L3 Caches

• A third level of cache on chip.

• Use a denser memory technology than L2.

• Just a way to fill up silicon ?

• Perhaps moves bottleneck to TLB misses.

13

Main Memory

• Increasing sequential bandwidth

– Wide memory bus

– Interleave memory chips

⇒ DDR SDRAM or RAMBUS

• Access latency can impair bandwidth

– Larger cache block sizes help

• Reducing average latency

– Keep memory banks ‘open’

∗ Quick response if next access is to same DRAM Row

14

– Multiple independent memory banks

∗ Access to an open row more likely

∗ SDRAM/RAMBUS chips contain multiple banks

internally

– System bus that supports multiple outstanding

transaction requests

∗ Service transactions out-of-order as banks become

ready

Programming for caches

• Design algorithms so working set fits in cache

– Large lookup tables may be slower than performing the calculation

• Organise data for spatial locality

– Merge arrays accessed with the same index

• Fuse together loops that access the same data

• Prefer sequential accesses to non-unit strides

– innermost loop should access array sequentially

• If row and column access to 2D arrays is necessary, use cache blocking

– divide problem into sub-matrices that fit cache

– e.g. matrix multiply C = C + A×B

for (kb=0;kb<N;kb+=b){
for (jb=0;jb<N;jb+=b){

for (ib=0;ib<N;ib+=b){
for(k=kb;k<kb+b;++k){

for(j=jb;j<jb+b;++j){
for(i=ib;i<ib+b;++i){

C[k][i] = C[k][i] + (A[k][j] * B[j][i]);

15

} } } } } }

• Avoid access patterns that are likely to cause conflict misses (aliasing)

– e.g. large powers of 2

• Large strides can thrash the TLB

Special Instructions

• Prefetch

– fetch data into L1, suppressing any exceptions

– enables compiler to speculate more easily
e.g. Alpha: ld r0 ← [r1]

• ‘Two-part loads’ (e.g. IA-64)

– speculative load suppresses exceptions

– ‘check’ instruction collects any exception

– enables compiler to ‘hoist’ loads to as early as possible, across
multiple basic blocks

– ld.s r4 ← [r5]
chk.s r4

• Load with bypass hint

– indicates that the load should bypass the cache, and thus not
displace data already there

– e.g. random accesses to large arrays

• Load with spatial-locality-only hint (non-temporal)

16

– fetch line containing the specified word into a special buffer aside
from the main cache

∗ or, into set’s line that will be evicted next

• Store with spatial-locality-only hint (non-temporal)

• Write invalidate

– allocate a line in cache, & mark it as modified

– avoids mem read if whole line is to be updated

