Hardware Support for Control Transfers in Code Caches

Ho-Seop Kim and James E. Smith
Department of Electrical and Computer Engineering
University of Wisconsin — Madison

{hskim,jes}@ece.wisc.edu

Abstract because of optimizations that may have been done and
because of straight-line instruction fetching that naturally

Many dynamic optimization and/or binary translationOccurs. However, when making transitions from one
systems hold optimized/translated superblocks in a codedched superblock to another, there is a potential for per-
cache. Conventional code caching systems suffer frofprmance loss. For example, if a code cache lookup
overheads when control is transferred from one cache@echanism must be invoked before each new superblock
superblock to another, especially via register-indirec€an be entered, then all performance gains would likely be
jumps. The basic problem is that instruction addresses ##st (and then some). One commonly used optimization is
the code cache are different from those in the original pro© chain superblocks together so that one can immediately
gram binary. Therefore, performance for register-indirecbranch to the next, but this method only works with direct
jumps depends on the ability to translate efficiently frombranche$ For indirect jumps, the problem is more difficult
source binary PC values to code cache PC values. and remains a problem in many systems.

We analyze several key aspects of superblock chaining In this paper, we study architecture support for efficient
and find that a conventional baseline code cache witgontrol transfers among superblocks being held in a code
software jump target prediction results in 14.6% IBSs cache. This support is in the form of a few new instructions
versus the original binary. We identify the inability to useand some simple underlying hardware structures. The new
a conventional return address stack as the most significatitstructions could be added to an existing instruction set.
performance limiter in code cache systems. We introduce @© improve Java performance, Sun Microsystems recently
modified software prediction technique that reduces th@dded an instruction that improves indirect jump prediction
IPC loss to 11.4%. This technique is based on a technigu@ their UltraSPARC Illi processor [32]) Or, if a new pro-
used in threaded code interpreters. prietary instruction set is the objective, then the architec-

A number of hardware mechanisms, including a speture support can be included as part of the overall target
cialized return address stack and a hardware cache fhistruction set architecture (ISA).
translated jump target addresses, are studied for efficiently
supporting register-indirect jumps. Once all the chainingl.1 Dynamic code caching
overheads are removed by these support mechanisms, a
superblock-based code cache improves performance due toln general, dynamic code caching systems perform ba-
a better branch prediction rate, improved I-cache localitysic block re-layout based on observed run-time program
and increased chances of straight-line fetches. Simulatiotharacteristics. Hence, a dynamic code caching system can
results show a 7.7% IPC improvement over a current gerddapt to run-time program behavior changes efficiently.

eration 4-way superscalar processor. Also dynamic superblocks provide long sequences of in-
structions that are highly likely to be executed, ideal for
1. Introduction most dynamic optimization and high performance binary

translation systems.

In recent years a number of systems have been pro- When program execution begins, the source program
posed and developed that dynamically translate and/dinary image s first interpreted. As interpretation pro-
optimize binary programs from one instruction set to an_qeeds, b'aS|c blocks and]or control transfer edges are pro-
other. Virtually all these systems first map the source bifiléd to find “hotspots”, i.e. frequently executed code re-
nary code into superblocks [19] — code sequences with orfions, and/or frequently followed control flow paths.
entry point and multiple exit points — then translate and/or
optimize the superblocks and place them in a code cachggiowing Alpha ISA convention, we use the tebnanchfor a
for repeated execution on the target platform. When exeontrol-transfer instruction whose target address is fixed. A regis-
cuting within a superblock, performance is enhanced, botter-indirectjump finds the target address by reading a specified

register.

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

When the profile data indicates that a certain portion of théhe program’s execution. Furthermore, this address is an
program is being frequently executed, then control iSSPC value, not a TPC value. This means that the original
passed to a translator (and/or optimizer). The translatgump target address being held in a register must be trans-
forms a superblock, typically using profile data, translatesated every time the indirect jump instructioneisecuted

the superblock, and places it in the code cache. It alsaot only when it istranslated The most straightforward
places an entry in a dispatch table, i.e. a hash table thstlution is to consult the dispatch table for every indirect
maps source binary program countervalues (SPCs) to jump. Hence indirect jumps still have a significant per-
translatedbinary program countevalues (TPCs). As the formance cost.

program continues, whenever there is a branch or jump in To save table lookup overhead for each and every indi-
the interpreted code, the hashed SPC is used as an indext jump, many dynamic optimizers/translators implement
into the dispatch table. If there is a hit, control is transa form of software-based jump target prediction. In
ferred to the mapped superblock in the code cache via th2][4][5][10][36], a sequence of instructions compares the
TPC. Similarly, when the end of a superblock is reachedndirect target SPC held in a register against an embedded
the dispatch table is accessed to find the next superblot¢ianslation-time target SPC. A match indicates a correct
(if it exists). At that point if there is a miss in the dispatch“prediction” and the inlined direct branch instruction is
table, control is passed back to the interpreter. Initiallyexecuted; if not, the code jumps to the shared (slow) dis-
program execution switches between the interpreter angatch code. Although the example in Fig. 2 shows three
the code cache frequently, but eventually the program wikkequential predictions, many systems use only one predic-
be executed almost entirely within the code cache. tion.

If Rx == #addr_1 goto #target_1
Else if Rx == #addr_2 goto #target_2

. . . . Else if Rx == #addr_3 goto #target_3
In the basic code cache scheme just described there is gise hash lookup(RX): do it the slow way

an obvious steady state performance cost because the dis- o
patch table is accessed every time there is a control transféigure 2. A code sequence that performs indirect
(branch or jump) from one superblock to the next. Typi- Jjump target comparison

cally, this would require several instructions, including at - . o
least two memory accesses, ending in an indirect jump. The software prediction method is of limited value,

Fortunately, direct branches, either conditional or uncondi-O\,’[veO\llerc'idF'rSt’ i t?he ta:get gddrests (;sbnott Ot’?e otfhthe e
tional, are relatively easy to optimize because their (take cled addresses, then time 1S wasted by testing the possi-
target addresses do not change during program execulti !'t'es' and the dispaich table lookup has to .be' performed
Superblocks can be chained together so that a direct bran Hywaé/. ;I;}he performanceb COStf (.’f da'l m'tSPrEd'Ct't%n tIS high. t
from one superblock to another can be made directly with= econd, INere are a number ot Indirect jJumps that are no

out relying on SPC to TPC mapping. Chaining is com-Very predictable using this method. For example procedure

monly done in systems that use code caches and is ijyeturns often have a number of call sites, and therefore a
trated in Fig. 1 number of changing targets. Bruening et al. [4] identify the

For indirect transfers, however, the problem is more dif-indi[]ect ju't“p pro(tj)lem a?]ti htigh(:]st ﬁvterbf;ee}d il? a f?(de 15
ficult. Register-indirect jumps have their target addresse§2cN€ system and report that a hasnh table lookup takes

; : ; tructions, while the software comparison of the target of
tored in a register, and the register val n chan vgptruc N :) .
stored in & register, and the register value can change o agn indirect jump takes 6 instructions in the x86 ISA.

1.2 Code cache control transfers

Previous code cache systems considered the software
Super- Super- prediction technique (along with partial inlining of jump
target code) as awptimization We find that this technique
i is rather gperformance limiterespecially for returns, and
we therefore consider alternative methods. We propose an
Super- Super- enhanced software prediction technique and study further
Dispateh plock Dispatch plock hardware support mechanisms to achieve zero overhead
i ~ chaining. We also analyze reasons each method shows
different performance characteristics, especially in terms
Super- Super- Super: of dynamic instruction count expansion and branch predic-
plock plock tion performance changes.

_ — _ N The techniques and support mechanisms studied in the
(a) without chaining (b) with chaining paper can be used to acceleratey type of code cache
systems — dynamic optimizers, high performance binary

Figure 1. Control transfers among superblocks
translators, or both.

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

1.3 Related work memory, the transition between native execution and “in-
terpretation” is automatically performed by hardware.

There are a variety of systems that use code cachinghen an optimized superblock is put into the code cache,

techniques. First, there are transparent optimization sy#s starting TPC is written into the branch target buffer

tems that do not perform binary translation, but insteadBTB). The next time a corresponding branch instruction is

focus on dynamic optimizations. These systems includgetched, control is transferred to the optimized superblock

HP Dynamo [2][4], Wiggins/Redstone [8], Mojo [7], and by the BTB. This system also uses the software jump tar-

the system proposed by Merten et al. [27]. Another set djet prediction technique; however when the software pre-

systems rely on code caching as part of a sandboxir@jction fails, program control falls back to the source indi-

framework for program analysis and security enhancerect jump instruction. Therefore no dispatch table lookup is

ment. These systems include DELI [9] and DynamoRICperformed. Sooner or later, the program will again reach

[5]. As with the dynamic optimizers, these systems do noan optimized superblock. A limitation of this approach is

perform binary translation. that its application is restricted to dynamic optimization.
A second important class of systems performs binarjMany dynamic binary translation systems, such as co-

translation from one conventional ISA to another (as weldesigned virtual machines and high level programming

as optimization). For example, Strata [30], UQDBT [34]language virtual machinesannotuse a hardware inter-

are designed to be retargetable to multiple target platformgreter (for executing out-of-code-cache instructions effi-

HP Shogun [25] and Aries [37] are used to provide binargiently).

compatibility for the existing ISA programs on a platform Previously proposed chaining support mechanisms re-

that executes a new instruction set. lated to our study are explained and compared in their as-
The Transmeta Crusoe Processor/Code Morphing Sofgociated subsections.

ware [15], IBM BOA [1], and the method proposed by

Kim and Smith [24] perform dynamic binary translation 2. Support for code cache control transfers

from an existing ISA to a proprietary ISA with perform-

ance or power efficiency (or both) as a goal. These systems1 Software-based register-indirect jump chain-

use a code cache to hold superblocks. The IBM DAISY ing methods

system [10] is similar, except it holds “tree regions” in the

cache rather than superblocks. _ In Fig. 3, three different software-based indirect jump
Finally, high performance high-level language virtual ;haining options are depicted for an indirect function call
machines (e.g., Java VM) that also use superblock-basgkiryction (e.gJSR in the Alpha 1SAS. These software-
CO(\j/s_chachmg techmql;]e arelemgrgmg [3][35]H . | based methods affect the underlying hardware branch pre-
_ With respect to other related systems, there Is a Cle@fiqiq pehavior in a negative way as they convert a single
similarity with hardware trace caches [17][29] (which alsojirect jump instruction to a sequence of codes including
c2a6che superblohcksd, not really trar::es in ';]hedMuItn‘Iow multiple control transfer instructions. In Fig. 3a, an indirect
[26] sense). A hardware trace cache uses hardware rathg,,'is converted to an unconditional branch to the shared
than software to form superblocks and to manage the tra spatch code. The target address prediction rate of the

cacﬂe. Tdh|s dn:ferent_:e reﬁu[tg n %trade-off{hha[]dwgre racRgister-indirect jump in the dispatch code is expected to
caches Oh no reque N j\lnmg ecau%ec eH ar Waret 5 very poor because all indirect jumps lead to the same
CESS Mmechanism IS based on Source FLs. HOWEVET, 10tgsnatch code and a single BTB entry is required to pro-

cache size and maximum allowable superblock size ar&de all the target addresses

limited by the amount of on-chip, near-processor storage. e conyentional indirect jump chaining method based
It should be noted that hardware trace caches and softwate ofiware prediction is shown in Fig. 3b. Here, the com-

code caches areot mutually exclusive. For example :
. ' pare-and-branch code reduces the number of times the
many of the above code caching examples [3][4][5][7][34lshared dispatch code is executed. Hence the pressure on

[35] run c;]n P1e7ntium 4 processor that employs a hardwarge TR entry for the indirect jump in the dispatch code is
trace cache [17]. somewhat reduced. However, many times the software

RePLay [12] can be considered an aggressive eXtens'?ﬁ]ediction is incorrect and in that case two mispredictions

of the hardware trace cache. By converting highly predigtéan happen — one by the conditional branch in the com-

able conditional branches into assertions, RePLay in5 e and-branch code, another by the indirect jump in the
creases the average superblock size to the level of soft-

ware-based code cache systems for more dynamic optimi-
zation opportunities. % This type of instruction performs two tasks; (1) it saves the next
The system proposed by Merten et al [27] is an innovaistruction SPC to a register, then (2) jumps to the target SPC

tive hybrid system. Although the code cache is placed igtored in a register. The first task is accomplished by a sequence
of load-immediate instructions.

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

Jump

instruction
Save return SPC Save return SPC Save return SPC Jump
i Register i
Uncond. branc Compare Compare Jump BTB Predicted ide?]tifier Register | target JTLT
embedded sp¢Construction | empedded spdConstruction instruction jump target q meSPC SPC N o
with a register| time target | with a register | time target TPC] TPC
superblock superblock 1 | [~ 77
Cond. branch > p Cond. branch | &
Uncond. branc| Private dispatch - Jumg
il Next predicted Match? v targe
fetch TPC atch?
Other .. Indirect jump < No < Yes IPC
indirect.-» [“shared Shared Small number BTB misprediction: Hit?
jumps -~ dispatch code dispatch code of target Redirect fetch to jump Yes
Indirect jump | ¥, Indirect jump superblock target TPC from JTLT BTB prediction is correc
Many targetiqd Many target < No
superblocks superblocks JTLT miss:
dicti Redirect fetch to
(8) No prediction (b) Software prediction (c) Software prediction, the dispatch coc
shared dispatch shared dispatch private dispatch
Figure 3. Software-based jump chaining methods Figure 4. Jump Target-address Lookup Table

dispatch code. The conditional branch has less impact bé&und, its TPC may be different from the one provided by
cause the branch predictor will eventually be trained tdhe BTB. This is a BTB misprediction and fetch is redi-
predict the branch as not-taken. rected to the TPC from the JTLT.

We propose an alternative software method (Fig 3c): A hardware cache of dispatch table entries and associ-
replicate the dispatch code after every register-indirecated instructions have been proposed previously. In [31] a
jump, thereby allowing “private” target address predictionSEARCH_SWITCH_TABLInstruction queries the cache
in case the superblock construction-time prediction failswith the target SPC in a register; the target TPC is written
This way the number of mispredictions by the indirectio another register upon a hit. The nBX{NAMIC_GOTO
jump in the dispatch code is reduced. This option trades offistruction reads the latter register and jumps to the TPC.
superblock size, which leads to increased I-cache pressuig,similar mechanism is proposed in [13]. However, this
for a better target address prediction rate. The private dignethod is undesirable in systems where no scratch register
patch code concept is similar to the one used in threadggbr keeping the target TPC) is available to the code cache
codeinterpreters[11]. However, we are unaware of any manager.
previous proposal or existing system that applies this |t appears that the “Translation Lookaside Buffer” in
“threaded” technique to a dynamically trans-[22]is also a hardware cache of dispatch table entries. It is

lated/optimizectode cachsystem. not clear, however, exactly how the mechanism is used.
If the JTLT is used, a register-indirect jump is not trans-
2.2 Jump target-address lookup table lated to a compare-and-branch code sequence and remains

as an indirect jump. This suppresses dynamic instruction

One way to avoid the expensive dispatch table lookugount expansion found in software-based prediction tech-
almost entirely is to maintain a hardware cache of dispatchiques. However, the BTB/JTLT pair also has a couple of
table entries. We call this specialized chaining supponveaknesses. First, it requires on-chip storage space. In the
feature the Jump Target-address Lookup Table (JTLT)Iransmeta Crusoe processor a 256-entry “TLB” [15] is
The JTLT is maintained by the code cache manager angsed for this purpose. Assuming a 32-bit SPC and a 16-bit
always provides a correct translated address if there isTPC, a 256-entry fully-associative JTLT uses 1.5KB of
hit. The concept is similar to the software-managed TLB&ssociative memory storage. Second, the BTB/JTLT pair
used in virtual memory systems. does not provide a highly accurate return address stack

Fig. 4 shows how a JTLT can be used in conjunctionfRAS) [21] type prediction capability for return instruc-
with a BTB as a checker/predictor pair. An indirect jumptions.
instruction’s target TPC is predicted with the normal BTB.
This predicted target address flows through the pipelin@ 3 Dual-address return address stack
with the jump instruction itself, just like any other predic-
tion mechanism. When the jump instruction reads the tar- Most modern processors use a RAS mechanism, which
get SPC from its register, the JTLT is searched. If there is @an predict a return instruction’s target address very accu-
hit at an entry that matches the predicted TPC, the predigately. In a dynamically managed code cache system, how-
tion is correct. There are two ways of mispredicting. Firstever, a conventional RAS cannot be utilized because the
the JTLT itself may miss. In that case, the hardware alongaved return target address is a SPC while the correspond-
cannot provide the correct target TPC. The jump is noing TPC is needed for a return target address prediction.
taken and the next sequential instruction, a branch to thenis inability to use a conventional hardware RAS leads to
dispatch code, is executed. Second, even if a JTLT entry &bstantial performance loss, as can be seen in Fig. 5. For

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

OBTB O superblock construction ime target address JTLT is also used, it can be relied upon to provide the cor-
— rect target TPC. Otherwise, fetch redirection is accom-

1
2 os 1H _ g N - plished by a branch to the dispatch code. Note that the se-
2 03 lished by a branch to the dispatch code. Note that th
g o A= i i mantics of this return instruction are slightly different from
S oa || Il the conventional definition — a conventional return always
T o2 Nl jumps to the target. Here, if the return prediction is not
ol N correct, the next sequential instruction is executed (or the
P FESSSEFEISSS JTLT sets the next TPC if used and is hit).
< »‘b'@?‘@. f&@;ag@‘\m,gﬁ‘iﬁb- RO i is specialize , @ return is not converted to
R SCICR O With th lized RAS, a ret t ted t
v direct .the compare—and—prgnch sequence. The dual address RAS
(@) Non-return indirect jumps improves the prediction rate for returns and removes many
‘DRAS mBTB I:lsuperblockconstructiontimetargetaddress‘ e_Xtra |nStrUC‘E|0nS that WOUId have been generated for a
1 - single return instruction, like the JTLT does.
@ S I] | There are two ways to push a pair of addresses onto the
= o7] I M I I dual address RAS. The first option is to use a sppaoist-
gosy dHEHL dual-address-RAShstruction that pushes both return ad-
S 03 4] dresses. Finding the return target SPC at superblock con-
501] struction time is simple. If the corresponding TPC is not
o\Q e G c s found at superblock construction time, an invalid address
@Qm&'“&"@i;s»‘zéig,'vi@\"@f’%_«é;@f;&‘ ¥ is written in the TPC field. Later when the return target
MRS superblock is constructed, the invalid address is replaced
eturns with a vali .
(b) Ret th lid TPC

Another way to form a return address pair is to consult
the JTLT when the original return SPC is pushed. With the
JTLT, the return address TPC does not need to be embed-
non-return indirect jumps, the software-based predictiogjed as in th@ush-dual-address-RAiSstruction. When an
technique is almost as good as the dynamically traineghstruction that saves a return address is encountered, the
BTB. However, returns are a totally different story. Com-JT| T is searched for a matching TPC. If a match is found,
pared to a RAS, a BTB and the software prediction techy pair of return addresses are formed and pushed onto the
nique result in 34% and 25% more mispredictions, respegiyal-address RAS. Note that a conventional load-
tively. Interestingly, the BTB performance is actually inmediate instruction pair that saves a return SPC can not
lower than the quasi-static software prediction be used in this case. Typically, a load-immediate instruc-

A specialized RAS mechanism that contains an addresgpn does not contain a hint to push the RAS. Instead, a

pair, consisting of a return address SPC and its correspecialsave-return-addresinstruction that contains only
sponding TPC is shown in Fig. 6. When a return instructhe SPC can be used.

tion is fetched, the next fetch address is predicted with the |n any case, the dual-address RAS should be

popped TPC. The SPC part of the pair flows down thgyyshed/popped for all procedure calls and returns — some-

pipeline with the return instruction and is compared to thgimes even with an invalid TPC to maintain correct predic-
register value. If the two values do not match, a RAS mistign order.

prediction is detected and fetch needs to be redirected. If a

Figure 5. Indirect jump target address
prediction rates

Return
instruction

Next predicted Return
Push-dual-address-RAS ~ Save-return-address fetch TPC Predicted Zegi?ft_er E:Q'Staf target
instructior instructior return dentier SPC .,
JTLT Return —-»["SpC[TPC| target SPC »_SPC » SPEITEC
| | SpC l TPCl spC instruction
| _ Dual-address RAS
> S T:P(“ Match?
H NO <4
Jv v vV RAS misprediction: l .
Redirect fetch to jump es
SPC TPQ target TPC from JTLT Yes RAS prediction is correct
Return
RAS misprediction & JTLT miss: NO| target JTLT
Dual-address RAS _ Redirect fetch to the dispatch code | hit?
(a) RAS push (b) RAS pop and prediction check

Figure 6. Dual-address return address stack

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

Table 1. Special instructions to reduce indirect chaining overhead

categories Instruction Description

Save-return- | Save the immediate value (return target SPC) to a register. Also give a hint to the prediction hard-
Load long | address ware to form a pair of return addresses using JTLT and push it onto the dual-address RAS.
immediate Contain two immediate values. Save the firstimmediate value (return target SPC) into a register.

to register | Push-dual-

address-RAS Give a hint to the prediction hardware to push both the first and the second (return target TPC) im-

mediate values onto the dual-address RAS.

Predicted- Conditionally jump using a register (contains jump target SPC). If there is a JTLT miss, do nqt

Conditional | indirect-jump | jump; the next sequential instruction, an unconditional branch, will branch to the dispatch code.
indirect Predicted- Conditionally jump using a register (contains return target SPC). Give a hint to the prediction|hard-
Jjump returmn ware to pop the return target TPC from the dual-address RAS. If the RAS prediction is incorrect,

either (a) do not jump or (b) jump to the target TPC from the JTLT if the optional JTLT is used.

Table 2. Summary of indirect jump chaining methods
Indirect jump Description
chaining method | Dispatch code? Return prediction mechanism Related figures
No_pred.no_pred | Always BTB (an indirect jump in dispatch code) Fig. 3a
Sw_pred.sw_pred | When SW prediction failed BTB (_a C(_)ndltlonal branch plus an indire :tFig. 3b/c

jump in dispatch code)
When SW prediction failed (non-return jumps .)

Sw_pred.ras When RAS prediction failed (returns) hAS Fig. 3b, Fig. 6
Jtlt.jtlt When JTLT missed BTB Fig. 4
Jtlt.ras When JTLT missed RAS Fig. 4, Fig. 6

The dual-address RAS can be thought as a hardwareould like to “filter out” the effects of binary optimization
implementation of the shadow stack mechanism in FXI32nd instruction set translation. Therefore, we evaluate the
[18]. Similar mechanism was first proposed in [14], then inproposed methods by using the ‘“identity translation”
[24]. In this paper, we provide an alternative return addresshere we map the Alpha ISA onto itself and perform no
pair construction method utilizing JTLT. optimizations (other than superblock formation). Of

course, the methods proposed and studied in this paper can
2.4 Summary of special instructions and indirect be applied to systems that dynamically optimize, translate,
jump chaining methods or both.
It should be noted that a code caching system without

Table 1 summarizes the special instructions introduced@ny optimization techniques (other than automatic code re-
so far. It should be noted that a code cache system can jgyout) is in itself an important design point when strict,
diciously choose a subset, based on performance requireug-for-bug binary compatibility is required.
ments, implementation constraints and hardware budget.

Table 2 summarizes the register-indirect chaining meth3.2 Simulation environment
ods that we evaluate. Each is named via a pair of terms
separated by a period; these are the prediction method for Our aim is to evaluate performance impact of the vari-
non-return jumps and for returns, respectively. Forous chaining mechanisms, including specialized hardware
example, in thesw_pred.ras method, software prediction support. To do this, we have written a code caching system
is used for non-return jumps and the dual-address RAS I8 C and integrated it with a timing simulator. The simu-

used for returns. lated code cache system performs all interpretation and
superblock construction in the same sequence as in actual
3. Evaluation methodology implementation. The timing simulator part of the simula-

tion system is based on the SimpleScalar 3.0C toolset [6]
and is heavily modified to closely model modern processor
pipeline designs. The same timing simulator without the
code caching facility is also used as a baseline for com-
%arisons. This baseline configuration is referred to as
original.

3.1 Isolating code cache effects

We are primarily interested in the analysis and reduc
tion of code cache chaining overhead, whether used in
translation or optimization-only implementation, so we

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

When program control flow reaches an existing supersuperblocks in section 4.3.
block in the code cache, the simulator begins detailed tim- Our superblock formation algorithm is a slightly modi-
ing simulation. Here the timing simulation starts with anfied version of Dynamo’s Most Recently Executed Tail
initially empty pipeline. Similarly if an exit condition from (MRET) heuristic [2]. Unlike Dynamo, we stop construct-
the code cache is met (i.e., a superblock exit instruction’sig a superblock when an indirect jump is encountered. We
target is not currently cached in the code cache), the modse a maximum superblock size of 200 instructions and a
is changed to interpretation after the last instruction in théail execution counter threshold of 50.
pipeline is committed. Overall performance is then meas-
ured as source instructions per cycle (IPC) for execution @.3 Simulated processor pipeline
all cached (and chained) instructions.

To collect statistics, we use the SPEC CPU2000 integer
benchmarks compiled for the Alpha EV6 ISA at Hase -
optimization level {arch ev6é —non_shared — 11 b

aken branch/jump (single-
fast). Note that the-fast option includes aggressive cycle address prediction
instruction scheduling, procedure inlining, and loop unrol|-Taken branchjump (two-cycle address Conditional branch (direction)

rediction)> one cycle fetch bubble misprediction or indirect jump target

ing. The compiler flags are the same as those reported fOr. . ey 20dress mispredicton: ‘deep pipeln
Compag AlphaServer ES40 SPEC CPU2000 SUbmiSsi@cyci fetchbubbe pus fetch redirection del pypprs pies feteh reciresion doioy.
results. DEC C++ V.6.1-027 (fd252.eon and C V.5.9- _ _ o _
005 (for the rest) compilers were used on Digital UNIX Figure 7. Simulated pipeline showing

4.0-1229. Theest input set was used for all benchmarks misprediction penalties

except for253.perlbmkwhere one of theain input set For the purposes of control transfers, an eight-stage out-
(-1./lib diffmail.pl 2 550 15 24 23 100) of-order superscalar processor pipeline simulator is used
was used. All benchmarks were run to completion or 4.3additional pipeline stages for the non-control transfer in-
billion instructions. structions are not shown). The pipeline is shown in Fig. 7.
NOPs defined in the Alpha ISA are properly recognizednstruction fetch takes two cycles — one cycle for accessing
and removed when superblocks are formed. NOPs are ustire |-cache SRAM array and another cycle for shift and
ally generated by the compiler to align control-transfemask operation to select valid fetch target instructions.
target addresses to I-cache line boundariesoriginal, Control transfer information such as branch/jump types
NOPs are removed by the hardware in the decoding staggnd their locations within an I-cache line is pre-decoded
We show the performance impact of removing NOPs irand stored in the I-cache array when the cache line is

Write-
bact

Fetch Align | Decod« | Renam | Dispatct] Issu¢ | Executs

(224

()

Table 3. Simulated microarchitecture parameters

4-way issue microarchitecture | 8-way issue microarchitecture
Branch prediction 16K-entry, 12-bit global history g-share branch predictor; 16-entry RAS; 2K-entry, 4-way set associatiye
P BTB; 256-entry fully associative, LRU-replacement JTLT (if used)
Branch predictor - -
bandwidth Up to 1 prediction per cycle Up to 2 predictions per cycle
32-KB size, direct-mapped, 2-cycle hit latenc
L1 I-cache - - i Y Y - -
64-byte line size 128-byte line size
Maximum 4 instructions per cycle; Maximum 8 instructions per cycle;
Fetch bandwidth Fetch continues after the first predicted not-takefretch continues after the first and second predicted not-
conditional branch; taken conditional branches;
Fetch stops if a second branch is found Fetch stops if a third branch is found
L1 D-cache 32-KB size, 4-way set-associative, random replacement, 64-byte line size, 2-cycle hit latency
Unified L2 cache 1-MB size, 4-way set-associative, random replacement, 128-byte line size, 8-cycle hit latency
Memory 128-cycle latency, 64-bit wide, 4-cycle burst
Decodel/issue/ 4 8
retire bandwidth
Issue window size | 64 128
Execution re- 4 integer units, 2 L1 D-cache ports, 2 floating- | 8 integer units, 4 L1 D-cache ports, 4 floating-point ad-
sources point adders, 2 floating-point multipliers ders, 4 floating-point multipliers
Reorder buffer sizg 128 256

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

b.rOUth. into the I_Ca(?he' A” bran(?h predICtlon mecha- g‘no_pred.no_pred msw_pred.sw_pred DOsw_pred.ras @ijtit.jtlit @jtlt.ras
nisms, i.e., branch (direction) predictor, BTB, and RAS ¢
can be configured as either single-cycle or two-cycle. This
is to model the effect of multi-cycle branch prediction
mechanisms [20] found in current pipelined processors.
For example, the IBM POWER4 [33] and AMD Opteron
[23] have such multi-cycle predictors which create fetch g
bubble(s) even for correctly predicted taken branches. Rez 1
garding predicted directions of conditional branches, when*=
there is a disagreement between branch predictor and BTB
for a conditional branch, the branch prediction overrides
the BTB prediction.

For machine resources, we use two sets of microarchi-
tecture parameters (Table 3). The first set models a moder- Another important statistic is the number of extra in-
ate-width processor, similar to current generation designstructions generated by indirect chaining methods. Fig. 8
The second set models a relatively aggressive processghows the dynamic instruction count expansion rates when
All evaluations are done with the 4-way issue microarchithe dispatch code consumes 20 instructions. It is obvious
tecture, except where noted. that without any register-indirect jump chaining support, as
in theno_pred.no_pred method, program performance will
be unacceptable as 35% more instructions have to be exe-
cuted. Conventional software prediction in

We first consider characteristics of cached code (Tablew_pred.sw_pred method cuts the number to about 16% by
4). From the % column of the table, it is apparent that all executing only the relatively short compare-and-branch
benchmark programs almost always execute within théode when the prediction is correct (Both shared and
code cache — even for these very short (in real termghreaded versions result in the same instruction count ex-
benchmark runs. On the other hand, the total static codeansion). Providing a dual-address RAS reduces another
cache size in theScolumn indicates that the code work- 10.6% of the total instructions. This is not only because
ing set sizes of the benchmark programs, with possibleeturn instructions now seldom reach the dispatch code,
exception of176.gc¢ are fairly small. Of primary interest but also because the compare-and-branch code is not gen-
in this data is the average number of instructions betweegrated for a source return instruction. Similarly, JTLT re-
taken control transfer instructions in the last column. Orinoves almost all extra instructions for all jumps.
average, dynamic superblock caching achieves about a
two-fold increase compared to original program execution.

Table 4. General superblock characteristics

1.7 4
1.6 i
15 : H A
1.4 :

1.3
1.2

n count expan

i E
8
:
<

197.parser
253.perlbmk
255.vortex
256.bzip2
300.tw olf

Figure 8. Dynamic instruction count expansion

4. Performance results

0-7695-2043-X/03 $17.00 © 2003 IEEE

i | lomsoa. | s | Taesehed stpemlook | Bt e e T
Benchmark SOUrce in- cuted in super- code size completion

structions code cache | blocks (bytes) rate original code cache
164.9zip 3.50 billion 0.9999 366 53,188 0.76 13.6 27.3
175.vpr 1.54 billion 0.9996 467 74,284 0.58 13.7 28.2
176.gcc 1.89 billion 0.9938] 11,599 1,877,468 0.73 9.7 10.1
181.mcf 259 million 0.9989 214 23,47p 0.70 87 10.1
186.crafty 4.18 billion 0.9995 1,665 336,164 0.55 12.7 30.0
197.parser 4.07 billion 0.9996 2,441 335,948 0.77 8.1 18.9
252.eon 95 million 0.9899 633 79,756 0.88 14,3 23.6
253.perlbmk | 4.29 billion 0.9998 424 356,164 0.91 10.4 18.8
254.gap 1.2 billion 0.9978 2,630 411,768 0.80 9.9 19.2
255.vortex 4.29 billion 0.9991 2,547 707,212 0.91 10.7 36.3
256.bzip2 4.29 billion 0.9999 235 27,10D 0.96 14.0 20.1
300.twolf 253 million 0.9946 873 127,940 0.61 14.5 28.2
Average 0.9977 0.76 117 2215

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) CSFI;/ITER

SOCIETY

4.1 Branch prediction performance dispatch code. A threaded versiosw pred.sw_pred
(threaded) reduces this type of mispredictions by 44%
Chaining has a significant effect on a program’s branctihanks to the private dispatch code. However it still gener-
prediction characteristics because it can add extra contrgktes 23% more mispredictions thariginal. Introducing
transfer instructions or can even remove some source cothe dual-address RAS further reduces the indirect jump
trol transfer instructions (i.e., unconditional direct branchegnisprediction to the level afriginal.
inside a superblock). For direct conditional branches, The JTLT also reduces mispredictions by cutting the
chaining does not change prediction performance signifidispatch code execution frequency. Howeyet, jtit still
cantly. Nonetheless, a lower number of taken branches a@s 24% more mispredictions than the original program
inlined unconditional branches tend to reduce pressure dg@xecution. This is about the same as the best software-
the branch prediction hardware. On the other hand, chailpased methodsw_pred.sw_pred (threaded). This may
ing of register-indirect jumps does have a large effect ogeem surprising at first but it does make sense considering
branch prediction performance, and each scheme exhibitge prediction performance in Fig. 5.
different branch prediction characteristics. Fig. 9 shows The best methodiitras, has 5.6% fewer overall mis-
detailed breakdown of all control transfer mispredictiongopredictions tharoriginal due to a reduction in conditional
that are resolved after the instruction is executed. branch mispredictions. This is possible because fewer
First, note that the performance impact of registertaken branches reduce negative interference in the branch
indirect jump mispredictions was not very significant inpredictor pattern history table [28].
the original program execution. However their effect is It should be pointed out that branch prediction perform-
exacerbated in a code cache system. The conventior@iice comes close to the original program only after intro-
chaining method, sw_pred.sw_pred, experiences 46% ducing the dual-address RAS. Interestingly, pred.ras
more mispredictions thaeriginal. This increase is mostly producesfewer mispredictions thauijtt.jtlt, the hardware-
due to the mispredictions of the indirect jump in the shareéhtensive technique.

Sw_pred.sw_pred

Original program
2 20 gind prog 2 O target not
£ 18 W return £ 18 found
X 16 (RAS) ¥ 16
~ 14 S 14
g 12 4 o other indir, 2 12 4 B — O (dispatch)
5 104 - r jump 2 10+ B = !ndlrect
5 8y - (BTB) 2 2’ u jump (BTB)
2 64 - b h 1
cond. = it ||
g ‘2“ - |:'branch by ‘2‘7 gl I:I Dg?::éh
- i (BP) £ 0 R e T i e e 1=
° 0 T T T T T T T T T | . o 5 O v > = c Q9 x o = c
2 R & ES PN 9 2 N~ S S$ 8B & 4 8 E S & 2 S g
? SSELS S SE R ES S ieeasigdgrgsi iz
FTEGEG I NF P S W TSN ¥ 28382 e g <
P S &) X 5 I n 8 O™
NN Vv - g te] 3\
N
@ Sw_pred.sw_pred (threaded) @ Sw_pred.ras O target not
< 2 O target not < 20 found
£ 18 found £ 18
ﬁ ig E‘ igi M return
@ 12 +] O (dispatch) 9 12 (RAS)
2 101 — indirect 2 10 | -
s 8 - jump (BTB) S 84 - O (dispatch)
K g *[| H o " K g’ | indirect
= — cond. = 4 ;
> > jump (BTB)
: HH 3l i
g 0 e e ?éi?(:h é 0 AL P Pl Ell:l 11 |Bcond
: 2 5 9 %5 2 5 £ ¥ 9 x N = C ; 2 5 9 %5 > 5 S Q x o = c branch (BP)
$ §58ES£885E8f%CE s §EEELEEEEERS G
R ERE RN ieegcigag it
EE N8 g 2RIQZ e g < S <5 386 28 a2l 35 8 8 <«
=2 g &=~° 48 g &~°
N 3
@ Jtit.jtlt O target not Jtlt.ras
o 20 found o 20
£ 18 E 18
X% 16 @ indirect c 164
PR jump (ITLT) 2y
c 1% T =
S 10 4 o c
2 gl @ indirect 2 12’ jump (JTLT)
S 6+ jump (BTB £ 1
2 2, Jump (BTE) ® 6 o indirect
o = .
@ 2 5] o (dispatch) 2 ‘2" jump (BTB)
E‘ 0 o ‘ = ‘ (8] ‘ - ‘ > ‘ = ‘ j= ‘ = ‘ Q ‘ x ‘ [s\) ‘ = ‘ c ?ndirECt E 0] T T T o (dlspatCh)
¢ §ss5E§¢855¢gg g | mE® £ e« w indiect
< ¥ 6 &4 5 8 o = S o & = |Ocond N K © jump (BTB)
g 553 g TR ER 53 88 < branch & & ,;\bg,@"" o O cond.
= g g & & @ (8P) k¢ N3 branch (BP)

Figure 9. Classification of control transfer mispredictions

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

4.2 I-cache performance We believe the following factors contribute to the differ-
ence in results:

Another important program characteristic that can be Efficiency of hardware prediction mechanisms: the
affected by the chaining method is I-cache performance. PA-8000 processor, used in [2], does not predict indi-
Fig. 10 shows that, in general, superblock-based code rect jumps and always stalls fetch until the target ad-
caching helps reduce I-cache misses, except for the dress is resolved [16]. Hence, converting a register-
threaded variation which suffers more I-cache misses due indirect jump to the software prediction compare-and-
to the replicated dispatch code. That is, improved I-cache branch code greatly reduces fetch stall cycles in the

locality by superblock caching works to offset increased I- PA-8000. In contrast, our simulation model predicts
cache pressure from chaining (as is implied by the dy- jump target with a BTB and does not stall fetch, so a
namic instruction count increase). similar benefit is not realized. This is confirmed by
[4]: where the Dynamo system was ported to a Pen-
‘Doriginal ® sw_pred.sw_pred @ sw_pred.sw_pred (threaded) Osw_pred.ras @ jit.jtit Bjtlt.ras‘ t|Um ” platform (Wthh doeS prediCt indireCt]Ump tar'
gzz i gets with a BTB), resulting in substantial slowdowns
5, _ i due to indirect jumps — even worse than we report
8 50l A here.

£ 15 A1 » Differences in the superblock formation algorithm: we
10| stop constructing a superblock whenever an indirect

jump is encountered. Hence some straight-line fetch

optimization opportunities are not exploited.

Returning to Fig. 11, a threaded version,
sw_pred.sw_pred (threaded), performs 3.2% better than
the conventionabw_pred.sw_pred, showing that indirect
jump prediction performance improvements more than

Of special interest is the dramatic miss reduction iroffset any losses in I-cache performance when replicated
164.9zip Here, code re-layout eliminates cache thrashingdispatch code is used. Even this best performing software-
Although this is a valid optimization, it is probably limited only method still lags original program performance by
to direct-mapped caches. 164.gzipis omitted, the best 11.4%.
methods that use JTLT show a 6.3% I-cache miss reduc- It is only after specialized hardware mechanisms are in-

No. of i-cache

o o

164.9zip
175.vpr P
176.gcc
181.mcf
186.crafty
197.parser
252.e0n
253 perlbrk
254030
255.vortex ===
256.bzip2
300.wolf B
A.Mean

Figure 10. Number of I-cache misses

tion. (24.3% if164.gzipis included). troduced that the identity-translation code cache system
outperforms original program execution. Referring to
4.3 IPC performance jtit.jtlt, the introduction of the JTLT greatly enhances

performance both by suppressing extra instructions and in
Fig. 11 shows overall performance in terms of theéimproving predictor performance. As a resultit.jtlt

original source IPC. The results show that the conventionachieves a 4.6% performance improvement oviginal.
indirect jump method that relies on software prediction However, even more important is the effect of the dual-
(sw_pred.sw_pred) performs poorly, resulting in 14.6% address RAS. This is evident in the_pred.ras method;
IPC loss Here, improved fetch bandwidth is offset by the2.1% IPC improvement is achievedthout requiring any
chaining overhead, mostly due to increased branch misprextra on-chip storage as in the JTLT. This is a 15.4% im-
dictions and extra instructions. Interestingly, this resulprovement over the best performing software-only method
contradicts previous results reported in [2] where a 6%and a 19.6% improvement over the conventional method,
speedugs reported just through superblock code cachingsw_pred.sw_pred). Finally, combining both the JTLT and

‘ O original msw_pred.sw_pred @ sw_pred.sw_pred (threaded) O sw_pred.ras m jtit.jtit jtit.ras jtlit.ras (retain NOPs) ‘

§
\
|

IPC

PRI maa@

Z

)
[z]

 SAAAAIIIIIIIIINY,
——

| SSSSSNNSNNSNNNNY|

164.9zip 175.vpr 176.9cc 181.mcf 186.crafty 197.parser 252.eon 253.perbmk 254.gap 255.vortex 256.bzip2 300.tw off H.mean

Figure 11. IPC comparisons

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

dual-address RAS;jt(t.ras) results in a 7.7% IPC im- 5. Conclusions
provement oveoriginal.

Next we consider the effect of Alpha NOP removal in |n this paper, we studied in detail variety of code cache
superblocks. The benefit can be seen by looking at the peghaining techniques including several specialized architec-
formance ofjtit.ras (retain NOPs). If not removed, these tyre support mechanisms. We identify the lack of accurate
NOPs put more pressure than necessary on the fet¢bturn prediction as the biggest performance limiter in code
mechanism and reduce effective fetch bandwidth. The re&aching systems. We showed that the dual-address return
sults show that 1.5% of the total 7.7% IPC improvemengddress stack is a cost-effective solution to enhance the
comes from NOP removal in superblocks. performance of a code caching system. The jump target-
address lookup table — a hardware cache of the dispatch
table — also helps to further reduce the chaining overhead.

‘ O original @ jtit.ras ‘

3 Other aspects of chaining were also enhanced; a dynamic
22 threaded code technique was applied to improve the soft-
28 ware-based jump prediction method.

24 In summary, the techniques studied in this paper can be

IPC

22

used in many code caching systems. For co-designed vir-
tual machine systems, the full set of specialized hardware
mechanisms can be used. Other systems can judiciously
select the most cost-effective mechanisms. Even the

18
16
14
12

0.8

300.tw olf

E58E&£B8EEREE § strictly software-based code cache systems can benefit
T EEE8S 8883 3538z from the dynamic threaded code technique.
- 3 2 & % As the importance of dynamic optimization and binary

translation grows, we believe the mechanisms studied in
this paper will provide a high performance base framework
| Dorignal _ Bjitras | to develop further optimizations.

(a) 4-way issue, two-cycle prediction latency

6. Acknowledgements

This work is being supported by SRC grant 2001-HJ-
902, NSF grants EIA-0071924 and CCR-0311361, Intel

and IBM.

7. References

$58EZIEREETE
FEegiig33322¢E
S 72T g 5 ° § - R [1] Erik R. Altman, Michael Gschwind, Sumedh Sathaye, S.
) b o Kosonocky, Arthur Bright, Jason Fritts, Paul Ledak, David
(b) 8-way issue, two-cycle prediction latency Appenzeller, Craig Agricola, Zachary Filan, “BOA: The Ar-
; : chitecture of a Binary Translation ProcesstBM Research
Figure 12. Effects of machine parameters Report RC2166Dec, 2000,

: . 2] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia, “Dy-
Fig. 12a shows the IPC performance |mprovemen£ namo: A Transparent Dynamic Optimization Syste@ghf.

(jtit.ras IPC overoriginql program IPC) when the effect of Programming Language Design and Implementatigm 1-
two-cycle predictors is accounted for. Here, both suffer 15 5,5 2000.

from fetch bubbles generated by taken branches angd] marc Berndl, Laurie Hendren, “Dynamic Profiling and
jumps. However, the reduced number of taken branches in Trace Cache Generationlfit. Symp. Code Generation and
jtit.ras allows it to tolerate the predictor latencies better. On Optimization pp. 276-285, Mar. 2003.

averageijtlt.ras performs better thasriginal by 12.8%. [4] Derek Bruening, Evelyn Duesterwald, Saman Amarasinghe,

Finally the effect of larger maximum fetch bandwidth ~ “Design and Implementation of a Dynamic Optimization
Framework for Windows, The 4" Workshop on Feedback-

that would be necessary to support a rather aggressive 8- "' . S

way issue processor is shown in Fig. 12b. Here, predictor, Dirécted and Dynamic OptimizatioDec. 2001. .
latenci t at t | Th ' I't h, that CLE Derek Bruening, Timothy Garnett, Saman Amarasinghe,
aiencies are _Se at iwo-cycles. . e' results show tha ,S “An Infrastructure for Adaptive Dynamic Optimizatioryit.
perblock caching scales better with increased I-cache line Symp. Code Generation and Optimizatigp. 265-275
size and branch prediction bandwidth. On average, relative pmar. 2003.

IPC improvement qfflt.ras overoriginal is 18.8%.

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

[6] Douglas C. Burger, Todd M. Austin, “The SimpleScalar Failure of Speculation on the Physical Nature of a Compo-

Toolset, Version 2.0"Technical Report CS-TR-97-1342 nent Being Addressed{JS Patent 5,832,205 ov. 1998.
University of Wisconsin—Madison, Jun. 1997. [23] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed,
[71 Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, David M. Pat Conway, “The AMD Opteron Processor for Multiproc-
Gillies, “Mojo: A Dynamic Optimization System,The k3 essor Servers,IEEE Micro, Vol. 23, No. 2, pp. 66-76,
Workshop on Feedback-Directed and Dynamic Optimiza- Mar/Apr 2003.
tion, Dec. 2000. [24] Ho-Seop Kim, James E. Smith, “Dynamic Binary Transla-
[8] Dean Deaver, Rick Gorton, Norman Rubin, “Wig- tion for Accumulator-Oriented Architectures,’Int. Symp.
gins/Redstone: An Online Program Specializéftie 11" Code Generation and Optimizatiopp. 25-35, Mar. 2003.
HotChips Symposindun. 1999. [25] Bich C. Le, “An Out-of-Order Execution Technique for
[9] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Runtime Binary Translators,"The &' Int. Conf. Architec-
Paolo Faraboschi, Joseph A. Fisher, “DELI: A New Run- tural Support for Programming Languages and Operating
Time Control Point,” The 38" Int. Symp. Microarchitecture Systemspp. 151-158, Oct. 1998.
pp. 257-268, Dec. 2002. [26] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J.
[10] Kemal Ebcioglu, Erik R. Altman, Michael Gschwind, Sum- Karzes, W. D. Lichtenstein, Robert P. Nix, John S.
edh Sathaye, “Dynamic Binary Translation and Optimiza- O’Donnell, John C. Ruttenberg, “The Multiflow Trace
tion,” IEEE Trans. Computerd/ol. 50, No. 6, pp. 529-548, Scheduling Compiler,”The Journal of Supercomputing
Jun. 2001. Kluwer Academic Publishing, pp.51-142, 1993.
[11] M. Anton Ertl, David Gregg, “The Behavior of Efficient [27] Matthew C. Merten, Andrew R. Trick, Erik M. Nystrom,
Virtual Machine Interpreters on Modern Architecture&- Ronald D. Barnes, Wen-mei W. Hwu, “A Hardware Mecha-
rop. Conf. Parallel Computingp. 403-412, Aug. 2001. nism for Dynamic Extraction and Relayout of Program Hot-

[12] Brian Fahs, Satarupa Bose, Matthew Crum, Brian Slechta, spots,” The 2 Int. Symp. Computer Architectynep. 59-
Francesco Spadini, Tony Tung, Sanjay J. Patel, Steven S. 70, Jun. 2000.
Lumetta, “Performance Characterization of a Hardware[28] Alex Ramirez, Josep L. Larriba-Pey, Matero Valero, “The
Mechanism for Dynamic Optimization,The 34 Int. Symp. Effect of Code Reordering on Branch Predictionthe ¢
Microarchitecture pp. 16-27, Dec. 2001. Int. Conf. Parallel Architectures and Compilation Tech-
[13] Michael Gschwind, “Method and Apparatus for Determining niques pp. 189-198, Oct. 2000.
Branch Addresses in Programs Generated by Binary Tran$29] Eric Rotenberg, Steve Bennett, James E. Smith, “Trace

lation, IBM Disclosures YOR819980332ul. 1998. Cache: A Low Latency AEproach to High Bandwidth In-
[14] Michael Gschwind, “Method and Apparatus for Rapid Re- struction Fetching,” The29" Int. Symp. Microarchitecture

turn Address Computation in Binary TranslatiolBM Dis- pp.24-34, Dec 1996.

closures YOR8199804,18ep. 1998. [30] Kevin Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
[15] Tom R. Halfhill, “Transmeta Breaks x86 Low-Power Bar- Davidson, M L. Soffa,Int. Symp. Code Generation and Op-

rier,” Microprocessor Reporfeb. 14, 2000. timization “Retargetable and Reconfigurable Software Dy-
[16] Hewlett Packard Co., “PA-RISC 8x00 Family of Microproc- namic Translation,” pp. 36-47, Mar. 2003.

essors with Focus on PA-8700," [31] Gabriel M. Silberman, Kemal Ebcioglu, “An Architectural

www.cpus.hp.com/technical_references/PA-8700wp.pdf Framework for Supporting Heterogeneous Instruction-Set
[17] Glenn Hinton, Dave Sager, Mike Upton, Darrel Boggs, Architectures,”IEEE ComputerVol. 26, No. 6, pp. 39-56,

Doug Carmean, Alan Kyker, Patrice Roussel, “The Microar- 1993.

chitecture of the Pentium 4 Processdntel Technology [32] Sun Microsystems, “UltraSPARC IIli Processor,”

Journal Q1,2001. www.sun.com/processors/UltraSPARC-
[18] Raymond J. Hookway, Mark A. Herdeg, “Digital FX!32: Ili/us3i_datasheet.pdR003.

Combining Emulation and Binary TranslationPigital [33] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le,

Technical JournaglVol. 9, No. 1, pp. 3-12, Jan. 1997. Balaram Sinharoy, “POWER4 System Microarchitecture,”
[19] Wen-mei W. Hwu, Scott A. Mahlke, William Y. Chen, Po- IBM Journal of Research and Developmersl. 46, No. 1,

hua P. Chang, Nancy J. Warter, Roger A. Bringmann, Ro- pp. 5-26, Jan. 2002.

land G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Gran{34] David Ung, Cristina Cifuentes, “Optimizing Hot Paths in a
E. Haab, John G. Holm, Daniel M. Lavery, “The Super- Dynamic Binary Translator,”The 2" Workshop on Binary
block: An Effective Technique for VLIW and Superscalar Translation Oct. 2000.

Compilation,” The Journal of Supercomputingluwer [35] John Whaley, “Partial Method Compilation using Dynamic

Academic Publishing, pp. 229-248, 1993. Profile Information,” Int. Conf. Object-Oriented Program-
[20] Daniel A. Jimenez, Stephen W. Keckler, Calvin Lin, “The ming, Systems, Languages & Applicationp.166-179,

Impact of Delay on the Design of Branch Predictorgfie 2001.

339 Int. Symp. Microarchitecturepp. 67-76, Dec. 2000. [36] Emmett Witchel, Mendel Rosenblum, “Embra: Fast and

[21] David Kaeli, P. G. Emma, “Branch History Table Prediction Flexible Machine Simulation, The Conf. Measurement and
of Moving Target Branches Due to Subroutine Returns,” Modeling of Computer Systenpp. 68-78, May 1996.
The 18' Int. Symp. Computer Architecturpp. 34-42, Jun. [37] Cindy Zheng, Carol Thompson, “PA-RISC to IA-64: Trans-
1991. parent Execution, No RecompilationEEE ComputerVol.
[22] Edmund J. Kelly, Robert F. Cmelik, Malcolm J. Wing, 33, No. 3, pp. 47-53, Mar. 2000.
“Memory Controller for a Microprocessor for Detecting a

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY

