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ABSTRACT 

Intel’s Hyper-Threading Technology brings the concept 
of simultaneous multi-threading to the Intel 
Architecture.  Hyper-Threading Technology makes a 
single physical processor appear as two logical 
processors; the physical execution resources are shared 
and the architecture state is duplicated for the two 
logical processors.  From a software or architecture 
perspective, this means operating systems and user 
programs can schedule processes or threads to logical 
processors as they would on multiple physical 
processors.  From a microarchitecture perspective, this 
means that instructions from both logical processors 
will persist and execute simultaneously on shared 
execution resources.  

This paper describes the Hyper-Threading Technology 
architecture, and discusses the microarchitecture details 
of Intel's first implementation on the Intel Xeon 
processor family.  Hyper-Threading Technology is an 
important addition to Intel’s enterprise product line and 
will be integrated into a wide variety of products. 

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries.  
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

INTRODUCTION 
The amazing growth of the Internet and 
telecommunications is powered by ever-faster systems 
demanding increasingly higher levels of processor 
performance.  To keep up with this demand we cannot 
rely entirely on traditional approaches to processor 
design.  Microarchitecture techniques used to achieve 
past processor performance improvement–super-
pipelining, branch prediction, super-scalar execution, 
out-of-order execution, caches–have made 
microprocessors increasingly more complex, have more 
transistors, and consume more power.  In fact, transistor 
counts and power are increasing at rates greater than 
processor performance.  Processor architects are 
therefore looking for ways to improve performance at a 
greater rate than transistor counts and power 
dissipation.  Intel’s Hyper-Threading Technology is one 
solution. 

Processor Microarchitecture 
Traditional approaches to processor design have 
focused on higher clock speeds, instruction-level 
parallelism (ILP), and caches.  Techniques to achieve 
higher clock speeds involve pipelining the 
microarchitecture to finer granularities, also called 
super-pipelining.  Higher clock frequencies can greatly 
improve performance by increasing the number of 
instructions that can be executed each second.  Because 
there will be far more instructions in-flight in a super-
pipelined microarchitecture, handling of events that 
disrupt the pipeline, e.g., cache misses, interrupts and 
branch mispredictions, can be costly.   
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ILP refers to techniques to increase the number of 
instructions executed each clock cycle.  For example, a 
super-scalar processor has multiple parallel execution 
units that can process instructions simultaneously.  With 
super-scalar execution, several instructions can be 
executed each clock cycle.  However, with simple in-
order execution, it is not enough to simply have multiple 
execution units.  The challenge is to find enough 
instructions to execute.  One technique is out-of-order 
execution where a large window of instructions is 
simultaneously evaluated and sent to execution units, 
based on instruction dependencies rather than program 
order. 

Accesses to DRAM memory are slow compared to 
execution speeds of the processor.  One technique to 
reduce this latency is to add fast caches close to the 
processor.  Caches can provide fast memory access to 
frequently accessed data or instructions.  However, 
caches can only be fast when they are small.  For this 
reason, processors often are designed with a cache 
hierarchy in which fast, small caches are located and 
operated at access latencies very close to that of the 
processor core, and progressively larger caches, which 
handle less frequently accessed data or instructions, are 
implemented with longer access latencies.  However, 
there will always be times when the data needed will not 
be in any processor cache.  Handling such cache misses 
requires accessing memory, and the processor is likely 
to quickly run out of instructions to execute before 
stalling on the cache miss. 

The vast majority of techniques to improve processor 
performance from one generation to the next is complex 
and often adds significant die-size and power costs.  
These techniques increase performance but not with 
100% efficiency; i.e., doubling the number of execution 
units in a processor does not double the performance of 
the processor, due to limited parallelism in instruction 
flows.  Similarly, simply doubling the clock rate does 
not double the performance due to the number of 
processor cycles lost to branch mispredictions.  
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Figure 1: Single-stream performance vs. cost 

Figure 1 shows the relative increase in performance and 
the costs, such as die size and power, over the last ten 
years on Intel processors1.  In order to isolate the 
microarchitecture impact, this comparison assumes that 
the four generations of processors are on the same 
silicon process technology and that the speed-ups are 
normalized to the performance of an Intel486 
processor.  Although we use Intel’s processor history in 
this example, other high-performance processor 
manufacturers during this time period would have 
similar trends.  Intel’s processor performance, due to 
microarchitecture advances alone, has improved integer 
performance five- or six-fold1.  Most integer 
applications have limited ILP and the instruction flow 
can be hard to predict.  

Over the same period, the relative die size has gone up 
fifteen-fold, a three-times-higher rate than the gains in 
integer performance.  Fortunately, advances in silicon 
process technology allow more transistors to be packed 
into a given amount of die area so that the actual 
measured die size of each generation microarchitecture 
has not increased significantly. 

The relative power increased almost eighteen-fold 
during this period1.  Fortunately, there exist a number of 
known techniques to significantly reduce power 
consumption on processors and there is much on-going 
research in this area.  However, current processor power 
dissipation is at the limit of what can be easily dealt 
with in desktop platforms and we must put greater 
emphasis on improving performance in conjunction with 
new technology, specifically to control power.  

                                                           
1 These data are approximate and are intended only to show 
trends, not actual performance. 

 Intel486 is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Thread-Level Parallelism  

A look at today’s software trends reveals that server 
applications consist of multiple threads or processes that 
can be executed in parallel.  On-line transaction 
processing and Web services have an abundance of 
software threads that can be executed simultaneously 
for faster performance.  Even desktop applications are 
becoming increasingly parallel.  Intel architects have 
been trying to leverage this so-called thread-level 
parallelism (TLP) to gain a better performance vs. 
transistor count and power ratio.   

In both the high-end and mid-range server markets, 
multiprocessors have been commonly used to get more 
performance from the system.  By adding more 
processors, applications potentially get substantial 
performance improvement by executing multiple 
threads on multiple processors at the same time.  These 
threads might be from the same application, from 
different applications running simultaneously, from 
operating system services, or from operating system 
threads doing background maintenance.  Multiprocessor 
systems have been used for many years, and high-end 
programmers are familiar with the techniques to exploit 
multiprocessors for higher performance levels.   

In recent years a number of other techniques to further 
exploit TLP have been discussed and some products 
have been announced.  One of these techniques is chip 
multiprocessing (CMP), where two processors are put 
on a single die.  The two processors each have a full set 
of execution and architectural resources.  The 
processors may or may not share a large on-chip cache.  
CMP is largely orthogonal to conventional 
multiprocessor systems, as you can have multiple CMP 
processors in a multiprocessor configuration.  Recently 
announced processors incorporate two processors on 
each die.  However, a CMP chip is significantly larger 
than the size of a single-core chip and therefore more 
expensive to manufacture; moreover, it does not begin 
to address the die size and power considerations. 

Another approach is to allow a single processor to 
execute multiple threads by switching between them.  
Time-slice multithreading is where the processor 
switches between software threads after a fixed time 
period.  Time-slice multithreading can result in wasted 
execution slots but can effectively minimize the effects 
of long latencies to memory.  Switch-on-event multi-
threading would switch threads on long latency events 
such as cache misses.  This approach can work well for 
server applications that have large numbers of cache 
misses and where the two threads are executing similar 
tasks.  However, both the time-slice and the switch-on-

event multi-threading techniques do not achieve optimal 
overlap of many sources of inefficient resource usage, 
such as branch mispredictions, instruction 
dependencies, etc. 

Finally, there is simultaneous multi-threading, where 
multiple threads can execute on a single processor 
without switching.  The threads execute simultaneously 
and make much better use of the resources.  This 
approach makes the most effective use of processor 
resources: it maximizes the performance vs. transistor 
count and power consumption. 
 
Hyper-Threading Technology brings the simultaneous 
multi-threading approach to the Intel architecture.  In 
this paper we discuss the architecture and the first 
implementation of Hyper-Threading Technology on the 
Intel Xeon processor family.   

HYPER-THREADING TECHNOLOGY 
ARCHITECTURE 
Hyper-Threading Technology makes a single physical 
processor appear as multiple logical processors [11, 12].  
To do this, there is one copy of the architecture state for 
each logical processor, and the logical processors share 
a single set of physical execution resources.  From a 
software or architecture perspective, this means 
operating systems and user programs can schedule 
processes or threads to logical processors as they would 
on conventional physical processors in a multi-
processor system.  From a microarchitecture 
perspective, this means that instructions from logical 
processors will persist and execute simultaneously on 
shared execution resources. 

Figure 2: Processors without Hyper-Threading Tech  

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries.  
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As an example, Figure 2 shows a multiprocessor system 
with two physical processors that are not Hyper-
Threading Technology-capable.  Figure 3 shows a 
multiprocessor system with two physical processors that 
are Hyper-Threading Technology-capable.  With two 
copies of the architectural state on each physical 
processor, the system appears to have four logical 
processors. 

 

Figure 3: Processors with Hyper-Threading 
Technology  

The first implementation of Hyper-Threading 
Technology is being made available on the Intel 
Xeon processor family for dual and multiprocessor 
servers, with two logical processors per physical 
processor.  By more efficiently using existing processor 
resources, the Intel Xeon processor family can 
significantly improve performance at virtually the same 
system cost.  This implementation of Hyper-Threading 
Technology added less than 5% to the relative chip size 
and maximum power requirements, but can provide 
performance benefits much greater than that. 

Each logical processor maintains a complete set of the 
architecture state.  The architecture state consists of 
registers including the general-purpose registers, the 
control registers, the advanced programmable interrupt 
controller (APIC) registers, and some machine state 
registers.  From a software perspective, once the 
architecture state is duplicated, the processor appears to 
be two processors.  The number of transistors to store 
the architecture state is an extremely small fraction of 
the total.  Logical processors share nearly all other 
resources on the physical processor, such as caches, 

                                                           
 Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

execution units, branch predictors, control logic, and 
buses.   

Each logical processor has its own interrupt controller 
or APIC.  Interrupts sent to a specific logical processor 
are handled only by that logical processor. 

FIRST IMPLEMENTATION ON THE 
INTEL XEON PROCESSOR FAMILY 
Several goals were at the heart of the microarchitecture 
design choices made for the Intel Xeon processor MP 
implementation of Hyper-Threading Technology.  One 
goal was to minimize the die area cost of implementing 
Hyper-Threading Technology.  Since the logical 
processors share the vast majority of microarchitecture 
resources and only a few small structures were 
replicated, the die area cost of the first implementation 
was less than 5% of the total die area. 

A second goal was to ensure that when one logical 
processor is stalled the other logical processor could 
continue to make forward progress.  A logical processor 
may be temporarily stalled for a variety of reasons, 
including servicing cache misses, handling branch 
mispredictions, or waiting for the results of previous 
instructions.  Independent forward progress was ensured 
by managing buffering queues such that no logical 
processor can use all the entries when two active 
software threads2 were executing.  This is accomplished 
by either partitioning or limiting the number of active 
entries each thread can have. 

A third goal was to allow a processor running only one 
active software thread to run at the same speed on a 
processor with Hyper-Threading Technology as on a 
processor without this capability.  This means that 
partitioned resources should be recombined when only 
one software thread is active.  A high-level view of the 
microarchitecture pipeline is shown in Figure 4.  As 
shown, buffering queues separate major pipeline logic 
blocks.  The buffering queues are either partitioned or 
duplicated to ensure independent forward progress 
through each logic block. 

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
2 Active software threads include the operating system 
idle loop because it runs a sequence of code that 
continuously checks the work queue(s).  The operating 
system idle loop can consume considerable execution 
resources. 
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Figure 4 Intel® Xeon™ processor pipeline 

 

In the following sections we will walk through the 
pipeline, discuss the implementation of major functions, 
and detail several ways resources are shared or 
replicated. 

FRONT END 
The front end of the pipeline is responsible for 
delivering instructions to the later pipe stages.  As 
shown in Figure 5a, instructions generally come from 
the Execution Trace Cache (TC), which is the primary 
or Level 1 (L1) instruction cache.  Figure 5b shows that 
only when there is a TC miss does the machine fetch 
and decode instructions from the integrated Level 2 (L2) 
cache.  Near the TC is the Microcode ROM, which 
stores decoded instructions for the longer and more 
complex IA-32 instructions.   
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Execution Trace Cache (TC)   
The TC stores decoded instructions, called micro-
operations or “uops.”  Most instructions in a program 
are fetched and executed from the TC.  Two sets of 
next-instruction-pointers independently track the 
progress of the two software threads executing.  The 
two logical processors arbitrate access to the TC every 
clock cycle.  If both logical processors want access to 
the TC at the same time, access is granted to one then 
the other in alternating clock cycles.  For example, if 
one cycle is used to fetch a line for one logical 
processor, the next cycle would be used to fetch a line 
for the other logical processor, provided that both 
logical processors requested access to the trace cache. If 
one logical processor is stalled or is unable to use the 
TC, the other logical processor can use the full 
bandwidth of the trace cache, every cycle.   

The TC entries are tagged with thread information and 
are dynamically allocated as needed.  The TC is 8-way 
set associative, and entries are replaced based on a least-
recently-used (LRU) algorithm that is based on the full 
8 ways.  The shared nature of the TC allows one logical 
processor to have more entries than the other if needed. 

Microcode ROM   
When a complex instruction is encountered, the TC 
sends a microcode-instruction pointer to the Microcode 
ROM.  The Microcode ROM controller then fetches the 
uops needed and returns control to the TC.  Two 
microcode instruction pointers are used to control the 
flows independently if both logical processors are 
executing complex IA-32 instructions.   

Both logical processors share the Microcode ROM 
entries.  Access to the Microcode ROM alternates 
between logical processors just as in the TC.   

ITLB and Branch Prediction  
If there is a TC miss, then instruction bytes need to be 
fetched from the L2 cache and decoded into uops to be 
placed in the TC.  The Instruction Translation 
Lookaside Buffer (ITLB) receives the request from the 
TC to deliver new instructions, and it translates the 
next-instruction pointer address to a physical address.  
A request is sent to the L2 cache, and instruction bytes 
are returned.  These bytes are placed into streaming 
buffers, which hold the bytes until they can be decoded. 

The ITLBs are duplicated.  Each logical processor has 
its own ITLB and its own set of instruction pointers to 
track the progress of instruction fetch for the two logical 
processors.  The instruction fetch logic in charge of 
sending requests to the L2 cache arbitrates on a first- 

come first-served basis, while always reserving at least 
one request slot for each logical processor.  In this way, 
both logical processors can have fetches pending 
simultaneously. 

Each logical processor has its own set of two 64-byte 
streaming buffers to hold instruction bytes in 
preparation for the instruction decode stage.  The ITLBs 
and the streaming buffers are small structures, so the die 
size cost of duplicating these structures is very low. 

The branch prediction structures are either duplicated or 
shared.  The return stack buffer, which predicts the 
target of return instructions, is duplicated because it is a 
very small structure and the call/return pairs are better 
predicted for software threads independently.  The 
branch history buffer used to look up the global history 
array is also tracked independently for each logical 
processor.  However, the large global history array is a 
shared structure with entries that are tagged with a 
logical processor ID.   

IA-32 Instruction Decode   
IA-32 instructions are cumbersome to decode because 
the instructions have a variable number of bytes and 
have many different options.  A significant amount of 
logic and intermediate state is needed to decode these 
instructions.  Fortunately, the TC provides most of the 
uops, and decoding is only needed for instructions that 
miss the TC. 

The decode logic takes instruction bytes from the 
streaming buffers and decodes them into uops.  When 
both threads are decoding instructions simultaneously, 
the streaming buffers alternate between threads so that 
both threads share the same decoder logic.  The decode 
logic has to keep two copies of all the state needed to 
decode IA-32 instructions for the two logical processors 
even though it only decodes instructions for one logical 
processor at a time.  In general, several instructions are 
decoded for one logical processor before switching to 
the other logical processor.  The decision to do a coarser 
level of granularity in switching between logical 
processors was made in the interest of die size and to 
reduce complexity.  Of course, if only one logical 
processor needs the decode logic, the full decode 
bandwidth is dedicated to that logical processor.  The 
decoded instructions are written into the TC and 
forwarded to the uop queue. 

Uop Queue  
After uops are fetched from the trace cache or the 
Microcode ROM, or forwarded from the instruction 
decode logic, they are placed in a “uop queue.” This 
queue decouples the Front End from the Out-of-order 
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Execution Engine in the pipeline flow.  The uop queue 
is partitioned such that each logical processor has half 
the entries.  This partitioning allows both logical 
processors to make independent forward progress 
regardless of front-end stalls (e.g., TC miss) or 
execution stalls. 

OUT-OF-ORDER EXECUTION ENGINE 
The out-of-order execution engine consists of the 
allocation, register renaming, scheduling, and execution 
functions, as shown in Figure 6.  This part of the 
machine re-orders instructions and executes them as 

quickly as their inputs are ready, without regard to the 
original program order. 

Allocator   
The out-of-order execution engine has several buffers to 
perform its re-ordering, tracing, and sequencing 
operations.  The allocator logic takes uops from the uop 
queue and allocates many of the key machine buffers 
needed to execute each uop, including the 126 re-order 
buffer entries, 128 integer and 128 floating-point 
physical registers, 48 load and 24 store buffer entries.  
Some of these key buffers are partitioned such that each 
logical processor can use at most half the entries.   
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Figure 6: Out-of-order execution engine detailed pipeline

Specifically, each logical processor can use up to a 
maximum of 63 re-order buffer entries, 24 load buffers, 
and 12 store buffer entries. 

If there are uops for both logical processors in the uop 
queue, the allocator will alternate selecting uops from 
the logical processors every clock cycle to assign 
resources.  If a logical processor has used its limit of a 
needed resource, such as store buffer entries, the 
allocator will signal “stall” for that logical processor and 
continue to assign resources for the other logical 
processor.  In addition, if the uop queue only contains 
uops for one logical processor, the allocator will try to 
assign resources for that logical processor every cycle to 
optimize allocation bandwidth, though the resource 
limits would still be enforced. 

By limiting the maximum resource usage of key buffers, 
the machine helps enforce fairness and prevents 
deadlocks. 

Register Rename  
The register rename logic renames the architectural IA-
32 registers onto the machine’s physical registers.  This 
allows the 8 general-use IA-32 integer registers to be 
dynamically expanded to use the available 128 physical 
registers.  The renaming logic uses a Register Alias 
Table (RAT) to track the latest version of each 
architectural register to tell the next instruction(s) where 
to get its input operands. 

Since each logical processor must maintain and track its 
own complete architecture state, there are two RATs, 
one for each logical processor.  The register renaming 
process is done in parallel to the allocator logic 
described above, so the register rename logic works on 
the same uops to which the allocator is assigning 
resources. 

Once uops have completed the allocation and register 
rename processes, they are placed into two sets of 
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queues, one for memory operations (loads and stores) 
and another for all other operations.  The two sets of 
queues are called the memory instruction queue and the 
general instruction queue, respectively.  The two sets of 
queues are also partitioned such that uops from each 
logical processor can use at most half the entries. 

Instruction Scheduling   
The schedulers are at the heart of the out-of-order 
execution engine.  Five uop schedulers are used to 
schedule different types of uops for the various 
execution units.  Collectively, they can dispatch up to 
six uops each clock cycle.  The schedulers determine 
when uops are ready to execute based on the readiness 
of their dependent input register operands and the 
availability of the execution unit resources. 

The memory instruction queue and general instruction 
queues send uops to the five scheduler queues as fast as 
they can, alternating between uops for the two logical 
processors every clock cycle, as needed. 

Each scheduler has its own scheduler queue of eight to 
twelve entries from which it selects uops to send to the 
execution units.  The schedulers choose uops regardless 
of whether they belong to one logical processor or the 
other.  The schedulers are effectively oblivious to 
logical processor distinctions.  The uops are simply 
evaluated based on dependent inputs and availability of 
execution resources.  For example, the schedulers could 
dispatch two uops from one logical processor and two 
uops from the other logical processor in the same clock 
cycle.  To avoid deadlock and ensure fairness, there is a 
limit on the number of active entries that a logical 
processor can have in each scheduler’s queue.  This 
limit is dependent on the size of the scheduler queue. 

Execution Units  
The execution core and memory hierarchy are also 
largely oblivious to logical processors.  Since the source 
and destination registers were renamed earlier to 
physical registers in a shared physical register pool, 
uops merely access the physical register file to get their 
destinations, and they write results back to the physical 
register file.  Comparing physical register numbers 
enables the forwarding logic to forward results to other 
executing uops without having to understand logical 
processors. 

After execution, the uops are placed in the re-order 
buffer.  The re-order buffer decouples the execution 
stage from the retirement stage.  The re-order buffer is 
partitioned such that each logical processor can use half 
the entries. 

Retirement  
Uop retirement logic commits the architecture state in 
program order.  The retirement logic tracks when uops 
from the two logical processors are ready to be retired, 
then retires the uops in program order for each logical 
processor by alternating between the two logical 
processors.  Retirement logic will retire uops for one 
logical processor, then the other, alternating back and 
forth.  If one logical processor is not ready to retire any 
uops then all retirement bandwidth is dedicated to the 
other logical processor. 

Once stores have retired, the store data needs to be 
written into the level-one data cache.  Selection logic 
alternates between the two logical processors to commit 
store data to the cache.   

MEMORY SUBSYSTEM 
The memory subsystem includes the DTLB, the low-
latency Level 1 (L1) data cache, the Level 2 (L2) unified 
cache, and the Level 3 unified cache (the Level 3 cache 
is only available on the Intel Xeon processor MP).  
Access to the memory subsystem is also largely 
oblivious to logical processors.  The schedulers send 
load or store uops without regard to logical processors 
and the memory subsystem handles them as they come. 

DTLB  
The DTLB translates addresses to physical addresses.  It 
has 64 fully associative entries; each entry can map 
either a 4K or a 4MB page.  Although the DTLB is a 
shared structure between the two logical processors, 
each entry includes a logical processor ID tag.  Each 
logical processor also has a reservation register to 
ensure fairness and forward progress in processing 
DTLB misses. 

L1 Data Cache, L2 Cache, L3 Cache   
The L1 data cache is 4-way set associative with 64-byte 
lines.  It is a write-through cache, meaning that writes 
are always copied to the L2 cache.  The L1 data cache is 
virtually addressed and physically tagged. 

The L2 and L3 caches are 8-way set associative with 
128-byte lines.  The L2 and L3 caches are physically 
addressed.  Both logical processors, without regard to 
which logical processor’s uops may have initially 

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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brought the data into the cache, can share all entries in 
all three levels of cache.   

Because logical processors can share data in the cache, 
there is the potential for cache conflicts, which can 
result in lower observed performance.  However, there 
is also the possibility for sharing data in the cache.  For 
example, one logical processor may prefetch 
instructions or data, needed by the other, into the cache; 
this is common in server application code.  In a 
producer-consumer usage model, one logical processor 
may produce data that the other logical processor wants 
to use.  In such cases, there is the potential for good 
performance benefits. 

BUS 
Logical processor memory requests not satisfied by the 
cache hierarchy are serviced by the bus logic.  The bus 
logic includes the local APIC interrupt controller, as 
well as off-chip system memory and I/O space.  Bus 
logic also deals with cacheable address coherency 
(snooping) of requests originated by other external bus 
agents, plus incoming interrupt request delivery via the 
local APICs. 

From a service perspective, requests from the logical 
processors are treated on a first-come basis, with queue 
and buffering space appearing shared.  Priority is not 
given to one logical processor above the other. 

Distinctions between requests from the logical 
processors are reliably maintained in the bus queues 
nonetheless.  Requests to the local APIC and interrupt 
delivery resources are unique and separate per logical 
processor.  Bus logic also carries out portions of barrier 
fence and memory ordering operations, which are 
applied to the bus request queues on a per logical 
processor basis.  

For debug purposes, and as an aid to forward progress 
mechanisms in clustered multiprocessor 
implementations, the logical processor ID is visibly sent 
onto the processor external bus in the request phase 
portion of a transaction.  Other bus transactions, such as 
cache line eviction or prefetch transactions, inherit the 
logical processor ID of the request that generated the 
transaction. 

SINGLE-TASK AND MULTI-TASK 
MODES  
To optimize performance when there is one software 
thread to execute, there are two modes of operation 
referred to as single-task (ST) or multi-task (MT).  In 
MT-mode, there are two active logical processors and 
some of the resources are partitioned as described 

earlier.  There are two flavors of ST-mode: single-task 
logical processor 0 (ST0) and single-task logical 
processor 1 (ST1).  In ST0- or ST1-mode, only one 
logical processor is active, and resources that were 
partitioned in MT-mode are re-combined to give the 
single active logical processor use of all of the 
resources.  The IA-32 Intel Architecture has an 
instruction called HALT that stops processor execution 
and normally allows the processor to go into a lower-
power mode.  HALT is a privileged instruction, meaning 
that only the operating system or other ring-0 processes 
may execute this instruction.  User-level applications 
cannot execute HALT. 

On a processor with Hyper-Threading Technology, 
executing HALT transitions the processor from MT-
mode to ST0- or ST1-mode, depending on which logical 
processor executed the HALT.  For example, if logical 
processor 0 executes HALT, only logical processor 1 
would be active; the physical processor would be in 
ST1-mode and partitioned resources would be 
recombined giving logical processor 1 full use of all 
processor resources.  If the remaining active logical 
processor also executes HALT, the physical processor 
would then be able to go to a lower-power mode. 

In ST0- or ST1-modes, an interrupt sent to the HALTed 
processor would cause a transition to MT-mode.  The 
operating system is responsible for managing MT-mode 
transitions (described in the next section). 

Figure 7: Resource allocation  

Figure 7 summarizes this discussion.  On a processor 
with Hyper-Threading Technology, resources are 
allocated to a single logical processor if the processor is 
in ST0- or ST1-mode.  On the MT-mode, resources are 
shared between the two logical processors. 

OPERATING SYSTEM AND 
APPLICATIONS  
A system with processors that use Hyper-Threading 
Technology appears to the operating system and 
application software as having twice the number of 
processors than it physically has.  Operating systems 
manage logical processors as they do physical 
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processors, scheduling runnable tasks or threads to 
logical processors.  However, for best performance, the 
operating system should implement two optimizations. 

The first is to use the HALT instruction if one logical 
processor is active and the other is not.  HALT will 
allow the processor to transition to either the ST0- or 
ST1-mode.  An operating system that does not use this 
optimization would execute on the idle logical processor 
a sequence of instructions that repeatedly checks for 
work to do.  This so-called “idle loop” can consume 
significant execution resources that could otherwise be 
used to make faster progress on the other active logical 
processor. 

The second optimization is in scheduling software 
threads to logical processors.  In general, for best 
performance, the operating system should schedule 
threads to logical processors on different physical 
processors before scheduling multiple threads to the 
same physical processor.  This optimization allows 
software threads to use different physical execution 
resources when possible. 

PERFORMANCE 
The Intel Xeon processor family delivers the highest 
server system performance of any IA-32 Intel 
architecture processor introduced to date.  Initial 
benchmark tests show up to a 65% performance 
increase on high-end server applications when 
compared to the previous-generation Pentium® III 
Xeon™ processor on 4-way server platforms.  A 
significant portion of those gains can be attributed to 
Hyper-Threading Technology. 

 

                                                           
Intel and Pentium are registered trademarks of Intel 
Corporation or its subsidiaries in the United States and 
other countries. 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Figure 8:  Performance increases from Hyper-
Threading Technology on an OLTP workload 

Figure 8 shows the online transaction processing 
performance, scaling from a single-processor 
configuration through to a 4-processor system with 
Hyper-Threading Technology enabled.  This graph is 
normalized to the performance of the single-processor 
system.  It can be seen that there is a significant overall 
performance gain attributable to Hyper-Threading 
Technology, 21% in the cases of the single and dual-
processor systems.   
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Figure 9: Web server benchmark performance 

Figure 9 shows the benefit of Hyper-Threading 
Technology when executing other server-centric 
benchmarks.  The workloads chosen were two different 
benchmarks that are designed to exercise data and Web 
server characteristics and a workload that focuses on 
exercising a server-side Java environment.  In these 
cases the performance benefit ranged from 16 to 28%.  
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All the performance results quoted above are 
normalized to ensure that readers focus on the relative 
performance and not the absolute performance.   
 
Performance tests and ratings are measured using 
specific computer systems and/or components and 
reflect the approximate performance of Intel products as 
measured by those tests.  Any difference in system 
hardware or software design or configuration may affect 
actual performance.  Buyers should consult other 
sources of information to evaluate the performance of 
systems or components they are considering purchasing. 
For more information on performance tests and on the 
performance of Intel products, refer to 
wwwwww..iinntteell..ccoomm//pprrooccss//ppeerrff//lliimmiittss..hhttmm or call (U.S.) 1-
800-628-8686 or 1-916-356-3104 

CONCLUSION 
Intel’s Hyper-Threading Technology brings the concept 
of simultaneous multi-threading to the Intel 
Architecture.  This is a significant new technology 
direction for Intel’s future processors.  It will become 
increasingly important going forward as it adds a new 
technique for obtaining additional performance for 
lower transistor and power costs. 

The first implementation of Hyper-Threading 
Technology was done on the Intel Xeon processor 
MP.  In this implementation there are two logical 
processors on each physical processor.  The logical 
processors have their own independent architecture 
state, but they share nearly all the physical execution 
and hardware resources of the processor.  The goal was 
to implement the technology at minimum cost while 
ensuring forward progress on logical processors, even if 
the other is stalled, and to deliver full performance even 
when there is only one active logical processor.  These 
goals were achieved through efficient logical processor 
selection algorithms and the creative partitioning and 
recombining algorithms of many key resources. 

Measured performance on the Intel Xeon processor MP 
with Hyper-Threading Technology shows performance 
gains of up to 30% on common server application 
benchmarks for this technology.   

The potential for Hyper-Threading Technology is 
tremendous; our current implementation has only just 

                                                           
 Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

begun to tap into this potential.  Hyper-Threading 
Technology is expected to be viable from mobile 
processors to servers; its introduction into market 
segments other than servers is only gated by the 
availability and prevalence of threaded applications and 
workloads in those markets. 
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