
Motivation

We reason about programs statically, but we are really 
trying to make predictions about their dynamic behaviour.

Why not examine this behaviour directly?

It isn’t generally feasible (e.g. termination, inputs) to run 
an entire computation at compile-time, but we can find 

things out about it by running a simplified version.

This is the basic idea of abstract interpretation.



Abstract interpretation

Warning: this will be a heavily simplified view 
of abstract interpretation; there is only time to 

give a brief introduction to the ideas, not 
explore them with depth or rigour.



Abstract interpretation

The key idea is to use an abstraction: a model of 
(otherwise unmanageable) reality, which

• discards enough detail that the model becomes 
manageable (e.g. small enough, computable 
enough), but

• retains enough detail to provide useful insight into 
the real world.



Abstract interpretation
For example, to plan a trip, you might use a map.

• A road map sacrifices a lot of detail —

• trees, road conditions, individual buildings;

• an entire dimension —

• but it retains most of the information which is 
important for planning a journey:

• place names;

• roads and how they are interconnected.



Abstract interpretation
Crucially, a road map is a useful abstraction because the 

route you plan is probably still valid back in reality.

• A cartographer creates an abstraction of reality 
(a map),

• you perform some computation on that 
abstraction (plan a route),

• and then you transfer the result of that 
computation back into the real world (drive to 
your destination).



Abstract interpretation

Trying to plan a journey by exploring the concrete world 
instead of the abstraction (i.e. driving around aimlessly) is 

either very expensive or virtually impossible.

A trustworthy map makes it possible — even easy.

This is a real application of abstract intepretation, but in 
this course we’re more interested in computer programs.



Multiplying integers
A canonical example is the multiplication of integers.

If we want to know whether −1515 × 37 is positive 
or negative, there are two ways to find out:

• Compute in the concrete world (arithmetic), 
using the standard interpretation of multiplication. 
−1515 × 37 = −56055, which is negative.

• Compute in an abstract world, using an abstract 
interpretation of multiplication: call it ⊗.



(−) = { z ∈ ℤ | z < 0 }

(+) = { z ∈ ℤ | z > 0 }

Multiplying integers
In this example the magnitudes of the numbers are 

insignificant; we care only about their sign, so we can 
use this information to design our abstraction.

(0) = { 0 }

In the concrete world we have all the integers; in the 
abstract world we have only the values (−), (0) and (+).



Multiplying integers
We need to define the abstract operator ⊗.

Luckily, we have been to primary school.

⊗ (−) (0) (+)

(−)

(0)

(+)

(+)

(+)

(0)

(0)

(0)

(0) (0)

(−)

(−)



Multiplying integers

Armed with our abstraction, we can now tackle the 
original problem.

abs(−1515) = (−)

abs(37) = (+)

(−) ⊗ (+) = (−)

So, without doing any concrete computation, we have 
discovered that −1515 × 37 has a negative result.



Multiplying integers

This is just a toy example, but it demonstrates the 
methodology: state a problem, devise an abstraction that 

retains the characteristics of that problem, solve the 
problem in the abstract world, and then interpret the 

solution back in the concrete world.

This abstraction has avoided doing arithmetic; in 
compilers, we will mostly be interested in avoiding 

expensive computation, nontermination or undecidability.



Safety

As always, there are important safety issues.

Because an abstraction discards detail, a computation in 
the abstract world will necessarily produce less precise 

results than its concrete counterpart.

It is important to ensure that this imprecision is safe.



Safety
We consider a particular abstraction to be safe if, 
whenever a property is true in the abstract world, 

it must also be true in the concrete world.

Our multiplication example is actually quite 
precise, and therefore trivially safe: the magnitudes 
of the original integers are irrelevant, so when the 
abstraction says that the result of a multiplication 

will be negative, it definitely will be.

In general, however, abstractions will be more 
approximate than this.



Adding integers
A good example is the addition of integers.

How do we define the abstract operator ⊕?

⊕ (−) (0) (+)

(−)

(0)

(+)

(−)

(+)

(−)

(0)

(+)

(−) (+)

(?)

(?)



Adding integers
When adding integers, their (relative) magnitudes are 
important in determining the sign of the result, but 

our abstraction has discarded this information.

As a result, we need a new abstract value: (?).

(−) = { z ∈ ℤ | z < 0 }

(+) = { z ∈ ℤ | z > 0 }

(0) = { 0 }

(?) = ℤ



Adding integers

(?) is less precise than (–), (0) and (+); it means 
“I don’t know”, or “it could be anything”.

Because we want the abstraction to be safe, we 
must put up with this weakness. 



= (+)

Adding integers

19, 23 42

(+)

+

abs

abs(19 + 23) = abs(42)



= (+)

= (+)

Adding integers

☺
19, 23

(+), (+)

42

(+)

+

abs

⊕

abs

abs(19 + 23) = abs(42)

abs(19) ⊕ abs(23) = (+) ⊕ (+)



(–)

= (–)

Adding integers

–1515, 37 –1478+

abs

abs(–1515 + 37) = abs(–1478)



= (?)

= (–)

Adding integers

☹
–1515, 37

(–), (+)

–1478+

abs

⊕

abs

abs(–1515 + 37) = abs(–1478)

abs(–1515) ⊕ abs(37) = (–) ⊕ (+)

(?)



Safety

Here, safety is represented by the fact that (–) ⊆ (?):

{ z ∈ ℤ | z < 0 } ⊆ ℤ

The result of doing the abstract computation is less 
precise, but crucially includes the result of doing the 
concrete computation (and then abstracting), so the 

abstraction is safe and hasn’t missed anything.



Abstraction
Formally, an abstraction of some concrete domain D 

(e.g. ℘(ℤ)) consists of

• an abstract domain D# (e.g. { (–), (0), (+), (?) }),

• an abstraction function α : D → D# (e.g. abs), and

• a concretisation function γ : D# → D, e.g.:

• (–) ↦ { z ∈ ℤ | z < 0 },

• (0) ↦ { 0 }, etc.



Abstraction

concrete abstract

γ

α



Abstraction

+({ 2, 5 }, { –3, –7 }) = { –1, –5, 2, –2 } ^

⊕((+), (–)) = (?)

Given a function f from one concrete domain to 
another (e.g. + : ℘(ℤ) × ℘(ℤ) → ℘(ℤ)), we 

require an abstract function f # (e.g. ⊕) between

^

the corresponding abstract domains.



Abstraction

ℤ × ℤ ℤ+

+̂

⊕

DD × D

α1 γ1

D# × D# D#

α2 γ2

So, for D = ℘(ℤ) and D# = { (–), (0), (+), (?) }, we have:

where α1,2 and γ1,2 are the appropriate 
abstraction and concretisation functions.



Abstraction
These mathematical details are formally important, but 

are not examinable on this course.

Abstract interpretation can get very theoretical, but 
what’s significant is the idea of using an abstraction to 

safely model reality.

Recognise that this is what we were doing in data-
flow analysis: interpreting 3-address instructions as 

operations on abstract values — e.g. live variable sets 
— and then “executing” this abstract program.



Summary

• Abstractions are manageably simple models of 
unmanageably complex reality

• Abstract interpretation is a general technique for 
executing simplified versions of computations

• For example, the sign of an arithmetic result can be 
sometimes determined without doing any arithmetic

• Abstractions are approximate, but must be safe

• Data-flow analysis is a form of abstract interpretation




