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1 Introduction and Learning Guide

This course gives a brief introduction to logic, with including the resolution
method of theorem-proving and its relation to the programming language Prolog.
Formal logic is used for specifying and verifying computer systems and (some-
times) for representing knowledge in Artificial Intelligence programs.

The course should help you witRrolog for Al and its treatment of logic
should be helpful for understanding other theoretical courses. Try to avoid getting
bogged down in the details of how the various proof methods work, since you
must also acquire an intuitive feel for logical reasoning.

The most suitable course text is this book:

Michael Huth and Mark Ryari,ogic in Computer Science:
Modelling and Reasoning about Syste@rsd edition (CUP, 2004)

It costs £30. It covers most aspects of this course with the exception of resolution
theorem proving. It includes material (symbolic model checking) that should be
useful forSpecification and Verification hext year.

The following book may be a useful supplement to Huth and Ryan. It covers
resolution, as well as much else relevant.égic and Proof The current Amazon
price is £24.50.

Mordechai Ben-AriMathematical Logic for Computer Scien@nd
edition (Springer, 2001)

Quite a few books on logic can be found in the Mathematics section of any
academic bookshop. They tend to focus more on results such as the completeness
theorem rather than on algorithms for proving theorems by machine. A typical
example is

Dirk van Dalen,Logic and Structur¢Springer, 1994).

The following book is nearly 600 pages long and proceeds at a very slow pace.
At £42, itis not cheap.

Jon Barwise and John Etchemendgnguage Proof and Logj@nd
edition (University of Chicago Press, 2003)

It briefly covers some course topics (resolution and unification) but omits many
others (BDDs, the DPLL method, modal logic). Formal proofs are done in the
Fitch style instead of using the sequent calculus. The book comes with a CD-
ROM (for Macintosh and Windows) containing software to support the text. You
may find it useful if you find these course notes too concise.

Also relevant is
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Melvin Fitting, First-Order Logic and Automated Theorem Proving
(Springer, 1996)

The following book provides a different perspective on modal logic, and it
develops propositional logic carefully. However, you may be reluctant to spend
£50 (") for a book that covers only a few course lectures.

Sally PopkornFirst Steps in Modal Logi¢CUP, 1994)
Other useful books are out of print but may be found in College libraries:

C.-L. Chang and R. C.-T. Le&ymbolic Logic and Mechanical
Theorem ProvingAcademic Press, 1973)

Antony Galton Logic for Information TechnologfWwiley, 1990)

Steve Reeves and Michael Clarkegic for Computer Science
(Addison-Wesley, 1990)

There are numerous exercises in these notes, and they are suitable for supervi-
sion purposes. Old examination questionsfoundations of Logic Programming
(the former name of this course) are still relevant:

e 2003 Paper 5 Question 9: BDDs; clause-based proof methods (Lect. 4, 7)
e 2003 Paper 6 Question 9: sequent calculus (Lect. 6)

e 2002 Paper 5 Question 11: semantics of propositional and first-order logic
(Lect. 2, 5)

e 2002 Paper 6 Question 11: resolution; proof systems (Lect. 6, 7, 10, 11)
e 2001 Paper 5 Question 11: satisfaction relation; logical equivalences

e 2001 Paper 6 Question 11: clause-based proof methods; ortereaty
decision diagrams (Lect. 4, 7)

e 2000 Paper 5 Question 11: tautology checking; propositional sequent cal-
culus (Lect. 2-4)

e 2000 Paper 6 Question 11: unification and resolution (Lect. 9-10)
e 1999 Paper 5 Question 10: Prolog resolution versus general resolution
e 1999 Paper 6 Question 10: Herbrand models and clause form

e 1998 Paper 5 Question 10: BDDs, sequent calculus, etc. (Lect. 4)



e 1998 Paper 6 Question 10: modal logic (Lect. 11); resolution (Lect. 10)

e 1997 Paper 5 Question 10: first-order logic (Lect. 5)

e 1997 Paper 6 Question 10: sequent rules for quantifiers (Lect. 6)

e 1996 Paper 5 Question 10: sequent calculus (Lect. 3, 6, 11)

e 1996 Paper 6 Question 10: DPLL versus Resolution (Lect. 10)

e 1995 Paper 5 Question 9: BBDs (Lect. 4)

e 1995 Paper 6 Question 9: outline logics; sequent calculus (Lect. 3, 6, 11)
e 1994 Paper 5 Question 9: Resolution versus Prolog (Lect. 10)

e 1994 Paper 6 Question 9: Herbrand models (Lect. 8)

e 1994 Paper 6 Question 9: Most general unifiers and resolution (Lect. 10)

e 1993 Paper 3 Question 3: Resolution and Prolog (Lect. 10)

Acknowledgements. Jonathan Davies and Reuben Thomas pointed out numer-
ous errors in these notes. David Richerby and Ross Younger made detailed sug-
gestions. Thanks also to Thomas Forster, Simon Frankau, Steve Payne and Tom
Puverle.

2 Propositional Logic

Propositional logic deals with truth values and the logical connectives ‘and,” ‘or,
‘not, etc. It has no variables of any kind and is unable to express anything but the
simplest mathematical statements. It is studied because it is simple and because
it is the basis of more powerful logics. Most of the concepts in propositional
logic have counterparts in first-order logic. Here are the most important concepts,
which are the basis of logic.

Syntax refers to the formal notation for writing assertions. It also refers to the
data structures that represent assertions in a computer. At the level of syn-
tax, 1+ 2 is a string of three symbols, or a tree with a node labelled + and
having two children labelled 1 and 2.

Semantics expresses the meaning of a formula in terms of mathematical or real-
world entities. While 14+ 2 and 2+ 1 are syntactically distinct, they have
the same semantics, namely 3. The semantics of a logical statement will
typically be true or false.
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Proof theory concerns ways of proving statements, at least the true ones. Typ-
ically we begin withaxiomsand arrive at other true statements using
ference rulesFormal proofs are typically finite and mechanical: their cor-
rectness can be checked without understanding anything about the subject
matter.

Syntax can be represented in a computer. Proof methods are syntactic, so they
can be performed by computer. On the other hand, as semantics is concerned
with meaning, it exists only inside peoples’ heads. This is analogous to the way
computers handle digital photos: the computer has no conception of what your
photos mean to you, and internally they are nothing but bits.

2.1 Syntax of propositional logic

We take for granted a set of propositional symbBIsQ, R, ..., including the
truth valuest andf. A formula consisting of a propositional symbol is called
atomic
Formulae are constructed from atomic formulae using the logical connectives
- (not)
A (and)
v (or)
—  (implies)
< (ifand only if)
These are listed in order of precedeneds highest. We shall suppress need-
less parentheses, writing, for example,

((-—P)AQVR)— (—mP)vQ) as -PAQVR——=PVAQ.

In the ‘metalanguage’ (these notes), the leti&r8, C, ... stand for arbitrary
formulee. The letter®, Q, R, ... stand for atomic formulee.
Some authors use for the implies symbol anek for if-and-only-if.

2.2 Semantics

Propositional Logic is a formal language. Each formula has a meaning (or se-
mantics) — eithet or f — relative to the meaning of the propositional symbols it
contains. The meaning can be calculated using the standard truth tables.

A B/ -A AAB AvB A—-B A< B
t t t t t

— —h —~
— —~+ —h —h
— —h —h —~+

f f t f
t f t t
f f f t
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By inspecting the table, we can see tiiat> B is equivalent to~A v B and that
A < Bis equivalentta A — B) A (B — A). (The latter is also equivalent to
—(A & B), whered is exclusive or.)

Note that we are usingandf in two distinct ways: as symbols on the printed
page, and as the truth values themselves. In this simple case, there should be no
confusion. When it comes to first-order logic, we shall spend some time on the
distinction between symbols and their meanings.

We now make some definitions that will be needed throughout the course.

Definition 1 An interpretation or truth assignmentfor a set of formulee is a
function from its set of propositional symbols{to f}.

An interpretationsatisfiesa formula if the formula evaluates tounder the
interpretation.

A setSof formulee isvalid (or atautology) if every interpretation foS satisfies
every formula inS.

A set S of formulee issatisfiable(or consistentif there is some interpretation
for Sthat satisfies every formula i&

A set S of formulae isunsatisfiablgor inconsistentif it is not satisfiable.

A set S of formulaeentails Aif every interpretation that satisfies all elements
of S, also satisfied\. Write S = A.

FormulaeA and B areequivalent A >~ B, providedA = B andB = A.

It is usual to writeA = B instead of{ A} = B. We may similarly identify a
one-element set with a formula in the other definitions.

Note that= and~ are not logical connectives but relations between formulee.
They belong not to the logic but to the metalanguage: they are symbols we use to
discuss the logic. They therefore have lower precedence than the logical connec-
tives. No parentheses are neededin A >~ A because the only possible reading
is(AA A) >~ A. We may not writeA A (A >~ A) becauseéA >~ Ais not a formula.

In propositional logic, a valid formula is also calledtautology Here are
some examples of these definitions.

e The formuleeA — A and—(A A —A) are valid for every formula.

e The formuleeP andP A (P — Q) are satisfiable: they are both true under
the interpretation that mad® and Q to t. But they are not valid: they are
both false under the interpretation that mépand Q tof.

e The formula—A is unsatisfiable for every valid formulA. This set of
formulee is unsatisfiablg:P, Q, =P v —=Q}

Exercise 1 Is the formulaP — —P satisfiable? Is it valid?
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2.3 Applications of propositional logic

Hardware design is the obvious example. Propositional logic is used to minimize
the number of gates in a circuit, and to show the equivalence of combinational
circuits. There now exist highly efficient tautology checkers, such as BDDs (Or-
dered Binary Decision Diagrams), which have been used to verify complex com-
binational circuits. This is an important branch of hardware verification.

Chemical synthesis is a more offbeat examplénder suitable conditions, the
following chemical reactions are possible:

HCIl + NaOH— NaCl+ H>0O
C+0, - CO
CO, + H,O — HoCOs

Show we can make #C O3 given supplies of HCI, NaOH, £ and C.

Chang and Lee formalize the supplies of chemicals as four axioms and prove
that HLCOs logically follows. The idea is to formalize each compound as a propo-
sitional symbol and express the reactions as implications:

HCI A NaOH — NaCIlA H,O
CAO— CO
CO; A H2O — HyCOg

Note that this involves an ideal model of chemistry. What if the reactions
can be inhibited by the presence of other chemicals? Proofs about the real world
alwaysdepend upon general assumptions. It is essential to bear these in mind
when relying on such a proof.

2.4 Equivalences

Note thatA <~ B and A >~ B are different kinds of assertions. The formula
A <« B refers to some fixed interpretation, while the metalanguage statement
A >~ B refers to all interpretations. On the other hapdA < B means the same
thing asA ~ B. Both are metalanguage statements, and B is equivalent to
saying that the formul@ < B is a tautology.

Similarly, A — B andA = B are different kinds of assertions, whie A —
B and A &= B mean the same thing. The formula— B is a tautology if and
only if A = B.

Here is a listing of some of the more basic equivalences of propositional logic.
They provide one means of reasoning about propositions, namely by transforming

1Chang and Lee, page 21, as amended by Ross Younger, who knew more about Chemistry!
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one proposition into an equivalent one. They are also needed to convert proposi-
tions into various normal forms.

idempotency laws
ANA~A
AvAx~A

commutative laws

AAB>~BAA
AvVB>~BVA
associative laws
(AAB)AC>AA(BAC)
(AvB)vC>~Av (BvO)
distributive laws
Av(BAC)~(AVvB)A(AV(OC)
AABVC)~(AAB)V(AAC)
de Morgan laws
-(AAB)~—-Av-B
-(Av B)~—-AA—-B
other negation laws
-(A— B)~AA—-B
-(A< B) >~ (—=A) <> B>~ A<« (—B)
laws for eliminating certain connectives
A<B>~(A—> B A(B— A
—-A>A—->f
A— B~—-AVB
simplification laws
ANnff
Ant>~A
Avix~A
Avix>~t
—A~A
Av-Ax~t
AAN—-Af
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Propositional logic enjoys a principle of duality: for every equivaleAce B
there is another equivalen@é ~ B’, whereA’, B’ are derived fromA, B by ex-
changinga with v andt with f. Before applying this rule, remove all occurrences
of — and<, since they implicitly involven andv.

Exercise 2 Verify some of the equivalences using truth tables.

2.5 Normal forms

The language of propositional logic is redundant: many of the connectives can
be defined in terms of others. By repeatedly applying certain equivalences, we
can transform a formula into mormal form A typical normal form eliminates
certain connectives entirely, and uses others in a restricted manner. The restricted
structure makes the formula easy to process, although the normal form may be
exponentially larger than the original formula. Most normal forms are unreadable,
although Negation Normal Form is not too bad.

Definition 2 A literal is an atomic formula or its negation. Li&t, L, L/, ... stand
for literals.

A maxtermis a literal or a disjunction of literals.

A mintermis a literal or a conjunction of literals.

A formula is inNegation Normal FornfNNF) if the only connectives in it are
A, V, and—, where— is only applied to atomic formulae.

A formula is inConjunctive Normal ForngCNF) if it has the formA; A - - - A
Am, Where each; is maxterm.

A formula is inDisjunctive Normal Forn{DNF) if it has the formA; v - - - v
Am, Where each; is a minterm.

An atomic formula likeP is in all the normal forms NNF, CNF, and DNF. The
formula
PVvVQAEPVS ARV P)

is in CNF. Unlike in some hardware applications, the disjuncts in a CNF formula
do not have to mention all the variables. On the contrary, they should be as simple
as possible. Simplifying the formula

PVvVQAEPVQ ARVYS

to Q A (RVv S) counts as an improvement, because it will make our proof pro-
cedures run faster. For examples of DNF formulee, exchangad v in the
examples above. As with CNF, there is no need to mention all combinations of
variables.
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NNF can reveal the underlying nature of a formula. For example, converting
—(A — B) to NNF yieldsA A —B. This reveals that the original formula was
effectively a conjunction. Every formula in CNF or DNF is also in NNF, but the
NNF formula

("PAQ VR AP
is in neither CNF nor DNF.

2.6 Translation to normal form

Every formula can be translated into an equivalent formula in NNF, CNF, or DNF
by means of the following steps.

Step 1. Eliminate<> and— by repeatedly applying the following equivalences:
A<B~(A—- B A(B— A
A— B~-AvB

Step 2. Push negations in until they apply only to atoms, repeatedly replacing
by the equivalences

—-—A>~A
—-(AAB)~—-Av-B
—-(Av B)~—-AA—-B

At this point, the formula is in Negation Normal Form.

Step 3. To obtain CNF, push disjunctions in until they apply only to literals.
Repeatedly replace by the equivalences

AvV(BAC)~(AVvBYA(AVO)
(BACO)VA~(BVAA(CVA

These two equivalences obviously say the same thing, since disjunction is com-
mutative. In fact, we have

(AAB)VICAD) ~~(AVCOAAVDIA(BVC)A(BV D).

Use this equivalence when you can, to save writing.
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Step 4. Simplify the resulting CNF by deleting any maxterm that contains both
P and—P, since it is equivalent td. Also delete any maxterm that includes
another maxterm (meaning, every literal in the latter is also present in the former).
This is correct becausA A (A v B) >~ A. Finally, two maxterms of the form

P v Aand—P v A can be replaced b#, thanks to the equivalence

(PVAAEPVA A

This simplification is related to the resolution rule, which we shall study later.
Sincev is commutative, saying ‘a maxterm of the fornv B’ refers to any

possible way of arranging the literals into two parts. This includes f, since

one of those parts may be empty and the empty disjunction is false. So in the last

simplification above, two maxterms of the fodfmand—P can be replaced by

Steps 3’ and 4’. To obtain DNF, apply instead the other distributive law:

AABVC)~(AAB)V(AACD)
(BVCOOAA~(BAAVCAA

Exactly the same simplifications can be performed for DNF as for CNF, exchang-
ing the roles ofAn andv.

2.7 Tautology checking using CNF

Here is a method of proving theorems in propositional logic. To praveeduce

it to CNF. If the simplified CNF formula i$ then A is valid because each trans-
formation preserves logical equivalence. And if the CNF formula ig nibten A

is not valid.

To see why, suppose the CNF formulaAsg A --- A Ap. If Alis valid then
eachA; must also be valid. Writé\j asL; Vv --- Vv Ly, where thel j are literals.
We can make an interpretatidrthat falsifies every j, and therefore falsifies; .
Definel such that, for every propositional letter,

|(P) = f if L is P for somej
~ |t if Ljis—P for some;

This definition is legitimate because there cannot exist litdralandL  such that
L is —Ly; if there did, then simplification would have deleted the disjunctpn

The powerful BDD method is related to this CNF method. It uses an if-then-
else data structure, an ordering on the propositional letters, and some standard
algorithmic techniques (such as hashing) to gain efficiency.
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Example 1 Start with
PvQ— QVR

Step 1, eliminate-, gives
~(PvQVv(QVR
Step 2, push negations in, gives
(—PA=Q)V(QVR)
Step 3, push disjunctions in, gives
FPVQVRA(FQVQVR)

Simplifying yields
(—PVQVR AL

-PVQVR

The interpretatiorP — t, Q — f, R — f falsifies this formula, which is equiv-
alent to the original formula. So the original formula is not valid.

Example 2 Start with
PAQ— QAP

Step 1, eliminate>, gives
-(PAQVQAP
Step 2, push negations in, gives
(—PVv=-Q)Vv(QAP)
Step 3, push disjunctions in, gives
=PVv-QVvQ A(—PV-QVP)

Simplifying yieldst A t, which ist. Both conjuncts are valid since they contain a
formula and its negation. ThB A Q — Q A P is valid.



12 2 PROPOSITIONAL LOGIC

Example 3 Peirce’s law is another example. Start with
(P>Q—>P)—>P
Step 1, eliminate-, gives
—(==PvQVvP)vP
Step 2, push negations in, gives
(= (=PVvQA-P)VvP

(FPVvQ A-P)VP

Step 3, push disjunctions in, gives
(—PVQVP)A(=PVP)

Simplifying again yieldg. Thus Peirce’s law is valid.

There is a dual method of refuting (proving inconsistency). To refutd,
reduce it to DNF, sayA; Vv --- v Ay. If Ais inconsistent then so is eadg.
SupposeA; is Ly A --- A Ln, where thel j are literals. If there is some liter&l
such that the j include bothL’ and—L’, thenA; is inconsistent. If not then there
is an interpretation that verifies evelry, and therefore?; .

To prove A, we can use the DNF method to refutéA. The steps are ex-
actly the same as the CNF method because the extra negation swaps ewvely
A. Gilmore implemented a theorem prover based upon this method in 1960 (see
Chang and Lee, page 62).

Exercise 3 Each of the following formulee is satisfiable but not valid. Exhibit an
interpretation that makes the formula true and another interpretation that makes
the formula false.

P—Q PvQ—-PAQ
“(PvQVR) “(PAQA-(QVR)A(PVR

Exercise 4 Convert each of the following propositional formulae into Conjunc-
tive Normal Form and also into Disjunctive Normal Form. For each formula, state
whether it is valid, satisfiable, or unsatisfiable; justify each answer.

(P->QA(Q—P)

(PAQVRYA((PVRAQVR)))
-(PVQVR)V({(PAQ) VR
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Exercise 5 Using ML, define datatypes for representing propositions and inter-
pretations. Write a function to test whether or not a proposition holds under an
interpretation (both supplied as arguments). Write a function to convert a propo-
sition to Negation Normal Form.

3 Proof Systems for Propositional Logic

We can verify any tautology by checking all possible interpretations, using the
truth tables. This is aemanticapproach, since it appeals to the meanings of the
connectives.

The syntacticapproach is formal proof: generating theorems, or reducing a
conjecture to a known theorem, by applying syntactic transformations of some
sort. We have already seen a proof method based on CNF. Most proof methods
are based on axioms and inference rules.

What about efficiency? Deciding whether a propositional formula is satisfiable
is an NP-complete problem (Aho, Hopcroft and Ullman 1974, pages 377-383).
Thus all approaches are likely to be exponential in the length of the formula.

3.1 A Hilbert-style proof system

Here is a simple proof system for propositional logic. There are countless similar
systems. They are often callétlibert systemstfter the logician David Hilbert,
although they existed before him.

This proof system provides rules for implication only. The other logical con-
nectives are not taken as primitive. They are ins@@fthedin terms of implica-
tion:

~ALMA Lt

AvB®E A B

AABE (—AV-B)
Obviously, these definitions apply when we are discussing this proof system!
Note thatA — (B — A) is a tautology. Call it Axiom K. Also,

(A->B—-C)—> (A—>B)—- (A= 0))

is a tautology. Call it Axiom S. The Double-Negation Law-A — A, is a
tautology. Call it Axiom DN.

These axioms are more properly call@dom schemesince we assume all
instances of them that can be obtained by substituting formulaa,f& andC.
For example, Axiom K is really an infinite set of formulae.
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WheneverA — B and A are both valid, it follows thaB is valid. We write

this as the inference rule
A— B A

B.

This rule is traditionally called Modus Ponens. Together with Axioms K, S,
and DN and the definitions, it suffices to prove all tautologies of (classical) propo-
sitional logic2 However, this formalization of propositional logic is inconvenient
to use. For example, try proving — Al
A variant of this proof system replaces the Double-Negation Law by the Con-
trapositive Law:
(-B —- —-A) — (A— B)

Another formalization of propositional logic consists of the Modus Ponens
rule plus the following axioms:

AvA— A
B— AvB
AvB—->BVA
B—-C)— (AvB—> AvO)

HereA A B andA — B are defined in terms of andv.

Where do truth tables fit into all this? Truth tables definedbmanticswhile
proof systems define what is sometimes calledpto®f theory A proof system
must respect the truth tables. Above all, we expect the proof systemstouine
every theorem it generates must be a tautology. For this to hold, every axiom must
be a tautology and every inference rule must yield a tautology when it is applied
to tautologies.

The converse property mompletenessthe proof system can generate every
tautology. Completeness is harder to achieve and to demonstrate. There are com-
plete proof systems even for first-order logic. Godel's incompleteness theorem
says that there are no “interesting” complete proof systems for logical theories
strong enough to define the properties of the natural numbers.

3.2 Gentzen’s Natural Deduction Systems

Natural proof systems do exist. Natural deduction, devised by Gerhard Gentzen,
is based upon three principles:

1. Proof takes place within a varying context of assumptions.

2|f the Double-Negation Law is omitted, only the intuitionistic tautologies are provable. This
axiom system is connected with the combinat®endK and thei-calculus.
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2. Each logical connective is defined independently of the others. (This is
possible because item 1 eliminates the need for tricky uses of implication.)

3. Each connective is defined btroductionandeliminationrules.

For example, thentroductionrule for A describes how to dedude A B:

A B
AAB

(AD)

Theeliminationrules forA describe what to dedudem AA B:

AAB AAB
A (n€ed) B

(AE2)

The elimination rule for—~ says what to deduce frod — B. It is just Modus

Ponens:
A—- B A

B

The introduction rule for— says thatA — B is proved by assumind\ and
deriving B:

(—e

(A

B
A— B
For simple proofs, this notion of assumption is pretty intuitive. Here is a proof of
the formulaAA B — A:
[AA B]

A
AAB— A

The key point is that rule—i) dischargests assumption: the assumption could
be used to proveA from A A B, but is no longer available once we conclude
AAB — A

The introduction rules fox are straightforward:

(=1)

(nel)
(=)

(vil) (Vi2)

A B
Av B Av B
The elimination rule says that to show so@drom A v B there are two cases to
consider, one assumingand one assuminB:

(Al [B]

AvB C C
C

(ve)

The scope of assumptions can get confusing in complex proofs. Let us switch
attention to the sequent calculus, which is similar in spirit but easier to use.
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3.3 The sequent calculus

Thesequent calculugesembles natural deduction, but it makes the set of assump-
tions explicit. Thus, it is more concrete.

A sequenhas the formi" = A, wherel” and A are finite sets of formule.
These sets may be empty. The sequent

Al,...,Am:Bl,...,Bn

istrueif A1 A... A ApimpliesB; v ... Vv By. In other words, we assume that
each ofAq, ..., Ay are true and try to show that at least onéBgf . . ., B, is true.

A basicsequent is one in which the same formula appears on both sides, as in
P, B= B, R. This sequent is true because, if all the formulae on the left side are
true, then in particulaB is; so, at least one right-side formulB @gain) is true.

Our calculus therefore regards all basic sequents as proved.

Every basic sequent might be written in the fofA&y U I' = {A} U A, where
Ais the common formula and and A are the other left- and right-side formulee,
respectively. The sequent calculus identifies the one-elemepAkseitith its ele-
mentA and denotes union by a comma. Thus, the correct notation for the general
form of a basic sequent &, I"' = A, A.

Sequent rules are almost always used backward. We start with the sequent that
we would like to prove and, working backwards, reduce it to simpler sequents in
the hope of rendering them trivial. The forward direction would be to start with
known facts and derive new facts, but this approach tends to generate random
theorems rather than ones we want.

Sequent rules are classified aght or left, indicating which side of the
= symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to elimina-
tion rules.

The sequent calculus analogue-ef) is the rule

A l'=A,B
'sA,A— B

(=)

Working backwards, this rule breaks down some implication on the right side
of a sequentI” and A stand for the sets of formulee that are unaffected by the
inference. The analogue of the pairy and(vi2) is the single rule

3with minor changes, sequents can instead be lists or multisets.
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This breaks down some disjunction on the right side, replacing it by both dis-
juncts. Thus, the sequent calculus is a kind of multiple-conclusion logic. Figure 1
summarises the rules.

Let us prove that the rule/) is sound. We must show that if both premises
are valid, then so is the conclusion. For contradiction, assume that the conclusion,
AV B,T'= A, isnotvalid. Then there exists an interpretatibmnder which the
left side is true while the right side is false; in particulary B andI™ are true
while A is false. SinceA v B is true under interpretatioh, either A is true or
B is. In the former casel, I' = A is false; in the latter cas®&, I' = A is false.
Either case contradicts the assumption that the premises are valid.

basic sequentA, ' = A, A
Negation rules

F:>A,A(I) AT=A -
A=A I'=A,—A

Conjunction rules

A,B,F=>A(A|) '=AA F:>A,B(M)
AAB,I'=A '=A,AAB

Disjunction rules

ATl'=A B,F=>A(vl) '=A,AB )
AvBTI'=A '=sA,AVvB

Implication rules

'=sAA B,F=>A( N AlT'=A,B )
— —
A— B TI'=A '=A,A— B

Figure 1. Sequent Rules for Propositional Logic

3.4 Examples of Sequent Calculus Proofs

To illustrate the use of multiple formulae on the right, let us prove the classical
theorem(A — B) v (B — A). Working backwards (or upwards), we reduce this
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formula to a basic sequent:

A,B=B,A
A=B,B—> A
=A—B, B—- A
=(A—>B)v(B—> A

(=1

(=1

(vr)

The basic sequent has a line over it to emphasize that it is provable.

This example is typical of the sequent calculus: start with the desired theorem
and workupward Notice that inference rules still have the same logical mean-
ing, namely that the premises (above the line) imply the conclusion (below the
line). Instead of matching a rule’s premises with facts that we know, we match its
conclusion with the formula we want to prove. That way, the form of the desired
theorem controls the proof search.

Here is part of a proof of the distributive lasw (BAC) >~ (AVB)A(AVC):

B,C=AB
A=A, B BAC=ADB
Av(BAC)=A,B
Av(BAC)=AVB similar
Av(BAC)=(AvB)A(AVC)

(Al
(vh
(vr)

(nr)

The second, omitted proof tree provas/ (B A C) = AV C similarly.
Finally, here is a failed proof of the invalid formulav B — B v C.

A=B,C B=B,C
AvB=B,C
AvB=BvC

=AVvB—-BvVvC

(vh
(vr)

(=)

The sequenA = B, C has no line over it because it is not valid! The interpreta-
tion A—t, B — f, C — f falsifies it. We have already seen this as Example 1
(page 11).

3.5 Further Sequent Calculus Rules

Structural rules concern sequents in general rather than particular connectives.
They are little used in this course, because they are not useful for proof procedures.
However, a brief mention is essential in any introduction to the sequent calculus.
The weakeningrules allow additional formulae to be inserted on the left or
right side. Obviously, ifl" = A holds then the sequent continues to hold after
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further assumptions or goals are added:

_I'=A (weakenl) =4 (weakenr)

A lT=A v r=sA,A v
Exchangeules allow formulae in a sequent to be re-ordered. We do not need them
because our sequents are sets rather than@sistractionrules allow formulee to

be used more than once:

A AT=A F'=A A A

m (contractl) m (contractr)
Because the sefdA} and {A, A} are identical, we don’t need contraction rules
either. Moreover, it turns out that we almost never need to use a formula more
than once. Exceptions ax A (when it appears on the left) ark A (when it
appears on the right).

Thecut ruleallows the use of lemmas. Some formuas proved in the first
premise, and assumed in the second premise. A famous resultitteemination
theorem states that this rule is not required. All uses of it can be removed from
any proof, but the proof could get exponentially larger.

'=sA,A AIl'sA (cut)
'=A

This special case of cut may be easier to understand. We prove Iéniroen I
and useA andTI" together to reach the conclusién
'=B,A AIl'=8B
I'=B

Sincel” contains as much information &s it is natural to expect that such lem-
mas should not be necessary, but the cut-elimination theorem is hard to prove.

Note On the course website, there is a simple theorem prover called
folderol.ML . Itcan prove easy first-order theorems using the sequent calculus,
and outputs a summary of each proof. The file begins with very basic instructions
describing how to run it. The fileestsuite.ML contains further instructions
and numerous examples.

Exercise 6 Prove the following sequents:

AAB=BAA
AvB=BVA

“http://www.cl.cam.ac.uk/users/lcp/papers/#Courses
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Exercise 7 Prove the following sequents:

(AAB)AC=AA(BAC)
(AVvB)A(AVC)= AV (BAC)
—-(AvB)=—-AA—-B

4 BDDs, or Binary Decision Diagrams

A binary decision tree represents a propositional formula by binary decisions,
namely if-then-else expressions over the propositional letters. (In the relevant
literature, propositional letters are callgdriables) A tree may contain much
redundancy; a binary decisiallagramis a directed graph, sharing identical sub-
trees. Anorderedbinary decision diagram is based upon giving an ordetirtg

the variables: they must be tested in order. Further refinements ensure that each
propositional formula is mapped to a unique diagram, for a given ordering.

The acronym BDD for binary decision diagram is well-established in the lit-
erature. However, many earlier papers use OBDD or even ROBDD (for “reduced
ordered binary decision diagram”) synonymously.

An BDD representation must satisfy the following conditions:

e ordering if P is tested befor®, thenP < Q
(thus in particularP cannot be tested more than once on a single path)

e uniquenessidentical subgraphs are stored only once
(to do this efficiently, hash each node by its variable and pointer fields)

e irredundancy no test leads to identical subgraphs in tlandf cases
(thanks to uniqueness, redundant tests can be detected by comparing point-
ers)

Because the BDD representation of each formula is unique, it is called a
canonical form Canonical forms usually lead to good algorithms — for a start,
you can test whether two things are equivalent by comparing their canonical
forms.

The BDD form of any tautology is. Similarly, that of any inconsistent for-
mula isf. To check whether two formuleae are logically equivalent, convert both to
BDD form and then — thanks to uniqueness — simply compare the pointers.

A recursive algorithm converts a formula to an BDD. All the logical connec-
tives can be handled directly, including and<«. (Exclusive ‘or’ is also used,
especially in hardware examples.) The expensive transformatidn<ef B into
(A— B) A (B — A)isunnecessary.
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Here is how to convert a conjunctigda A’ to an BDD. In this algorithmyPy
is a decision node that tests the variaBlewith a ‘true’ link to X and a ‘false’
link to Y. In other wordsxPy is the BDD equivalent of the decision ‘® thenX
elseY.

1. Recursively converA and A’ to BDDsZ andZ'.

2. Check for trivial cases. IZ = Z’ (pointer comparison) then the result is
Z; if either operand i$, then the result i$; if either operand is, then the
result is the other operand.

3. Inthe general case, I&t= xPy andZ’ = x/P’y:. There are three possibil-
ities:

(a) If P = P’ then recursively build the BDR A x/PyAy'.

This means converK A X" andY A Y’ to BDDs U andU’, then
construct a new decision node fromto them. Do the usual sim-
plifications. IfU = U’ then the resulting BDD for the conjunction
isU. If an identical decision node frofa to (U, U’) has been created
previously, then that existing node is used instead of creating a new
one.

(b) If P < P’ then recursively build the BDR A z/Py 7. When building
BDDs on paper, it is easier to pretend that the second decision node
also starts withP: assume that it has the redundant decisié and
proceed as in case (3a).

(c) If P > P’is treated analogously to the previous case.

Other connectives are treated similarly; they differ only in the base cases. The
negation of the BDD(Py is _xP-y. In essence we copy the BDD, and when we
reach the leaves, exchangandf. The BDD ofZ — f is the same as the BDD of
—Z.

During this processing, the same input (consisting of a connective and two
BDDs) may be transformed into an BDD repeatedly. Efficient implementations
therefore have an additional hash table, which associates inputs to the correspond-
ing BDDs. The result of every transformation is stored in the hash table so that it
does not have to be computed again.

Example 4 We apply the BDD Canonicalisation Algorithm v Q — QV R.
First, we make tiny BDDs foP andQ. Then, we combine them usingto make
a small BDD forP v Q:
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The BDD forQ Vv R has a similar construction, so we omit it. We combine the two
small BDDs using—, then simplify (removing a redundant test Q) to obtain
the final BDD.

| s

The new construction is shown in grey. In both of these examples, it appears over
the rightmost formula because its variables come later in the ordering.

The final diagram indicates that the original formula is always true excépt if
is true whileQ andR are false. When you have such a simple BDD, you can easily
check that it is correct. For example, this BDD suggests the formula evaludtes to
whenP isf, and indeed we find that the formula simplifiesQo— Q Vv R, which
simplifies further ta.

Huth and Ryan (2000) present a readable introduction to BDDs. A classic but
more formidable source of information is Bryant (1992).

1

Exercise 8 Compute the BDD for each of the following formulae, taking the
variables as alphabetically ordered:

PAQ—-> QAP PvQ—->PAQ
-(PvQVvP -(PAQ) < (PVR)
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Exercise 9 Verify the following equivalences using BDDs:

PAQOQARPAQAR)
PVvVQVR~PV(QVR
PV QAR = (PVQ A(PVR)
PAQVR~(PAQ V(PAR)

Exercise 10 Verify the following equivalences using BDDs:

—(PAQ)=—-PVv-=-0Q
P<Q) < R>xP« Q<R
(PvQ) - R~(P—->RA(Q—R)

5 First-order Logic

First-order logic (FOL) extends propositional logic to allow reasoning about the
members (such as numbers) of some non-empty universe. It uses the quantifiers
v (‘for all’) and 3 (‘there exists’). First-order logic has variables ranging over
‘individuals,” but not over functions or predicates; such variables are found in
second- or higher-order logic.

5.1 Syntax of first-order Logic

Termsstand for individuals whiléormulaestand for truth values. We assume there
is an infinite supply ofariables x vy, . . . that range over individuals. frst-order
languagespecifies symbols that may appear in terms and formulae. A first-order
languagel contains, for allh > 0, a set ofn-placefunction symbols fg, ...

and n-placepredicate symbols PQ, .... These sets may be empty, finite, or
infinite.

Constant symbols,d, ... are simply 0-place function symbols. Intuitively,
they are names for fixed elements of the universe. It is not required to have a
constant for each element; conversely, two constants are allowed to have the same
meaning.

Predicate symbols are also calkethtion symbolsProlog programmers refer
to function symbols afinctors

Definition 3 Theterms t u, ... of a first-order language are defined recursively
as follows:

e A variable is a term.
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e A constant symbol is a term.

o Ifty, ..., tyareterms and is ann-place function symbol thef(ty, ..., t,)
is aterm.

Definition 4 Theformulae A B, ... of a first-order language are defined recur-
sively as follows:

o If t1, ..., t, are terms andP is an n-place predicate symbol then
P(ty, ..., tn) is a formula (called aatomic formulg.

e If AandB are formulee themmA, AA B, Av B, A— B, A<« Barealso
formulae.

e If X is a variable andA is a formula theryx Aand3x A are also formulae.

Brackets are used in the conventional way for grouping. Terms and formulae are
tree-like data structures, not strings.

The quantifiers/x A and3x A bind tighter than the binary connectives; thus
VX A A B is equivalent to(Vx A) A B. Frequently, you will see an alternative
guantifier syntaxyx . A and 3x. B, which binds more weakly than the binary
connectives¥x. A A B is equivalent tovx (A A B). The dot is the give-away;
look out for it!

Nested quantifications suchés vy A are abbreviated texy A

Example 5 A language for arithmetic might have the constant symbols 0, 1, 2,
..., and function symbols-, —, %, /, and the predicate symbois, <, >, ....

We informally may adopt an infix notation for the function and predicate symbols.
Terms include 0 andx + 3) — y; formulee includey =0 andx +y < y + z

5.2 Examples of statements in first-order logic

Here are some sample formulae with a rough English translation. English is easier
to understand but is too ambiguous for long derivations.
All professors are brilliant

VX (professofx) — brilliant(x))
The income of any banker is greater than the income of any bedder
vxy (banketx) A beddefty) — incomgx) > incomgy))

Note that> is a 2-place relation symbol. The infix notation is simply a convention.
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Every student has a supervisor
VX (studentx) — Iy supervisesy, X))

This does not preclude a student having several supervisors.
Every student’s tutor is a member of the student’s College

Vxy (studengx) A collegey) A membe(x, y) — membe(tutor(x), y))

The use of a function ‘tutor’ incorporates the assumption that every student has
exactlyonetutor.
A mathematical examplehere exist infinitely many Pythagorean triples

vn3ijk (i > nAi?+j2=k?

Here the superscript 2 refers to the squaring function. Equality (=) is just another
relation symbol (satisfying suitable axioms) but there are many special techniques
for it.

First-order logic assumes a non-empty domain: huf(x) impliesax P(x).

If the domain could be empty, eveixt could fail to hold. Note also that

vx 3y y? = x is true if the domain is the complex numbers, and is false if the
domain is the integers or reals. We determine properties of the domain by assert-
ing the set of statements it must satisfy.

There are many other forms of logidvlany-sorted first-order logi@assigns
types to each variable, function symbol and predicate symbol, with straight-
forward type checking; types are calledrts and denote non-empty domains.
Second-order logi@llows quantification over functions and predicates. It can
express mathematical induction by

VP[P(@) AVk(P(k) - P(k+ 1)) — Vn P(n)],

using quantification over the unary predic&eln second-order logic, these func-
tions and predicates must themselves be first-order, taking no functions or pred-
icates as argumentddigher-order logicallows unrestricted quantification over
functions and predicates of any order. The list of logics could be continued indef-
initely.

5.3 Formal semantics of first-order logic

Let us rigorously define the meaning of formulae. An interpretation of a language
maps its function symbols to actual functions, and its relation symbols to actual
relations. For example, the predicate symbol ‘student’ could be mapped to the set
of all students currently enrolled at the University.
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Definition 5 Let £ be a first-order language. AnterpretationZ of £ is a pair
(D, ). HereD is a nonempty set, thdomainor universe The operatiol maps
symbols to individuals, functions or sets:

e if cis a constant symbol (of) thenl[c] € D

e if f is ann-place function symbol theh[f] € D" — D (which means
I[ f]is ann-place function orD)

e if P is ann-place relation symbol thehP] € D" (which meand [P] is
ann-place relation orD)

There are various ways of talking about the values of variables under an inter-
pretation. One way is to ‘invent’ a constant symbol for every elemeit.dlore
natural is to represent the values of variables using an environment, known as a
valuation

Definition 6 A valuation V of £ over D is a function from the variables af
into D. Write Zy [t] for the value oft with respect t&Z andV, defined by

WXl ¥'vx)  if xis avariable

Zvid €' 1[q

Tyl f(te, ... t0] LI 1@yt ..., Tv[t])

Write V{a/x} for the valuation that maps to a and is otherwise the same
asV. Typically, we modify a valuation one variable at a time. This is a semantic
analogue of substitution for the variable

5.4 Whatis truth?

We now can define truth itself. (First-order truth, that is!) This formidable defi-

nition formalizes the intuitive meanings of the connectives. Thus it almost looks
like a tautology. It effectively specifies each connective by English descriptions.
Valuations help specify the meanings of quantifiers. Alfred Tarski first defined
truth in this manner.

Definition 7 Let A be a formula. Then for an interpretatidn= (D, I) write
F=7zv Atomean Ais true inZ underV. This is defined by cases on the con-
struction of the formulaA:
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Ezv Py, ...t if (Zv[t1], ..., Zv[tn]) € I[P] holds (that is, the
actual relationl [ P] holds of the values of the arguments)

Ez.v t = uif Zy[t] equalsZy[u] (if = is a predicate symbol of the
language, then we insist that it really denotes equality)

F=zv —Bif =7v B does not hold

Erv BACIif =zv Bandezy C

Ezv BvCif Erv Borezy C

Fzv B — Cif =7,v Bdoes nothold o=z v C

Fzv B < Cif =z v B andi=zyv C both hold or neither hold

=7,v 3x Bif there existsm € D such that=z v(m/x; B holds (that
is, B holds wherx has the valuen)

=z v Yx Bifforall m e D we have that=z vm/x; B holds

The cases fon, v, — and< follow the propositional truth tables.

Write =7 A provided=z vy Afor all V. Clearly, if A is closed (contains no
free variables) then its truth is independent of the valuationA Hontains free
variablesxy, .. ., X, then these in effect are universally quantified:

=7 A ifandonlyif [=7Vxy---Vxq A

The definitions of valid, satisfiable, etc. carry over almost verbatim from Sec-
tion 2.2.

Definition 8 An interpretatioriZ satisfiesa formula ifi=7 A holds.

A set S of formulee isvalid if every interpretation ofs satisfies every formula
in S.

A set S of formulee issatisfiable(or consistentif there is some interpretation
of Sthat satisfies every formula &

A set S of formulee isunsatisfiable(or inconsistent if it is not satisfiable.
(Each interpretation falsifies some formula®j

A modelof a setS of formulee is an interpretation that satisfies every formula
in S. We also consider models that satisfy a single formula.

Unlike in propositional logic, models can be infinite and there can be an in-
finite number of models. There is no chance of proving validity by checking all
models. We must rely on proof.
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Example 6 The formulaP(a) A—P(b) is satisfiable. Consider the interpretation
with D = {0, 1} and| defined by

I[a] =0
I[b] =1
I[P] = {0}

On the other hand? (x) A —=P(y) is unsatisfiable. Its free variables are taken to
be universally quantified, so it is equivalentwwy (P (x) A =P(y)).

The formula(3x P(x)) — P(c) holds in the interpretatio(D, | ) whereD =
{0, 1}, I[P] = {0}, andl[c] = 0. (ThusP(x) means x equals 0’ anc denotes
0.) If we modify this interpretation by makingc] = 1 then the formula no longer
holds. Thus it is satisfiable but not valid.

The formula(vx P(x)) — (v¥x P(f(x))) is valid, for let(D, I) be an inter-
pretation. If¥x P(x) holds in this interpretation theR(x) holds for allx € D,
thus1[P] = D. The symbolf denotes some actual functioff] € D — D.
Sincel[P] = D andI[f](x) € D for all x € D, formulavx P(f (x)) holds.

The formulavxy x = y is satisfiable but not valid; it is true in every domain
that consists of exactly one element. (The empty domain is not allowed in first-
order logic.)

Example 7 Let £ be the first-order language consisting of the constant 0 and
the (infix) 2-place function symbe}. An interpretatior of this language is any
non-empty domairD together with valued [0] and | [+], with 1[0] € D and
I[+] € D x D — D. In the languag& we may express the following axioms:

X+0=x
0+Xx=x
X+yY)+z=x+(y+2
(Remember, free variables in effect are universally quantified, by the definition of
=7 A.) One model of these axioms is the set of natural numbers, provided we

give 0 and+ the obvious meanings. But the axioms have many other médels.
Below, let A be some set.

1. The set of all strings (in ML say) letting 0 denote the empty string-and
string concatenation.

2. The set of all subsets &, letting O denote the empty set adunion.

3. The set of functions i\ — A, letting 0 denote the identity function ard
composition.

5Models of these axioms are calletbnoids
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Exercise 11 To test your understanding of quantifiers, consider the following
formulae:everybody loves somebodythere is somebody that everybody laves

vx 3y lovegx, y) (1)
dy vx lovegx, y) (2)

Does (1) imply (2)? Does (2) imply (1)? Consider both the informal meaning and
the formal semantics defined above.

Exercise 12 Describe a formula that is true in precisely those domains that con-
tain at leastm elements. (We say itharacterisegshose domains.) Describe a
formula that characterises the domains containing at medements.

Exercise 13 Let ~ be a 2-place predicate symbol, which we write using infix
notation ax ~ y instead of~ (X, y). Consider the axioms

VX X ~ X ()
VXY (X Xy = Y~ X) (2)
VXYZX R YAYR Z— X~ Z) 3

Let the universe be the set of natural numbé&¥ss= {0, 1, 2, ...}. Which axioms
hold if | [~] is

e the empty relationj?

the universal relation(x, y) | X, y € N}?

the equality relation{(x, xX) | X € N}?

the relation{(x, y) | X,y € N A X + yis even?

the relation{(x,y) | X,y € N A X+ Yy =100?
the relation{(x,y) | X, ye NAX =Yy (mod 16}?

Exercise 14 Taking= andR as 2-place relation symbols, consider the following
axioms:

VX = R(X, X) ()
VXy—=(R(X, y) A R(y, X)) (2
VYXyz(R(X, yY) A R(Y, 2) = R(X, 2)) 3)
VXY (R(X, y) V (X =Y) V R(Y, X)) (4)

VXZ(R(X,2) — 3y (R(X, y) A R(Y, 2))) ®)
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Exhibit two interpretations that satisfy axioms 1-3 and falsify axioms 4 and 5.
Exhibit two interpretations that satisfy axioms 1-4 and falsify axiom 5. Exhibit
two interpretations that satisfy axioms 1-5. Consider only interpretations that
make= denote the equality relation. (This exercise asks whether you can make
the connection between the axioms and typical mathematical objects satisfying
them.)

6 Formal Reasoning in First-Order Logic

This section reviews some syntactic notations: free variables versus bound vari-
ables and substitution. It lists some of the main equivalences for quantifiers. Fi-
nally it describes and illustrates the quantifier rules of the sequent calculus.

6.1 Free vs bound variables

The notion of bound variable occurs widely in mathematics: consider the role
of x in [ f(x)dx and the role ok in limg2,a. Similar concepts occur in the
A-calculus. In first-order logic, variables are bound by quantifiers (rather than
by 1).

Definition 9 An occurrence of a variabbein a formula isboundif it is contained
within a subformula of the fornex Aor3x A

An occurrence of the formax or 3x is called thebinding occurrencef x.

An occurrence of a variable feeeif it is not bound.

A closedformula is one that contains no free variables.

A groundterm, formula or clause is one that contains no variables at all.

In Vx 3y R(X, Y, 2), the variablex andy are bound while is free.

In (3x P(X)) A Q(X), the occurrence ox just after P is bound, while that
just afterQ is free. Thusx has both free and bound occurrences. Such situations
can be avoided by renaming bound variables. Renaming can also ensure that all
bound variables in a formula are distinct.

Example 8 Renaming bound variables in a formula preserves its meaning, pro-
vided no name clashes are introduced. Consider the following renamings of
vx 3y R(x, Y, 2):

Yu3dy R(u,y,z) OK

VX 3w R(X, w,z) OK

Yu3dy R(X,y,z) notdone consistently
Vy3ay R(y,Yy,2z) clash with bound variablg
Vz3y R(z,y,z)  clash with free variable
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6.2 Substitution

If Ais a formula,t is a term, andx is a variable, thermA[t/x] is the formula
obtained by substituting for x throughoutA. The substitution only affects the
freeoccurrences ox. PronounceA[t/x] as ‘A with t for x.” We also useau[t/x]
for substitution in a ternu andC[t /x] for substitution in a claus€.

Substitution is only sensible provided all bound variable& are distinct from
all variables int. This can be achieved by renaming the bound variablés iror
example, ifvx A then A[t/x] is true for allt; the formula holds when we drop
theVvx and replacex by any term. Butvx 3y x = y is true in all models, while
Jdy y+1 = yis not. We may not replaceby y+ 1, since the free occurrence pf
in y + 1 gets captured by th&y . First we must rename the bougdgetting say
Vx 3z x = z; now we may replacg by y + 1, getting3z y+ 1 = z. This formula
is true in all models, regardless of the meaning of the symbasad 1.

6.3 Equivalences involving quantifiers

These equivalences are useful for transforming and simplifying quantified for-
mulee. Later, we shall use them to convert formulee prienex normal form
where all quantifiers are at the front.

pulling quantifiers through negation
(infinitary de Morgan laws)

—(VX A) >~ Ix A
—(3Ax A) ~ VX —-A

pulling quantifiers through conjunction and disjunction
(provided x is not free in B)

(VX A AB>~VX(AAB)
(VXA Vv Bx~Vx(Av B)
(AX A AB~3IxX(AAB)
@Ax A VvB~3ax(Av B)

distributive laws

(VX A A (VX B) 2 VYX(AAB)
(Ix A v (3xB)~3ax(Av B)

implication: A— B as—Av B
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(provided x is not free in B)

(VXA - B~3Ix(A— B)
(3x A - BxVx(A— B)

expansion¥ and3 as infinitary conjunction and disjunction

VX A>~ (VX A) A Alt/X]
Ix A~ (Ix A v Alt/X]

With the help of the associative and commutative laws\fandv, a quantifier
can be pulled out of any conjunct or disjunct.

The distributive laws differ from pulling: they replace two quantifiers by one.
(Note that the quantified variables will probably have different names, so one of
them will have be renamed.) Depending upon the situation, using distributive laws
can be either better or worse than pulling. There are no distributive lawsfegr
v and3 overA. If in doubt, do not use distributive laws!

Two substitution laws do not involve quantifiers explicitly, but let usxiset
to replacex byt in a restricted context:

X=tA A ~X=tAA[t/X])
X=t—> A >~XxX=t—> Alt/x])

Many first-order formulae have easy proofs using equivalences:

IX(X=aAPX) ~xIx(x=aA P(@))
~3dx(x=a) A P(a)
~ P(a)

The following formula is quite hard to prove using the sequent calculus, but
using equivalences it is simple:

dz(P(z) — P(a) A P(b)) ¥ Vz P(z) - P(a) A P(b)
~Vz P(2) A P@) AP — P@ A P(b)

~t

If you are asked to prove a formula, but no particular formal system (such as the
sequent calculus) has been specified, then you may use any convincing argument.
Using equivalences as above can shorten the proof considerably. Also, take ad-
vantage of symmetries; in provilyA B >~ B A A, it obviously suffices to prove
AABEBAA
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Exercise 15 Verify these equivalences by appealing to the truth definition for
first-order logic:

—(3AXx A) ~ VX —-A
(VX A A B>~VXx(AAB) for x not free inB
(Ax A v (@x B) ~3Ix (Av B)

Exercise 16 Explain why the following are not equivalences. Are they implica-
tions? In which direction?

(VX A Vv (Yx B) ; VX (AvV B)
@x A) A (3x B) < 3X (A A B)

6.4 Sequent rules for the universal quantifier

Here are the sequent rules far

Alt/x], T = A o '=AA .
VXA T=A = A,¥VXA

Rule (vr) holdsprovided xis not free in the conclusion! This restriction en-
sures thaix is really arbitrary; ifx is free inT" or A then the sequent is as-
suming properties ok. To understand the proviso, contrast the proof of the
theoremvx[P(x) — P(x)] with an attempted proof of the invalid formula
P(x) — Vx P(x). Sincex is a bound variable, you may rename it to get around
the restriction, and obviously (x) — Vy P(y) will have no proof.

Rule (v) lets us create many instancesvof A. The exercises below include
some examples that require more than one copy of the quantified formula. Since
we regard sequents as consisting of sets, we may regard them as containing unlim-
ited quantities of each of their elements. But except for the two rdleandar)

(see below), we only need one copy of each formula.

Example 9 In this elementary proof, rulei) is applied to instantiate the bound
variablex with the termf (y). The application ofvr) is permitted becausg is
not free in the conclusion (which, in fact, is closed).

P(f(y))= P(f(y))
VX P(x) = P(f(y))
VX P(X) = Vy P(f(y))

(v
(vr)
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Example 10 This proof concerns part of the law for pulling universal quantifiers
out of conjunctions. Rulev) just discards the quantifier, since it instantiates the
bound variable« with the free variablex.

A B=A
AAB=A
YVX(AAB)= A
YX(AAB)=VXx A

(A

D)
(vr)

Example 11 The sequentx (A — B) = A — Vx B is valid providedx is not
free in A. That condition is required for the application@®f) below:

A=A B A B=B
AL A— B=B
A Vx(A— B)=B
A VX(A— B)=VxB
VX(A— B)= A— VxB

(=D
v
(vr)

(=1

What if the condition fails to hold? LeA andB both be the formula = 0. Then
VX (X = 0— x = 0)isvalid, butx = 0 — Vx (x = 0) is not valid (it fails under
any valuation that setsto 0).

Note. The proof on the slides ofx (P — Q(X)) = P — Vy Q(y) is essen-
tially the same as the proof above. The version on the slides uses different variable
names so that you can see how a quantified formulaviikeP — Q(x)) is in-
stantiated to produce — Q(y). The proof given above is also valid; because the
variable names are identical, the instantiation is trivial ¥§RdA — B) simply
producesA — B. HereB may be any formula possibly containing the variakle
the proof on the slides uses the specific formQIi).

Exercise 17 Prove—Vy[(Q(a) v Q(b)) A =Q(y)] using equivalences, and then
formally using the sequent calculus.

Exercise 18 Prove the following using the sequent calculus:

VX[P(X) = P(f(X))] = VX[P(X) = P(f(f(x)))]
(VXA A(VXB)=VX(AAB)
VX (AA B)= (VX A) A (VX B)

Exercise 19 Prove the equivalencex[P(x) v P(a)] >~ P(a).
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6.5 Sequent rules for the existential quantifier
Here are the sequent rules far

ATl=A a = A, Alt/x]
IXAT=A = A, IxA

@ar)

Rule @ holdsprovided xis not free in the conclusion! These rules are strictly
dual to thev-rules; any example involving can easily be transformed into one
involving 3 and having a proof of precisely the same form. For example, the
sequen¥x P(x) = Vy P(f (y)) can be transformed inty P(f (y)) = 3Ix P(X).

If you have a choice, apply rules that have provisos — namslandvr) —
before applying the other quantifier rules as you work upwards. The other rules
introduce terms and therefore new variables to the sequent, which could prevent
you from applyingal) andvr) later.

Example 12 Here is half of the3d distributive law. Rulear) just discards the
quantifier, instantiating the bound variakdevith the free variable. In the gen-
eral case, it can instantiate the bound variable with any term.

A= A, B )

A=AV B an

A= 3Ix(Av B) an similar an
IXx A= 3Ix (AvVv B) IXx B=3ax (Av B)

|
IXx AvaIx B=3Ix(Av B) oD

Example 13 The sequeniix A A 3x B=3x (A A B) is not valid, because the
value ofx that makesA true could differ from the value of that makesB true.

This comes out clearly in the proof attempt, where we are not allowed to apply
@an twice with the same variable name, As soon as we are forced to rename the
second variable tg, it becomes obvious that the two values could differ. Turning
to the right side of the sequent, no application=ef can lead to a proof. We have
nothing to instantiate with:

A, Bly/X]=AAB
A, Bly/x] = 3Ix (A A B)
A, Ix B=3Ix (A A B)
Ix A,Ix B=3Ix (A A B)
IX AAIX B=3Ix(AA B)

@ar)
@
@an

(A

The proof on the slides looks different but is essentially the same. See the note
at the end of Example 11.
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Exercise 20 Prove the following using the sequent calculus:

P(a) v Ix P(f(x)) =3y P(y)
IX(Av B)=@@x A v (Ix B)
= 3z(P(z) - P(a) A P(b))

7 Clause Methods for Propositional Logic

This section discusses two proof methods in the context of propositional logic.

e TheDavis-Putnam-Logeman-Lovelapdocedure dates from 1960, and its
application to first-order logic has been regarded as obsolete for decades.
However, the procedure has been rediscovered and high-performance im-
plementations built. In the 1990s, these “SAT solvers” were applied to ob-
scure problems in combinatorial mathematics, such as the existence of Latin
squares. Recently, there has been an explosion of serious applications.

e Resolution is a powerful proof method for first-order logic. We first con-
sider ground resolution, which works for propositional logic. Though of
little practical use, ground resolution introduces some of the main concepts.
The resolution method is not natural for hand proofs, but it is easy to auto-
mate: it has only one inference rule and no axioms.

Both methods require the original formula to be negated, then converted into
CNF. Recall that CNF is a conjunction of disjunction of literals. A disjunction of
literals is called alause and written as a set of literals. Converting the negated
formula to CNF yields a set of such clauses. Both methods seek a contradiction in
the set of clauses; if the clauses are unsatisfiable, then so is the negated formula,
and therefore the original formula is valid.

To refutea set of clauses is to prove that they are inconsistent. The proof is
called arefutation

7.1 Clausal notation

Definition 10 A clauseis a disjunction of literals
-Kiv---v=KnpVvLiVv---VLp,

written as a set
{_'K]_, ce ey _‘Km, Ll, ey Ln}
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Sincev is commutative, associative, and idempotent, the order of literals in a
clause does not matter. The above clause is logically equivalent to the implication

(KiA---AKm) = (L1 V- ---VLp
Kowalski notation abbreviates this to
Kla"' ) Km_> Ll» ) Ln

and whemn = 1 we have the familiar Prolog clauses, also knowmesniteor
Horn clauses

7.2 The Davis-Putnam-Logeman-Loveland Method

The DPLL method is based upon some obvious identities:

tANA~ A
AAN(AVvB)~A
AAN(—AVB)~AAB
A~ (AAnB)V (AA—-B)

Here is an outline of the algorithm:
1. Delete tautological clauseg?, =P, ...}
2. For each unit clausg.},

e delete all clauses containirg
e delete—L from all clauses

3. Delete all clauses containimire literals A literal L is pureif there is no
clause containingL.

4. If the empty clause is generated, then we have a refutation. Conversely, if
all clauses are deleted, then the original clause set is satisfiable.

5. Perform acase spliton some literal, and recursively apply the algorithm
to theL and—L subcases. The clause set is satisfiable if and only if one of
the subcases is satisfiable.

This is a decision procedure. It must terminate because each case split elimi-
nates a propositional symbol. Modern implementations such as zChaff add vari-
ous heuristics. They also rely on carefully designed data structures that improve
performance by reducing the number of cache misses, for example.
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Historical note. Davis and Putnam introduced the first version of this proce-
dure. Logeman and Loveland introduced the splitting rule, and their version has
completely superseded the original Davis-Putnam method. When people refer to
the Davis-Putnam method, they are almost certainly referring to DPLL rather than
to the original David-Putnam method.

Tautological clauses are deleted because they are always true, and thus cannot
participate in a contradiction. A pure literal can always be assumed to be true;
deleting the clauses containing it can be regarded as a degenerate case split, in
which there is only one case.

Example 14 The Davis-Putnam method can show that a formula is not a theo-
rem. Consider the formul® v Q — Q Vv R. After negating this and converting

to CNF, we obtain the three clausd®, Q}, {(—Q} and{—R}. The DPLL method
terminates rapidly:

{P,Q} {—Q} {—R} initial clauses
{P} {—=R} unit—Q
{—=R} unitP (also pure)
unit —R (also pure)
The clauses are satisfiable By— t, Q — f, R f. Thisinterpretation falsifies
PvQ— QVR

Example 15 Here is an example of a case split. Consider the clause set
{-Q.Rl {-R, P} {-R,Q} {-P.Q,R} {P,Q} {=P,—-Q}

There are no unit clauses or pure literals, so we arbitrarily séldor case
splitting:

{-Q,R} {-R,Q} {Q,R} {—Q} if Pistrue

(—=R} (R} unit —Q
O unit R
{—Q, R} {—=R} {—-R, Q} {Q} if Pisfalse
{—Q} {Q} unit=R
O  unit—=Q

Exercise 21 Apply the DPLL procedure to the clause set

{P.Q} {=P.Q} {P.-Q} {=P.—-Q}.
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7.3 Introduction to resolution

Resolution is essentially the following rule of inference:

BvA -BvC
AvC

To convince yourself that this rule is sound, note tBatnust be either false or
true.

e if Bis false, therB v Ais equivalent toA, so we getA v C
e if Bistrue, themB v C is equivalent taC, so we getA v C

You might also understand this rule via transitivity-ef

-A—- B B—-C
-A—->C

A special case of resolution is whehandC are empty:

B —-B
f

This detects contradictions.
Resolution works with disjunctions. The aim is to prove a contradiction, re-
futing a formula. Here is the method for proving a forméla

1. Translate-Ainto CNF asA; A -+ A An.

2. Break this into a set of clauseAs, ..., Am.

3. Repeatedly apply the resolution rule to the clauses, producing new clauses.

These are all consequencesoA.
4. If a contradiction is reached, we have refuted.

In set notation the resolution rule is

{B, A]_,...,Am} {_‘B, C]_,...,Cn}
{Al,---yAm,Cl’---,Cn}

Resolution takes two clauses and creates a new one. A collection of clauses is
maintained; the two clauses are chosen from the collection according to some

strategy, and the new clause is added to itmli= 0 orn = 0 then the new
clause will be smaller than one of the parent clause®; # n = 0 then the new

clause will be empty. A clause is true (in some interpretation) just when one of

the literals is true; thus the empty clause indicates contradiction. It is written
If the empty clause is generated, resolution terminates successfully.
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7.4 Examples of ground resolution

Let us try to prove
PAQ—- QAP

Convert its negation to CNF:
“-PAQ—- QAP)

We can combine steps 1 (eliminate) and 2 (push negations in) using the law
—-(A— B) >~ AA—B:

(PAQA=(QAP)
(PAQA(=QV—P)
Step 3, push disjunctions in, has nothing to do. The clauses are
{P} {Q} {—=Q.—~P}
We resolve[P} and{—Q, —P} as follows:

{P} {=P,—-Q}
{=Q}

The resolvent i$—Q}. Resolving{ Q} with this new clause gives

{Q} {=Q}
{}

The resolvent is the empty clause, properly writteri_asWe have proved® A
Q — Q A P by assuming its negation and deriving a contradiction.
It is nicer to draw a tree like this:

{P} {=Q, —P}
{Q} {=QJ}
\/
0

Another example ISP < Q) < (Q < P). The steps of the conversion
to clauses is left as an exercise; remember to negate the formula first! The final
clauses are

{P.Q} {=P.Q} {P.-Q} {=P,—Q}

A tree for the resolution proof is
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{P. Q} {=P.Q} {P.—Q)} {(—=P.—Q}
\/
{Q} {—=Q}
—_

O

Note that the tree contaif} and{—Q} rather tha{ Q, Q} and{—Q, —Q}.
If we forget to suppress repeated literals, we can get stuck. Resdl@n@®}
and{—Q, —Q} (keeping repetitions) giveg, —Q}, a tautology. Tautologies are
useless. Resolving this one with the other clauses leads nowhere. Try it.

These examples could mislead. Must a proof use each clause exactly once?
No! A clause may be used repeatedly, and many problems contain redundant
clauses. Here is an example:

{(—=P.R} {P} {-Q.R}  {=R}

\/ (unused)

{R}
O

Redundant clauses can make the theorem-prover flounder; this is a challenge fac-
ing the field.

Exercise 22 Prove(A —- Bv C) — [(A— B) v (A — C)] using resolution.

7.5 A proof using a set of assumptions

In this example we assume
H—- MVN M—>KAP N—LAP

and proveH — P. It turns out that we can generate clauses separately from the
assumptions (takegmositively and the conclusiomggateq.
If we call the assumptiondy, ..., Ax and the conclusiom, then the desired
theorem is
(AtA---ANA)— B

Try negating this and converting to CNF. Using the lawA — B) ~ A A =B,
the negation converts in one step to

ALA---ANACA—-B
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Since the entire formula is a conjunction, we can separately coAyert ., A,
and—B to clause form and pool the clauses together.
AssumptionH — M Vv N is essentially in clause form already:

{—=H, M, N}
AssumptionM — K A P becomes two clauses:
{—=M, K} {—=M, P}
AssumptionN — L A P also becomes two clauses:
{—=N, L} {=N, P}
The negated conclusiom(H — P), becomes two clauses:
{H}  {=P}
A tree for the resolution proof is

{H} {—=H., M, N}
{M, N} {=M, P}

{N, P} {—=N, P}

\/

{P} {=P}
0

The clauses were not tried at random. Here are some points of proof strategy.

Ignoring irrelevance. Clauses{—M, K} and{—N, L} lead nowhere, so they
were not tried. Resolving with one of these would make a clause contaiing
or L. There is no way of getting rid of either literal, for no clause contaiksor
—L. So this is not a way to obtain the empty clause.

Working from the goal. In each resolution step, at least one clause involves
the negated conclusion (possibly via earlier resolution steps). We do not blindly
derive facts from the assumptions — for, provided the assumptions are consistent,
any contradiction will have to involve the negated conclusion. This strategy is
calledset of support
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Linear resolution. The proof has a linear structure: each resolvent becomes the
parent clause for the next resolution step. Furthermore, the other parent clause is
always one of the original set of clauses. This simple structure is very efficient
because only the last resolvent needs to be saved. It is similar to the execution
strategy of Prolog.

Exercise 23 Explain in more detail the conversion of this example into clauses.

Exercise 24 Prove Peirce’s law,(P — Q) — P) — P, using resolution.

Exercise 25 Prove(Q - R)IA(R—- PAQA(P - QVR) — (P < Q)
using resolution.

7.6 Deletion of redundant clauses

During resolution, the number of clauses builds up dramatically; it is important to
delete all redundant clauses.

Each new clause is a consequence of the existing clauses. A contradiction
can only be derived if the original set of clauses is inconsistent. A clause can be
deleted if it does not affect the consistency of the set. Any tautology should be
deleted, since it is true in all interpretations.

Here is a subtler case. Consider the clauses

{SR {P.=5 {P.Q.R}

Resolving the first two yield$P, R}. Since each clause is a disjunction, any
interpretation that satisfi¢®, R} also satisfie$P, Q, R}. Thus{P, Q, R} cannot
cause inconsistency, and should be deleted.

Put another wayP v RimpliesP v Q v R. Anything that could be derived
from P v Q v R could also be derived frorR v R. This sort of deletion is called
subsumptionclause{ P, R} subsumes$P, Q, R}.

Exercise 26 Prove(PAQ - RRA(PVQVR) - (P «< Q) — R) by
resolution. Show the steps of converting the formula into clauses.

Exercise 27 Using linear resolution, prove thaP A Q) — (R A S) follows
fromP - RandRA P — S
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Exercise 28 Convert these axioms to clauses, showing all steps. Then prove
Winterstorm— Miserableby resolution:

RainA (Windyv —Umbrella) — Wet Winterstorm Storma Cold

WetA Cold — Miserable Storm— Rain A Windy

8 Skolem Functions and Herbrand’s Theorem

Propositional logic is the basis of many proof methods for first-order logic. Elim-
inating the quantifiers from a first-order formula reduces it nearly to propositional
logic. This section describes how to do so.

8.1 Prenex normal form

The simplest method of eliminating quantifiers from a formula involves first mov-
ing them to the front.

Definition 11 A formula is inprenex normal fornif and only if it has the form

Q1X1 Q2X2 - - - QnXn (A),
——

prefix matrix

where A is quantifier-free, eaclQ; is eitherV or 3, andn > 0. The string of
quantifiers is called thprefixand A is called thematrix.

Using the equivalences described above, any formula can be put into prenex
normal form.
Examples of translation.

The affected subformulae will be underlined.

Example 16 Start with

—(3x P(X)) A @Y Q(Y) Vv VZ P(2))
Pull out thedx :
YX=P(X) A 3y Q(Yy) Vv Vz P(2)

Pull out thedy :
Yx=P(x) A Qy (Q(y) v Vz P(2)))
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Pull out thedy again:

Fy (VX =P(X) A (Q(Y) v VZ P(2)))

Pull out thevz:
Ay (VX =P(x) AVZ(Q(y) Vv P(2)))

Pull out thevz again:
JyVz(YX =P(X) A (Q(Y) v P(2)))
Pull out thevx :
Ay Vzvx (=P(x) A (Q(Y) v P(2)))
Example 17 Start with
vYx P(x) — 3yVvz Ry, 2)
Remove the implication:
—Vx P(X) v 3yVvz Ry, 2)

Pull out thevx :
Ix—-P(x) v3yVvz Ry, 2)

Distribute3 overv, renamingy to x:8
X (—P(X) vVz R(X, 2))
Finally, pull out thevz:

AxVz(—P(X) v R(X, 2))

8.2 Removing quantifiers: Skolem form

Now that the quantifiers are at the front, let’s eliminate them! We replace every
existentially bound variable by a Skolem constant or function. This transformation
does not preserve the meaning of a formula; it does pregsrwasistencywhich

is the critical property, since resolution works by detecting contradictions.

60r simply pull out the quantifiers separately. Using the distributive law is marginally better
here because it will result in only one Skolem constant instead of two; see the following section.
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How to Skolemize a formula

Suppose the formula is in prenex normal fofmStarting from the left, if the
formula contains an existential quantifier, then it must have the form

VX1 VX2 -+ - VX Iy A

whereA is a prenex formulak > 0, and3y is the leftmost existential quantifier.
Choose &-place function symbof not present inA (that is, anewfunction sym-
bol). Delete thedy and replace all other occurrencesyoby f (x1, X2, ..., Xk).
The result is another prenex formula:

VX1 VxXg - Yxe Al F (X1, X2, - - -, Xk) /Y]

If kK = 0 above then the prenex formula is simgly A, and other occurrences
of y are replaced by a new constant symtiol'he resulting formula ig\[c/y].

The remaining existential quantifiers, if any, areAn Repeatedly eliminate
all of them, as above. The new symbols are ca$&dlem functiongor Skolem
constants).

After Skolemization the formula is jus¥x;Vxs ---Vxx A where A is
guantifier-free. Since the free variables in a formula are taken to be universally
guantified, we can drop these quantifiers, leaving sinfplyWe are almost back
to the propositional case, except the formula typically contains terms. We shall
have to handle constants, function symbols, and variables.

Examples of Skolemization

The affected expressions are underlined.

Example 18 Start with
IXV¥y3z RX, Y. 2)

Eliminate thedx using the Skolem constaat
Vy3zR(@,y, 2)
Eliminate thedz using the 1-place Skolem functiaon
vy R@.y, f(y)
Finally, drop thevy and convert the remaining formula to a clause:

{R@,y, f(y»}

"Prenex normal form makes things easier to follow. However, some proof methods merely re-
quire the formula to be in negation normal form. The basic idea is the same: remove the outermost
existential quantifier, replacing its bound variable by a Skolem term. Pushing quantifiers in as far
as possible, instead of pulling them out, yields a better set of clauses.
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Example 19 Start with
Ju Vv Iw IxVy3Iz((P(hU, v)) vV Q(w)) A R(X, h(y, 2)))

Eliminate thedu using the Skolem constaot

Vv 3w 3IxVy 3z ((P(h(c, v)) v Qw)) A R(X, h(y, 2)))
Eliminate thedw using the 1-place Skolem functioin

Vo ax Vy3z((P(h(c, v)) v Q(f(v)) A R(X, h(y, 2)))
Eliminate the3x using the 1-place Skolem functian

Yo Vvy3z((P(h(c, v)) v Q(f(v))) A R(g(v), h(y, 2)))

Eliminate the3z using the 2-place Skolem function (note that functiorh is
already used!):

Yo Vy ((P(h(c, v)) v Q(f (v))) A R(@(), h(y, j (v, Y)))

Finally drop the universal quantifiers, getting a set of clauses:

{P(h(c,v), Q(f(w)}  {R(Q), hy, j (v, y))}

Correctness of Skolemization

Skolemization doesot preserve meaning. The version presented above does not
even preserve validity! For example,

Ix (P(a) — P(x))

is valid. (Why? In any model, the required valuexoéxists — it is just the value
of a in that model.)
Replacing theix by the Skolem constaftgives

P(a) — P(b)

This has a different meaning since it refers to a condvambt previously men-
tioned. And it is not valid! For example, it is false in the interpretation where
P(x) means X equals 0’ anch denotes 0 antl denotes 1.

Our version of Skolemization does preseocansistency— and therefore in-
consistency. Consider one Skolemization step.
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e The formulavx 3y A is consistent iff it holds in some interpretati@dn=
(D. D

o iff forall x € D there is someg € D such thatA holds

o iff there is some function o, say f € D — D, such that for alk € D,
if y = f(x) thenAholds

o iffthereis an interpretatiofi’ extendingZ so that the symbof denotes the
function f, andA[ f (x)/y] holds for allx € D.

o iff the formulavx Al f (x)/y] is consistent.

Note thatZ above does not interprdt because Skolem functions have to be new.
ThusZ may be extended t@’ by giving an interpretation fof .

This argument easily generalizes to the cé@sgvx, - - - Vxx 3y A Thus, ifa
formula is consistent then so is the Skolemized version. If it is inconsistent then
so is the Skolemized version. That is what we need: resolution works by proving
that a formula is inconsistent.

There is a dual version of Skolemization that preserves validity rather than
consistency. It replaces universal quantifiers, rather than existential ones, by
Skolem functions.

Exercise 29 Describe this dual version of Skolemization and demonstrate that it
preserves validity. What might it be used for?

8.3 Herbrand interpretations

A Herbrand interpretation basically consists of all terms that can be written us-
ing just the constant and function symbols in a set of cla&g@s quantifier-free
formula). Why define Herbrand interpretations? A mathematical reason: for con-
sistency ofS we need only consider Herbrand interpretations. A programming
reason: the data processed by a Prolog progsa@simply its Herbrand universe.

To define the Herbrand universe for the set of clauses start with sets of
the constant and function symbols$nincluding Skolem functions

Definition 12 LetC be the set of all constants 8 If there are none, le&l = {a}
for some constant symbalof the first-order language. Far> 0 let 7, be the set
of all n-place function symbols i and letP, be the set of alh-place predicate
symbols inS.
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TheHerbrand universés the setH = ;o Hi, where

Ho=C
Hiz1=H U{f(ty,...,th) |t1,...,th € Hyand f € F}

Thus,H consists of all the terms that can be written using only the constants and
function symbols present i. There are no variables: the elementstbfare
ground terms. FormallyH turns out to satisfy the recursive equation

H:{f(t]_,,tn)ltl,,tnEHandf Efn}

The definition above ensures thi@ais non-empty. It follows thaH is also non-
empty, which is an essential requirement for a universe.

The elements oH are ground terms. An interpretatigHhl, |) is aHerbrand
interpretationprovidedlI [t] =t for all ground termg. In detail, every Herbrand
interpretationl assigns trivial meanings to the constants and function symbols
of S. Each constant, say is mapped to itselfl [a] = a. Each function symbol is
mapped to the function that creates symbolic applications of itself; for example,
if fis a 1-place function symbol, thdr f] is the function that mapzs to f (x).

Note that ifx € H then f(x) € H, sol[f]is a function fromH into H. The

point of this peculiar exercise is that we can give meanings to the symb@&s of

in a purely syntactic way, without needing other mathematical spaces such as the
Complex numbers.

TheHerbrand basdor atom set) consists of all possible applications of pred-
icate symbols irSto terms of the Herbrand universe 8r

HB:{P(tl,,tn)|tl,,tne HandPEPn}

A Herbrand interpretation defines a predicate symbol to denote some subset of the
Herbrand base. The effect is to specify which predicate applications to specific
ground terms are true.

Example 20 Suppose we have the set (consisting of two clauses)

S={P@}, {Q(a(y,2), ~P(f(x)}}
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Then
C ={a}
JF1={f}
F2 =10}
fnZQ (I’l>2)

H ={a, f(a),9(a,a), f(f(a),g(f(a,a),g, f(@),g(f(@, f@),...}
HB = {P(a), Q(@), P(f(a)), Q(f(a)), P(g(a, @), Q(g(a, a)),
P(f(f(a)), Q(f(f@)), P(a(f(a),a), Q@(f(@),a)),
P(g(a, f(@)), Qg f(@)), Pa(f(@), f(a)), Qu(f(@), f@)),...}

Every interpretatiorY over an arbitrary universe can be mimicked by some Her-
brand interpretation: just take

{(P(ts,....ty) € HB | P(ty, ..., t,) holds inT)}

This is a subset dfl B. Each subset dfl B specifies a Herbrand interpretation by
listing the values (irH) for which each predicate holds. To mimic the interpreta-
tion Z we take exactly the set of ground atomic formulae that hold;ithis is a
Herbrand interpretation.

Thus, we have informally proved the following two results (Chang and Lee,
page 55):

Lemma 13 Let S be a set of clauses. If an interpretation satisfies S, then an
Herbrandnterpretation satisfies S.

Theorem 14 A set S of clauses is unsatisfiable if and only if no Herbrand inter-
pretation satisfies S.

Equality may behave strangely in Herbrand interpretations. Given an interpre-
tationZ, the denotation of is the set of all pairs of ground terng, t») such that
t1 = tp according taZ. In a context of the natural numbers, the denotatios-of
could include pairs likgl + 1, 2) — the two components need not be identical,
contrary to the normal situation with equality.

8.4 The Skolem-Godel-Herbrand Theorem

Finally we have the Skolem-Godel-Herbrand theorem. A version of the Com-
pleteness Theorem, it tells us that unsatisfiability can always be detected by a
finite process. It does not tell us how to detect satisfiability, for there is no general
method®

8]t is often confused with Herbrand’s Theorem, a stronger result.
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Definition 15 An instanceof a clauseC is a clause that results by replacing vari-
ables inC by terms. Aground instanceof a clauseC is an instance o€ that
contains no variables. (It can be obtained by replacing all variabl€shy ele-
ments of a Herbrand universe, which are ground terms.)

Since the variables in a clause are taken to be universally quantified, every
instance ofC is a logical consequence 6f.

Example 21 This clause is valid in the obvious integer model:
C = {—evenx), —eveny), evenx + y)}
Replacingx by y + y in C results in the instance

C' = {—ever(y +y), ~eveny), ever((y + Y) + )}
Replacingy by 2 in C’ results in the ground instance
C” = {—even2 + 2), —even2), even(2 + 2) + 2)}

Example 22 Consider the clause

C = {Q((y, x)), =P(f(x)}
Replacingx by f (z) in C results in the instance

C' ={Q@(y, f(@)), =P(f(f2))}
Replacingy by j (a) andz by bin C’ results in the instance

C" ={Q(g(j @), T (b)), =P(f(f(b)))}
Assuming that andb are constants;” is a ground instance @.

Theorem 16 A set S of clauses is unsatisfiable if and only if there is a finite un-
satisfiable set ‘Sf ground instances of clauses of S.

The proof is rather involved; see Chang and Lee, pages 56—61, for details. The
(=) direction is the interesting one. It uses a non-constructive argument to show
that if there is no finite unsatisfiable s&t then there must be a model &f

The (<) direction simply says that i§ is unsatisfiable then so & This is
straightforward since every clause $1is a logical consequence of some clause
in S. Thus if S is inconsistent, the inconsistency is already presest in

The theorem is valuable because the newSsetxpresses the inconsistency
in a finite way. However, it only tells us th& exists; it does not tell us how
to deriveS. (The general problem is undecidable, since the validity problem is
undecidable.) A key question is, how do we generate useful ground instances of
clauses? One answer, outlined in the next lectunenifcation
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Example 23 To demonstrate the Skolem-Goédel-Herbrand theorem, consider
proving the formula

YXP(X) AVY[P(Y) > Q(y)] — Q@ A Q(b).

If we negate this formula, we trivially obtain the following s®bf clauses:

(PO} {=P(y), Qiy)} {—Q(a),~Q(b)}.

This set is inconsistent. Here is a finite set of ground instances of clauSes in

{P@} (P} {=P(), Q@} {=Pb), Qd} {-Qa),—-Q(b)}.

This set reflects the intuitive proof of the theorem. We obviously Hage and
P(b); usingvVy[P(y) — Q(y)] with a andb, we obtainQ(a) and Q(b). If we
can automate this procedure, then we can generate such proofs automatically.

Exercise 30 Consider a first-order language with 0 and 1 as constant symbols,
with — as a 1-place function symbol ardas a 2-place function symbol, and with
< as a 2-place predicate symbol.

(a) Describe the Herbrand Universe for this language.

(b) The language can be interpreted by taking the integers for the universe and
giving 0, 1,—, 4, and < their usual meanings over the integers. What do
those symbols denote in the corresponding Herbrand model?

9 Unification

Unification is the operation of finding a common instance of two terms. Though
the concept is simple, it involves a complicated theory. Proving the unification
algorithm’s correctness (especially termination) is difficult.

To introduce the idea of unification, consider a few examples. The terms
f(x, b) and f (a, y) have the common instandga, b), replacingx by a andy
by b. The termsf (x, x) and f (a, b) have no common instance, assuming that
andb are distinct constants. The ternigx, x) and f (y, g(y)) have no common
instance, since there is no way thatan have the forny andg(y) at the same
time — unless we admit the infinite tergig(g(- - -))).

Only variables may be replaced by other terms. Constants are not affected
(they remain constant!). If a term has the foifrtt, u) then instances of that term
must have the fornf (t’, u’), wheret’ is an instance df andu’ is an instance af.
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9.1 Substitutions

We have already seen substitutions informally. It is now time for a more detailed
treatment.

Definition 17 A substitutionis a finite set of replacements

[te/X1, ..., ti/Xk]

wherex;, ..., Xk are distinct variables such thiat# x; foralli = 1, ..., k. We
use Greek letters, 6, o to stand for substitutions.
The finite se{Xxy, ..., Xk} is called thedomainof the substitution. The domain

of a substitutior® is written donio).

A substitutiond = [t1/X1, ..., tk/Xk] defines a function from the variables
{x1, ..., Xg} to terms. Postfix notation is usual for applying a substitution; thus,
for examplex;6 = t;. Substitutions may be applied to terms, not just to variables.
Substitution on terms is defined recursively as follows:

f(ty, ..., th)o = T (110, ...,1,0)
X0 = X for all x ¢ dom(9)

Here f is ann-place function symbol. The operation substitutes in the arguments
of functions, and leaves unchanged any variables outside of the dontain of
Substitution may be extended to literals and clauses as follows:

P(t1, ..., th)0 = P(t16, ..., t:0)
(L1,...,Lm}0 = {L16, ..., LmO}

HereP is ann-place predicate symbol (or its negation), wHilg ..., Ly, are the
literals in a clause.

Example 24 The substitutio® = [h(y)/x, b/y] says to replac& by h(y) andy
by b. The replacements occur simultaneously; it doeshave the effect of re-
placing x by h(b). Its domain is dort®¥) = {x, y}. Applying this substitution
gives

f(x, g, y)o = f(h(y), g(), b)
R(h(x), 260 = R(h(h(y)), 2)

{P(¥), =Q(yN}E = {P(h(y)), ~Q(0))}
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9.2 Composition of substitutions
If ¢ and@ are substitutions then so is themmpositionp o 6, which satisfies
t(pob) = (tp)0 for all termst

Can we writeg o 6 as a set of replacements? It has to satisfy the above for all
relevant variables:

X(¢p 0 0) = (X))o for all x € dom(¢) U dom()
Thus it must be the set consisting of the replacements
(X¢)0 / x for all x € dom(¢) U dom(6)

Equality of substitutionsp andé is defined as followsyp = 6 if x¢ = x6 for
all variablesx. Under these definitions composition enjoys an associative law. It
also has an identity element, namely [], the empty substitution.

(pob)oo=¢po(Boo)
poll =¢
Hoop=¢

Example 25 Let ¢ = [j(X)/u,0/y] and & = [h(2)/x,9(3)/y]. Then
dom(¢) = {u, y} and dongf) = {x, y}, so donfp) U dom() = {u, X, y}. Thus

¢ o0 =[j(h(2)/u,h(2)/x,0/y]
Notice thaty(¢ 00) = (y¢)6 = 06 = 0; the replacemert(3)/y has disappeared.

Exercise 31 Verify thato is associative and has [] for an identity.

9.3 Unifiers
Definition 18 A substitutiond is aunifier of termst; andt; if t16 = t,0. More
generallyp is a unifier of termgy, to, ..., tyif 110 =10 = - .- = t,0. The term

t10 is called thecommon instancef the unified terms. A unifier of two or more
literals is defined similarly.

Two terms can only be unified if they have similar structure apart from vari-
ables. The termd (x) andh(y, z) are clearly non-unifiable since no substitution
can do anything about the differing function symbols. It is easy to seedthat
unifies f (t1, ..., ty) and f (uy, ..., uy) if and only if 6 unifiest; andu; for all
i=1...,n.
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Example 26 The substitution [3x, g(3)/y] unifies the termg(g(x)) andg(y).
The common instance gg(3)). These terms have many other unifiers, including
the following:

unifying substitution common instance
[f(w/x, g(fw)/yl g(g(f))
[2/x,9(2)/Y] 9(9(2))

[9(x)/Y] g(g(x))

Note thatg(g(3)) and g(g(f (u))) are instances of(g(x)). Thusg(g(x))
is more general thag(g(3)) and g(g(f (u))); it admits many other instances.
Certainlyg(g(3)) seems to be arbitrary — neither of the original terms mentions
3! A separate point worth noting is thgtg(x)) is equivalent tog(g(z)), apart
from the name of the variable. Let us formalize these intuitions.

9.4 Most general unifiers

Definition 19 The substitutior® is more generathan¢ if ¢ = 6 o o for some
substitutiono .

Example 27 Recall the unifiers of(g(x)) andg(y). The unifier p(x)/y] is
more general than the others listed, for

[3/%,9(3)/y]l = [9(xX)/y] o [3/X]
[Fw/x, g(fw)/yl =[9(x)/y] o [f(u)/X]
[z/%, 9(2)/y] = [9(X)/Y] o [z/X]
[90x)/y]l = [9(x)/y] o]

The last line above illustrates that every substituida more general than itself
becaus® = 0 o []; ‘more general’ is a reflexive relation.

If two substitutions? and¢ are each more general than the other then they
differ at most by renaming of variables, and can be regarded as equivalent. For
instance, y/x, f(y)/w] and [x/y, f(x)/w] are equivalent:

[y/x, f(y)/w] =[x/y, f(X)/w] o [y/X]
[x/y, Tx)/w] =[y/X, f(y)/w]o[x/y]

What does all this mean in practice? Suppose we would like to apply either
0 or ¢, where¢p = 0 o o. If we apply6 then we can still get the effect gf by
applyingo later. Furthermore, there is an algorithm to find a most general unifier
of two terms; by composition, this one unifier can generate all the unifiers of the
terms.
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Definition 20 A substitutiond is amost general unifie(MGU) of termsty, .. .,
tm if

e 6 unifiesty, ..., ty, and
e 6 is more general than every other unifiettgf. . ., ty.

A most general unifier of two or moieerals is defined similarly.

Thus if@ is an MGU of termg; andt, andti¢p = to¢ theng = 6 oo for some
substitutiono .

9.5 A simple unification algorithm

In many books, the unification algorithm is presented as operating on the concrete

syntax of terms, scanning along character strings. But terms are really tree struc-

tures and are so represented in a computer. Unification should be presented as

operating on trees. In fact, we need consider only binary trees, since these can

represenh-ary branching trees. Unification is easily implemented in Lisp, where

the basic data structure (the S-expression) is a binary tree with labelled leaves.
Our trees have three kinds of nodes:

e A variable x vy, ... — can be modified by substitution
e A constant ab, ... — handles function symbols also
e A pair (t, u) — wheret andu are terms

Unification of two terms considers nine cases, most of which are trivial. It is
impossible to unify a constant with a pair; in this case the algorithm fails. When
trying to unify two constanta andb, if a = b then the most general unifier is [J; if
a # b then unification is impossible. The interesting cases are variable-anything
and pair-pair.

Unification with a variable

When unifying a variablex with a termt, wherex # t, we must perform the
occurs check If x does not occur int then the substitutiont[x] has no effect
ont, so it does the job trivially:

X[t/x] =t =t[t/X]

It is not hard to show that [x] is amost generalnifier.
If x doesoccur int then no unifier exists, for ik = t6 then the ternx6
would be a subterm of itself, which is impossible.
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Example 28 The termsx and f (x) are not unifiable. 16 = u then f (x)6 =
f(u). Thusxé = f(x)6 would implyu = f(u). We could, perhaps, introduce
the infinite term

u=f(FCECEECE-))))

as a unifier, but this would require a rigorous definition of the syntax and semantics
of infinite terms.

Unification of two pairs

Unifying the pairs(ty, t2) with (ug, up) requires two recursive calls of the unifica-
tion algorithm. If61 unifiest; with u; andé, unifiesty61 with u26;, then6y o 6,
unifies(ty, tp) with (uq, uy):

(t1, t2) (01 0 62) = (11, 12)01602
= (116162, 120162)
= (U16102, t26162) sincet161 = u161
= (U16162, U2016>) since(tz01)62 = (U2601)62
= (U1, U2)0162
= (U1, U2)(f1062)

It is possible to prove that #f; and6, aremost generalnifiers then so i8; o 65.
If either recursive call fails then the pairs are not unifiable.

Note that the substitutiofy is applied ta; anduy before the second recursive
call. Will this terminate, even if26; andus61 are much bigger thaty anduy,?
One can show that eithér does not affedh anduy, or elsed; reduces the number
of variables in the pair of terms. This is enough to show termination.

As given above, the algorithm works from left to right. An equally good alter-
native is to begin by unifyindgp andus.

Examples of unification

These examples are given for terms rather than binary trees. The translation to
binary trees is left as an exercise.

In most of these examples, the two terms have no variables in common. Most
uses of unification (including resolution, see below) rename variables in one of
the terms to ensure this. However, such renamimgptpart of unification itself.

Example 29 Unify f(x, b) with f(a, y). Steps:
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Unify x anda getting fa/x].

Try to unify b[a/x] and y[a/X].

These ard andy, so unification succeeds with[y].
Resultis [a/x] o [b/y], which is [a/x, b/y].

Strictly speaking we also have to unifiy with f, but this just gives [], the null
substitution.

Example 30 Unify f(x, x) with f(a, b). Steps:

Unify x anda getting [a/x].
Try to unify x[a/x] andb[a/X].
These ar@ andb, distinct constantd-ail.

Example 31 Unify f(x, g(y)) with f(y, x). Steps:

Unify x andy getting [y/X].
Try to unify g(y)[y/x] and x[y/x]. These argy(y) andy, violating
the occurs checkzalil.

If we had renamed the variables in one of the terms beforehand, uni-
fication would have succeeded. In the next example, the two terms
have no variables in common, but unification fails anyway.

Example 32 Unify f(x, x) with f(y, g(y)). Steps:

Unify x andy getting [y/X].

Try to unify x[y/x] andg(y)[y/X].
These argy andg(y), wherey occurs ing(y). Fail.

Example 33 Unify j(w, a, h(w)) with j (f (X, y), X, 2). Steps:

Unify w and f (x, y) getting [f (X, y)/w].

Unify a andx (the substitution has no effect) gettirmyK].
Unify (h(w)[ f (X, y)/wD[a/x]and(Z[ f (x, y)/w]D[a/x].
These ard(f (x, y))[a/x] andz[a/X].

These ard(f (a, y)) andz; unifier is [h(f (a, y))/Z].

Resultis [f (X, y)/w] o[a/X] o[h(f (a, y))/z]. Performing the com-
positions, this simplifies tof{(a, y)/w, a/x, h(f(a, y))/z].
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Example 34 Unify j(w, a, h(w)) with j(f(X,Yy), X, Yy). This is the previous
example but with & in place of az.

Unify w and f (x, y) getting [f (X, y)/w].

Unify a andx getting fa/x].

Unify (hw)[ f (x, y)/wDla/x] and (Y[ f (x, y)/w]D[a/x].

These ard(f (a, y)) andy, buty occurs inh(f (a, y)). Falil.

Diagrams can be helpful. The lines indicate variable replacements:

j(w,a, h(w)) J(EX, ¥, X, y)

N r/

asx

fa y)/w

h(f(a, y))/y???

Implementation remarks

To unify termsty, to, ..., ty for m > 2, compute a unifieé of t; andt,, then
recursively compute a unifier of the terms,0, .. ., tn6. The overall unifier is
thené o o. If any unification fails then the set is not unifiable.

A real implementation does not need to compose substitutions. Most represent
variables by pointers and effect the substitutibfx] by updating pointex tot.

The compositions are cumulative, so this works. However, if unification fails at
some point, the pointer assignments must be undone!

To avoid pointers you can store the updates as a list of pairs, calledvan
ronment For example, the environmeafx, f (x)/y represents the substitution
[a/x, f(a)/y]. The algorithm sketched here can take exponential time in unusual
cases. Faster algorithms exist, although they are more complex and are seldom
adopted.

Prolog systems, for the sake of efficiency, omit the occurs check. This can
result in circular data structures and looping. It is unsound for theorem proving.

9.6 Examples of theorem proving

These two examples are fundamental. They illustrate how the occurs check en-
forces correct quantifier reasoning.
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Example 35 Consider a proof of
AY VX R(X, y)) = (VX3y R(X, ).

Produce clauses separately for the antecedent and for the negation of the conse-
qguent; this is more efficient than producing clauses for the negation of the entire
formula.

e The antecedent iy Vx R(X, y); replacingy by the Skolem constard
yields the claus¢R(x, a)}.

e In —~(Vx3y R(X, y)), pushing in the negation producégVy—-R(X, Yy).
Replacingx by the Skolem constatutyields the clausé—R(b, y)}.

Unifying R(x, a) with R(b, y) detects the contradictioR(b, a) A =R(b, a).

Example 36 In a similar vein, let us try to prove
(Yx3y R(X,y)) — 3y VYX R(X, y)).

¢ Here the antecedent¥x 3y R(x, y); replacingy by the Skolem functiorf
yields the clauséR(x, f(x))}.

e The negation of the consequent 153y Vx R(X, ¥)), which becomes
Yy 3ax =R(X, y). Replacingx by the Skolem functiorg yields the clause

{=R@Q(y), V)}.

Observe thaR(x, f(x)) andR(g(y), y) are not unifiable because of the occurs
check. And so it should be, because the original formula is not a theorem!

Exercise 32 For each of the following pairs of terms, give a most general unifier
or explain why none exists. Do not rename variables prior to performing the
unification.

f(9(x), 2) f(y, h(y))
J(X,Y,2) j(fy.y, f(z, 2, f(a, )
J (X, 2, %) jy, f(y), 2

j(fx,y,a  jy,z2

j(@x),a,y) j(z,x, f(z,2)
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10 Applications of Unification

By means of unification, we can extend resolution to first-order logic. As a special
case we obtain Prolog. Other theorem provers are also based on unification. Other
applications include polymorphic type checking for the language ML.

10.1 Binary resolution

We now define the binary resolution rule with unification:

{B,Al,...,Am} {_‘D,C]_,...,Cn}
{A1,..., Am,Cyq,...,Cplo providedBo = Do

As before, the first clause contaiBsand other literals, while the second clause
contains—D and other literals. The substitutienis a unifier of B and D (al-
most always anost generaunifier). This substitution is applied to all remaining
literals, producing the conclusion.

The variables in one clause are renamed before resolution to prevent clashes
with the variables in the other clause. Renaming is sound because the scope of
each variable is its clause. Resolution is sound because it takes an instance of
each clause — the instances are valid, because the clauses are universally valid —
and then applies the propositional resolution rule, which is sound. For example,
the two clauses

{P)} and {=P(g(x))}
yield the empty clause in a single resolution step. This works by renaming vari-

ables — sayx to y in the second clause — and unifyifyx) with P(g(y)). For-
getting to rename variables is fatal, becaBsg) cannot be unified withP (g(x)).

10.2 Factoring

In general, resolution must be combined with another ridetoring Fac-
toring takes a clause and unifies some literals within it (which must all have
the same sign), yielding a new clause. For example, starting with the clause
{P(x, b), P(a, y)}, factoring can derive the clau$f (a, b)}, sinceP(a, b) is the
result of unifying P(x, b) with P(a, y). Compared with the original clause, the
new one may be weaker, but more useful in resolution because it is shorter.

Some resolution provers combine the factoring and resolution rules. In other
words, they perform the factoring unifications at the same time as the unification
of the complementary literals in the two clauses. The binary resolutiorwithe
factoringis

{Blv---,Bk’A]_’"'vAm} {_|D19"'9_|D|5C1""7Cn}
{Al,...,Am,Cl,...,Cn}U
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whereo is the most general substitution such that
Bio =..-=Bko = Dio =--- = Djo.

However, modern provers such as SPASS perform factoring steps independently
of resolution steps. Factoring is necessary for completeness, since resolution by
itself tends to make clauses longer and longer, when only short clauses are likely
to lead to a contradiction.

The search space is huge: resolution with factoring can be applied in many dif-
ferent ways, every time. Modern resolution systems use highly complex heuristics
to limit the search. Typically they only perform resolutions that can lead (perhaps
after several steps) to very short clauses, and they discard the intermediate clauses
produced along the way. Dozens of flags and parameters influence their operation.

Example 37 Let us proveyx 3y =(P(y, X) <> =P(y, y)).
Negate and expand thke, getting

~VX3Yy ~((=P(y, X) vV =Py, y)) A (==P(y, y) Vv P(y, X)))

Its negation normal form is

XVY (=P(y, X) vV =Py, y)) A (P(y.y) vV P(y. X))

Skolemization yields

(=P(y,a) v =Py, y)) A (P(y,y) v P(y,a))

The clauses are

{(=P(y,a),=Ply.y)}  {P(y,y), P(y,a)}

We can apply the factoring rule to both of these clauses, obtaining two new
clauses:
{(—-P@@,a} {P@ a)

These are complementary unit clauses, so resolution yields the empty clause. This
proof is trivial! However, the use of factoring is essential, since the 2-literal
clauses must be reduced to unit clauses.

Observe what happens if we try to prove it without factoring. We can resolve
the two original clauses on the literBy, a). We obtain

{(=P(y,y), P(y. 9},

which is a tautology and therefore worthless.
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Example 38 Let us provedx [P — Q(X)] A IX[Q(X) — P] — IX[P <«
Q(X)]. The clauses are

{P,=QM)} {P,QX)} {=P,—=Q(x)} {=P,Q@)}
A short resolution proof follows. The complementary literals are underlined:

Resolve {P, =Q(b)} with {P, Q(x)} getting{P}
Resolve{—P, =Q(x)} with {—=P, Q(a)} getting{—P}
Resolve {P} with  {—=P} getting(]

Exercise 33 Show the steps of convertiix [P — Q(X)]AIX[Q(X) — P] —
AX [P < Q(x)]into clauses. Then show two resolution proofs different from the
one shown above.

Exercise 34 Is the clauseg{P(x, b), P(a, y)} logically equivalent to the unit
clause {P(a, b)}? Is the clause{P(y,y), P(y,a)} logically equivalent to
{P(y, @)}? Explain both answers.

10.3 Prolog clauses

Prolog clauses, also called Horn clauses, have at most one positive literal. A
definiteclause is one of the form

{_|A1v ceey _‘Am’ B}
Itis logically equivalent ta A1 A - - - A Am) — B. Prolog’s notation is
B« A ..., An

If m = 0 then the clause is simply written 8sand is sometimes calledfact
A negativeor goal clause is one of the form

{_|A17 ] _|Am}

Prolog permits just one of these; it represents the list of unsolved goals. Prolog’s
notation is
< A]_, ey Am.

A Prolog database consists of definite clauses. Observe that definite clauses can-
not express negative assertions, since they must contain a positive literal. From a
mathematical point of view, they have little expressive power; every set of definite
clauses is consistent! Even so, definite clauses are a natural notation for many
problems.
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Exercise 35 Show that every set of definite clauses is consistent. (Hint: first
consider propositional logic, then extend your argument to first order logic.)

10.4 Prolog computations

A Prolog computation takes a database of definite clauses together with one goal
clause. It repeatedly resolves the goal clause with some definite clause to produce
a new goal clause. If resolution produces the empty goal clause, then execution
succeeds.

Here is a diagram of a Prolog computation step:

definite clause goal clause
{=A1,...,—An, B} {=Bu1, ..., =Bm}
AN /

o = unify(B, —By)

new goal clause
{(—A10,...,mAno, —Boo, ..., " Bno}

This is alinear resolution (87). Two program clauses are never resolved with
each other. The result of each resolution step becomes the next goal clause; the
previous goal clause is discarded after use.

Prolog resolution is efficient, compared with general resolution, because it
involves less search and storage. General resolution must consider all possible
pairs of clauses; it adds their resolvents to the existing set of clauses; it spends
a great deal of effort getting rid of subsumed (redundant) clauses and probably
useless clauses. Prolog always resolves some program clause with the goal clause.
Because goal clauses do not accumulate, Prolog requires little storage. Prolog
never uses factoring and does not even remove repeated literals from a clause.

Prolog has a fixed, deterministic execution strategy. The program is regarded
as a list of clauses, not a set; the clauses are tried strictly in order. With a clause,
the literals are also regarded as a list. The literals in the goal clause are proved
strictly from left to right. The goal clause’s first literal is replaced by the literals
from the unifying program clause, preserving their order.

Prolog’s search strategy is depth-first. To illustrate what this means, suppose
that the goal clause is simply— P and that the program clauses &e— P and
P <« . Prolog will resolveP < P with <« P to obtain a new goal clause, which
happens to be identical to the original one. Prolog never notices the repeated
goal clause, so it repeats the same useless resolution over and over again. Depth-
first search means that at every ‘choice point, such as between Bsiag P
andP <« , Prolog will explore every avenue arising from its first choice before
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considering the second choice. Obviously, the second choice would prove the goal
trivially, but Prolog never notices this.

10.5 Example of Prolog execution
Here are axioms about the English succession: Zaan become King aftex.
Vx Vy (oldestsony, x) A king(x) — king(y))

VX Vy (defeaty, x) A king(x) — king(y))
king(richardlll)
defeathenryVII, richardlll)
oldestsothenryVIll, henryVll)

The goal is to prove kindnenryVIIl).
These axioms correspond to the following definite clauses:

{—oldestsony, x), —king(x), king(y)}

{—defeaty, x), —king(x), king(y)}
{king(richardlll)}
{defeathenryVIl, richardlll)}
{oldestsothenryVIll, henryVIl)}

The goal clause is
{=king(henryVIIl)}

Figure 2 shows the execution. The subscripts in the clauses are to rename the
variables.

Note how crude this formalization is. It says nothing about the passage of
time, about births and deaths, about not having two kings at once. Henry VIli
was the second son of Henry VII; the first son, Arthur, died in his youth. Logic is
clumsy for talking about situations in the real world.

The Frame Problem in Artificial Intelligence reveals another limitation of
logic. Consider writing an axiom system to describe a robot’s possible actions.
We might include an axiom to state that if the robot lifts an object at tintieen
it will be holding the object at timé + 1. But we also need to assert that the
positions of everything else remain the same as before. Then we must consider
the possibility that the object is a table and has other things on top af it

Prolog is a powerful and useful language, but it is not necessarily logic. Most
Prolog programs rely on special predicates that affect execution but have no log-
ical meaning. There is a huge gap between the theory and practice of logic pro-
gramming.
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definite clause goal clause

{—0s(y1, X1), =K(x1), K(y1)} {=k(henryVIIl)}

/

{os(henryV1Il, henryV1I)} {—os(henryVIII, x1), —=K(x1)}

/

{—defeat(yo, X2), =K(X2), K(y2)} {=k(henryVII)}

/

{defeat(henryVI11, richardlll)} {—defeat(henryVII, x2), =k(X2)}

/

{k(richardlll)} {=k(richardlll)}

/

O

Figure 2. Execution of a Prolog program (esoldestson, k= king)
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Exercise 36 Convert these formulae into clauses, showing each step: negating
the formula, eliminating> and<>, pushing in negations, moving the quantifiers,
Skolemizing, dropping the universal quantifiers, and converting the resulting for-
mula into CNF.

(Vx3y R(X, y)) = @y VX R(X, y))
Ay VX R(X, y)) = (vx3y R(X, y))

IXVyz((P(y) = Q(2)) — (P(X) = Q(x)))
=3y VX (R(X, y) < —3Z(R(X, 2) A R(z, X)))

Exercise 37 Consider the Prolog program consisting of the definite clauses

P(f(X,y) < QX), R(y)
Q(9(2) < R®
R(a) <«

Describe the Prolog computation starting from the goal clauseP (v). Keep
track of the substitutions affectingto determine what answer the Prolog system
would return.

Exercise 38 Find a refutation from the following set of clauses using resolution
with factoring.

{(=P(x,a), =P(x,y), =Py, X)}
{P(x, f(x)), P(x, a)}
{P(f(x),x), P(x,a)}

Exercise 39 Prove the following formulae by resolution, showing all steps of the
conversion into clauses. Remember to negate first!

VX (P Vv Q(x)) — (P Vv Vx QX))
axy (R(X, y) = Yzw R(z, w))

Note thatP is just a predicate symbol, so in particulais not free inP.

11 Modal Logics

There are many forms of modal logic. Each one is based upon two parameters:

e W is the set opossible worldgmachine states, future times,.)
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e Ristheaccessibility relatiorbetween worlds (state transitions, flow of time,

)

The pair(W, R) is called amodal frame
The twomodal operatorsor modalities ared and<:

e A meansA is necessarily true
e O A meansAis possibly true

Here ‘necessarily true’ means ‘true in all worlds accessible from the present one’.
The modalities are related by the law®> A >~ O—A,; in words, ‘it is not possible
that A is true’ is equivalent toA is necessarily false.

Complex modalitiesre made up of strings of the modal operators, such as
OOA, OCA, OOA, etc. Typically many of these are equivalent to othersn
a standard modal logi€JO A is equivalent taJ A.

11.1 Semantics of propositional modal logic

Here are some basic definitions, with respect to a particular fk&hdR):

An interpretation | maps the propositional letters to subsetd\of For each
letter P, the setl (P) consists of those worlds in whidp is regarded as true.

If w e WandA is a modal formula, thew I A meansA is true in worldw.
This relation is defined as follows:

wl- P — welP)

wlFOA <<= vl Aforall v such thatR(w, v)
wlFOCA <= vl Aforsomev such thatR(w, v)
wlFAVB<<—= wli-Aorwl-B

wl- AAB <<= wl- Aandw I B

wlF—-A <<= wl- Adoesnothold

This definition of truth is more complex than we have seen previously (82.2),
because of the extra parameté&/sand R. We shall not consider quantifiers at all;
they really complicate matters, especially if the universe is allowed to vary from
one world to the next.

For a particular fram&W, R), further relations can be defined in terms of
wlE A

Ewr1 A meansw [ Aforall w under interpretatio
FEw.r A meansw - Aforall wand alll
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Now = A means=w r A for all frames. We say thaA is universally valid
In particular, all tautologies of propositional logic are universally valid.

Typically we make further assumptions on the accessibility relation. We may
assume, for example, th& is transitive, and consider whether a formula holds
under all such frames. More formulae become universally valid if we restrict the
accessibility relation, as they exclude some modal frames from consideration. The
purpose of such assumptions is to better model the task at hand. For instance, to
model the passage of time, we might wdhto be reflexive and transitive; we
could even make it a linear ordering, though branching-time temporal logic is
popular.

11.2 Hilbert-style proof systems for the modal logics

Start with any proof system for propositional logic. Then add distribution
axiom
O0(A — B) - (OA— OB)

and thenecessitatiomule: A

OA
There are no axioms or inference rules far The modality is viewed simply
as an abbreviation:

SA % oA

The distribution axiom clearly holds in our semantics. The propositional con-
nectives obey their usual truth tables in each world.Alholds in all worlds,
and A — B holds in all worlds, therB holds in all worlds. Thus ifJA and
O(A — B) hold then so doe&IB, and that is the essence of the distribution
axiom.

The necessitation rule states that all theorems are necessarily true. In more
detail, if A can be proved, then it holds in all worlds; thereford is also true.

The modal logic that results from adding the distribution axiom and necessi-
tation rule is calleK. It is a pure modal logic, from which others are obtained
by adding further axioms. Each axiom corresponds to a property that is assumed
to hold of all accessibility relations. Here are just a few of the main ones:

T OA— A (reflexive)
4 OA— OOA (transitive)
B A— OCA (symmetric)

Logic T includes axiom T: reflexivity. Logic34 includes axioms T and 4:
reflexivity and transitivity. LogicS5 includes axioms T, 4 and B: reflexivity, tran-
sitivity and symmetry; these imply that the accessibility relation is an equivalence
relation, which is a strong condition.
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Other conditions on the accessibility relation concern formsaffluence
One such condition might state thatif andw-, are both accessible from then
there exists some that is accessible from both; andwo.

11.3 Sequent Calculus Rules fo&4

We shall mainly look a&4, which is one of the mainstream modal logics. As men-
tioned above4 assumes that the accessibility relation is reflexive and transitive.
If you want an intuition, think of the flow of time. Here are soi& statements
with their intuitive meanings:

e A means ‘A will be true from now on.”

e O A means ‘A will be true at some point in the future,” where the future
includes the present moment.

e OOCA means © A will be true from now on.” At any future timeA must
become true some time afterwards. In shértyill be true infinitely often.

e OOA means O A will be true from now on.” At any future timeA will
continue to be true. SGO0A andCO A have the same meaning $4.

The sequent calculus f@4 extends the usual sequent rules for propositional
logic with additional ones ford and<. Four rules are required because the modal-
ities may occur on either the left or right side of a sequent.

ATT=A I'*= A* A
———— (4 ——F—FF F  (Or)
OAT=A = A,OA
A T*= A* r=A,A

— (< _ (O
SAT=A & T=SA oA

The (or) rule is analogous to the necessitation rule. But momay be proved
from other formulae. This introduces complications. Modal logic is notorious for
requiring strange conditions in inference rules. The symbéland A* stand for
sets of formulae, defined as follows:

r* déf{DB | OB € T'}

AL OB | OB e A)

In effect, applying ruleor) in a backward proof throws away all left-hand formulee
that do not begin with & and all right-hand formulae that do not begin witk>a
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If you consider why theor) rule actually holds, it is not hard to see why those
formulae must be discarded. If we forgot about the restriction, then we could use
(or) to infer A= OA from A= A, which is ridiculous. The restriction ensures
that the proof ofA in the premise is independent of any particular world.

The rulecol) is an exact dual ofor). The obligation to discard formulae forces
us to plan proofs carefully. If rules are applied in the wrong order, vital informa-
tion may have to be discarded and the proof will fail.

11.4 Some sample proofs 14

A few examples will illustrate how th&4 sequent calculus is used.
The distribution axiom is assumed in the Hilbert-style proof system. Using
the sequent calculus, we can prove it (I omit the) steps):

A=A B=B
A— B,A=B
A— B,OA=1B
OA— B),DA=B
O(A— B),DA=0B

(=1
(@nh
(@
(@r)

Intuitively, why is this sequent true? We assum@A — B): from now on, ifA
holds then so doeB. We assumé&l A: from now on,A holds. Obviously we can
conclude thaB will hold from now on, which we write formally asIB.

The order in which you apply rules is important. Working backwards, you
must first apply rulecr). This rule discards nontformulae, but there aren’t any.
If you first apply @1, removing the boxes from the left side, then you will get

stuck:
now what?

=B

A— B, A=0B
A— B, OA=0B
O(A— B),DA=0B

?

(@r)
(@n
(@n

Applying (ar) before i is analogous to applyingr) before). The analogy
becausel A has an implicit universal quantifier: for all accessible worlds.

The following two proofs establish the equivaleniceé 0O A >~ OO A. Strings
of modalities, likeO<COO and O, are calledoperator strings So the pair of
results establish an operator string equivalence. The validity of this particular
equivalence is not hard to see. Recall that A means thatA holds infinitely
often. SoO<COC A means thatl< A holds infinitely often — but that can only
mean thatA holds infinitely often, which is the meaning of> A.
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Now, let us prove the equivalence. Here is the first half of the proof. As usual
we applyr) before@i). Dually, and analogously to the treatment of theules,
we applycl) beforecor):

CA=OA
OCA= CA
COCA= CA
OCOCA= CA
OOCO0CA= OCA

The opposite entailment is easy to prove:

OCA=0OCA
OCA= COCA
OCA=OCOCA

Logic $4 enjoys many operator string equivalences, includingA ~ COA.
And for every operator string equivalence, its dual (obtained by exchanging
with <) also holds. In particular>CA >~ GCA and COCOA ~ SOA hold.
So we only need to consider operator strings in which the boxes and diamonds
alternate, and whose length does not exceed three.

The distinct4 operator strings are therefare ¢, OO, &0, OGO and<C OO,

Finally, here are two attempted proofs that fail — because their conclusions
are not theorems! The modal sequént> OO A states that ifA holds now then it
necessarily holds again: from each accessible world, another world is accessible
in which A holds. This formula is valid if the accessibility relation is symmetric;
then one could simply return to the original world. The formula is therefore a
theorem ofS5 modal logic, but no&4.

= A
= OCA
A=0CA

Here, the modal sequetitA, &B = (A A B) states that ifA holds in some
accessible world, anB holds in some accessible world, then béthndB hold in
some accessible world. It is a fallacy because those two worlds need not coincide.
The (o) rule prevents us from removing the diamonds from bot#h and< B; if
we choose one we must discard the other:
B=AAB
B=<(AAB)
OCA, OB=<C(AAB)

The topmost sequent may give us a hint as to why the conclusion fails. Here we
are in a world in whichB holds, and we are trying to showA B, but there is no
reason whyA should hold in that world.

(@nh
(o)
(@h
(or)

(or)
(@r)

(or)
(@r)

(or)
)
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Exercise 40 Why does the dual of an operator string equivalence also hold?
Exercise 41 Prove the sequert(Av B) = CA, OB.

Exercise 42 Prove the sequertA v &B = (A Vv B). Together with the pre-
vious exercise, thisyields(Av B) ~ CA v OB.

Exercise 43 Prove the sequert(A — B), OA= CB.

Exercise 44 Prove the equivalendeé(A A B) ~ OA A OB.

12 Tableaux-Based Methods

There is a lot of redundancy among the connectives,, v, —, <>, V, 3. We

could get away using only three of them (two if we allowed exclusive ‘or’), but
use the full set for readability. There is also a lot of redundancy in the sequent
calculus, because it was designed to model human reasoning, not to be as small
as possible.

One approach to removing redundancy results in the resolution method.
Clause notation replaces the connectives, and there is only one inference rule.
A less radical approach still removes much of the redundancy, while preserving
much of the natural structure of formulae. This approach is often adopted by proof
theorists because of its logical simplicity; it is also amenable to implementation.

12.1 Simplifying the sequent calculus

The usual formalisation of first-order logic involves seven connectives, or nine in
the case of modal logic. For each connective the sequent calculus has a left and a
right rule. So, apart from the structural rules (basic sequent and cut) there are 14
rules, or 18 for modal logic.

Suppose we allow only formulae in negation normal form. This immediately
disposes of the connectives and<«>. Really— is discarded also, as it is allowed
only on propositional letters. So only four connectives remain, six for modal logic.

The greatest simplicity gain comes in the sequent rules. The only sequent rules
that move formulae from one side to the other (acrosstheymbol) are the rules
for the connectives that we have just discarded. Half of the sequent rules can be
discarded too. It makes little difference whether we discard the left-side rules or
the right-side rules.
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Let us discard the right-side rules. The resulting system allows sequents of
the form A= . It is a form of refutation system (proof by contradiction), since
the formulaA has the same meaning as the sequeAt=. Moreover, a basic
sequent has the form of a contradiction.

-AIl'=s Al'=

m (baS|C) = (cut)
A B T'= Al Al's BI= )
AAB,T'= Av B, T=
Alt/X.T= AT=
VX AT = IXAT =

Rule @) has the usual proviso: it holggovided xis not free in the conclusion!
We can extend the system 8 modal logic by adding just two further rules,
one forO and one for>:
A’ F :> A7 F* :>

(@h

_ — (<
OAT'= OCA T = ©h

As previously,I'* is defined to erase all non-formulee:
r*%oB|oBer)

We have gone from 14 rules to four, ignoring the structural rules. For modal
logic, we have gone from 18 rules to six.

A simple proof will illustrate how the simplified system works. Let us prove
VX (A — B) = A — Vx B, wherex is not free inA. We must negate the formula
and convert it to NNF; the resulting sequentAsa 3x =B, VX (—A Vv B)=.
Elaborate explanations should not be necessary because this sequent calculus is
essentially a subset of the one described in 86.

A, -B, -A= A, —-B, B=
A, —-B, -AvB=

A, -B, VX (-AV B)=

A, Ix—-B, Yx(—Av B)=
AA3IX-B, VX(—-Av B) =

(v
(v
@an
(A

12.2 Mechanising the technique

Some proof theorists adopt the simplified sequent calculus as their formalisation
of first-order logic. It has most of the advantages of the usual sequent calculus,
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without the redundancy. But can we use it as the basis for a theorem prover?
Implementing the calculus (or indeed, implementing the full sequent calculus)
requires a treatment of quantifiers. As with the resolution method, we can use
unification together with Skolemization.
First, consider how to add unification. The rwe substitutes some term for

the bound variable. Since we do not know in advance what the term ought to
be, instead substitute a free variable. The variable ought to be fresh, not used
elsewhere in the proof:

Alz/X], T =

vl
VXA T = D

Then allow unification to instantiate variables with terms. This should occur when
trying to solve any goal containing two formulee A and B. Try to unify A

with B, producing a basic sequent. Of course, instantiating a variable updates the
entire proof tree.

Rule @, used in backward proof, must create a fresh variable. That will no
longer do, in part because we now allow variables to become instantiated by terms.
We have a choice of techniques, but the simplest is to Skolemize the formula. All
existential quantifiers disappear, so we can discardamle

Previously (88.2) we performed Skolemization on formulae in prenex form: all
guantifiers at the front. The outermost existentially-bound variable was replaced
by a function, which took as many arguments as there were enclosing universal
quantifiers. But there is no need to pull quantifiers to the front. Precisely the same
approach works, although now the existential quantifiers are found in subformulae
instead of being lined up in a row.

The Skolem form oty 3z Q(y, z) A Ax P(x) isVy Q(y, f(y)) A P(@). The
subformuladx P(x) goes toP(a) and not toP(g(y)) because it is outside the
scope of thery.

12.3 Sample proofs

To demonstrate the system, let us prove the forrauldy [P(x) — P(y)]. First
negate it and convert to NNF, gettix 3y [P(X) A =P(y)]. The Skolemized
sequent to be proved x[P(x) A =P(f(x))]=. Unification completes the
proof by creating a basic sequent; there are two distinct ways of doing so:

z— f(y)ory— f(2
P(y), =P(f(y)), P(2), =P(f(2)) =
P(y), =P(f(y)), P A=P(f(2) =
P(y), =P(f(y)), VX[P(X) A =P(f(X))] =
Py) A =P(f(y), YX[P(X) A =P(f(x)] =
VX[P(X) A =P(f(X)]=

basic
(AD
)
(Al
(v
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In the first inference from the bottom, the universal formula is retained because it
must be used again. In principle, universally quantified formulsae ought always to
be retained, as they may be used any number of times. | normally erase them to
save space.

Pulling quantifiers to the front is not merely unnecessary; it can be harmful.
Skolem functions should have as few arguments as possible, as this leads to shorter
proofs. Attaining this requires that quantifiers should have the smallest possible
scopes; we ought to push quantifiers in, not pull them out. This is sometimes
calledminiscopeform.

For example, the formulax Vy [P (x) — P(y)]is tricky to prove. But putting
it in miniscope form makes its proof trivial. Let us do this step by step:

Negate; convert to NNF: Vx 3y [P(x) A =P (y)]
Pushinthgy: Vx[P(x) A 3y—=P(y)]
Pushintherx: Vx P(x) A 3y—P(y)

Skolemize: Vx P(x) A =P(a)

The formulavx P(x) A —P(a) is obviously inconsistent. Here is its refutation in
the modified sequent calculus:

y—a
P(y), -P(a) =
vx P(x), =P(a) =
Yx P(x) A =P(a) =

basic
v
(A

A failed proof is always illuminating. Let us try to prove the invalid formula
VX[P(X) vV Q(X)] = VX P(X) v ¥x Q(X).

Negation and conversion to NNF giv8g =P (x) A 3x —=Q(X), VX[P(X) Vv
Q)]

Skolemization gives-P(a) A =Q(b), YX[P(X) v Q(X)].

The proof fails becausa and b are distinct constants. It is impossible to
instantiatey to both simultaneously.

yH—a y > b?7??

—P(a), =Q(b), P(y)= =P(a), =Q(b), Q(y) =
—P(@), =Q(b), P(y) v Q(y) =

—P(@), =Q(b), VX[P(X) v Q(X)] =

—P(@ A=Q(b), VX[P(X) vV Q(X)] =

(vh

)
(A
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12.4 Tableaux-based theorem provers

An analytic tableaurepresents a partial proof as a setbofdnchesof formulae.
Each formula on a branch expandeduntil this is no longer possible (and the
proof fails) or until the proof succeeds.
Expanding a conjunctioA A B on a branch replaces it by the two conjuncts,
A andB. Expanding a disjunctioA v B splits the branch in two, with one branch
containingA and the other brancB. Expanding the quantificationx A extends
the branch by a formula of the for#[t/x]. If a branch contains botA and—A
then itis said to belosed When all branches are closed, the proof has succeeded.
A tableau is, in fact, nothing but a compact, graph-based representation of a
set of sequents. The branch operations described above correspond to our sequent
rules in an obvious way.
Quite a few theorem provers have been based upon the tableau method. The
simplest by far is due to Beckert and Posegga (1994) and is datied”P. The
entire program appears below! Its deductive system is similar to the reduced se-
quent calculus we have just studied. It relies on some Prolog tricks, and is cer-
tainly not pure Prolog code. It demonstrates just how simple a theorem prover can
be. leanT?P does not outperform big resolution systems. But it quickly proves
some fairly hard theorems.

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).
prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,FmIl,FreeV)),
append(UnExp,[all(X,FmI)],UnExpl),
prove(Fml1l,UnExpl,Lits,[X1|FreeV],VarLim).
prove(Lit,_,[L|Lits],_, ) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_, )).
prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

The first clause handles conjunctions, the second disjunctions, the third uni-
versal quantification. The fourth line handles literals, including negation. The
fifth line brings in the next formula to be analyzed.

You are not expected to memorize this program or to understand how it works
in any detail.
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Exercise 45 Use the tableau calculus to prove examples given in previous sec-
tions.
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