
Regular Languages and
Finite Automata

A C Norman, Lent Term 1996

Part IA

1 Introduction

This course is short, but it is present in Part 1A because of the way it introduces
links between many different parts of Computer Science and explains concepts
that you will come across repeatedly throughout the rest of the course. One result
of the topic being multi-faceted is that there are quite a fewdifferent ways of
presenting it. Lectures covering this material were given by Andy Pitts in 1995
(to Part IA) and by Ken Moody to the Diploma in Computer Science class this
year. Copies of their lecture notes may be available as backupto these ones, but
although the major results they present are just the same as the ones I do the order
in which they cover things and the way in which they prove results will generally
differ from mine. I view this as good, in that it means that strong students have an
opportunity to see two or three different perspectives on the material, while those
who find my explanations hard going may find those in one of the other sets of
notes more comfortable. When it comes to examination questions and the like it
will not matter whose or which proofs of theorems you use, provided you get the
details correct in the proofs that you do use.

I decided that I would recommend just one book: “Languages and Machines”
by Sudkamp[1]. There will be plenty of other textbooks that cover the material
in perfectly adequate detail. Since this is only a six lecture course the important
parts of it will tend to form just one or two chapters in a book:In Sudkamp it is
chapters 6 and 7 that are most relevant.

These notes arenot a complete substitute for the textbook. In particular the
book contains lots of examples and exercises, while these notes do not. Also the
document preparation system I am using to prepare these notes means that it is
a bit of a pain for me to prepare pictures, and as you will see onthe blackboard
during lectures these are a useful way of giving an informal illustration of a finite
machine—the book is better illustrated than these notes. Once again I will stress
that if you are going to understand this course fully you willneed to work through
collections of little examples. As well as finding some in thebook you can look
in past examination papers (until recently this topic was inPart IB, and it has been
and still is presented to the Diploma students, so those are the papers to check).

2 What is this course about?

The main result presented here is that several areas that relate to computers and
that start off looking as if they are quite separate are in fact very closely related.
The word used to indicate the commonality is “regular”.

1

2.1 Hardware made using flip-flops

In the Part 1A Digital Electronics course you learn how to design circuitsusing
flip-flops. In general the circuits involved will have several inputs (in addition
to a clock) and several outputs. You may consider the difference between Mealy
Machines (where the output depends on both input and state) or Moore machines
(where the output depends only on the state of the flip-flops).In a hardware course
it is also necessary to think about the difference between (say) J-K and D flip-
flops, and to wonder how to build circuits using the smallest possible number of
components. In this course we look at a clean abstraction of all this. A “Finite Au-
tomaton”1 will be a system with a finite number of distinct internal states. Rather
than having several separate input wires we view it as being offered inputsymbols
from somealphabet. Each symbol of course encodes a possible configuration of
signals on the input wires of any physical realisation of theautomaton. One nom-
inated state of the machine is itsinitial state, and each time it is presented with
an input symbol it moves to a new state in accordance with somedefinite rule.
This rule can be viewed as antransition functionwhere the new state is selected
on the basis of the previous state and the symbol seen. To keepthings as simple
as possible, the automaton only has one (binary) output, andthat depends solely
on which state it is in (ie we have a Moore machine). This output arrangement
can be described by listing each of the states where the output is true. Such states
are then referred to asaccepting states. The way such systems will be looked at
will involve considering what sequences of input symbols cause the machine to
enter an yield an outputtrue: such input sequences are said to beacceptedby the
machine.

Looking ahead to where we need to conduct some proofs, I will formalise the
above by suggesting that a finite automaton can be represented using the following
five components:

A set of states:Q. I will generally write the names of individual states as letters
with subscripts, so sayQ = {qi|1 ≤ i ≤ N} for some natural number N;

An alphabet:Σ. In my examples I will use lower case letters as “symbols”, so
for instanceΣ = {a, b, c}. Note that I will insist on having a definite finite
alphabet associated with any machine;

An initial state: By convention I will useq0;

A transition function: A (total) function fromQ × Σ to Q;

A set of accepting states: A subset ofQ.

1Also sometimes known as Finite Machines, or Finite State Machines, and later in this course
as Finite Deterministic Acceptors, FDAs!

2

This course will provide ways of describing exactly what automata of this sort
can do. A useful idea you might like to hold in your mind is of automata that are to
be used as combination locks. The lock starts off in some defined initial state, and
the user feeds it symbols. In some configurations the lock “accepts” the sequence
of symbols seen thus far and presumably allows the user to open the door to the
bank vaults.

Viewing this course as one that talks about possible behaviours of sequential
hardware gives the course a strong link with other hardware courses.

2.2 Discrete Mathematics—and beyond

You have just seen that I set up a description as a slightly idealised bit of hardware
as a collection of five items each of which looks just as if it came out of the
Discrete Mathematics course. This is not an accident! In this course I am able to
develop part of a mathematically styled description of hardware behaviour. The
value of using mathematical notation is that it helps us whenwe need to produce
formal proofs. We need these proofs because some of the properties of finite
hardware and the other things I describe are not intuitivelyobvious. The main
results that will be proved here are ones that show that certain forms of behaviour
can be realised using hardware build out of finite collections of flip flops and
gates and that some others can not. I will also be able to provethat (at least in
principle) it is always possible to tell if two circuits implement the same behaviour.
These proofs will use some of the mathematical notation and techniques from the
Discrete Mathematics course and represent an early clear-cut Computer Science
pay-off from it.

In some senseany real physical computer is finite and so falls within the scope
of the analysis done in this course. However it is generally much more useful to
agree that the processing and arithmetic parts of a computerare finite (and hence
belong here) but to imagine that the discs and memory attached are of unlimited
size. That idealisation is considered in some depth in a PartIB course (Computa-
tion Theory), which to a large extent can be thought of as a follow on to this one.
It is clearly important to understand the capabilities and limitations of finite au-
tomata before worrying about ones that have unbounded memory at their disposal!
The The Computation Theory course is again able to develop a mathematically
styled analysis of the behaviours of the computing systems that it considers.

2.3 Formal description of “languages”

Now, and perhaps amazingly, I will show that there is a link between this course
and the Part IA courses that involve programming, ie the ones that use ML and
Modula-3. The link comes about because this course can be seen as a precursor to

3

Part IB ones on how compilers work. Part of the process of designing acomputer
language involves setting up a precise description of what sequences of symbols
and words can form valid fragments of program. Part of writing the software
that implements a programming language involves seeing what the user had writ-
ten and deciding if it matches what the language designer wanted. Some things
calledphrase structure grammarsprovide a well established tool for describing
languages. These grammars work using an alphabet ofterminalsymbols and a set
of non-terminals. The understanding is that terminal symbols are items that the
user sees or puts into the text of a program, while non-terminals (for which I will
use upper case here) control the internal workings of the grammar. A particular
grammar will always have one nominated non-terminal that isits initial symbol
(I will generally use a symbol calledS for this), and a set2 of production rules.
For the purposes ofthis course I will consider production rules of somewhat lim-
ited forms. The limitations involved lead to what are known as regulargrammars.
They are the simplest sorts of phrase structure grammars, and an understanding of
them is clearly useful before moving on to more general cases. In these grammars
a production is in one of the following three forms:

1. A → a

2. A → aB

3. A → ε

whereA andB stand for non-terminals anda for a terminal. The symbol “ε” is
used here to indicate “nothing”. Some people would write a blank in place of it,
but I believe it will be clearer here to put some symbol that stresses the nothingness
that is there.

A grammar can be used to generatesentencesin a language. You start with just
the initial symbol, and then at each step in a derivation you identify a non-terminal
in the current string and use one of the productions to replace it with whatever is to
the right of the “→” in a suitable production. The process stops when there are no
non-terminals left to replace. Any string of terminals thatresults is described as a
sentencegenerated by the grammar. The set of all possible sentences that a given
grammar can generate is known as thelanguagethat the grammar describes. Some
grammars define languages that only have a finite number of sentences in them,
others define languages that have an infinite number of sentences3. You will find

2By saying that it is asetI implicitly indicate that any particular production only occurs once
in it.

3As an exercise you could try to write an ML program that startswith a description of a some
grammar and creates a lazy list of all the sentences it can generate. You will not necessarily find
this easy, especially if you try to ensure that each possiblesentence is included exactly once in the
output.

4

examples of grammars later on in these notes. For now I am justgoing to report
that one of the key results I will prove is that for any regulargrammar is is possible
to construct a finite automaton that can be used to recognise when sequences of
symbols are in the language that the grammar describes. In fact if I look ahead
to the Unix Tools course you get towards the end of the year I can imagine that
you may hear mentioned particular commonly available unix programsyacc and
lex that are often used when a new programming language must be implemented.
Thelex program represents direct practical use of the ideas I discuss here.

Just as finite automata could be extended to one with unbounded memory,
and that led to Part IB material, so phrase structure grammars can exist in more
general forms than the ones I limit myself to here. These moregeneral grammars
are discussed in the Part 1B course on Compiler Construction.

2.4 Pattern matching

My fourth perspective onto this course is pattern matching,typically in strings of
letters. Text editors all provide ways of searching for simple strings in the file
being edited. But sometimes it is useful to specify much more elaborate patterns.
An idea that has been found to be very convenient to use and quite respectably
powerful is to build patterns up in the following way:

1. Any single letter can be used as a pattern. So for instancea or z can be used
just on its own to be a pattern that matches just that one literal character in
the text being scanned;

2. The patternλ matches an empty string. Having the ability to cope with this
degenerate case is included in the name of completeness and consistency;

3. The pattern∅ is a pattern that does not match anything(!), again included
for completeness4;

4. If P1 andP2 are two existing patterns then we can write one after the other
(P1P2) to make a composite pattern that will match anything where the first
part of it matchesP1 and the second part matchesP2. The parentheses here
are just to stress grouping and are not an essential part of the notation. Note
that for any patternP the patternsPλ andλP will be equivalent to justP ;

5. If P1 andP2 are patterns then(P1|P2) is a pattern (thealternationof P1 and

4Other presentations of this material might useε in place ofλ or 0 and1 in place of these two
special patterns. I use the symbols I do here so as to be consistent with Sudkamp’s book, but you
should neither be surprised nor upset if when you find alternative notations in use elsewhere.

5

P2) that will match anything that either of its constituents do5. For anyP

we haveP |∅ = ∅|P = P ;

6. If P is a pattern thenP ∗ is a pattern that matches strings that can be split
into zero or more substrings each of which is matched byP . This means6

thatP ∗ = λ | P | PP | PPP | The “∗” is known as the Kleene Star,
and the expressionP ∗ is thearbitrary repetitionof P .

Patterns build up in this way are known asRegular Expressions, and many
text editors and a variety of other Unix (and indeed other operating system) tools
use them. You will (of course) come across extended forms of regular expressions
which include other operations beyond the ones listed above. I will comment
on some such extensions later on. Clearly there are two interesting questions
about regular expressions. The first is “What sorts of patterncan they be used to
describe?” and the other is “How can we write a program that matches regular
expressions against some target text?”

This course answers both of these questions by showing that finite automata,
regular grammars and regular expressions are all very closely related: given any
one you can derive one of the others and thus describe its behaviour or give a me-
chanical way of recognising strings that match it. Perhaps the biggest insight that
this gives is that a unifying way of looking at things is to view them aslanguages.
So we will show that any finite automaton can be completely characterised by
the language that it accepts, and that this language can be described by a regular
grammar, and that furthermore it is exactly the collection of strings matched by
some particular regular expression.

3 The main results that will be proved

In this section I collect a summary of the results that I will prove:

Non-deterministic automata: I will define non-deterministic finite automataas
an extension of the original sort of finite machine discussedabove, and then
show that this does not change the range of possible behaviours;

Closure properties and Extended regular expressions:I will look at the in-
tersection and complement of regular languages, and show that they are

5Again some people will want to write concatenation as if it had been multiplication, and will
use a ‘+’ sign where I use ‘|’. Yet others will use ‘∪’ for the “or” operation.

6You should be somewhat suspicious any time you see a remark with “. . . ” in it, since there are
occasions where infinite formulae have unexpectedly different properties from finite ones. Thus
the notation used here is intended as an informal way to help you understand the star operation but
care will be needed when we get to formal proofs.

6

regular. In consequence allowingand andnot operations in the construc-
tion of regular expressions gives just a short-hand for expressions that could
have been written without the new operators;

Arden’s Rule: a result about the languageP ∗;

For any regular expression there is a regular grammarthat defines exactly
the same language;

For any regular language there is an automatonthat accepts it;

For any automaton there is a regular expressionthat characterises its behav-
iour. The fact that automata and regular expressions are so closely linked
constitute Kleene’s Theorem;

There are non-regular languages,and a result known as thePumping Lemma
can often be used to show that a non-regular language is indeed non-regular;

Decision problems:Given two regular expressions or grammars it is possible to
decide (systematically and in a finite amount of time) whether they generate
the same language. Similarly given two pieces of sequentialhardware it is
possible (in principle) to decide if their behaviours will be the same;

Some things are hard: Regular languages are one of the nicest, best-behaved
sorts of language around. However I will at least be able to describe (if not
actually prove) some issues relating to them which show thatthey are not at
all trivial.

Given the equivalence between the languages defined by regular grammars,
finite automata and regular expressions it will not end up mattering much which
formalism is used as a reference definition of what a regular language is. I will use
a definition that a regular language is a language generated by a regular grammar,
and prove onwards from there. If somebody else defines a regular language as the
language accepted by a finite automaton and then proves that certain grammars
define exactly the same classes of language that is OK by me.

4 Regular Grammars

I should start by giving a few examples of regular grammars, together with infor-
mal descriptions of the languages that they generate:

7

1. All possible strings over the alphabet{a, b} that are of even length:

S → ε

S → aT

S → bT

T → aS

T → bS

2. A first attempt at a formal description of what an integer looks like. It insists
on a digit followed by an arbitrarily long sequence of additional digits:

S → 0D

S → 1D

S → 2D

S → 3D

S → 4D

S → 5D

S → 6D

S → 7D

S → 8D

S → 9D

D → ε

D → 0D

D → 1D

D → 2D

D → 3D

D → 4D

D → 5D

D → 6D

D → 7D

D → 8D

D → 9D

You might observe that this way of writing things is somewhatbulky and
clumsy. It would be possible to describe a syntax for floatingpoint numbers
using this formalism, but perhaps it would not be very convenient.

8

3. Either the word “sit” or the word “sing”:

S → sA

S → sB

A → iC

B → iD

C → t

D → nE

E → g

The purpose of this example is to stress that the initial definition of a phrase
structure grammar is concerned withgeneratinglanguages and that they are
not automatically directly convenient if what you want to dois to check if
a given string is in a language. Suppose here that your string starts offsi

then you need some foresight to tell whether thes and thei came by using
the productions fromS throughA or B. In this case you might be able to
produce a different grammar that accepts the same language but where you
can check input character by character. Is this always the case?

Given a specification of a formal concept (such as that of a “regular grammar”)
a natural and important question to ask is how robust the definition is. What
happens if the definition is changed a little? Here I will investigate three ways of
altering my original definition of a regular grammar and I will show that none of
these changes alter the class of languages that can be defined. This will tend to
support a claim that this class is a good and natural one to study. Even though
the changes I make to the regular grammars leave the class of languages that can
be described unaltered that can make a real difference to howeasy it can be to
construct a grammar that fits a given language. The alterations I will consider are:

• For variant one I disallow productions of the formA → x, so that only the
other two cases are permitted;

• For variant two I add in the possibility of productions such as A → B

where the right hand side consists of just a single non-terminal. I will refer
to such productions asλ-productions;

• The third variation will demand that for any non-terminalA and any ter-
minal x there is exactly one non-terminalB and a production of the form
A → x B. In this case there will be a total function (non-terminals×terminals→non-
terminals) that defines whichB is associated with any pair(A, x). Produc-
tions of the formA → ε are still allowed—the constraint I am applying just

9

says what happens when a terminal symbol is present on the right hand size
of a production. I will describe a grammar that is limited in this way as be-
ing deterministic, and the total function involved will be called itstransition
function.

In the first of these cases I need to show that any language described by an
ordinary regular grammar can be described by a grammar in therestricted form.
This is in fact very easy indeed! If the original grammar contained a production
A → x then a new non-terminal (Q say) can be invented, and the offending rule
can be replaced by two new productions:

A → x Q

Q → ε

This simplification of regular grammars may lead to a (very slight) simplification
of some proofs that use them.

The next adjustment represent generalisations of my first definition of what
a regular grammar is. Allowingλ-productions often makes it easier to construct
a grammar that will describe some useful language, and I willillustrate that fact
before showing that the extension is not strictly essential.

Consider two regular languagesL1 andL2 each described by regular gram-
mars (sayG1 andG2). I will show how to produce a new grammar (usingλ-
productions) that generates just those strings that could be formed by concatenat-
ing a sentence fromL2 onto the end of a sentence fromL1. This construction will
then suffice to show that the set of regular languages is closed under the operation
of concatenation.

Firstly I note that the names used for non-terminals in a grammar are not very
important, so I perform systematic re-naming in my originalgrammars to ensure
that they each end up with different sets of non-terminals. The starting symbol
in the first will now be calledS1 and the starting symbol in the secondS2. I
also simplify each grammar in accordance with my restriction as described above.
Now to join the two grammars together I just find each ruleA → ε in G1 and
convert it into aλ-productionA → S2. I let S1 be the starting symbol for
this adjusted grammar and assert that it can generate exactly all the things that
consist of a string fromL1 followed by one fromL2, and that on tracing through
a derivation the activation of a production that leads toS2 shows where (in the
string being generated) one part ended and the other starts.

Now to make this useful I need to show that theλ-productions introduced can
be removed to leave a grammar in standard form that generatesthe same language.

I will achieve this by removingλ-productions one at a time. I will start with
a grammarG and will search it to find aλ-productionA → B, with A differ-
ent fromB and such that this particularλ-production has not been treated before.

10

Next I will find all productions withB on their left hand side, which I will write
here asB → bi Ci (though it should be understood that a caseB → ε is
also possible. I then extend the originalλ-production with a set of new produc-
tions of the formA → b1 Ci. It should be clear that any sentence that could
have been generated by the original grammar can also be generated by the new
one, but without ever activating theλ-production. Note that extending the set of
productions will not be allowed to introduce duplicates, and that I am leaving the
now-redundantλ-production in there for the while.

Because the set of non-terminals present in a grammar is finitethere are only
a finite number of possibleλ-productions that could possibly be present, so even
though the process described above can potentially introduce new ones after a
finite amount of work all the ones that there are will have beensubject to the
above conversion. It is then possible to tidy up the grammar by just removing the
λ-productions. Any of the formA → A were unimportant anyway (use of them
can never help generate a sentence that could not be generated otherwise), while
the rest have been expanded out. What will result will be an ordinary regular
grammar that generates the same language as the original extended one.

You might like to observe that the above transformation was done in a slightly
tricky way. The new productions were added to the grammar butremoving the old
ones was left until the very end. It was done that way because expanding away
oneλ-production might generate others, an in particular could re-introduce ones
you thought you had got rid of before. Doing things my way avoids such trouble
at the cost of keeping a record of whichλs have been processed and so that each
is only considered once.

My final variation on regular grammars (deterministic ones)is a restriction, so
I need to show that any ordinary grammar can be converted intoa deterministic
one that generates the same language. The motivation for this will become very
apparent in the next section, so here I will just describe therecipe to use. This is
known as thepower-set construction. Given a set, its power-set is the set of all sub-
sets. So for example the powerset of{a, b, c} is{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
Here I will take the set of non-terminal symbols present in a grammarG and take
its power set. I will then show how to construct a new grammar whose non-
terminals are the members of this power-set, such that that new grammar is de-
terministic and it generates the same language as the original language. This is
potentially a somewhat painful procedure to apply in practice, since if a set has
n elements its power-set will have2n. So if the original grammar had say 20
non-terminals the new one will have220 = 1048576. The new grammar that I am
building will use the same set of terminal symbols as the original. So now I just
need to identify a starting symbol and explain what its production rules are.

If S is the starting state of the original grammar I make{S} start the new one.
Although elsewhere in these notes I will tend to use single letters as names for

11

non-terminals, in the power-set grammar I will write them assets or sometimes
letters in the style A, B standing for such sets. If you like you can re-name them
to something neater once the construction has been completed.

Now for the production rules. To make the new grammar deterministic I need
to show how how for every possible state and every possible terminal symbol I
can give a ruleA → x BA,x. I will do this by showing whatB to use in each
such case. The non-terminalsA andB will be subsets of the non-terminals in the
original grammar. Write this asA = {A1, A2, . . .}. Now for each terminal symbol
x identify (in the original grammar) each production of the form Ai → x Bi

whereAi is one of the symbols that is a member ofA. I then letB be the set of
all theBi.

Also add a productionA → ε to the new grammar if and only if a production
Ai → ε was present in the original (againAi is a member ofA). And that is all
there is to it! The construction clearly only involves a finite amount of work7.

Now I need to show both that the new grammar is deterministic and that it
generates exactly the same language as the original one. Well the first of these
is easy—its very construction was such that productions that generated new non-
terminals did so in a way where the non-terminal on the right hand side was given
as a function of the other two symbols involved.

I will be slightly more formal this time about showing that the original and new
grammars generate the same language. Firstly I will argue that any sentence that
can be generated by the original grammar can also be generated by the new one,
and then I will show that the new grammar does not generate anynew extraneous
sentences.

Suppose we have a sentence generated by the original grammar. Without loss
of generality I can suppose that the original grammar does not contain anyλ-
rules8. In such cases any sentence that isn symbols long will be derived by
applying justn productions of the formA → x B plus one of the formA → ε.
This ability to argue by counting is one of the pay-offs from having shown that
λ-productions are not needed. Now I will show that there is a derivation of length
n for the same sentence in the new grammar.

Let Q0 be the state{S} that is the starting state of the new grammar. Letxi

be thei-th character of a sentence generated by the original grammar. Observe
that in the deterministic grammar we have productions from each state for every
possible input symbol, and we can use these to define a unique sequence of states

7In quite a few cases a simple-minded use of the above recipe produces a new grammar that
has a lot of productions in it that could never possibly by used in any derivation starting from{S},
and those with tidy minds might like to arrange either not to generate them or to remove them after
they have been generated. I will defer issues of optimisation until later on.

8If it originally did we could have removed them before starting the real part of the conversion
to deterministic form.

12

Qi by demanding that productionsQi → xi+1 Qi+1 exists. I then assert that
there will also be a productionQn → ε present. To see that just check that the
definition of the new machine is such that at each stage the state that the original
one was in afterk productions had been used will be a member of the stateQk.

Equally if a sentence can be generated by the deterministic grammar there has
to be a derivation for it using the original grammar. Here I assert an induction
hypothesis. It is that withQk defined as above there are derivations of lengthk

in the original grammar that would lead fromS to x1 . . . xk Sk for every non-
terminal (of the original grammar)Sk that is a member ofQk. The base case
k = 0 is immediate, and the way that the deterministic grammar wasconstructed
was exactly such as to make the induction step true. Thus the result is true in
general. Again adding a consideration of the productions that yieldε finishes the
proof.9

The main conclusion from all this is that the original definition of regular
grammars was probably a good and useful one. The fairly minoradjustments
to exactly what sort of productions were permitted left the class of languages
that could be described unaltered, as did the more substantial restriction to the
deterministic case.

5 Finite Automata

The real reason for introducing deterministic regular grammars is that they are
rather obviously equivalent to finite machines, the like of which could be made
using flip-flops. Instead of talking about non-terminal symbols I will consider
machine states. Instead of terminal symbols I will think of input symbols pre-
sented to my machine. And where a regular grammar can have productions from
some non-terminals toε showing that a sentence can stop at some point, I will
refer to some of the states of my machine as beingaccepting. Obviously the start-
ing symbol for a grammar corresponds to the state the machineis in when first
switched on.

A machine of this sort can be used by feeding it symbols (from its input al-
phabet,Σ) one at a time. When the machine is in an accepting state this fact is
visible10. The machine accepts a string of symbols if feeding that string in (start-
ing with the machine in its proper starting state) leads the machine to an accepting
state. The language accepted by the machine is just the set ofall strings that it
would accept.

9Observe that I have not written out all the details here—that is left as an exercise for you to
do for your supervisor!

10I like to think of the machine as having a green light on its topthat comes on when the internal
configuration is in an accepting state.

13

Because a machine like this only produces one bit of output, the indication of
acceptance, and because it is thus useful to think of its behaviour in terms of the
language that it accepts, it is common to refer to the system as aFDA. This is an
acronym for Finite Deterministic Acceptor.11

It should now be clear that given the transition rule for any FDA it would
be possible to write out a regular grammar that generated itslanguage. And in
view of the result about deterministic regular grammars, itis possible to takeany
regular grammar at all and, after converting it to deterministic form, view it as a
description of a piece of hardware. Both of these conversionsare ones that you
should probably try out on examples, and there will be plentyof exercises to try
out in both the text-book and in past exam papers.

The hardware-oriented view of things tends to focus most on recognising
strings that form part of a language. You feed the string intoa machine and see if
it is accepted. The grammar approach is more oriented towards a global descrip-
tion of a language, and provides a way in which you can generate sentences, but
in general is less concerned with testing a sentence to see ifit is in the some given
language. Thus the two views are complementary. The link between them is both
a bridge between hardware and software and a piece of practical technology that
can be used to help language people test input or hardware people generate all
possible behaviours of their systems.

With regular grammars I looked for restrictions and generalisations and found
several to study. With regular grammars in mind it proves natural to define an
extended sort of finite state machine. This is anFNA, or Finite Non-deterministic
Acceptor.

Recall that a FDA has an input alphabet (Σ), a set of states (Q), a transition
function (δ : Σ × Q → Q), an initial state and a set of accepting states. An FNA
will be very similar but I can generalise in three respects:

The most important oneInstead of a transition function I will generalise things
to allow an arbitrary relation onΣ × Q × Q as the specification of what
the machine is allowed to do when presented with new input. You might
remember from the Discrete Mathematics course that the set of functions
A → B is no more than a subset of the set(R)(A,B) of all possible re-
lationships onA,B, and so this really is a sensible sort of generalisation to
consider. The effect will be that for some symbol-state combinations there
may be two or more successor states permitted, and for some there may be
none at all;

11Again notation in this whole area is a mess. Some people wouldre-order the words and hence
have the acronym as DFA rather than FDA, others would call it a“machine” not just an “acceptor”
(DFM), or a “finite state” machine (FSM, DFSM). Generally there is nothing sinister or subtle in
all these different notations, there are just lots of different names for the same concept.

14

optionally I can allow for state-changes in the machine that do not involve
processing any input. I can build this into the formalisation by extending
my transition relation to be on(Σ⊕ {λ})×Q×Q so that the new pseudo-
symbolλ marks a transition that does not involve any real input. Thisof
course corresponds exactly to the use ofλ-productions in regular grammars;

less commonlyI could specify that instead of having a single definite starting
state that the machine had some subset of its states marked as“possible
starting states”. This gives symmetry between starting andaccepting states,
and may also be of interest to hardware designers who can not be confident
that their system will power up in exactly the state they mostwanted.

It is necessary to be a little careful with FNAs, in particular the exact meaning
of a string being accepted by an FNA may not at first be obvious.The interpreta-
tion that has proved to be useful is that an FNA accepts a string if there issome
set of transitions of the machine that ends up in an acceptingstate at the end of
the string. Thus the non-determinism or uncertainty does not behave like the un-
certainty of most hardware faults where inconsistent behaviour of a machine is
unhelpful. On the contrary, it is more useful to think in terms of non-deterministic
machines arranging to select from all the transitions available to them just one that
will lead to your string being accepted.

A non-deterministic machine may show no possible successorstate from some
state/symbol combination. This is quite in order and its interpretation is that no
string starting that way can ever be accepted.

Delightfully I can just read off results from what I have already proved about
regular grammars. Given any language accepted by an FNA (with any or all of the
above extensions) it is possible to construct a FDA to acceptit. If the FNA had
n states then we can certainly construct a FDA with no more than2n states. And
hardware courses may discuss the issue of state minimisation for such machines
and thus lead to more efficient solutions (sometimes).

A point that might be useful to make here is that if a FDA calledM has been
defined using some particular alphabetΣ then sometime we want a machine that
behaves just the same way but which uses some larger alphabetΣ′. If we work
informally with automata and just draw pictures to show their configuration and
their transitions this does not look as if it is an issue of anysubstance. However
if we check the fine print and now look at the extended machine the transition
relationship is not longer a total function, hence we have ended up with an FNA
not an FDA.

The main conclusion that emerges is that (at least apart fromconcerns about
efficiency or bulk) it is valid to design a finite machine usingthe flexibility of non-
determinism, because it will always be possible to convert the FNA you design

15

into a FDA later on before you actually try to build it in hardware. In quite a
number of cases the design of an FNA will be much easier than going straight to
a FDA, so this can be really useful.

The transition function for a FDA will often involve a fairlysmall alphabet and
a fairly small number of states. In such cases it is natural todisplay it as a table so
that the new state of the machine can be looked up in it. This idea leads to a simple
and convenient software implementation of FDAs. I will suppose that I represent
both symbols and states by integers, and write my code in a mangled and informal
version of Modula-3. As an exercise for both this course and the Modula-3 one
you might take a specific FDA, code it this way (getting the Modula-3 syntax and
other details exactly right) and try it out:

integer transition[0..syms,0..states];
bool accepting[0..states];
(* need to initialise the above arrays *)
integer state := 0;
while true do begin

state := transition[read_symbol(), state];
if accepting[state] then print "Accept here"

end;

Providing the FDA was not so large that the tables needed become ridiculously
over-large the above provides a tidy and efficient way of testing if a given string
of symbols is accepted by the machine, and thus in the language that it defines.

6 Closure Properties of Regular Languages

Now I have introduced two ways of thinking about regular languages I will prove
some more properties that they have. These will show that in anumber of obvi-
ously sensible operations that one could perform on languages preserve the prop-
erty of regularity. Sometimes it will be convenient to provethings by reference
to a grammar, sometimes by appealing to a FDA, but we have already seen that it
is possible to convert between these two forms. In general when I combine two
grammars I will want both of them to be defined in terms of the same alphabet.
Certainly the constructions mentioned here that use automata will tend not to be
properly specified unless this is the case.

6.1 Complementation

If L is a language using the alphabetΣ then I will defineL as the language consist-
ing of all strings of symbols fromΣ that arenot in L. Note that when you form the

16

complement of a language you must do so relative to an explicit understanding of
the alphabet involved. For instance if you just say that L is the language consisting
of the single stringa then its complement viewing it as a language over the alpha-
bet that consists of just the one symbola is quite different from the complement
over the full English alphabet.

If L is regular then so willL be. This would probably not be instantly obvious
if you thought in terms of regular grammars. But in terms of FDAs it is easy to
show.L is regular and therefore there is a FDA that accepts it. Make anew FDA
which is just like this one except that every state that was accepting in the original
in non-accepting in the new one, and vice versa. This is stillclearly a FDA, and
it obviously accepts just those sequences of input symbols that are not inL. Ie it
acceptsL. ThusL is accepted by some FDA and hence it is regular.

6.2 Union

If L1 andL2 are two regular languages, then the unionL1∪L2 is also regular. Note
that since a language is just a set of strings unions between languages are quite
reasonable things to form. I will prove this one two different ways, one using
grammars and one using machines, just to show that there are often different ways
of demonstrating the same result.

To use grammars, I start by asserting that forL1 there will be a grammarG1,
and forL2 I can haveG2, each regular grammars. It is important here that these
two grammars have disjoint sets of non-terminals; I will assume this is so here
and similarly in other proofs that occur later in these notes. Suppose that the two
starting symbols areS1 andS2. I form a new grammar whose non-terminals are
the disjoint sum of those in the two existing grammars, together with a special
new symbolS ′. The productions in the new grammar come by just taking all the
productions from each ofG1 andG2, and adding in two additional rules:

S ′ → S1

S ′ → S2

and as you might expectS ′ becomes the starting symbol for the new grammar.
Any string generated byG1 can be generated using this new grammar by starting
with theλ-productionS ′ → S1, and equally all strings fromL2 can be produced.
And it is a regular grammar (in one of my extended forms). Hence L1 ∪ L2 is
generated by a regular grammar and is thus regular.

To use machines I note that there will be FDAsM1 and M2 (say) for my
two original languages. Form a new machine. Its alphabet will be union of the
alphabets used inL1 andL2. If M1 has a set of statesQ1 and similarly forM2 then
the new machines set of states will beQ1 × Q2, ie each state will be an ordered

17

pair (qi, q
′
j) with one member of the pair from each machine12. Such a state will

be accepting if eitherqi or q′j is. The starting state for the new machine will be
(q0, q

′
0)

The transition function is then the obvious one got by extending the existing
transition functions to the space of ordered pairs—I leave writing down its defini-
tion as another exercise. When you have done that it ought to beclear that the new
machine enters an accepting state when presented with a string that would have
caused eitherM1 or M2 to record acceptance. Again this is sufficient to show that
the union language is regular.

6.3 Intersection

Observe thatL ∩ M = L ∪ M and so since we have already proved that comple-
ments and unions of regular languages are regular we can deduce that intersections
are too.

Alternatively the construction in the previous sub-section that made a machine
to accept a union of two languages can easily be modified to accept an intersection
instead. All that needs to be changed is the specification of when the product
machine accepts a string—it is altered so that a state is onlyaccepting if bothq1

andq2 are.

6.4 Difference

If the languageL1 \ L2 denotes the language of sentences that are inL1 but not
L2 then it will be regular providedL1 and L2 are. This can be seen because
L1 \ L2 = L1 ∪ L2, but as for intersection it could be done directly in terms of
a product FDA. Note that this is often a nicer operation to work with than raw
complementation because the complement of a language introduces an implicit
dependency on the alphabet being used.

6.5 Concatenation

Earlier on I showed that if you have two regular languages (atthat time defined just
by grammars) then the language formed by concatenating themwas also regular.

Any finite number of unions, intersections and concatenation operations can
be performed on regular languages and the result will remainregular. Infinite
numbers of operations in general will not lead to regular results.

12I am usingq here for states fromM1 andq′ for states fromM2.

18

6.6 Arbitrary repetition

Take a grammarG for a languageL, with start-symbolS that generates a lan-
guage, and add to it the following extra productions: (a)S → ε and (b) whenever
A → ε is in the grammar add in (as well) a new productionA → S. The first
of these changes ensures that the new grammar can generate zero repetitions of
the languageL. The second allows the grammar to restart after the end of any
sentence, so provides for arbitrary repetition. Because we have still ended up with
a regular grammar the resulting language is regular. It is known asL∗.

It might help to explain where this curious notation comes from. In general one
writesLn for n-fold repetition ofL. The “∗” is then used in place of any specific
repetition count to indicate arbitrary repetition. It is sometimes convenient to write
L+ for repetition one or more times (whereL∗ was zero or more repetitions). IfL

is regular thenL+ is too, asL+ = LL∗.

6.7 Reversal

The languageLR consists of all strings that, when reversed, would be inL. It is
what the languageL looks like in a mirror. IfL is regular then so isLR. By using
my most extended form of FNA I can show this easily. Construct amachineM for
L. Then change this by exchanging the sets of starting and accepting states13, and
exchanging the part played by the two states mentioned in thetransition relation.
The result is (clearly) an FNA that computes backwards relative to the original,
and hence acceptsLR. It can then of course be converted to a FDA if you really
want.

I will give another (probably neater) proof of this result later on.

7 Regular Expressions

The closure properties of regular languages above lead to another idea for describ-
ing them:regular expressions. These start from a set of base cases (single symbol
languages, the empty language and the language that contains just the empty sen-
tence) and builds up bigger languages using union, concatenation and repetition.
Because the base cases are all regular all other languages defined by regular ex-
pressions will necessarily be regular too. In a little whileI will prove that every
regular language can be described this way. The result that regular expressions
and regular grammars and FDAs are all equivalent in their expressive power is
known as Kleene’s Theorem. But first I want to repeat (from section 2.4) the rules

13See the section where I introduces FNAa for comments that they can be extended to permit
multiple starting states.

19

for constructing regular expressions, to give a few examples of them and show
what a very convenient and compact way of describing languages they provide. If
ρ stands for a regular expression, andx for an arbitrary symbol from my alphabet
(ie x ∈ Σ), then the following rules allow one to build valid regular expressions:

0: ρ → ∅

symbol:ρ → x

concatenation:ρ → ρ1ρ2

alternation:ρ → ρ1|ρ2

repetition:ρ → ρ∗
1

Note thatλ = ∅∗ so the above rules still allow one to specify a regular expression
for the string of length zero.

Here are some examples:

1. Even length strings over{a, b} can be described as((a|b)(a|b))∗

2. My syntax for integers becomes

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

3. Any string that contains at least threea symbols in a row (over an alphabet
a, b, c) is (a|b|c)∗aaa(a|b|c)∗.

A formal way of justifying that the collection of strings that match any regular
expression forms a regular language will use induction on the size of the regular
expression. First observe that a regular expression of sizeone is just one of the
base cases that matches just one string (or in the case of∅ does not match any
strings at all). It is very easy indeed to exhibit either regular grammars or FDAs to
accept these. Now as an induction hypothesis suppose that all regular expressions
with size less thank describe regular languages, and consider any expressionR

of sizek > 1. By the way regular expressions are built up it will be in one of
the three possible formsR1R2, R1|R2 or R∗

1 whereR1 andR2 are smaller regular
expressions. But now by the induction hypothesisR1 andR2 describe regular
languages, and so sinceR itself is either the concatenation, alternation or arbitrary
repetition of these its language is also regular.

The proof of equivalence in the other direction is distinctly harder. I want to
show that for any regular grammar or FDA there is a regular expression that de-
scribes exactly the same language. The way I will do this involves introducing a
further extension of the idea of regular grammars. Recall thethe right hand side

20

of a typical production is a single terminal followed by a non-terminal. I will
now consider grammars where the right hand size of a production can be a regular
expression (in terms of terminals) followed by a single non-terminal. The inter-
pretation of such a grammar is that it will generate all the sentences that could
possible arise by both expanding out the production rules inthe usual way and by
replacing each regular expression by all possible strings that it describes. I will
then show how to take an arbitrary (ordinary) regular grammar and convert it into
one which consists of a single productionS → r wherer is some (possible
rather large) regular expression. I will need to show as I go that the new grammar
generates just the same language as the original. In view of the equivalence be-
tween regular grammars and automata one could conduct exactly the same proof
but describe it in terms of machines, where now the transitions of the machine
would beeventsdescribed by regular expressions rather than just occurrences of
single input symbols.

Without loss of generality I will demand that my input grammar does not have
anyλ-production in it.

Firstly I will identify any pairs of productions which sharethe same two non-
terminals, and I will combine them. If I findA → x B andA → y B I replace
the two productions with one new oneA → (x|y) B. I will keep applying this
transformation and so can assume henceforth that given any two non-terminals
there is at most one production from one to the other.

Now for each non-terminalB (with B different from the start symbolS) I will
change the grammar in the following way so as to remove all mention of B.

For the givenB find all other non-terminalsA andC and regular expressions
x, y andz such thatA 6= B andB 6= C and the following three productions are
present in the grammar:

A → xB

B → yB

B → zC

(the caseA = C is permitted here) If there are no productionsB → y B then
this can be indicated by writingB → ∅ B using the regular expression that does
not match anything at all! Introduce a new production

A → xy∗zC

Also if B → ε is present introduce

A → xy∗

When this has been done for all possibleA andC removeB and all productions
involving it. I assert that any sequence of reductions usingthe original grammar

21

which involve use of the non-terminalB can still be modelled by the new one,
and so the language generated has not been altered. But the newgrammar has one
fewer non-terminal symbol. I will come back to justifying myclaim shortly.

By repeating the above transformation any grammar can be reduced to one
with only the starting symbol left. The grammar must then be in the form

S → uS

S → v

and now the regular expressionu∗v captures it all.
Expressed in a slightly different form the last step is knownas Arden’s rule.

This says that ifU andV are languages withU not containing the empty string,
and if L = V ∪ UL thenL = U∗V . This rule is what is needed to justify the
other steps too. Note that because I did not have anyλ-productions in my original
grammar all the regular expressions that I produce on the waywill only match
non-empty strings.

Arden’s rule can be proved by induction on the length of strings. Dr Moody’s
notes for the Diploma Course contain details, but I am not going to work through
them here.

Regular expressions are very commonly used to specify patterns to search for
in text. Deriving a FDA that accepts the language for such an expression leads
to an efficient way of making a computer recognise strings that match the expres-
sion, and the matching process does not involve any guesswork or back-tracking.
Regular languages are also very widely used in the very early stages of compil-
ing programming languages. They give a convenient way of specifying how the
user’s program should be split up into tokens. For instance Ihave already given
an example showing the format that can be used to denote an integer. Similarly
the rules about what sequences of characters make up valid identifiers, strings or
floating point numbers in typical programming languages also tend to be regular.
As a (not totally trivial) exercise you could try to construct a good representation
for the (regular) language that denotes floating point values. You should expect
that such a number either contains a decimal point or an exponent marker (or pos-
sibly both), and that the exponent can be signed. But degenerate cases such as
“.e-” should not be allowed.

Again as for grammars and machines I will investigate whether there are use-
ful extensions to regular expressions or restrictions on them. Since the regular
languages are closed under intersection and complementation I could allow two
new ways of building regular expressions, vizR1 & R2 and∼ R, to denote the
strings that match bothR1 andR2 and the strings that do not matchR. When
both these new operations are permitted the resulting classof patters are referred
to asextended regular expressions. If just the “and” operation is used we have

22

semi-extended regular expressions. It may seem that since any language defined
by an extended regular expression is still regular that these are frivolous exten-
sions, but they are not. This is because some languages can bedescribed by much
more compact extended regular expressions than the shortest possible ordinary
regular expression for them. I will discuss this again briefly in a later section on
efficiency.

Regular expressions allow one to produce a neat demonstration that the re-
versal of a regular language is regular. Exhibit a regular expression that matches
the language. Then if this is a base case leave it alone, if it is A1|A2 replace it
with AR

1 |A
R
2 , if it is A1A2 replace it withAR

2 AR
1 and if it is A∗ replace it with

(AR)∗. The result will (clearly) be a regular expression that matches its reversal,
and hence that language is regular.

In the other direction there has been a study of what happens if you restrict
the rules that can be used to build regular expressions. If you permit intersection
and negation but do not allow use of the repetition operator “∗” the collection of
strings the can be generated are known as thestar-free sets. There are regular
languages that are not star-free, but even that result is notas instantly easy to
prove as you might have hoped, and I will not justify it here. Leading on from
that is the concept of thestar depthof a regular language. Any regular language
can be described by an extended regular expression. Its stardepth will be the
depth of nesting of stars in the least-nested expression forit. So the star-free sets
are just those languages with star depth zero. The question of whether there are
any regular languages whose star depth is greater than 1 appears to lead one into
amazingly deep and murky waters!

8 Non-Regular languages and the Pumping Lemma

Thus far I have concentrated on nice positive results that show that certain lan-
guagesare regular, and that certain ways of combining existing languages lead to
regular results. Now I want to give some concrete examples oflanguages that are
not regular, and explain one of the most commonly-used ways of taking a specific
language and proving that it can not possibly be regular. This is known as the
Pumping Lemma.

I will illustrate the method behind the Pumping Lemma by considering the
language{anbn}, ie all those strings that consist on a bunch ofa symbols followed
by an equal number ofb symbols. I assert that this is not regular.

If it were, then there would exist some FDA to accept it. Suppose this machine
hasN states. Now consider the behaviour of the FDA when it is presented with
the stringaNbN , and in particular the sequence of states that it passes through as
it sees the firstN input symbols. Because the machine only hasN states and

23

(if you include the starting state that it is in before it has seen anything) there
areN + 1 states it must pass through in this calculation, some state must me a
repeat of a previous one. This deep (!) result is generally known as the pigeon-
hole principle. If you try to postN + 1 items intoN pigeon-holes at least one
hole must end up with two or more items in it. Now the repeated state means
that the machine performed some operations and got back to a place it had been
before. That little loop could be repeated any number of times (including zero
times) and the machine would be equally happy. So now we imagine carrying
on the calculation until the machine accepts out sample input, and then we tinker
with the number of times it goes round the loop. The result will be that we exhibit
a bunch of extra strings that it will accept. But we have chosenour set-up so that
all these strings have the same number ofb symbols but different numbers ofa
symbols, and hence most of them are not in the language that wewere supposed
to be accepting. The only way out of this difficulty is to conclude that it was
not possible to have a finite machine that accepted our language, and hence the
language can not be regular after all.

The Pumping Lemma states: For every regular languageL, there is some
numberk ≥ 1 such that all stringsw ∈ L with length(w) ≥ k there is some way
of expressingw as a concatenationw = u1vu2 that has the properties

1. length(v) ≥ 1;

2. length(u1v) ≤ k;

3. for all n ≥ 0, u1v
nu2 ∈ L.

Two things deserve stress here. The Lemma tells us that the numberk exists,
but does not tell us what it is. It also says that the decomposition of w exists as
described—it certainly does not even pretend to say that anydecomposition ofw
into three partsw = u1vu2 will satisfy the three properties. Just that there is at
least one such decomposition.

The proof is much as that for the particular case I worked through. Given any
regularL there must be a FDA that will accept it, and I then suppose thatthere
is such a machine withk states. Now properties (1) and (2) just say that while
processing the firstk symbols of an input stringw this machine must repeat a
state.u1 is the string of symbols read in before the repeated state is reached for
the first time, andv is the non-empty set of symbols that cause the machine to
traverse an internal loop. Property (2) says that the loop must be completed by the
timek symbols have been seen. Property (3) is just the assertion that the machine
will then accept strings obtained by traversing the loop anynumber (n) times.

Here is a demonstration of the use of the Pumping Lemma. I assert that the
language{ap} with p a prime number is not a regular language. In other words no

24

finite machine could cause a light to flash each time the numberof input symbols
it had been given was prime. First observe that there are an infinite number of
primes, so for anyk associated with my language I could select a primep with
p > 2k. Now the pumping lemma explains that the stringw = a2p can be split up
into three partsu1, v andu2 with some length constraints. length(u1v) ≤ k, and I
will call that lengthr, and length(v) ≥ 1, and I will call thats. Thus

u1 = ar−s

v = as

u2 = ap−r

Now I will consider the stringu1v
p−su2 which the pumping lemma assures me

will be accepted by the automaton. Its length is(r − s) + s(p − s) + (p − r) =
(s + 1)(p− s). Verifying that is just simple algebra! But now becauses is at least
1, s + 1 is at least 2, and furthermorep− s must also be at least 2 (becauses ≤ k,
k ≥ 1 andp > 2k). Hence I have a string whose length is certainly not prime.
The only conclusion is that the language concerned could nothave been regular
after all.

An analogous proof show that the language of palindromes is not regular (a
palindrome is something that is equal to its own reversal. Consider sentences
like “Able was I ere I saw Elba” and “Madam, I’m Adam”, but ignore some
whitespace and punctuation for these English language examples). Similarly for
all strings where brackets nest properly, and hence for pretty well all programming
languages.

It is perhaps useful to observe that the Pumping Lemma could have been rea-
soned about in terms of regular grammars, and the magic number k would then
have been the number of non-terminal symbols used in the grammar. At later
stages in the CST when you come across more general sorts of phrase structure
grammars you should be aware that they will come with their own more general
Pumping Lemmas which again seek to capture the insight that with only a finite
number of non-terminal symbols there must eventually be some sort of potential
for repetition present in a language specification.

9 Decision Problems for regular languages

Given a regular language and a particular string we can decide if the string is in the
language. For instance a FDA for the language can be constructed and the string
can be fed to it—if at the end of the string the FDA is in an accepting state the
string is in the given language. The test can be performed in asystematic way that
will always terminate with a clear-cut answer to our question. There are a number

25

of other questions about regular languages that can be answered using systematic
procedures, although I will explain later on that sometimesthe amount of work
involved gets out of hand.

1. Is a regular language empty? For instance you might describe a regular
language by some elaborate extended regular expression andthen wonder
if there are any strings in it at all. To decide the problem construct a FDA
for the language. If this hask states then if the machine accepts anything
at all it will accept a string of length less thank. To prove this, suppose
to the contrary that the shortest string accepted was of length ≥ k, then
the pumping lemma applies and shows that there will be a shorter accepted
string. If the alphabetΣ provides justm distinct symbols there aremk

strings of lengthk, and we can (at least in principle) check each of these to
see if on of them or one of the initial substrings of one of themis accepted.
If none are then the language is empty.

2. Are two regular languages identical? This can be resolvedby observing that
two languages are identical if their symmetric differenceL1 \L2∪L2 \L2 is
empty. Set differences and unions of regular languages are regular, so this
case reduces to the previous one.

Apart from the fact that the procedures described are horribly costly the results
might mean that detecting if there will be any input sequencethat gets a piece of
sequential hardware into a given state can be tested for, andverifying that two
different hardware designs will operate identically can also be verified. Realistic
techniques for hardware verification will have to wait untila Part II course!

10 Efficiency

Here I will show that it is possible to have regular languageswith small FDAs such
that their concatenation needs a large FDA. The languages I will use to illustrate
this areL1 = (a|b)∗ andL2 = a(a|b)n for various values ofn. First observe that
L1 is easily implemented using a machine with just one state, while L2 is equally
easily recognised using aroundn states. Now the languageL = L1L2 is one
where then-th symbol from the end of any string must be ana. I assert that any
FDA that accepts this language must have at least2n states.

To prove this I will consider the2n strings that start witha and then have all
the possible length-n sequences ofa andb symbols. Presenting each of these to
the FDA must leave it in an accepting state. Now I will argue that these must
be 2n differentaccepting states. Suppose that two of them were the same, then
there would be two different sequences leading to that state. These two sequences

26

would differ in some particular symbol—one would have ana where the other had
a b. Suppose that place of difference wask from the start, then feed the FDAk
more symbols (which might as well all bea). Since it is deterministic the state that
it arrives in is definitely well-defined. Considering whetherthis state is accepting
or not leads to a proof of my assertion.

You might suspect from this that the exponential blow-up seen here was just
because I started with and insisted on ending with deterministic automata. Maybe
working with and FNA (or correspondingly a regular grammar)would mean that
all the useful operations on languages could be done withoutcausing severe in-
crease in the size of a description. One counter-example here will be to look
at the intersection operation. Letp be a prime number. Each of the languages
L2 = (a2)∗, L3 = (a3)∗, . . .Lp = (ap)∗ can be characterised by an automaton
with at worstp states. Determinism or non-determinism plain does not makea
big difference here since DFAs do the job as neatly as one could hope. Now letN
be the product of the primes2, 3, . . .p: the intersection of all these languages is
clearly the language(aN)∗ Thus the shortest non-empty string it can accept is of
lengthN . Hence any automaton that accepts it (deterministic or not)must have at
leastN states.14 N grows very rapidly as a function of the aggregate size of the
input automata.

A final comment on performance and practicality relates to extended regular
expressions. Suppose thatR is an extended regular expression that can be written
in n symbols, we know that there will be some ordinary (non-extended) regular
expressionR′ that describes the same language. PerhapsR′ will need to be rather
larger thanR and it would be nice to have a bound on the expansion possible.

Define

H0(n) = b

Hi(n) = 2Hi−1(n)

so thatHk(n) involves a towerk high of exponentiation. Then a result that is
too hard to prove at this stage shows that the size ofR′ expressed as a function
of R can grow faster thanHk for any fixedk you care to choose. This is pretty
desperate! Since I can not complete the proof here I should leave you with an
exercise that relates to one early part of it:

10.1 Exercise:

Define then-th ruler sequence as one that starts off010201040102010801
Every other character will be a0. Of the remaining characters every other will be
a 1. After filtering out the0s and1s every other character is a2. And so on, until

14Exercise: write out a formal justification of this.

27

depthn where charactersn just repeat. Such a sequence naturally repeats after
just2n characters. Show how to make a semi-extended regular expression (ie one
that allows “and” operations) that is tolerably short but which describes one of
these ruler sequences.

11 Conclusions

The main lessons that can be drawn from this course are as follows:

1. Regular Expressions, Regular Grammars, FDAs and FNAs can all be in-
terpreted as just different ways of thinking about a single set of languages,
known as theregular languages. If you start with any one form of descrip-
tion there will be a systematic way of converting it into any of the others;

2. Regular languages have good closure properties. But bewarethat all the
closure results I have quoted are forfinite combinations of languages. Infi-
nite intersections or unions of regular languages may lead to languages that
are not regular;

3. A pigeon-hole principle and the Pumping Lemma allow us to show that
some languages are not regular. If you have a regular language then many
of the questions you might want to ask have answers that at least in the-
ory could be found my applying systematic procedures. But sometimes the
costs would in reality be utterly outside all practicable bounds.

I hope you have also been convinced that the results explained here were not
all intuitively obvious in advance and that many of them are entertaining and dec-
orative.

References

[1] Thomas A Sudkamp.Languages and Machines. Addison Wesley, 1988.

Thanks are due to Alan Mycroft for helpful
comments on an earlier draft of these notes.

28

