Regular Languages and
Finite Automata

A C Norman, Lent Term 1996

Part la

1 Introduction

This course is short, but it is present in Pastldecause of the way it introduces
links between many different parts of Computer Science amptaas concepts
that you will come across repeatedly throughout the redietburse. One result
of the topic being multi-faceted is that there are quite a teffierent ways of
presenting it. Lectures covering this material were givgrAbdy Pitts in 1995
(to Part k) and by Ken Moody to the Diploma in Computer Science class this
year. Copies of their lecture notes may be available as backtigese ones, but
although the major results they present are just the sanhe ases | do the order
in which they cover things and the way in which they prove itsswill generally
differ from mine. | view this as good, in that it means thabsty students have an
opportunity to see two or three different perspectives emtiaterial, while those
who find my explanations hard going may find those in one of therosets of
notes more comfortable. When it comes to examination questaod the like it
will not matter whose or which proofs of theorems you useyjoled you get the
details correct in the proofs that you do use.

| decided that | would recommend just one book: “Languageshachines”
by Sudkamp[1]. There will be plenty of other textbooks thater the material
in perfectly adequate detail. Since this is only a six lexttwurse the important
parts of it will tend to form just one or two chapters in a bodk:Sudkamp it is
chapters 6 and 7 that are most relevant.

These notes anmeot a complete substitute for the textbook. In particular the
book contains lots of examples and exercises, while thews mim not. Also the
document preparation system | am using to prepare thess nwans that it is
a bit of a pain for me to prepare pictures, and as you will setherblackboard
during lectures these are a useful way of giving an inforthadtration of a finite
machine—the book is better illustrated than these notese@gain | will stress
that if you are going to understand this course fully you wékd to work through
collections of little examples. As well as finding some in bwok you can look
in past examination papers (until recently this topic waRant B, and it has been
and still is presented to the Diploma students, so thoseharpapers to check).

2 What is this course about?

The main result presented here is that several areas th# telcomputers and
that start off looking as if they are quite separate are ihVacy closely related.
The word used to indicate the commonality is “regular”.

2.1 Hardware made using flip-flops

In the Part & Digital Electronics course you learn how to design circugig
flip-flops. In general the circuits involved will have seMeirgouts (in addition
to a clock) and several outputs. You may consider the diflezdoetween Mealy
Machines (where the output depends on both input and staMpore machines
(where the output depends only on the state of the flip-fldpg.hardware course
it is also necessary to think about the difference betweay) (3-K and D flip-
flops, and to wonder how to build circuits using the smallestsible number of
components. In this course we look at a clean abstractiolhtbig A “Finite Au-
tomaton™ will be a system with a finite number of distinct internal esatRather
than having several separate input wires we view it as bdfiegeal inputsymbols
from somealphabet Each symbol of course encodes a possible configuration of
signals on the input wires of any physical realisation ofabhtomaton. One nom-
inated state of the machine is itstial state, and each time it is presented with
an input symbol it moves to a new state in accordance with siefiaite rule.
This rule can be viewed as a@ransition functionwhere the new state is selected
on the basis of the previous state and the symbol seen. Tothigs as simple
as possible, the automaton only has one (binary) outputtratdiepends solely
on which state it is in (ie we have a Moore machine). This ougstangement
can be described by listing each of the states where the tostipue. Such states
are then referred to accepting statesThe way such systems will be looked at
will involve considering what sequences of input symbolsseathe machine to
enter an yield an outpditue: such input sequences are said tabeeptedy the
machine.

Looking ahead to where we need to conduct some proofs, | evithélise the
above by suggesting that a finite automaton can be reprelasitey the following
five components:

A set of states(). | will generally write the names of individual states asdet
with subscripts, so sa@ = {¢;|1 < < N} for some natural number N;

An alphabet:X. In my examples | will use lower case letters as “symbols”, so
for instanceX = {a, b, c}. Note that | will insist on having a definite finite
alphabet associated with any machine;

An initial state: By convention | will usey;
A transition function: A (total) function frond) x X to Q;

A set of accepting states: A subset(pf

1Also sometimes known as Finite Machines, or Finite StatetMses, and later in this course
as Finite Deterministic Acceptors, FDAS!

This course will provide ways of describing exactly whatomata of this sort
can do. A useful idea you might like to hold in your mind is of@uata that are to
be used as combination locks. The lock starts off in some elfimtial state, and
the user feeds it symbols. In some configurations the loc&€epis” the sequence
of symbols seen thus far and presumably allows the user to thy@edoor to the
bank vaults.

Viewing this course as one that talks about possible bebhaviof sequential
hardware gives the course a strong link with other hardwawneses.

2.2 Discrete Mathematics—and beyond

You have just seen that | set up a description as a slightbfigkd bit of hardware
as a collection of five items each of which looks just as if ilmeaout of the
Discrete Mathematics course. This is not an accident! kaburse | am able to
develop part of a mathematically styled description of e behaviour. The
value of using mathematical notation is that it helps us wliemeed to produce
formal proofs. We need these proofs because some of the riegpef finite
hardware and the other things | describe are not intuitiedyious. The main
results that will be proved here are ones that show thatinddans of behaviour
can be realised using hardware build out of finite colledtion flip flops and
gates and that some others can not. | will also be able to gratgat least in
principle) it is always possible to tell if two circuits imgrhent the same behaviour.
These proofs will use some of the mathematical notation eclahtiques from the
Discrete Mathematics course and represent an early adg&uter Science
pay-off from it.

In some sensany real physical computer is finite and so falls within the scope
of the analysis done in this course. However it is generalligimmore useful to
agree that the processing and arithmetic parts of a comprddmite (and hence
belong here) but to imagine that the discs and memory atthatesof unlimited
size. That idealisation is considered in some depth in alBadurse (Computa-
tion Theory), which to a large extent can be thought of aslaobn to this one.
It is clearly important to understand the capabilities andtations of finite au-
tomata before worrying about ones that have unbounded nyamhtireir disposal!
The The Computation Theory course is again able to developthematically
styled analysis of the behaviours of the computing systéasit considers.

2.3 Formal description of “languages”

Now, and perhaps amazingly, | will show that there is a linkgen this course
and the PartA courses that involve programming, ie the ones that use ML and
Modula-3. The link comes about because this course can beaseeprecursor to

3

Part B ones on how compilers work. Part of the process of designowgputer
language involves setting up a precise description of wbatisnces of symbols
and words can form valid fragments of program. Part of wgitthe software
that implements a programming language involves seeing thbaiser had writ-
ten and deciding if it matches what the language designetedarSome things
calledphrase structure grammargrovide a well established tool for describing
languages. These grammars work using an alphaltetrofnalsymbols and a set
of non-terminals The understanding is that terminal symbols are items teat t
user sees or puts into the text of a program, while non-taltsigior which I will
use upper case here) control the internal workings of thengnar. A particular
grammar will always have one nominated non-terminal thasigitial symbol

(I will generally use a symbol callef for this), and a sétof production rules
For the purposes dhis course | will consider production rules of somewhat lim-
ited forms. The limitations involved lead to what are knovemegyular grammars.
They are the simplest sorts of phrase structure grammatgrannderstanding of
them is clearly useful before moving on to more general cdadhese grammars
a production is in one of the following three forms:

1. A—a
2. A —aB
3. A—¢

where A and B stand for non-terminals andfor a terminal. The symbol:” is
used here to indicate “nothing”. Some people would writeanklin place of it,
but | believe it will be clearer here to put some symbol thegsges the nothingness
that is there.

A grammar can be used to geners¢@tences alanguage You start with just
the initial symbol, and then at each step in a derivation geuniify a non-terminal
in the current string and use one of the productions to reptacith whatever is to
the right of the “=” in a suitable production. The process stops when thereare n
non-terminals left to replace. Any string of terminals thegults is described as a
sentencgenerated by the grammar. The set of all possible sentelnaea given
grammar can generate is known asldreguagethat the grammar describes. Some
grammars define languages that only have a finite number térsges in them,
others define languages that have an infinite number of seegeryou will find

2By saying that it is aetl implicitly indicate that any particular production onlgeours once
in it.

3As an exercise you could try to write an ML program that stefite a description of a some
grammar and creates a lazy list of all the sentences it cagrgem You will not necessarily find
this easy, especially if you try to ensure that each possiaieence is included exactly once in the
output.

examples of grammars later on in these notes. For now | angqisy to report
that one of the key results | will prove is that for any reg@geammar is is possible
to construct a finite automaton that can be used to recogriise wequences of
symbols are in the language that the grammar describes.ctnf lalook ahead
to the Unix Tools course you get towards the end of the yeanlicegine that
you may hear mentioned particular commonly available undgpamsyacc and

| ex that are often used when a new programming language musigbenmanted.
Thel ex program represents direct practical use of the ideas | sisskere.

Just as finite automata could be extended to one with unbdumsgnory,
and that led to Partel material, so phrase structure grammars can exist in more
general forms than the ones I limit myself to here. These rgereeral grammars
are discussed in the Pam tourse on Compiler Construction.

2.4 Pattern matching

My fourth perspective onto this course is pattern matchiyygically in strings of

letters. Text editors all provide ways of searching for dengtrings in the file

being edited. But sometimes it is useful to specify much makaate patterns.
An idea that has been found to be very convenient to use arne gspectably
powerful is to build patterns up in the following way:

1. Any single letter can be used as a pattern. So for instance can be used
just on its own to be a pattern that matches just that onalitdraracter in
the text being scanned;

2. The patterm\ matches an empty string. Having the ability to cope with this
degenerate case is included in the name of completenes®asidtency;

3. The patterr) is a pattern that does not match anything(!), again included
for completeness

4. If P, and P, are two existing patterns then we can write one after therothe
(P, P,) to make a composite pattern that will match anything wheeditit
part of it matches?, and the second part matchBs The parentheses here
are just to stress grouping and are not an essential pare ofdttation. Note
that for any patterrP the patterng®\ and \ P will be equivalent to jusf;

5. If P, andP, are patterns thef;| P») is a pattern (thalternationof P, and

4Other presentations of this material might esa place of\ or 0 and1 in place of these two
special patterns. | use the symbols | do here so as to be tamtsigth Sudkamp’s book, but you
should neither be surprised nor upset if when you find altemmaotations in use elsewhere.

P,) that will match anything that either of its constituent$.d&or any P
we haveP|() = 0| P = P;

6. If P is a pattern therP* is a pattern that matches strings that can be split
into zero or more substrings each of which is matchedbyrhis mean$%
thatP* = X\ | P| PP | PPP | The *"is known as the Kleene Star,
and the expressiofRt* is thearbitrary repetitionof P.

Patterns build up in this way are known BRegular Expressionsand many
text editors and a variety of other Unix (and indeed otheraiugg system) tools
use them. You will (of course) come across extended formegiflar expressions
which include other operations beyond the ones listed abdweill comment
on some such extensions later on. Clearly there are two stiegequestions
about regular expressions. The first is “What sorts of pattamthey be used to
describe?” and the other is “How can we write a program thathes regular
expressions against some target text?”

This course answers both of these questions by showing it utomata,
regular grammars and regular expressions are all verylglosiated: given any
one you can derive one of the others and thus describe itvioein@r give a me-
chanical way of recognising strings that match it. Perhbpdtggest insight that
this gives is that a unifying way of looking at things is towithem adanguages
So we will show that any finite automaton can be completelyattarised by
the language that it accepts, and that this language cansoeluEd by a regular
grammar, and that furthermore it is exactly the collectibistangs matched by
some particular regular expression.

3 The main results that will be proved

In this section | collect a summary of the results that | withye:

Non-deterministic automata: | will define non-deterministic finite automates
an extension of the original sort of finite machine discusdsal’e, and then
show that this does not change the range of possible behrayiou

Closure properties and Extended regular expressions! will look at the in-
tersection and complement of regular languages, and shaintliey are

SAgain some people will want to write concatenation as if i leen multiplication, and will
use a4+’ sign where | use|. Yet others will use U’ for the “or” operation.

6You should be somewhat suspicious any time you see a remtrk.wi” in it, since there are
occasions where infinite formulae have unexpectedly diffeproperties from finite ones. Thus
the notation used here is intended as an informal way to fmlpupderstand the star operation but
care will be needed when we get to formal proofs.

6

regular. In consequence allowirgnd and not operations in the construc-
tion of regular expressions gives just a short-hand foresgons that could
have been written without the new operators;

Arden’s Rule: a result about the languadé;

For any regular expression there is a regular grammarthat defines exactly
the same language;

For any regular language there is an automatorthat accepts it;

For any automaton there is a regular expressiorthat characterises its behav-
iour. The fact that automata and regular expressions aréosely linked
constitute Kleene’s Theorem;

There are non-regular languagesand a result known as tHeumping Lemma
can often be used to show that a non-regular language isdmieeregular;

Decision problems:Given two regular expressions or grammars it is possible to
decide (systematically and in a finite amount of time) whethey generate
the same language. Similarly given two pieces of sequemdiaware it is
possible (in principle) to decide if their behaviours wid the same;

Some things are hard: Regular languages are one of the nicest, best-behaved
sorts of language around. However | will at least be able szidlee (if not

actually prove) some issues relating to them which showthiegtare not at
all trivial.

Given the equivalence between the languages defined byaregradmmars,
finite automata and regular expressions it will not end upteniag much which
formalism is used as a reference definition of what a regateguage is. | will use
a definition that a regular language is a language genergtaddgular grammar,
and prove onwards from there. If somebody else defines aaelgmiguage as the
language accepted by a finite automaton and then provesdtatrcgrammars
define exactly the same classes of language that is OK by me.

4 Regular Grammars

I should start by giving a few examples of regular grammargether with infor-
mal descriptions of the languages that they generate:

1. All possible strings over the alphalfet, b} that are of even length:
S

!

€
al
bT
aS
bS

Ll

N H W »

2. Afirstattempt at a formal description of what an integekimlike. It insists
on a digit followed by an arbitrarily long sequence of aduhal digits:

0D
1D
2D
3D
4D
5D
6D
7D
8D
9D
€

0D
1D
2D
3D
4D
5D
6D
7D
8D
9D

!

OO0 OO0 00T OO0 nun unon non i t”ay n ”n
L A A

You might observe that this way of writing things is somewbalky and
clumsy. It would be possible to describe a syntax for floagiomt numbers
using this formalism, but perhaps it would not be very comsen

8

3. Either the word “sit” or the word “sing”:

sA
sB
1C
1D
t
nk

9

O QT = » »n
R A A A

The purpose of this example is to stress that the initial d&finof a phrase
structure grammar is concerned wifneratinganguages and that they are
not automatically directly convenient if what you want toiddo check if

a given string is in a languageSuppose here that your string starts aff
then you need some foresight to tell whether ¢tend thei came by using
the productions front throughA or B. In this case you might be able to
produce a different grammar that accepts the same languagenkbre you
can check input character by character. Is this always tbe?a

Given a specification of a formal concept (such as that ofgulese grammar”)
a natural and important question to ask is how robust the itlefinis. What
happens if the definition is changed a little? Here | will istrgate three ways of
altering my original definition of a regular grammar and Ilshow that none of
these changes alter the class of languages that can be deTinisdwill tend to
support a claim that this class is a good and natural one tty.stdven though
the changes | make to the regular grammars leave the clagagidges that can
be described unaltered that can make a real difference toelagy it can be to
construct a grammar that fits a given language. The alteatiwill consider are:

e For variant one | disallow productions of the fotin — =z, so that only the
other two cases are permitted,;

e For variant two | add in the possibility of productions suchA — B
where the right hand side consists of just a single non-teainl will refer
to such productions asproductions;

e The third variation will demand that for any non-terminéland any ter-
minal x there is exactly one non-termin&l and a production of the form
A — x B. Inthis case there will be a total function (non-terminaisrminals—non-
terminals) that defines which is associated with any pair, z). Produc-
tions of the formA — ¢ are still allowed—the constraint | am applying just

says what happens when a terminal symbol is present on thichagd size
of a production. | will describe a grammar that is limited lmstway as be-
ing deterministi¢ and the total function involved will be called tt®nsition
function

In the first of these cases | need to show that any languageilnesdy an
ordinary regular grammar can be described by a grammar iregtacted form.
This is in fact very easy indeed! If the original grammar @améd a production
A — z then a new non-terminaf) say) can be invented, and the offending rule
can be replaced by two new productions:

A — zQ
Q — ¢

This simplification of regular grammars may lead to a (veiyhg) simplification
of some proofs that use them.

The next adjustment represent generalisations of my fifsitien of what
a regular grammar is. Allowing-productions often makes it easier to construct
a grammar that will describe some useful language, and liladitrate that fact
before showing that the extension is not strictly essential

Consider two regular languagés and L, each described by regular gram-
mars (sayG; andGs). | will show how to produce a new grammar (using
productions) that generates just those strings that caufdimed by concatenat-
ing a sentence from, onto the end of a sentence fram. This construction will
then suffice to show that the set of regular languages is@losder the operation
of concatenation.

Firstly I note that the names used for non-terminals in a gnamare not very
important, so | perform systematic re-naming in my origigedmmars to ensure
that they each end up with different sets of non-terminalse $tarting symbol
in the first will now be calledS; and the starting symbol in the secofg. |
also simplify each grammar in accordance with my restnicéie described above.
Now to join the two grammars together | just find each rdle— ¢ in G; and
convert it into a\-productionA — S,. | let S; be the starting symbol for
this adjusted grammar and assert that it can generate exaicthe things that
consist of a string froni; followed by one fromL,, and that on tracing through
a derivation the activation of a production that leadsStashows where (in the
string being generated) one part ended and the other starts.

Now to make this useful I need to show that theroductions introduced can
be removed to leave a grammar in standard form that gen¢ha&eame language.

I will achieve this by removing\-productions one at a time. | will start with
a grammaiG and will search it to find a-productionA — B, with A differ-
ent from B and such that this particularproduction has not been treated before.

10

Next | will find all productions withB on their left hand side, which | will write
here asB — b; C; (though it should be understood that a cdse — ¢ is
also possible. | then extend the origimaproduction with a set of new produc-
tions of the formA — b, C;. It should be clear that any sentence that could
have been generated by the original grammar can also beageddyy the new
one, but without ever activating theproduction. Note that extending the set of
productions will not be allowed to introduce duplicates] #mat | am leaving the
now-redundani-production in there for the while.

Because the set of non-terminals present in a grammar is ti@te are only
a finite number of possiblg-productions that could possibly be present, so even
though the process described above can potentially inteaew ones after a
finite amount of work all the ones that there are will have bsebject to the
above conversion. It is then possible to tidy up the grammant removing the
A-productions. Any of the formt — A were unimportant anyway (use of them
can never help generate a sentence that could not be geheth&wise), while
the rest have been expanded out. What will result will be amargl regular
grammar that generates the same language as the origieatlext one.

You might like to observe that the above transformation wasedn a slightly
tricky way. The new productions were added to the grammardsadving the old
ones was left until the very end. It was done that way becaxsaneling away
one \-production might generate others, an in particular coakhtroduce ones
you thought you had got rid of before. Doing things my way dgauch trouble
at the cost of keeping a record of whigk have been processed and so that each
is only considered once.

My final variation on regular grammars (deterministic ones) restriction, so
| need to show that any ordinary grammar can be convertedaiteterministic
one that generates the same language. The motivation fowtthibecome very
apparent in the next section, so here | will just describa¢cge to use. This is
known as th@ower-set constructiorGiven a set, its power-set is the set of all sub-
sets. So for example the powerse{ofb, c}is{{}, {a}, {b}, {c}, {a, b}, {a,c}, {b,c},{a,b,c}}.
Here | will take the set of non-terminal symbols present imamgmarG and take
its power set. | will then show how to construct a new grammbaose non-
terminals are the members of this power-set, such that #hatgrammar is de-
terministic and it generates the same language as the arigimguage. This is
potentially a somewhat painful procedure to apply in peagtsince if a set has
n elements its power-set will hav&. So if the original grammar had say 20
non-terminals the new one will ha2&’ = 1048576. The new grammar that | am
building will use the same set of terminal symbols as theiailg So now | just
need to identify a starting symbol and explain what its pobidun rules are.

If S'is the starting state of the original grammar | mdkg start the new one.
Although elsewhere in these notes | will tend to use singeills as names for

11

non-terminals, in the power-set grammar | will write themsass or sometimes
letters in the style A, B standing for such sets. If you likeiya@an re-name them
to something neater once the construction has been complete

Now for the production rules. To make the new grammar detastic | need
to show how how for every possible state and every possibteiti@l symbol |
can give aruled — x B4,. | will do this by showing what3 to use in each
such case. The non-terminadsandB will be subsets of the non-terminals in the
original grammar. Write thisad = { A1, A, ...}. Now for each terminal symbol
x identify (in the original grammar) each production of thenfioA;, — z B;
whereA; is one of the symbols that is a member.4f | then let be the set of
all the B;.

Also add a productiotd — ¢ to the new grammar if and only if a production
A; — e was present in the original (agai) is a member of4). And that is all
there is to it! The construction clearly only involves a fingmount of work

Now | need to show both that the new grammar is deterministet that it
generates exactly the same language as the original ond.th&/dlrst of these
is easy—its very construction was such that productionisgbaerated new non-
terminals did so in a way where the non-terminal on the rigimchside was given
as a function of the other two symbols involved.

I will be slightly more formal this time about showing thagtbriginal and new
grammars generate the same language. Firstly | will argatestiy sentence that
can be generated by the original grammar can also be geddmatée new one,
and then | will show that the new grammar does not generate@mextraneous
sentences.

Suppose we have a sentence generated by the original gramfitiaout loss
of generality | can suppose that the original grammar doé<ootain any\-
ruled. In such cases any sentence thakisymbols long will be derived by
applying justn productions of the formrd — x B plus one of the forrd — .
This ability to argue by counting is one of the pay-offs froavimg shown that
A-productions are not needed. Now | will show that there isravdgon of length
n for the same sentence in the new grammar.

Let Q, be the statd S} that is the starting state of the new grammar. Let
be thei-th character of a sentence generated by the original gram@iaserve
that in the deterministic grammar we have productions frachestate for every
possible input symbol, and we can use these to define a ureguesce of states

In quite a few cases a simple-minded use of the above recgmipes a new grammar that
has a lot of productions in it that could never possibly bydliseany derivation starting frofiS},
and those with tidy minds might like to arrange either notéograte them or to remove them after
they have been generated. | will defer issues of optimisaiidil later on.

8|f it originally did we could have removed them before stagtthe real part of the conversion
to deterministic form.

12

Q; by demanding that production;, — z,,; 9, exists. | then assert that
there will also be a productio®,, — ¢ present. To see that just check that the
definition of the new machine is such that at each stage the tsiat the original
one was in aftek productions had been used will be a member of the $ate

Equally if a sentence can be generated by the deterministroigar there has
to be a derivation for it using the original grammar. Here $eas an induction
hypothesis. It is that witlQ,. defined as above there are derivations of lerigth
in the original grammar that would lead frofto z; ... x; Si for every non-
terminal (of the original grammary, that is a member 0®,. The base case
k = 0is immediate, and the way that the deterministic grammarcmastructed
was exactly such as to make the induction step true. Thusethdtris true in
general. Again adding a consideration of the productioasyleld< finishes the
proof?

The main conclusion from all this is that the original defonit of regular
grammars was probably a good and useful one. The fairly madgustments
to exactly what sort of productions were permitted left thess of languages
that could be described unaltered, as did the more substaestriction to the
deterministic case.

5 Finite Automata

The real reason for introducing deterministic regular grears is that they are
rather obviously equivalent to finite machines, the like difiath could be made
using flip-flops. Instead of talking about non-terminal sysbl will consider
machine states. Instead of terminal symbols | will think mbut symbols pre-
sented to my machine. And where a regular grammar can hadegions from
some non-terminals te showing that a sentence can stop at some point, | will
refer to some of the states of my machine as bargepting Obviously the start-
ing symbol for a grammar corresponds to the state the madhimewhen first
switched on.

A machine of this sort can be used by feeding it symbols (frtsmniput al-
phabet,>) one at a time. When the machine is in an accepting state tttissfa
visible!®. The machine accepts a string of symbols if feeding thatgin (start-
ing with the machine in its proper starting state) leads thehime to an accepting
state. The language accepted by the machine is just the sditstfings that it
would accept.

9Observe that | have not written out all the details here—th#ft as an exercise for you to
do for your supervisor!
10| like to think of the machine as having a green light on itsttugt comes on when the internal
configuration is in an accepting state.

13

Because a machine like this only produces one bit of outpetintication of
acceptance, and because it is thus useful to think of itsvi@lvain terms of the
language that it accepts, it is common to refer to the systeaF®A. This is an
acronym for Finite Deterministic Acceptot.

It should now be clear that given the transition rule for amyARt would
be possible to write out a regular grammar that generatddritgpuage. And in
view of the result about deterministic regular grammars, ffossible to takany
regular grammar at all and, after converting it to deterstiaiform, view it as a
description of a piece of hardware. Both of these conversimasones that you
should probably try out on examples, and there will be pleritgxercises to try
out in both the text-book and in past exam papers.

The hardware-oriented view of things tends to focus mostemognising
strings that form part of a language. You feed the string &nteachine and see if
it is accepted. The grammar approach is more oriented t@raglobal descrip-
tion of a language, and provides a way in which you can geaeeitences, but
in general is less concerned with testing a sentence to gegiii the some given
language. Thus the two views are complementary. The linkéde them is both
a bridge between hardware and software and a piece of @mhtgahnology that
can be used to help language people test input or hardwapepgenerate all
possible behaviours of their systems.

With regular grammars | looked for restrictions and gensasibns and found
several to study. With regular grammars in mind it provesuratto define an
extended sort of finite state machine. This id=A, or Finite Non-deterministic
Acceptor.

Recall that a FDA has an input alphab®})(a set of state), a transition
function ¢ : ¥ x @ — @), an initial state and a set of accepting states. An FNA
will be very similar but | can generalise in three respects:

The most important onelnstead of a transition function | will generalise things
to allow an arbitrary relation ol x Q x @ as the specification of what
the machine is allowed to do when presented with new inpuu rght
remember from the Discrete Mathematics course that thefdenotions
A — B is no more than a subset of the $&)(.4, B) of all possible re-
lationships onA, B, and so this really is a sensible sort of generalisation to
consider. The effect will be that for some symbol-state cowions there
may be two or more successor states permitted, and for s@rertay be
none at all;

IAgain notation in this whole area is a mess. Some people weutdder the words and hence
have the acronym as DFA rather than FDA, others would callfit@chine” not just an “acceptor”
(DFEM), or a “finite state” machine (FSM, DFSM). Generally thés nothing sinister or subtle in
all these different notations, there are just lots of défémames for the same concept.

14

optionally | can allow for state-changes in the machine that do not wa/ol
processing any input. | can build this into the formalisatiy extending
my transition relation to be oft: @ {A\}) x @ x @ so that the new pseudo-
symbol A marks a transition that does not involve any real input. This
course corresponds exactly to the usg-@roductions in regular grammars;

less commonlyl could specify that instead of having a single definite stigrt
state that the machine had some subset of its states marKposssble
starting states”. This gives symmetry between startingeacepting states,
and may also be of interest to hardware designers who carercairifident
that their system will power up in exactly the state they nrastited.

It is necessary to be a little careful with FNAs, in partigulze exact meaning
of a string being accepted by an FNA may not at first be obvidhs. interpreta-
tion that has proved to be useful is that an FNA accepts agsifrithere issome
set of transitions of the machine that ends up in an acceptatg at the end of
the string. Thus the non-determinism or uncertainty doé¢$abave like the un-
certainty of most hardware faults where inconsistent bielawf a machine is
unhelpful. On the contrary, it is more useful to think in teraf non-deterministic
machines arranging to select from all the transitions alséelto them just one that
will lead to your string being accepted.

A non-deterministic machine may show no possible succesata from some
state/symbol combination. This is quite in order and iterptetation is that no
string starting that way can ever be accepted.

Delightfully I can just read off results from what | have ady proved about
regular grammars. Given any language accepted by an FNA énit or all of the
above extensions) it is possible to construct a FDA to actepitthe FNA had
n States then we can certainly construct a FDA with no more #iastates. And
hardware courses may discuss the issue of state minirmdaticuch machines
and thus lead to more efficient solutions (sometimes).

A point that might be useful to make here is that if a FDA calldchas been
defined using some particular alphabethen sometime we want a machine that
behaves just the same way but which uses some larger alphabktwe work
informally with automata and just draw pictures to show ttleeinfiguration and
their transitions this does not look as if it is an issue of anlgstance. However
if we check the fine print and now look at the extended machweetitansition
relationship is not longer a total function, hence we hawtednup with an FNA
not an FDA.

The main conclusion that emerges is that (at least apart émmerns about
efficiency or bulk) it is valid to design a finite machine usthg flexibility of non-
determinism, because it will always be possible to convextENA you design

15

into a FDA later on before you actually try to build it in hards. In quite a
number of cases the design of an FNA will be much easier tharggaraight to
a FDA, so this can be really useful.

The transition function for a FDA will often involve a fairmall alphabet and
a fairly small number of states. In such cases it is naturdidplay it as a table so
that the new state of the machine can be looked up in it. Thislieads to a simple
and convenient software implementation of FDAs. | will sap@ that | represent
both symbols and states by integers, and write my code in gledand informal
version of Modula-3. As an exercise for both this course dedModula-3 one
you might take a specific FDA, code it this way (getting the Miad3 syntax and
other details exactly right) and try it out:

i nteger transition[0..syns,0..states];

bool accepting[O..states];

(» need to initialise the above arrays *)

I nteger state := O;

while true do begin
state := transition[read_synbol (), state];
if accepting[state] then print "Accept here"

end;

Providing the FDA was not so large that the tables needednbecaiculously
over-large the above provides a tidy and efficient way oirigst a given string
of symbols is accepted by the machine, and thus in the lamgthad it defines.

6 Closure Properties of Regular Languages

Now | have introduced two ways of thinking about regular laages | will prove
some more properties that they have. These will show thatimnaber of obvi-
ously sensible operations that one could perform on langgipgeserve the prop-
erty of regularity. Sometimes it will be convenient to praténgs by reference
to a grammar, sometimes by appealing to a FDA, but we havadireeen that it
is possible to convert between these two forms. In generahwitombine two
grammars | will want both of them to be defined in terms of themsalphabet.
Certainly the constructions mentioned here that use automidittend not to be
properly specified unless this is the case.

6.1 Complementation

If L is alanguage using the alphabgthen | will defineL as the language consist-
ing of all strings of symbols fronx that arenotin L. Note that when you form the

16

complement of a language you must do so relative to an ekphcierstanding of
the alphabet involved. For instance if you just say that héslanguage consisting

of the single string: then its complement viewing it as a language over the alpha-
bet that consists of just the one symhdk quite different from the complement
over the full English alphabet.

If L is regular then so wilL be. This would probably not be instantly obvious
if you thought in terms of regular grammars. But in terms of FDAIS easy to
show. L is regular and therefore there is a FDA that accepts it. MakevaFDA
which is just like this one except that every state that wasjaiing in the original
in non-accepting in the new one, and vice versa. This iscd&hrly a FDA, and
it obviously accepts just those sequences of input symhbalsare not inL. le it
acceptsL. ThusL is accepted by some FDA and hence it is regular.

6.2 Union

If L, andL, are two regular languages, then the unignJ L, is also regular. Note
that since a language is just a set of strings unions betvwaguhges are quite
reasonable things to form. | will prove this one two differevays, one using
grammars and one using machines, just to show that therdtanedifferent ways
of demonstrating the same result.

To use grammars, | start by asserting thatfigithere will be a grammat,,
and for L, | can haveiz,, each regular grammars. It is important here that these
two grammars have disjoint sets of non-terminals; | willuass this is so here
and similarly in other proofs that occur later in these nofagppose that the two
starting symbols aré; and.S,. | form a new grammar whose non-terminals are
the disjoint sum of those in the two existing grammars, togetvith a special
new symbolS’. The productions in the new grammar come by just taking all th
productions from each a¥, andG,, and adding in two additional rules:

S/—>Sl
S,_>SQ

and as you might expe&’ becomes the starting symbol for the new grammar.
Any string generated bg; can be generated using this new grammar by starting
with the A-productionS” — S;, and equally all strings from, can be produced.
And it is a regular grammar (in one of my extended forms). HehgcU L, is
generated by a regular grammar and is thus regular.

To use machines | note that there will be FDAf and M, (say) for my
two original languages. Form a new machine. Its alphabétbeilunion of the
alphabets used ih; andL,. If M; has a set of stat&g; and similarly for)M; then
the new machines set of states will Qg x (), ie each state will be an ordered

17

pair (¢;, ¢;) with one member of the pair from each macHhfeSuch a state will
be accepting if eitheg; or ¢} is. The starting state for the new machine will be
(90, 90)

The transition function is then the obvious one got by exitemthe existing
transition functions to the space of ordered pairs—I leangng down its defini-
tion as another exercise. When you have done that it oughtdtebethat the new
machine enters an accepting state when presented witing #tat would have
caused eithet/; or M, to record acceptance. Again this is sufficient to show that
the union language is regular.

6.3 Intersection

Observe thal. N M = L U M and so since we have already proved that comple-
ments and unions of regular languages are regular we caceléthat intersections
are too.

Alternatively the construction in the previous sub-settizat made a machine
to accept a union of two languages can easily be modified Epaen intersection
instead. All that needs to be changed is the specificationh&fwthe product
machine accepts a string—it is altered so that a state isamdgpting if bothy;
andg, are.

6.4 Difference

If the languagel; \ L, denotes the language of sentences that a¥g ibut not

L, then it will be regular provided.; and L, are. This can be seen because
L\ Ly = Ly U Ly, but as for intersection it could be done directly in terms of
a product FDA. Note that this is often a nicer operation tokmeith than raw
complementation because the complement of a languagelites an implicit
dependency on the alphabet being used.

6.5 Concatenation

Earlier on | showed that if you have two regular languagethg@tttime defined just
by grammars) then the language formed by concatenating Waalso regular.

Any finite number of unions, intersections and concatenatiperations can
be performed on regular languages and the result will remegalar. Infinite
numbers of operations in general will not lead to regulaunltss

12| am usingg here for states from/;, andq’ for states from\/s.

18

6.6 Arbitrary repetition

Take a gramma¢ for a languagel, with start-symbolS that generates a lan-
guage, and add to it the following extra productions:qa)> ¢ and (b) whenever
A — eisinthe grammar add in (as well) a new productibn— S. The first
of these changes ensures that the new grammar can genemtepetitions of
the languagd.. The second allows the grammar to restart after the end of any
sentence, so provides for arbitrary repetition. Becauseawe &till ended up with
a regular grammar the resulting language is regular. It @swknasL*.

It might help to explain where this curious notation comestr In general one
writes L™ for n-fold repetition of L. The “«” is then used in place of any specific
repetition count to indicate arbitrary repetition. It is1\s× convenient to write
L+ for repetition one or more times (whefé was zero or more repetitions). If
is regular then.™ is too, asL.* = LL*.

6.7 Reversal

The languagd.? consists of all strings that, when reversed, would bé.irt is
what the languagé looks like in a mirror. IfL is regular then so i£*. By using
my most extended form of FNA | can show this easily. Construsaahine)/ for
L. Then change this by exchanging the sets of starting anghtiegestate¥’, and
exchanging the part played by the two states mentioned itraneition relation.
The result is (clearly) an FNA that computes backwards ivedb the original,
and hence accepfs®. It can then of course be converted to a FDA if you really
want.

I will give another (probably neater) proof of this resuligiaon.

7 Regular Expressions

The closure properties of regular languages above leadtba@ndea for describ-

ing them:regular expressionsThese start from a set of base cases (single symbol
languages, the empty language and the language that coptsirthe empty sen-
tence) and builds up bigger languages using union, corad@nand repetition.
Because the base cases are all regular all other languagesdefi regular ex-
pressions will necessarily be regular too. In a little whileill prove that every
regular language can be described this way. The result ¢galar expressions
and regular grammars and FDAs are all equivalent in theiresgive power is
known as Kleene’s Theorem. But first | want to repeat (fromiea@.4) the rules

13see the section where | introduces FNAa for comments thgtdhe be extended to permit
multiple starting states.

19

for constructing regular expressions, to give a few exampfethem and show
what a very convenient and compact way of describing langsiitey provide. If
p stands for a regular expression, anfbr an arbitrary symbol from my alphabet
(ie z € X)), then the following rules allow one to build valid regulagpeessions:

0:p—10

symbol:p — x
concatenationp — p1po
alternation:p — py|p2
repetition:p — p;}

Note that\ = ()* so the above rules still allow one to specify a regular exqioes
for the string of length zero.
Here are some examples:

1. Even length strings ovem, b} can be described d$a|b)(a|b))*

2. My syntax for integers becomes

(01[213415]6[7[8[9) (0[1]2]3]4]5]6[7[8[9)*

3. Any string that contains at least thregymbols in a row (over an alphabet
a, b, ¢) is (alb|c)*aaa(alb|c)*.

A formal way of justifying that the collection of strings th@atch any regular
expression forms a regular language will use induction erstke of the regular
expression. First observe that a regular expression ofasieds just one of the
base cases that matches just one string (or in the cagaloés not match any
strings at all). Itis very easy indeed to exhibit either laggrammars or FDAS to
accept these. Now as an induction hypothesis suppose thegjalar expressions
with size less tharm: describe regular languages, and consider any expression
of sizek > 1. By the way regular expressions are built up it will be in one of
the three possible formB, R», R,| R, or R} whereR; and R, are smaller regular
expressions. But now by the induction hypotheBisand R, describe regular
languages, and so sinéditself is either the concatenation, alternation or arbytra
repetition of these its language is also regular.

The proof of equivalence in the other direction is distipdtarder. | want to
show that for any regular grammar or FDA there is a regularesgion that de-
scribes exactly the same language. The way | will do thisliesintroducing a
further extension of the idea of regular grammars. Recalthiibaight hand side

20

of a typical production is a single terminal followed by a Aenminal. | will
now consider grammars where the right hand size of a praztuctin be a regular
expression (in terms of terminals) followed by a single nemninal. The inter-
pretation of such a grammar is that it will generate all theteseces that could
possible arise by both expanding out the production ruléisarusual way and by
replacing each regular expression by all possible stringsit describes. | will
then show how to take an arbitrary (ordinary) regular gramama convert it into
one which consists of a single productién — r wherer is some (possible
rather large) regular expression. | will need to show as hgt the new grammar
generates just the same language as the original. In vieheogéquivalence be-
tween regular grammars and automata one could conductyekaetsame proof
but describe it in terms of machines, where now the tramstiof the machine
would beeventsdescribed by regular expressions rather than just ocaueseof
single input symbols.

Without loss of generality | will demand that my input granmdaes not have
any A-production in it.

Firstly I will identify any pairs of productions which shattee same two non-
terminals, and I will combine them. If | find — z BandA — y B | replace
the two productions with one new one — (z|y) B. | will keep applying this
transformation and so can assume henceforth that givenvamydn-terminals
there is at most one production from one to the other.

Now for each non-terminaB (with B different from the start symbd) | will
change the grammar in the following way so as to remove alttimeiof 5.

For the givenB find all other non-terminalgl andC' and regular expressions
x, y andz such thatd # B andB # C and the following three productions are
present in the grammar:

A — zB
B — yB
B — zC

(the cased = C' is permitted here) If there are no productiais — y B then
this can be indicated by writing — () B using the regular expression that does
not match anything at all' Introduce a new production

A — ayzC
Also if B — ¢ is present introduce
A — oy

When this has been done for all possidlendC removeB and all productions
involving it. | assert that any sequence of reductions ugfiegoriginal grammar

21

which involve use of the non-termin& can still be modelled by the new one,
and so the language generated has not been altered. But tlygarewar has one
fewer non-terminal symbol. | will come back to justifying miaim shortly.

By repeating the above transformation any grammar can beceedio one
with only the starting symbol left. The grammar must thenrbthe form

S — uS

S — v

and now the regular expressiahw captures it all.

Expressed in a slightly different form the last step is kn@gnArden’s rule.
This says that it/ andV are languages with/ not containing the empty string,
andif L = VUULthenL = U*V. This rule is what is needed to justify the
other steps too. Note that because | did not have\apgoductions in my original
grammar all the regular expressions that | produce on thewithynly match
non-empty strings.

Arden’s rule can be proved by induction on the length of ggirDr Moody’s
notes for the Diploma Course contain details, but | am notgytonwork through
them here.

Regular expressions are very commonly used to specify pattersearch for
in text. Deriving a FDA that accepts the language for suchxqmession leads
to an efficient way of making a computer recognise stringsrtieich the expres-
sion, and the matching process does not involve any guekswdrack-tracking.
Regular languages are also very widely used in the very etagies of compil-
ing programming languages. They give a convenient way afigpeg how the
user’s program should be split up into tokens. For instarftave already given
an example showing the format that can be used to denote egemtSimilarly
the rules about what sequences of characters make up vahdfidrs, strings or
floating point numbers in typical programming languages tdsd to be regular.
As a (not totally trivial) exercise you could try to constriacgood representation
for the (regular) language that denotes floating point \&luéu should expect
that such a number either contains a decimal point or an exyanarker (or pos-
sibly both), and that the exponent can be signed. But degeneages such as
“.e-" should not be allowed.

Again as for grammars and machines | will investigate whetiere are use-
ful extensions to regular expressions or restrictions @mth Since the regular
languages are closed under intersection and complen@niatould allow two
new ways of building regular expressions, Viz & R, and~ R, to denote the
strings that match botl®; and R, and the strings that do not matéh When
both these new operations are permitted the resulting ofgsatters are referred
to asextended regular expression just the “and” operation is used we have

22

semi-extended regular expressioiismay seem that since any language defined
by an extended regular expression is still regular thatettage frivolous exten-
sions, but they are not. This is because some languages cstbed by much
more compact extended regular expressions than the shpassible ordinary
regular expression for them. | will discuss this again byiefla later section on
efficiency.

Regular expressions allow one to produce a neat demonstithtid the re-
versal of a regular language is regular. Exhibit a regularession that matches
the language. Then if this is a base case leave it alone,sfAt jA; replace it
with AZ| AR, if it is A, A, replace it withAF AR and if it is A* replace it with
(A®)*. The result will (clearly) be a regular expression that ratcits reversal,
and hence that language is regular.

In the other direction there has been a study of what happefmaiirestrict
the rules that can be used to build regular expressions.ulfpgomit intersection
and negation but do not allow use of the repetition operatbttie collection of
strings the can be generated are known assthefree sets There are regular
languages that are not star-free, but even that result imsatstantly easy to
prove as you might have hoped, and | will not justify it hereeading on from
that is the concept of thetar depthof a regular language. Any regular language
can be described by an extended regular expression. Itslegain will be the
depth of nesting of stars in the least-nested expressiah f8o the star-free sets
are just those languages with star depth zero. The quedtiwhether there are
any regular languages whose star depth is greater than armappdead one into
amazingly deep and murky waters!

8 Non-Regular languages and the Pumping Lemma

Thus far | have concentrated on nice positive results thawvghat certain lan-
guagesre regular, and that certain ways of combining existing langsdead to
regular results. Now | want to give some concrete exampléangfuages that are
not regular, and explain one of the most commonly-used wayskaidaa specific
language and proving that it can not possibly be regulars T$known as the
Pumping Lemma

I will illustrate the method behind the Pumping Lemma by ¢desng the
languag€a™b™}, ie all those strings that consist on a bunch efymbols followed
by an equal number dfsymbols. | assert that this is not regular.

If it were, then there would exist some FDA to accept it. Siggpihis machine
hasN states. Now consider the behaviour of the FDA when it is prieskwith
the stringa™¥b", and in particular the sequence of states that it passesghras
it sees the firstV input symbols. Because the machine only hastates and

23

(if you include the starting state that it is in before it haers anything) there
are N + 1 states it must pass through in this calculation, some statt me a
repeat of a previous one. This deep (!) result is generalbpwknas the pigeon-
hole principle. If you try to postV + 1 items into/N pigeon-holes at least one
hole must end up with two or more items in it. Now the repeatatesmeans
that the machine performed some operations and got backlara i had been
before. That little loop could be repeated any number of sifiecluding zero
times) and the machine would be equally happy. So now we meagarrying
on the calculation until the machine accepts out sampletjgma then we tinker
with the number of times it goes round the loop. The resultvalthat we exhibit
a bunch of extra strings that it will accept. But we have chas@rset-up so that
all these strings have the same numbeb sfmbols but different numbers af
symbols, and hence most of them are not in the language thatnesupposed
to be accepting. The only way out of this difficulty is to cambé that it was
not possible to have a finite machine that accepted our lgggwand hence the
language can not be regular after all.

The Pumping Lemma states: For every regular languagthere is some
numberk > 1 such that all stringsy € L with length¢v) > k there is some way
of expressingv as a concatenation = u,vu-, that has the properties

1. length¢) > 1;
2. length(,,v) < k;
3. foralln > 0, u;v"uy € L.

Two things deserve stress here. The Lemma tells us that thbenk exists,
but does not tell us what it is. It also says that the deconiposof w exists as
described—it certainly does not even pretend to say thatdangmposition ofv
into three partsv = ujvuy Will satisfy the three properties. Just that there is at
least one such decomposition.

The proof is much as that for the particular case | workeduho Given any
regular L there must be a FDA that will accept it, and | then supposettieae
is such a machine with states. Now properties (1) and (2) just say that while
processing the firsk symbols of an input stringy this machine must repeat a
state.u; is the string of symbols read in before the repeated stateaished for
the first time, and is the non-empty set of symbols that cause the machine to
traverse an internal loop. Property (2) says that the loogt imeicompleted by the
time k symbols have been seen. Property (3) is just the asserabthéamachine
will then accept strings obtained by traversing the loopunmyber () times.

Here is a demonstration of the use of the Pumping Lemma. ratbse the
languag€{a?} with p a prime number is not a regular language. In other words no

24

finite machine could cause a light to flash each time the nuwiiaput symbols
it had been given was prime. First observe that there arefamténnumber of
primes, so for anyt associated with my language | could select a prinweith
p > 2k. Now the pumping lemma explains that the string= a*” can be split up
into three parts.;, v andu, with some length constraints. length() < &, and |
will call that lengthr, and length¢) > 1, and | will call thats. Thus

Uy =
v = a°
uy = aP "

Now | will consider the string:; v”~*u, which the pumping lemma assures me
will be accepted by the automaton. Its lengthiris— s) + s(p — s) + (p —r) =
(s+1)(p—s). Verifying that is just simple algebra! But now becauds at least
1,s+ 1lisatleast 2, and furthermoge— s must also be at least 2 (becauss k,

k > 1 andp > 2k). Hence | have a string whose length is certainly not prime.
The only conclusion is that the language concerned couldhan been regular
after all.

An analogous proof show that the language of palindromestisegular (a
palindrome is something that is equal to its own reversal. siclen sentences
like “Able was | ere | saw Elba” and “Madam, I'm Adam”, but igreosome
whitespace and punctuation for these English language @rain Similarly for
all strings where brackets nest properly, and hence fotypnedil all programming
languages.

It is perhaps useful to observe that the Pumping Lemma caud heen rea-
soned about in terms of regular grammars, and the magic nmumeuld then
have been the number of non-terminal symbols used in thergemAt later
stages in the CST when you come across more general sortsasfepsiructure
grammars you should be aware that they will come with thein awvore general
Pumping Lemmas which again seek to capture the insight tliatomly a finite
number of non-terminal symbols there must eventually beessont of potential
for repetition present in a language specification.

9 Decision Problems for regular languages

Given a regular language and a particular string we can défdide string is in the
language. For instance a FDA for the language can be cotestiraad the string
can be fed to it—if at the end of the string the FDA is in an atiogpstate the
string is in the given language. The test can be performedysgmatic way that
will always terminate with a clear-cut answer to our quastibhere are a number

25

of other questions about regular languages that can be aedwsing systematic
procedures, although | will explain later on that sometirtiesamount of work
involved gets out of hand.

1. Is a regular language empty? For instance you might deseriregular
language by some elaborate extended regular expressiothe@mavonder
if there are any strings in it at all. To decide the problemstarct a FDA
for the language. If this hals states then if the machine accepts anything
at all it will accept a string of length less than To prove this, suppose
to the contrary that the shortest string accepted was ofthenrgk, then
the pumping lemma applies and shows that there will be aashactepted
string. If the alphabek provides justm distinct symbols there are*
strings of lengthk, and we can (at least in principle) check each of these to
see if on of them or one of the initial substrings of one of themccepted.
If none are then the language is empty.

2. Are two regular languages identical? This can be resdiyaabserving that
two languages are identical if their symmetric differefig& L, U Ly \ Lo is
empty. Set differences and unions of regular languagesegtdar, so this
case reduces to the previous one.

Apart from the fact that the procedures described are Hgrdstly the results
might mean that detecting if there will be any input sequeheégets a piece of
sequential hardware into a given state can be tested foryenifging that two
different hardware designs will operate identically casoabe verified. Realistic
techniques for hardware verification will have to wait uatiPart Il course!

10 Efficiency

Here | will show that it is possible to have regular languagits small FDAs such
that their concatenation needs a large FDA. The languagdkuse to illustrate
this arel.; = (a|b)* and L, = a(a|b)™ for various values of.. First observe that
L, is easily implemented using a machine with just one statdewh is equally
easily recognised using aroumdstates. Now the language = L,L, is one
where then-th symbol from the end of any string must beanl assert that any
FDA that accepts this language must have at |@astates.

To prove this | will consider th@™ strings that start witla. and then have all
the possible length- sequences af andb symbols. Presenting each of these to
the FDA must leave it in an accepting state. Now | will arguat tthese must
be 2" differentaccepting states. Suppose that two of them were the sanme, the
there would be two different sequences leading to that.stditese two sequences

26

would differ in some particular symbol—one would haveiamhere the other had
ab. Suppose that place of difference wafrom the start, then feed the FDA
more symbols (which might as well all ag. Since itis deterministic the state that
it arrives in is definitely well-defined. Considering whetligs state is accepting
or not leads to a proof of my assertion.

You might suspect from this that the exponential blow-umdeere was just
because | started with and insisted on ending with detesticrautomata. Maybe
working with and FNA (or correspondingly a regular grammaould mean that
all the useful operations on languages could be done wittausing severe in-
crease in the size of a description. One counter-exampke il be to look
at the intersection operation. Lgtbe a prime number. Each of the languages
Ly = (a®)*, Ly = (a®)*, ...L, = (a?)* can be characterised by an automaton
with at worstp states. Determinism or non-determinism plain does not naake
big difference here since DFAs do the job as neatly as oneldmpe. Now letV
be the product of the primexs 3, ...p: the intersection of all these languages is
clearly the languagé&:™)* Thus the shortest non-empty string it can accept is of
length N. Hence any automaton that accepts it (deterministic ormagt have at
leastN states* N grows very rapidly as a function of the aggregate size of the
input automata.

A final comment on performance and practicality relates terced regular
expressions. Suppose thais an extended regular expression that can be written
in n. symbols, we know that there will be some ordinary (non-edéet) regular
expression?’ that describes the same language. Perli@psll need to be rather
larger thanR and it would be nice to have a bound on the expansion possible.

Define

H()(Tl) = b
Hi(n) = 2/

so thatH(n) involves a towerk high of exponentiation. Then a result that is
too hard to prove at this stage shows that the siz& aéxpressed as a function
of R can grow faster thai/, for any fixedk you care to choose. This is pretty
desperate! Since | can not complete the proof here | shoalelgou with an
exercise that relates to one early part of it:

10.1 Exercise:

Define then-th ruler sequence as one that starts @f%201040102010801
Every other character will be@ Of the remaining characters every other will be
a 1. After filtering out the0s andls every other character i2a And so on, until

14Exercise: write out a formal justification of this.

27

depthn where characters just repeat. Such a sequence naturally repeats after
just2” characters. Show how to make a semi-extended regular sxpnege one

that allows “and” operations) that is tolerably short butiethdescribes one of
these ruler sequences.

11 Conclusions

The main lessons that can be drawn from this course are as/fll

1. Regular Expressions, Regular Grammars, FDAs and FNAs tée ah-
terpreted as just different ways of thinking about a singleas languages,
known as theegular languageslf you start with any one form of descrip-
tion there will be a systematic way of converting it into arfttee others;

2. Regular languages have good closure properties. But behairall the
closure results | have quoted are fmite combinations of languages. Infi-
nite intersections or unions of regular languages may ledahiguages that
are not regular;

3. A pigeon-hole principle and the Pumping Lemma allow ushows that
some languages are not regular. If you have a regular laegih@gp many
of the questions you might want to ask have answers that st iledhe-
ory could be found my applying systematic procedures. Butsiones the
costs would in reality be utterly outside all practicableibds.

I hope you have also been convinced that the results expléierss were not
all intuitively obvious in advance and that many of them aregaining and dec-
orative.

References

[1] Thomas A SudkamplLanguages and Machinegddison Wesley, 1988.

Thanks are due to Alan Mycroft for helpful
comments on an earlier draft of these notes.

28

