
Swing

CST Part 1A, Easter 2004

Tim Harris

tim.harris@cl.cam.ac.uk

Introduction to Swing

This handout aims to introduce the terminology used in the
Swing libraries for implementing user interfaces. It cannot
provide a full reference, so I would suggest looking at some
of the following sources:

ä Progamming documentation is available on the web.
http://java.sun.com/j2se/1.4.1/docs/api/

ä This includes the Java language specification + details
about Java Bytecode and the Java Virtual Machine at
http://java.sun.com/j2se/1.4.1/docs/

ä A set of examples are all in
$CLTEACH/tlh20/swing-examples-2003 on the
PWF Linux system

ä There’s a local newsgroup ucam.cl.java
(nntp://ucam.cl.java in most web browsers, or
look at stand-alone news clients e.g. trn)

Introduction to Swing

Graphics

ä Basic rendering primitives are available on instances of
Graphics, e.g. using Java applets:

import java.awt.*;

public class E1 extends java.applet.Applet

{

public void paint (Graphics g) {

g.drawLine (0, 0, 100, 100);

}

}

ä Simple primitives are available – setColor, copyArea,
drawLine, drawArc...

ä More abstractly, an instance of Graphics represents the
component on which to draw, a translation origin, the
clipping mask, the font, etc

ä Translation allows components to assume that they’re
placed at (0,0)

(Notice the running similarity between these basic functions
as X11 / Motif...)

Introduction to Swing

Components

void setMenuBar()
void init()
void start()

void start()

void stop()
void destroy()

void show()
void dispose()

String getText()
void setText(String s)

Component add(Component g)

void paint(Graphics g)
void setSize(int w, int h)

Container getContentPane()
String getDirectory()
String getFile()

Panel

Frame
Applet

ScrollPane

TextField
TextAreaJComponent

JButton, ...

Window

TextComponentContainerButton
CheckBox Canvas

ScrollbarList
LabelChoice

Component

JFrame

Dialog

FileDialog

ä See the “SwingExamples” demos for illustrations of how
to use many of these

Introduction to Swing

Components (2)

ä In general a graphical interface is built up from
components and containers

ä Components represent the building blocks of the
interface, for example buttons, check-boxes or text boxes

ä Each kind of component is modelled by a separate Java
class (e.g. javax.swing.JButton). Instances of those
classes provide particular things in particular windows –
e.g. to create a button bar the programmer would
instantiate the JButton class multiple times

ä As you might expect, new kinds of component can be
created by sub-classing existing ones – e.g. sub-classing
JPanel (a blank rectangular area of the screen) to define
how that component should be rendered by overriding its
paintComponent method:

public void paintComponent (Graphics g) {

super.paintComponent (g);

...

}

Introduction to Swing

Containers

ä Containers are a special kind of component that can
contain other components – as expected, the abstract
class java.awt.Container extends
java.awt.Component

ä Containers implement an add method to place
components within them

ä Containers also provide top-level windows – for example
javax.swing.JWindow (a plain window, without title
bar or borders) and javax.swing.JFrame (a
‘decorated’ window with a title bar etc)

ä Other containers allow the programmer to control how
components are organized – in the simplest case
javax.swing.JPanel

ä In fact, java.applet.Applet is actually a sub-class of
Panel

Introduction to Swing

Containers (2)

ä A common design technique is to develop a spatial
hierarchy of nested containers

ä Components are organized within a container under the
control of a layout manager

ä BoxLayout is particularly useful: it places a series of
components horizontally or vertically

ä Box provides static methods to create special invisible
components:

� Rigid-area components which have a fixed size
� Struts which have fixed height or wdith (used to space

out other components)
� Glue which expands/contracts if the window is resized

and nothing else can change, e.g.:

cp.setLayout (1

new BoxLayout (cp, BoxLayout.X_AXIS));2

cp.add (Box.createHorizontalStrut (10));3

cp.add (left);4

cp.add (Box.createHorizontalGlue ());5

cp.add (right);6

cp.add (Box.createHorizontalStrut (10));7

Introduction to Swing

Receiving input

ä An event-based mechanism is used for delivering input to
applications, broadly following the observer pattern

ä Different kinds of event are represented by sub-classes of
java.awt.AWTEvent. These are all in the
java.awt.event package. e.g. MouseEvent is used
for mouse clicks, KeyEvent for keyboard input, etc.

ä The system delivers events by invoking methods on a
listener. e.g. instances of MouseListener are used to
receive MouseEvent:

public interface MouseListener

extends EventListener

{

public void mouseClicked(MouseEvent e);

...

}

Components provide methods for registering listeners
with them, e.g. addMouseListener on Component

ä AWTEvent has a getSource() method, so a single
listener can disambiguate events from different sources.
Sub-classes add methods to obtain other details – e.g.
getX() and getY() on a MouseEvent

Introduction to Swing

Input using inner classes

ä Anonymous inner classes provide an effective way of
handling some forms of input, e.g.

addActionListener (new ActionListener () {

public void actionPerformed (ActionEvent e)

{

...

}

});

ä A further idiom is to define inner classes that extend
adapter classes from the java.awt.event package.
These provide ‘no-op’ implementations of the associated
interfaces

ä The programmer just needs to override the methods for
the kinds of event that they are interested in: there is no
need to define empty methods for the entire interface

addMouseMotionListener

(new MouseMotionAdapter () {

public void mouseDragged (MouseEvent e)

{

...

} // no need to define mouseMoved

};

Introduction to Swing

