
Software Engineering II
Computer Science Tripos Part 1a (50% Option)

Lawrence C Paulson
Computer Laboratory

University of Cambridge

lcp@cl.cam.ac.uk

Copyright c© 2002 by Lawrence C. Paulson

Contents

1 Program Refinement 1

2 Loop Design 11

3 Fault Avoidance, or Preventing Bugs 22

4 Formal Methods in Software Development 32

5 Introduction to the Z Specification Language 41

6 Proving ML Programs Correct 50

I Software Engineering II 1

Engineering, as it is properly understood, is not possible for software. An engineer can design
a bridge, confident that it will meet its requirements when built (most of the time!). Our theory and
tools are not yet good enough to let us build software to this standard of reliability.

This course has less ambitious goals. It introduces methods for designing software systemati-
cally. It also introduces the emerging theory that may one day makeSoftware Engineeringa reality.

No textbooks follow this course at all closely.Fundamentals of Software Engineering[8] is sim-
ilar in spirit and has more content than much larger books.ML for the Working Programmer[16]
covers structural induction, used in the last lecture. Past examination questions on Software Engi-
neering II from 1998 onward are relevant. For the last lecture, try 1993 Paper 2 question 8. There
are many exercises below that you can use during revision.

Joe Hurd and David Morgan reported several typographical errors in these notes. Please tell me
if you find any more; I’ll acknowledge all corrections.

Acknowledgement. Ross Anderson supplied a book [15] that became the basis for Lect. 3.

Slide 101

Refinement, or Top-Down Design

Example: Printing a Table of Squares

fun squares() =

while not (finished())

do (getInputs();

printTable())

Refinementis top-down design. The main task is expressed as a simple routine that delegates
its work to subroutines yet to be defined. You can declare the yet uncoded subroutines asstubs:
dummy functions that just print their name and exit. (Some systems generate stubs automatically.)
With stubs, the program is always executable, even if it doesn’t accomplish anything. Coding the
lower-level routines adds functionality to the program, so that eventually it can do useful work.

Our task below is to design a program to print tables of squares. In each table, the range of
values to be squared is specified by giving the lower bound, upper bound, and increment (or delta).
Even this trivial example will highlight many points.

I Software Engineering II 2

Slide 102

Refining A Low-Level Routine

fun finished() =

(promptForInput();

testInputStream()); return true if no more input

Refines to . . .

fun finished() =

(print "Lower Delta Upper? ";

TextIO.endOfStream TextIO.stdIn);

Remark. This example is coded in ML. But ML functions must be declared before they are
called, while refinement means designing functions in reverse order. The declarations shown on the
slides must be re-arranged to yield a valid ML program. Often, the higher-level program will need
modification anyway due to insights learned when coding lower levels.

Functionfinished has the task of determining whether more tables have to be printed, i.e.
whether more input remains. It uses components ofTextIO , an ML Basis Library module for text
input/output.

Do not worry about learning advanced features of ML such as these. They are used merely to
complete the example.

I Software Engineering II 3

Slide 103

Coding some Low-Level Routines

fun getInputs() =

let val line = TextIO.inputLine TextIO.stdIn

in

case map Real.fromString (wordsOf line) of

[SOME lower, SOME delta, SOME upper]

=> SOME(lower,delta,upper)

| _ => (complain(); NONE)

end;

val wordsOf = String.tokens Char.isSpace;

fun complain _ = print "Bad input line\n";

FunctiongetInputs reads an input line and tries to decode it as three real numbers. It uses
the ML Basis Library typeoption to indicate whether the input is erroneous or valid.

datatype ’a option = NONE | SOME of ’a;

The call tomap returns a list whose elements have typereal option . A well-formed input is
mapped toSOMEx, wherex is the corresponding real number, while an ill-formed input is mapped
to NONE.

If the input line consists of three valid real numbers, then thecase expression returns the whole
triple, again usingSOMEto indicate that it is valid. Otherwise, it prints an error message and returns
NONE. Thecase pattern matches three-element lists whose elements are all valid.

Error reporting belongs ingetInputs , not in the main loop. A well-structured program del-
egates each task to the most appropriate routine. Sometimes, the best division of labour is not
obvious.

Functioncomplain is the user interface. A better one would describe what was wrong with the
input line. This task might be combined with the scanning of the numbers. FunctiongetInputs
would have to be restructured, but its callers would not be affected.

Top-down design produces many trivial functions likewordsOf andcomplain . Usually, such
functions make the program more readable, so they should be kept separate and not integrated with
their caller. Any optimizing compiler will eliminate trivial function calls during code generation:
they will not slow down execution.

I Software Engineering II 4

Slide 104

Generating the Table

fun printTable(lower,delta,upper) =

let val xr = ref lower

in

while !xr <= upper do

(printLine (!xr);

xr := !xr + delta)

end;

fun printLine x =

print (Real.toString x ˆ " " ˆ

Real.toString (x*x) ˆ "\n")

A simplewhile loop generates numbers from the lower bound to the upper. Take some time
to convince yourself that this code is correct. Look especially at its termination condition, which
compares the current value with the upper bound.

We delegate the job of actually printing the squares to functionprintLine .
Notice that the interface toprintTable has changed. Before, we hadn’t thought about how it

should get its data. Coding it has suggested that it should take the parameters as arguments, rather
than through global variables.

I Software Engineering II 5

Slide 105

Revised Main Program

fun squares() =

while not (finished())

do

case getInputs() of

SOME triple => printTable triple

| NONE => ();

We now revise the declaration ofsquares to accommodate howgetInputs andprint-
Table were finally coded. The former function returns a triple of items parsed from the input
(prefixed bySOME) if it was valid, and the constructorNONEotherwise. SincegetInputs will
have already printed an error message,squares simply ignores the bad data.

Refinement has given us a clear program that has a natural structure.

Exercise 1 RecodegetInputs to use exceptions instead ofSOMEandNONEto report bad data.
Which version do you prefer?

I Software Engineering II 6

Slide 106

Results??

squares();

> Lower Delta Upper? 0 0.1 1.5

> 0.0 0.0

> 0.1 0.01

> 0.2 0.04

and so forth. . .

> 1.2 1.44

> 1.3 1.69

> 1.4 1.96 WHAT ABOUT 1.5??

This sample run tells us that the program is wrong. We requested a table of squares finishing at
1.5, but this last value did not appear. The reason is that!xr was minutely greater than 1.5. The
accumulated rounding errors were on the order of10−17.

Thanks to the structuring of the program, we can instantly see that the fault lies within function
printTable . (Had you convinced yourself of its correctness, as you were asked to do?) The
termination test uses≤, and< would plainly be wrong. But with rounding errors, there is little
useful difference between≤ and< on floating-point numbers.

Other problems can be noticed. For example,printTable runs forever if the increment is
zero or negative. These problems would have come to light before writing a single line of code if
we had taken the time to specify the task formally (Lect. 5).

I Software Engineering II 7

Slide 107

A Better Version?

fun printTable(lower,delta,upper) =

if delta = 0.0 then print "Delta = 0.0!\n"

else

let val xr = ref lower

and ir = ref (iters(lower,delta,upper))

in

while !ir > 0 do

(printLine (!xr);

xr := !xr + delta; ir := !ir-1)

end;

The simplest, and perhaps the best, approach is to modifyprintTable ’s termination test.
Instead of testing against the upper boundu, it could test againstu + δ/2; in other words, add half
the increment to the upper bound to guard against rounding errors.

The solution shown above is more radical, and suitable for machines (such as the IBM 360 series)
in which floating-point rounding errors are especially severe. It wholly abandons floating-point in
the termination test. Instead, it computes the necessary number of iterations beforehand:

fun iters(lower,delta,upper) =
1 + Real.round ((upper-lower)/delta);

This computation is less likely to go wrong. It performs just three floating-point operations, avoiding
the previous version’s accumulation of rounding errors. Rounding the quotient will yield the nearest
integer.

Note the addition of one to the quotient. The need for an extra iteration is easily missed. Such
off by oneerrors are common in programs.

The explicit use of division makes the requirementδ 6= 0 obvious. This version ofprint-
Table tests for it, printing an error message instead of failing with division by zero.

Not checked is whether the conversion to integer (byReal.round) will cause an overflow.
Robust code should test for every potential error. The June 1996 explosion of the Ariane 5 rocket
was caused by a similar error: a conversion from a 64-bit integer to a 16-bit integer. Ironically, there
was no need for the faulty code to be running at the time of the failure.

I Software Engineering II 8

Slide 108

All OK Now?

printTable(˜0.4, 0.1, 0.4);

> ˜0.4 0.16

> ˜0.3 0.09

> ˜0.2 0.04

> ˜0.1 0.01

> ˜2.77555756156E˜17 7.70371977755E˜34

> 0.1 0.01

> 0.2 0.04

> 0.3 0.09

> 0.4 0.16

A nice thing about declaring separate routines (especially with an interactive language like ML)
is that they can be tested separately. Trying out the newprintTable , we see that it still is not
perfect. There is an entry for−2.78× 10−17, but none for zero.

Is this error just cosmetic? It depends on precisely what is to be done with the table, but most
people would agree that this output is unacceptable. It does, at least, warn us of the errors that are
always present in floating point.

The simplest fix is to change functionprintLine . The floating-point quantities should be
displayed to a fixed precision, here one decimal place forx and two forx2. Both−2.78 × 10−17

and its square would then be rounded to zero. The precision depends uponδ, so the interface to
printLine must be changed, and our trivial program becomes surprisingly complicated. The
suggested fix could be criticised as treating the symptom rather than the cause. For printing tables,
I think it is all right, but in critical applications one must work to reveal errors and not to hide them.

There are many visible differences between the two versions ofprintTable . Consider this
example:

printTable(0.0, 0.1, 1.09);

The first version’s table will end at 1.0, while (because of its rounding action) the second version’s
table will end at 1.1. Here is another example:

printTable(0.0, ˜0.1, ˜1.0);

The first version will run forever, while the second version table will print a table from 0.0 to−1.0,
decreasing in steps of 0.1.

These differences exist because we never specified the desired behaviour ofprintTable pre-
cisely. Lecture 5 will briefly introduce formal specifications.

I Software Engineering II 9

Slide 109

Drawbacks of Top-Down Design

Stubs must be written.

Refinement choices may have to be modified.

Low-level routines are coded last, revealing design flaws too late.

Little testing is possible until the low-level routines are written.

One remedy: aim to get key functions working first.

Top-down refinement lets us design program components one at a time. The final result is a
program whose structure reflects the design process. If the division of tasks into subtasks is done
sensibly, then each program unit will have a well-defined role. Faults in the program can often be
isolated to a single program unit.

Of course, things will not always be this nice. Some faults may concern the overall structure of
the program. Modifying a program unit is risky: new faults are often introduced. Even when they
are not, some users may actually have depended upon the faulty behaviour and will not want to see
it corrected.

Top-down refinement has specific disadvantages. Because the program is written from the top
down, the code that performs the actual work is not coded for some time. Stubs have to be written to
replace the modules that have not yet been coded. It is easy to write stubs that do absolutely nothing,
but it is harder to write stubs that allow meaningful testing of the existing system. What could then
happen is that much code is written without any testing at all. Much later, when you reach the level
of writing low-level code, you may discover a basic flaw in the design. You may then have to modify
earlier decomposition steps and repeat a lot of work, or else decide to live with the consequences of
a bad design. Therefore it is wise to identify the most important functionality of your program and
strive to get that completed first. This is consistent with top-down design: we do not have to refine
all the subtasks simultaneously and can focus on the most important one.

I Software Engineering II 10

Slide 110

Refinement of Data Structures

datatype client = Public of publicClient

| Private of privateClient;

datatype publicClient = LocalAuthority

| GovtAgency;

datatype privateClient = Individual

| SmallBusiness

| Corporation;

Data structures can also be designed using top-down refinement. In this context, astub is a
dummy type, as shown on the slide. The principles are the same. At all times, we have a working
(if incomplete) data structure. The finished data structure will reflect the design process. Errors will
normally be localized to one part.

Data and control structures can be refined together. Typically, there are different routines to
handle different forms of data, so a new routine and the corresponding part of the data structure can
be declared at the same time.

Always recall the distinction between abstract services and the low-level data structure used
to provide them. Use objects or modules (if your programming language has them) to hide internal
details. Other parts of the program should refer only to the high-level services provided by your code.
(This was discussed in the courseFoundations for Computer Science.) For example, a dictionary
should support the operationslookupandupdate, while hiding the underlying arrays, trees, lists, etc.

Exercise 2 The Standard ML Basis Library is on the World Wide Web athttp://www.dina.
kvl.dk/˜sestoft/sml/sml-std-basis.html . Find out how to scan real numbers from
strings and how to display them to a fixed precision. (Knowing how to read library documentation
is a useful Software Engineering skill: it stops you from reinventing the wheel.)

Exercise 3 ChangeprintLine using the information gathered in the previous exercise, fixing
the program as suggested above. Rather than making the precision depend uponδ, you might choose
a fixed precision and restrict the range ofδ accordingly.

Exercise 4 Precisely specify the valid inputs toprintTable . In this, use your judgement to
decide what would constitute a sensible table and what is probably an error. Your specification
should suffice to resolve all the points raised above.

II Software Engineering II 11

Slide 201

The March of Programming Languages

Fortran (1958)

I = 1

1 IF (A(I)-X) 2,3,2

2 I = I+1

GO TO 1

3 CONTINUE

Pascal (1971)

i := 1;

while A[i] <> x do i := i+1

Both pieces of code have the same purpose. Each examines the elements of arrayA, searching
for the first one that equalsx. Each returns the position of that element ini. Fortran’s use of
branching and labels renders the code almost unreadable, compared with the Pascal code. The
while statement neatly encapsulates a loop body and termination test, with a single point of exit.
The boolean expression is called theguard. The loop body is executed only if the guard is true;
otherwise, the loop terminates.

(I should like to include code written in a modern programming language, but C and Java have
regressed. For example, they use the equals symbol (=) to stand for updating a variable, and they
rely excessively onbreak for specifying control flow.)

During the 1970s, improvements in programming languages and the phasing out of assembly
code yielded dramatic productivity increases. Researchers continue to seek better languages and
other tools, but further gains are likely to be more modest.

A good programmer must understand loop design. A program’s efficiency is often determined
by its inner loop. Confusing loop structures make for faulty code that is hard to understand, and
therefore, hard to correct.

Note.This lecture uses Pascal rather than ML. The latter’s need for the! operator tends to make
programs obscure.

II Software Engineering II 12

Slide 202

Understanding a while Loop

Invariant holds here

while Guard do

Invariant holds here

begin

make_Progress;

restore_Invariant

end

Invariant & ¬Guard hold here

Every well-designed loop must do two things.

1. It mustmake progress, to ensure that eventually it will terminate.

2. It must maintain aninvariant, which is an assertion describing the relationships that may hold
among the variables changed in the loop. The invariant must hold at each exit point. (With
while , this is also the start of the loop body.)

The loop body might be executed any number of times, but it will make the invariant hold after
every iteration. The invariant will hold when the loop terminates. The termination condition (for
while , the negation of the guard) will hold too. These two facts must be strong enough to guarantee
whatever state of affairs the loop is intended to establish.

Many other looping constructs can be found in programming languages. For example, the exit
point might be at the end or in the middle. Multiple exits are often possible (e.g. usingbreak in
C), but they are best avoided, since they complicate understanding. Anyway, the invariant must hold
at every exit point. Unless the start of the loop is an exit point, the invariant does not have to hold
upon entry.

C programmers often write termination tests that update variables. Then the invariant must hold
just at the point of exit, after those updates have occurred. Such a termination test should be avoided:
it cannot be regarded as stating a property, making the loop harder to understand.

II Software Engineering II 13

Slide 203

A Trivial Loop Invariant

k := 0;

Invariant : elements A[1], . . . , A[k] equal 0

while k <> N do

begin

k := k+1; make progress

A[k] := 0 restore invariant

end

Now k = N, so elements A[1], . . . , A[N] equal 0

This trivial loop initializes array elements to zero. It has an index variableK, and the invariant
states that elementsA[1], . . . ,A[k] are equal to zero.

At first we havek = 0, so the assertion

A[1], . . . ,A[k] equal 0

holds vacuously (no array elements are in the range mentioned). So the invariant holds initially, as
required.

At each iteration, the loop body makes progress by increasingk. After doing so, the invariant
might fail to hold: we have no reason to believe thatA[k] = 0 for the new value ofk. The loop body
immediately sets that array element to zero, restoring the invariant.

Oncek = N, thewhile loop will terminate. Combiningk = N with the invariant yields the
desired result, that elements from 1 up toN are set to zero.

If we were working more formally, we should express the invariant using quantifiers:

∀ i (1 ≤ i ∧ i ≤ k→ A[i] = 0).

Exercise 5 What is the right invariant for this loop? What assumptions does the loop make about
the initial value ofN? What can we conclude after the loop terminates?

k := 0; sum := 0.0;
while k <> N do

begin
k := k+1;
sum := sum + A[k]
end

II Software Engineering II 14

Slide 204

The Outer Loop of Insertion Sort

k := 0;

A[1], . . . , A[k] are an ordered permutation of A1, . . . , Ak

while k <> N do

begin

k := k+1; make progress

insert(A,k) restore invariant

end

Finally A[1], . . . , A[N] are an ordered permutation of A1, . . . , AN

Tiny modifications of the previous loop give us the outer loop of insertion sort. In reading the
formulas, note that I have usedAi to refer to the value held inA[i] at the start of execution. The
phrase ‘an ordered permutation of’ is the usual specification of sorting. It expresses that sorting
involves re-arranging the given elements so that they are in order. The invariant states that the first
k elements of the original input (namelyA1, . . . , Ak) have been sorted and now occupy the array
positionsA[1], . . . ,A[k].

Initially k = 0 and the invariant holds vacuously: nothing has been sorted yet.
At each iteration,k is increased (making progress) and then the procedure callinsert(A,k)

inserts the valueA[k] into its proper place among the already-sorted elementsA[1], . . . ,A[k− 1].
Finally k = N and the loop terminates. The invariant now states that array elementsA[1], . . . ,

A[N] have been sorted.

Exercise 6 Codeinsert(A,k) , showing the loop invariant. It is simplest to count downwards
from k , moving up array elements that are greater thanA[k] .

II Software Engineering II 15

Slide 205

Defensive Programming (?)

k := 0;

while k < N do

begin

k := k+1;

A[k] := 0

end

• less risk of endless looping

• weaker termination condition, k ≥ N

The previous slide’s termination condition,k = N, seems correct. We need it in order to conclude
that the firstN array elements have been set to zero, and it is how we expect the loop to terminate.

In practice, such a strong termination condition is dangerous. IfN < 0 then we shall never reach
a point wherek = N, so the loop will run forever. Worse, as it runs, it will set all memory cells to
zero. (In a less trivial loop, where variables are updated in complicated ways, such a disaster could
be hard to foresee.)

Many programmers would write our loop aswhile k<N (as shown above) to reduce the risk
of endless looping. (This is one element ofdefensive programming.) Then they have to settle for
the weaker termination condition ofk ≥ N. Some authorities, notably Dijkstra, insist thatwhile
k<>N is the correct form. The next lecture will resolve this conflict between theory and practice.

II Software Engineering II 16

Slide 206

Termination: Sentinels

i := 1;

A[N] := x; post the sentinel

while A[i] <> x do i := i+1; search

if i=N then notFound(N)

else FoundAt(i,N) proper solution found?

Many loops search through arrays for a desired element. If that element does not exist, then the
loop must exit and report failure rather than causing an array subscript error. The loop could include
an exit to be taken if the index variable exceeds the array bound. However, having two termination
conditions is both inefficient and ugly.

The slide illustrates a technique advocated by D. E. Knuth. A suitable element—thesen-
tinel —is inserted into the array’s last position. The search will always be successful, and in-
specting the final value ofi indicates whether the item found was the sentinel or a proper array
element.

A general lesson: look for ways to simplify your loops.
(Naturally, you must be sure thatA[N] exists. Maguire [15, page 147] gives an example where

sentinels are risky. In C, it is easy for programmers to update non-existent memory. How ironic that
a supposedly efficient language makes basic optimizations dangerous!)

The invariant for thewhile loop states that elements

A[1], . . . ,A[i − 1] each differ fromx.

It holds trivially at first, and ifA[i] 6= x then adding one toi preserves the invariant. Upon termi-
nation, we have the invariant (for the current value ofi) together with the termination condition,
A[i] = x. These two properties together tell us thati is the position of the first element ofA that
equalsx.

For simplicity, the example shows a search for a particular value. The same considerations apply
if the search is for any value satisfying some property, such as of being a positive number.

Exercise 7 Code the procedureinsert(A,k) , using a sentinel to eliminate the need to test for
the beginning of the array (see exercise 6).

II Software Engineering II 17

Slide 207

Algorithm Design Using Loop Invariants

k := 0;

while k<>N do

begin

writeln(k*k*k); If multiplication is slow?

k := k+1

end

The make progress, restore invariantstructure is found in many classic algorithms, e.g. for
finding shortest paths in a graph. The idea can be used to design any loop.

Here, we consider the task of printing (using Pascal’swriteln procedure) the cubes of the
integers from 0 toN − 1, whereN ≥ 0. Multiplication is slow on our computer; we should like to
eliminate it.

Obviously this example looks dated. However, it is relevant even in the 21st Century. Multipli-
cation is still prohibitively slow on low-power devices such as smart-cards.

The reduction of multiplication to addition is an instance ofreduction of strength, which can
often be used to remove expensive operations from loops. The technique is used to improve the
performance of graphics algorithms, for example.

(This example was presented by W. H. J. Feijen at the Marktoberdorf Summer School, 1996.)

II Software Engineering II 18

Slide 208

Refinement I: x = k3

k := 0; x := 0;

while k<>N do Invariant : x = k3

begin

writeln(x);

x := x + 3k2 + 3k + 1 ;

k := k+1

end

(k + 1)3 − k3 = 3k2 + 3k + 1

We introduce the variablex in the hope of maintaining the invariantx = k3. Becausek is initially
zero, we can satisfy the invariant at the start by also settingx to zero.

If the program had to work for an arbitrary lower bound instead of zero, then it is hard to see
how x could be initialized other than byx:=k*k*k . Removing the multiplications from the loop
body is still better than performing them at each iteration.

Calculating

(k + 1)3 − k3 = (k3 + 3k2 + 3k + 1)− k3 = 3k2 + 3k + 1

tells us what value the loop body must add tox in order to preserve the invariant. This large formula
does not look like an improvement overk3, but we have reduced the degree of the polynomial.

II Software Engineering II 19

Slide 209

Refinement II: . . . and y = 3k2 + 3k + 1

k := 0; x := 0; y := 1;

while k<>N do Invariant : x = k3 and y = 3k2 + 3k + 1

begin

writeln(x);

x := x+y;

y := y + 6k + 6 ;

k := k+1

end

(3(k + 1)2 + 3(k + 1) + 1)− (3k2 + 3k + 1) = 6k + 6

Continuing as before, we introduce the variabley. Now westrengthenthe invariant by conjoining
y = 3k2 + 3k + 1 to it. (It continues to demandx = k3 as well.) Initially k = 0, so we satisfy the
invariant at the start by settingy to 1.

In the loop body, we can usey for the current value of3k2 + 3k + 1, but must updatey so that
it will keep this property at the next iteration, afterk has been increased. A tedious but elementary
calculation tells us thaty must be increased by6k + 6.

Notice that we usey (to modifyx) before updating it. The first assignment falsifies the invariant;
the last assignment makes it true again.

II Software Engineering II 20

Slide 210

Refinement III: . . . and z = 6k + 6

k := 0; x := 0; y := 1; z := 6;

Invariant : x = k3 and y = 3k2 + 3k + 1 and z = 6k + 6

while k<>N do

begin

writeln(x);

x := x+y;

y := y+z;

z := z+6;

k := k+1

end

We still have the problem of computing6k + 6 within the loop body. Now it is obvious what
to do, but let us keep the formal development. We introduce the variablez and again strengthen the
invariant, conjoiningz = 6k + 6 to it. Initially k = 0, soz = 6 is forced. The loop body, after
usingz, increases it by 6; this satisfies the invariant because(6(k + 1) + 6)− (6k + 6) = 6.

What have we gained? We have replaced two (very slow) multiplications by three additions.
We are lucky that the variables could be updated one at a time. Occasionally, it happens that the

new value ofx depends on the current value ofy, and the new value ofx similarly depends uponx.
An example is given by thesimultaneousassignment

x, y := y, y+x;

but few languages offer this construct.

This cubes program is of historical interest. Charles Babbage designed his Difference Engine to
print mathematical tables using similar ideas.

Moral. Loop invariants let us design loops systematically and reason about their correctness. We
can even make an existing loop more efficient.

Exercise 8 What happens to this program if the specification is changed to allow (a) an arbitrary
lower bound, instead of zero, or (b) an arbitrary delta value, instead of one?

II Software Engineering II 21

Slide 211

Invariants, Past and Future

Invariants emerged as a way to prove loops correct

They also express requirements on data structures

Invariants express safety : failure can lead to wrong answers

They are hard for humans to find, but tools are being developed to find

invariants automatically:

• static methods: analyze the program text

• dynamic methods: run the program and see what holds

Invariants emerged as a byproduct of research into program verification. They seemed essential
in order to be able to prove properties of loops. Of course, most data structures also have to maintain
key properties; for instance, a tree should contain no cycles. Invariants thus also become relevant to
data structure design. Later in this course (Lect. 5), we shall see them constraining Z schemas.

Invariants aresafety properties. They should be strong enough to ensure that a program that
maintains its invariants can do no harm. However, a program can maintain invariants by doing
nothing at all — the loop body could be empty — which is why we also require loops to make
progress.

Unlike comments, invariants are precise. They can be valuable to programmers. For example,
if they modify a program, its invariants should continue to hold afterwards. But invariants are only
useful if they are known to be correct. Invariants are difficult to discover and difficult to verify, in
part because they can be very complicated. Many researchers have tried to find ways of discovering
invariants automatically. This can be done through static analysis of the program text, or by runtime
checking. An example of the latter approach is Daikon [5], which runs a program on a test suite
and attempts to identify simple relationships among variables at key program points. This dynamic
approach can report false invariants: they may hold just of the chosen test suite. However, some of
the static approaches are also unsound. Thus the invariants they yield cannot be taken as a guarantee
of correctness, but if an invariant is reported to fail, then we have found a bug.

III Software Engineering II 22

Slide 301

Fault Avoidance

BUGS CAN KILL

Prevention, not Cure

• Keep It Simple

design — interfaces — code

• Check Everything

compiler warnings — run-time checks

Some practitioners dislike the wordbug because it belittles what deserved to be called a fault
or defect. Whatever word you use, never underestimate bugs. Some have killed people; others
have cost hundreds of millions of pounds in damage (e.g. the loss of the Ariane 5 rocket). Most
programmers can recall a bug that cost them days or weeks to find.

How do you catch bugs? One survey [4] found that 80% bugs were found not using fancy debug-
gers but by primitive means, such as insertingprint statements and hand simulation. Debugging
tools can be valuable. A simple diagnostic technique is to reduce the problem by deleting parts of
the input (or even the program) to see if the bug is still there. Sometimes, you can reduce the input
to two lines, making it easy to find the bug.

Two major causes of bugs are memory overwrites and faults in vendor-supplied products. Mem-
ory problems are hard to isolate because the symptoms often appear long after the original error.

The best debugging technique is to avoid having bugs in the first place. This lecture presents
techniques, mostly suggested by Maguire [15], for detecting bugs early. I have organized his many
suggestions under two slogans:Keep It Simple(or KISS: Keep It Simple, Stupid) andCheck Every-
thing. Keeping it simple avoids introducing bugs. The compiler can detect many errors, and many
remaining ones can be caught if your code includes thorough integrity checks.

III Software Engineering II 23

Slide 302

Efficiency

Is it necessary?

Chief cause of wrong decisions

• coding tricks

• using assembly language or C

50% of runtime is spent in 5% of the code!

Use profiling to find that 5%

If you never consider efficiency at all, then it will be hard to make your program efficient later.
Think about efficiency during the design phase, but not during the coding. Optimize your code later,
after you have identified the critical parts.

Most programs have one bottleneck that determines their performance, regardless of how the rest
is coded. We speak of theinner loop, but the bottleneck is seldom where you expect. Useprofiling
toolsto discover which part of the program uses the most time and space.

I once worked on a large Pascal program that was spending one third of its time executing the
following statement:

for i := 1 to 10 do str[i] := ’ ’;

Nobody had noticed this innocuous line, which performed string subscripting (slow on our PDP-10).
We replaced it by the equivalent (but very fast) statement

str := ’ ’;

As you eliminate such bottlenecks, eventually you arrive at those that are inherent in the computa-
tional task. They can be improved through better algorithms or by recoding small parts in assembly
language.

Efficiency-obsessed programmers write obscure code that is full of bugs. Code your functions
straightforwardly. Before you resort to profiling, ask yourself whether the program is fast and small
enough for its intended task. For many programs, reliability is more important than efficiency.

I know of a major project that failed because the investigator insisted upon coding it all in
assembly language, on the grounds that one critical part had to be efficient. In the end, efficiency
proved to be a red herring: the system seldom worked at all.

Exercise 9 Use a profiler (such as Unix’sprof) on a program of your own. If possible, recode
the bottleneck it identifies and measure the resulting improvement in performance.

III Software Engineering II 24

Slide 303

Re-Inventing the Wheel

• Libraries (numerical, string-handling, . . .)

• Parser generators (yacc)

• Specialized languages (tcl/tk, perl)

• Commercial-Off-The-Shelf Software

Why write code if somebody else has done it for you?
A well-designed library might satisfy requirements and do so better than code you could write

yourself. Some people don’t use libraries because they find programming more fun than reading
library manuals. Bad documentation increases this tendency. So, in large software systems, some
functions are implemented many times, wasting space and making maintenance harder.

A parser is (in its most typical application) the first stage of a compiler. Its job is to analyze
the source file according to the grammar of the programming language, identifying the functions,
statements, etc. Coding a parser by hand is difficult and error-prone. Aparser generator, given the
required grammar, produces a parser automatically. Machine-generated parsers are often faster and
smaller than hand-coded ones, and handle errors more uniformly.

You can build a user interface much quicker using tcl/tk than by calling windowing primitives
directly. It will be slow, but it will do the job. For text-processing tasks, a few lines of perl can
replace hundreds of lines of C.

Finally, consider whether some commercial package can do the whole job for you. During
the 1960s, when computers were hugely expensive, companies generally wrote their software in-
house. Now that hardware is cheap, bespoke (custom-made) software is seldom economic. But if
the commercial package is a poor match to your needs, you might have to roll your own.

III Software Engineering II 25

Slide 304

Simple Design

Resist imposed changes

Don’t add your own complications

Beware of ACCIDENTAL FEATURES

It all has to be supported and documented

A simple design is your one best defence against software problems. Getting it simple, and
keeping it simple, is hard.

There are many sad tales of projects going wrong due to changes imposed from above, especially
late changes. Resist such pressure if you can. Don’t complicate matters by suggesting changes
yourself. Don’t let the fun side of a project block your professional judgement.

During coding, new features may come ‘for free’ because of arbitrary implementation decisions.
Nothing is free, however. If the new features are added to the design, then they are likely to stay
there: you are committed to those decisions, for better or worse.

Software, for micros especially, has got more bloated in recent years. It seems slower than ever,
despite faster hardware. It seems harder to use, despite masses of on-line documentation. A certain
word-processing package is often cited as an example of this phenomenon.

There are examples of good practice, too. My personal favourite isTextures, a TEX environment
for the Macintosh. Its developers seem to have concentrated on making it faster and more convenient
rather than loading in features.

III Software Engineering II 26

Slide 305

Simple Function Interfaces

Avoid MULTIPURPOSE FUNCTIONS

Flag EXCEPTIONAL CASES cleanly

Is that exception necessary?

Error values versus booleans

Consider the caller

When designing a suite of functions, especially ones that other programmers will call, devote
some effort to making them easy to understand and use. Think about how your functions will
be called in typical circumstances. (You’ll need examples for the documentation, anyway.) Each
function should have one clear purpose and should work harmoniously with the others.

As an example of how not to do it, Maguire [15] cites C’srealloc function. This function
performs four quite distinct operations (allocating storage, releasing it again, increasing a block’s
size, decreasing a block’s size). The description ofrealloc goes on for paragraphs. No wonder
programmers don’t like reading manuals!

Functions likerealloc come from a coding style that attempts to make sense of every combina-
tion of arguments. Instead of signalling an error, the function attempts to do something sensible.
Fine judgement is needed. Functions should not impose arbitrary restrictions, but they should not
accept rubbish either. That can mask bugs, making them harder to find. For instance, a function to
allocate an array of sizen should succeed ifn = 0, but fail if n< 0. An empty array is a meaningful
concept, but a negative-size array is not.

Exceptional situations must be signalled to the caller. In ML, you can return a result of type
option (with its NONEandSOMEconstructors) or raise an exception. Again, judgement is needed.
Using typeoption forces the caller to handle the error, when perhaps it should be handled higher
up; raising an exception has the risk that nobody will handle it.

Using typeoption is an example of signalling failure by returning an error value. It works
neatly with ML’s case construct (turn back to Lect. 1). In C, error values force a clumsy coding
style on the caller. A notorious example is functiongetchar, whose result type is notchar but int:
normally it returns a character, but it signals end-of-file by returning an error value. A separate
boolean output or a separate end-of-file function would do the job better.

III Software Engineering II 27

Slide 306

Simple Code

Keep to a straightforward style

Banish needless optimizations

Rely on public interfaces, not INTERNAL DETAILS

(Workarounds for known bugs?)

POINTERS need extra care

Straightforward code solves the task in the obvious manner. Tricky code might be more fun to
write, but it will probably cost you in the end, especially if other people have to maintain your code.

Tricks such as using binary shift instead of multiplication by two can make the code non-
portable: they can give the wrong answer on some types of hardware. Even when it works, the
improvement in efficiency is small, but the cost in clarity is great. Leave the low-level optimizations
to your optimizing compiler.

The worst piece of code I ever saw was an assembly-language routine that changed an instruction
in another routine before calling it. (It was coded by an ‘ace programmer.’) This example may be
laughable, but there are countless cases in which programmers exploit the internal details of another
function (or data structure). When a new version of that function is installed, calls to it fail.

Information hidingmeans using language features such as objects or modules to deny others
access to internal details. No programming language can hide all details, e.g. of what a function
does when its behaviour is officially undefined: the programmer must exercise discipline.

Sometimes you know that a library function returns the wrong answers in some cases. If you are
forced to code a workaround, make sure your code will continue to work after the library function
is fixed.

Pointers are dangerous, especially in C, where errors can corrupt memory and cause mysteri-
ous failures elsewhere. Perhaps half of Maguire’s book is devoted to preventing such problems.
When using pointers, keep to the simplest and safest style possible. Avoid overwriting your caller’s
memory.

III Software Engineering II 28

Slide 307

Check Everything (Compile Time)

Use a high-level language: Java, Ada, Modula-3, ML

• strong typing

• information hiding (objects or modules)

• exception handling

• clear syntax

Switch on all compiler warnings

Use static diagnostic tools

Let the computer catch your errors! Why spend hours tracking down a bug caused by calling
a function with the wrong number of arguments, when the compiler can find such bugs itself? ML
is exceptionally safe: its type system has no loopholes and it even forces variables to be initialized.
The only way an ML program can fail, barring faults in the underlying system, is by not catching an
exception.

ML is not suitable for every application: most implementations use too much storage (e.g.
300KB for the runtime system alone). Other languages provide a degree of safety, including Java,
Modula-3 and Ada.Strong typingprevents your confusing a pointer with an integer, say;information
hiding protects the integrity of data structures;exception handlingprovides a dedicated mechanism
for managing run-time errors; aclear syntaxbenefits everybody who reads your program.

Object-oriented methods are popular. They are valuable because they provide information hiding
(though imperfectly) and make it easy to provide libraries of reusable components. A good module
system (such as ML’s) gives the same advantages.

Untyped languages such as Lisp make it hard to achieve reliability. Assembly language makes
it hard to achieve anything. C is riddled with pitfalls, such as the following [15]:

if (ch = ’\t’)
ExpandTab();

The expression inside theif is not an equality test but an assignment!
Sometimes you have to use a questionable language because of legacy code, libraries, compati-

bility concerns, or management prejudice. Make the most of whatever language you use. Enable all
compiler warnings so that all questionable C constructs are rejected. A bonus: clean code is not just
more reliable but is more likely to be portable.

III Software Engineering II 29

Slide 308

Check Everything (Run Time)

Include lots of debugging code

• assertion checks

• backup versions of optimized algorithms

• distinctive initial values

• active consistency checks

Debug code runs in addition to the real code

Test every new line of code

Naturally, you will enable all run-time tests, e.g. of array bounds. Augment the language’s
automatic checks with those of your own, usingassertstatements. These raise an error unless the
supplied boolean expression evaluates totrue .

Maguire [15] supplies a complete ‘debug’ version of the C store allocation routines, which record
enough additional information to detect (automatically) common errors such as referring to a block
after releasing it. Compaq recommend a tool called Third Degree, which checks for heap memory
leaks, references to uninitialized data, etc. Electric Fence, by Bruce Perens, is a free utility that halts
a program as soon as it overruns an allocated memory buffer.

Laden with debug code, your program may run two or three times as slow as it would otherwise.
Such a degradation is tolerable during testing. For production runs, the debugging code can be
omitted by setting the ‘debug’ variable tofalseand recompiling. If you can leave in some checks,
so much the better.

Tricky, fast code can be checked using assertions that compare its results with that obtained by
backup code, written straightforwardly. As an example, Maguire cites a spreadsheet engine.

Forgetting to initialize a variable can have drastic consequences. If your debug code initializes
everything to zero, then it might mask errors, and your program will fail when the debug code
is removed. Maguire suggests forcing variables to be initialized with a value carefully chosen to
provoke a fault however it is used: it should be an invalid instruction, an invalid address, etc.

Do you have a complicated data structure involving lots of pointers? Consider coding an integrity
checker, a function that traverses your data structure to ensure that it is well-formed. Find the bugs
before they find you.

‘Test your code’ seems obvious. It is easy in ML: whenever you code a new function, test it
on values that exercise every execution path. (It is easier to test a new three-line function than to
test three lines added to a 100-line function, so try to do without the latter.) In C, Maguire suggests
that you use an interactive debugger to step through every line of new code. Hand simulation is less
good: if you made a mistake in the first place, you could misinterpret what the computer will do
when it reaches your mistake. Build a collection of tests that can be given to your program every
time you make a change.

III Software Engineering II 30

Slide 309

The March (???) of Programming Languages

1988: Internet Worm exploits buffer overflow to bring down thousands

of machines

2000: “buffer overflow. . . accounts for over 50% of reported software

security vulnerabilities”

Buffer overflow lets an attacker put arbitrary data in memory.

Don’t use unsafe libraries!

The Internet Worm, launched in November 1988, spread rapidly. Thousands of computers
crashed, brought down by the burden of running innumerable copies of this program. If it had
carried a malicious payload, its impact would have been devastating.

As Spafford [17] describes, its main propagation mechanism exploited insecurities in a C library
to attack a Unix background process calledfingerd.

The bug exploited to breakfingerd involved overrunning the buffer . . . used for input.
The standard C language I/O library has a few routines that read input without checking
for bounds on the buffer involved. In particular, thegetscall takes input to a buffer
without doing any bounds checking. . . . The input overran the buffer allocated for it
. . . thus altering the behaviour of the program.

A program that calls this routine (gets) has no control over the contents of the memory locations that
come after the buffer. Anybody can send an extra-long string, by accident or on purpose, and cause
havoc. The Internet Worm transmitted instructions thatfingerdobligingly executed, allowing it to
infect a new machine.

Spafford continues:

There is a whole family of routines in the C library that may also overrun buffers. . .
Although experienced C programmers are aware of the problems with these routines,
they continue to use them.

The second quote on the slide above [20] indicates that the problem is still widespread, 12 years
later. There are two lessons here: (1), obviously, is to check for buffer overflow, even in the final
version of the software. And (2), learn from mistakes. But in the Summer of 2001, the Code Red
worm infected hundreds of thousands of Windows machines by exploiting buffer overflow.

III Software Engineering II 31

Slide 310

That While Loop Again

assert (N >= 0) precondition satisfied?

k := 0;

while k < N do discourage endless looping

begin

k := k+1;

A[k] := 0

end;

assert (k = N) postcondition satisfied?

This example ofassert demonstrates safety checks for awhile loop. As discussed in Lect. 2,
we strengthen the guard fromk 6= N to k < N, preventing looping even if somehowk comes to
exceedN. But we do expectk = N to hold, so we add an assertion to check it. The loop’s task (to
zero the firstN array elements) makes sense only ifN ≥ 0 initially, so we put yet another assertion
before the loop.

Strengthening the guard without adding the assertions is risky. By preventing the endless loop-
ing, it would mask the underlying error, namely that the loop was entered withN < 0.

In this case, either assertion on its own would suffice, but the redundancy does no harm. As-
sertions document the relationships that hold among your variables. Comments are often wrong;
assertions are machine-checked.

Some programmers dislike the sort of advice given above. Type-checking cramps their style. It
all takes the fun out of programming. But nobody likes tracking down bugs, having their project
cancelled or hearing that a rocket crash was their fault. The crucial question is whether this sort of
advice (sermonizing, if you will) reduces the risk that those bad things will happen. In fact, hard
evidence is scarce. Anecdotal evidence indicates that it does, and common sense says that actively
seeking to reduce risk can only improve our safety record.

Are anecdotes and common sense a sound basis for Software Engineering? No. Precisely defined
disciplines need to be developed, with scientific studies that prove their efficacy.

IV Software Engineering II 32

Slide 401

What are Formal Methods?

• not ‘structured methods’

• Formal specification

• Refinement to code

• Formal correctness proofs

• Rigorous code analysis

• Tool support

Formal methods are grounded in mathematics. A formal specification eliminates ambiguity,
giving a precise notion of correctness.

Formal methods are sometimes taken to include graphical methods such as dataflow analysis.
But unless they are fully precise, they cannot be regarded as formal. Most CASE (Computer-
Assisted Software Engineering) tools support graphical methods. Formal methods also benefit from
tools: to help users write syntactically correct specifications, to run simple semantic checks on them,
and to help in the refinement of specifications into code.

Formally correct code can be produced in two ways.Program derivationor synthesisinvolves
transforming a specification into code by steps guaranteed to preserve correctness. The programmer
supplies the transformations; at every stage, the machine checks that the code is compatible with the
specification.

Alternatively, the programmer could write a routine and submit it afterwards for proof. This
is often calledprogram verification, but note thatverificationis also used in the context of testing.
Proving correctness requires a lot of time and skill; for most projects, it is too expensive. Unless the
program was coded with verification in mind — avoiding low-level tricks — it may be practically
impossible to prove correct.

Code can be analyzed systematically without constructing a completely formal proof. This tech-
nique was used to certify nuclear reactor shutdown software; see below. Real software projects
seldom involve formal proofs. The main use of formal methods is in writing formal specifications.

Testing also requires correctness to be defined precisely. But testing encompasses other things,
such as customer satisfaction, that lie outside the scope of formal methods.

IV Software Engineering II 33

Slide 402

What are Specifications For?

• deeper analysis of requirements

• detecting inconsistencies

• specify what not how

• communication with implementers

• communication with testing team

A formal specification is essential if you are going to prove correctness, or to support transfor-
mation into correct code. Less ambitiously, formal proof can be used to derive properties from a
specification; this could reveal inconsistencies early. The specification is also useful in itself. Stud-
ies have shown that attempting to write a formal specification stimulates deeper thinking about the
requirements, showing up ambiguities hidden in English.

The ConForm Project [6] is investigating the costs and benefits of using formal methods in build-
ing a small security-critical system. Two teams are independently developing a so-called trusted
gateway. One team is using fairly conventional structured methods; the other augments these meth-
ods by writing a formal specification. They are using VDM, the Vienna Development Method,
which has many adherents. The project is monitoring the development process, comparing the effort
required to complete each phase, the quality of the documents produced, etc.

Early in the project they noticed the team using formal methods asked many more questions
concerned with clarifying the requirements. The job of the trusted gateway is to take a stream of
messages and forward each message either to a ‘secret’ or ‘non-secret’ output port; the decision is
based upon certain keywords that may appear in messages.

Messages are limited to 10K. The formal methods team asked whether this limit included the
message delimiters (it did). If a message contains both ‘secret’ and ‘non-secret’ keywords then it
is regarded as secret. However, the formal methods team noticed the possibility that a ‘non-secret’
keyword could contain a ‘secret’ keyword as a substring. The developers had to go back to the
customers to find out that such occurrences of ‘secret’ keywords should be ignored.

These are perfect examples of ambiguities that lurk in English descriptions, and that could lead
to obscure errors. How many messages will be under 10K if delimiters are ignored, and over 10K
if they are counted? The precision of a formal specification will help the implementers build a
correct system, particularly if they have tool support. And the specification will help the testing
team identify awkward cases to cover in test data.

It’s not a bug, it’s a feature!— formal specifications can help put an end to this (though it is
partly a problem of requirements). Recall our problems in the first lecture.

IV Software Engineering II 34

Slide 403

What is a Specification Language?

• precisely defined syntax and semantics (meaning)

• executable specifications: functional or logic program, . . .

– rapid prototype (Good)

– implementation bias (BAD)

• specification languages for sequential programs:

– Z, VDM, Larch, . . .

• specification languages for concurrent systems:

– LOTOS, Unity, TLA, . . .

There are many specification languages, with different purposes. All have a precise definitions
of their syntax and semantics. A given piece of text is either legal or not; if legal, it has a precise
meaning. However, the meaning doesnot determine the implementation uniquely; rather it defines
precise grounds for judging whether an implementation is correct.

A program counts as a specification. Programming languages are precisely defined (or should
be), both their syntax and semantics.Executablespecifications consist of programs written in very
high-level languages paying no attention to efficiency [19]. They are precise, and (compared with
a real implementation) they are easy to write, read and reason about. They also yield an executable
prototype. They have many drawbacks, though. They may be too inefficient to serve even as proto-
types. Making them executable will introduce implementation bias; they will not be abstract enough.
They will map every input to a unique output, when normally for each input there is a set of legal
outputs.

Consider a sorting program: its output should be an ordered permutation of its input. It is easier
to say that than to write even a highly inefficient functional sorting program. Consider a compiler:
its output is a string of machine instructions. If we specify the output uniquely, we shall not be
allowed to include optimisations.

The meaning of a specification is defined in terms of mathematical abstractions. Early work
concentrated on specifying data types, such as lists, stacks, queues and symbol tables; such work
(e.g. Larch) was based on the theory of algebras.

Most modern specification languages treat computation as a whole, though still abstractly. A
sequentialprogram can be regarded as a function from inputs to outputs, or more generally as a
relation between inputs and acceptable outputs. Z and VDM specify programs by modelling their
data structures using elementary set theory.

A concurrentprogram is normally viewed as a system of communicating agents. This requires
an abstract notion of agent behaviour, based upon something like a process algebra. Temporal
logic is usually involved, for making statements about time dependencies:A andB cannot happen
simultaneously; ifA happens thenB must happen eventually, etc.

IV Software Engineering II 35

Slide 404

Seven Myths of Formal Methods

1. Formal methods guarantee perfection.

2. They work by proving correctness.

3. They are only good for critical systems.

4. They involve complex mathematics.

5. They increase costs.

6. They are incomprehensible to clients.

7. Nobody uses them for real projects.

This classic paper [9] by Anthony Hall of Praxis Systems is based upon industrial usage of
formal methods. Here is a summary of how he refutes each myth.

1. All human methods are fallible. In particular, the specification could be an inadequate model
of the real world. Errors can also occur in machine-checked proofs. The proving program could
itself be faulty. Using it to prove itself (‘verifying the verifier’) does not solve the problem; as an
extreme case, suppose it regarded all programs as correct?

But formal specifications do help find errors, because they eliminate arguments about what the
specification actually says.

2. This myth reflects the US emphasis. European work is more oriented towards specification.
3. Praxis uses formal methods merely to help ensure high quality, even for non-critical software.
4. Formal methods are in fact based on (the easier parts of) discrete mathematics: set theory and

logic. Staff training only takes about three weeks. Compare with the complexity of programming
languages and client applications! But correctness proofs require more complex mathematics.

5. Development may becheaperwith formal methods. However, the requirements phase may
take longer and cost more. It takes time to write any specification at all. The initial specification
can usually be simplified as the problem is better understood. Time spent here is repaid during the
implementation and maintenance phases.

6. You can paraphrase the specification in natural language and use it to derive consequences of
the requirements.

7. Hall describes applications by IBM, Tektronix, Rolls-Royce as well as his own firm. Since
his article was published, many other industrial uses have been reported — see below.

There is still much disagreement on whether formal methods are useful or not. For every devotee,
there is an arch-sceptic.

IV Software Engineering II 36

Slide 405

Experience with Formal Methods

• SSADM tool set , by Praxis Systems. 37,000 lines of code

• CICS transaction system , by IBM Hursley. 50,000 lines

• Cobol/SF by IBM Federal Systems. 800,000 lines

• Air Traffic Collision-Avoidance System , by FAA

• UEPS electronic funds transfer product

• Air Traffic Control Information System . 197,000 lines of code

Not many systems have been built with the help of formal methods, but some examples are
noteworthy. Three examples will be discussed in separate slides below: the Darlington nuclear
power plant, the Paris Metro signalling system and a British air traffic control information system.
A major study by Susan Gerhart and others [7] investigated twelve projects involving the use of
formal methods, including commercial systems and some projects involving critical software.

Some of the projects reported by Gerhart started in the early 1980s, using methods now obsolete.
Some used archaic tools or no tools at all. A more recent collection of articles has been compiled by
Hinchey and Bowen [12].

The SSADM design tool built by Praxis inspired Hall’s paper [9]. It involved 450 staff-weeks of
effort, two devoted to writing the Z specification.

IBM’s Customer Information Control system is large, 800,000 lines of code. IBM is now us-
ing the Z specification language to re-engineer this system; the 50,000 lines quoted above were
developed in this way.

Cobol/SF is a tool for tidying up old Cobol programs while preserving their meaning. IBM built
it using the Cleanroom methodology, which is based upon (informal) proof.

The US Federal Aviation Authority (FAA) hired Nancy Leveson to apply formal methods to
subsystems of TCAS (Traffic Alert and Collision Avoidance System) because they were worried
about the ‘loss of intellectual control over the specification.’ She applied a graphical formal method
(a variant of Statecharts).

The Universal Electronic Payment System (UEPS) used smartcards. Its funds-transfer operations
were protected by security protocols. It is thought to be the first financial system whose protocols
were analyzed using a formal method: the BAN logic. The system was a commercial success and in
1996 was adopted by Visa as the COPAC electronic purse.

IV Software Engineering II 37

Slide 406

Darlington Nuclear Power Station

• two independent shutdown systems

• 26,000 lines of code (including assembler!)

• formal methods used to certify existing code

– formalise requirements as specification tables

– analyze code as program-function tables

– compare the tables

• No tool support

• cost $2-4 million Canadian

This nuclear power station is roughly 40 miles from Toronto, Canada. Lauren Wiener’s account
of the project [21] is quite different in tone from Craigen et al.’s [2].

Emergency shutdown systems are normally controlled using ‘switches and relays and analogue
meters’ [21] . The Darlington nuclear power station, unusually, built its emergency shutdown sys-
tems in software. There were 6,000 lines of assembly, 7,000 lines of Fortran and 13,000 lines of
Pascal among the two systems. The Canadian authorities refused to licence the plant after problems
were found in the software.

A formal code inspection was organised by David Parnas using the SCR method (Software
Cost Reduction). Each process was analyzed by three independent teams. One used the informal
requirements document to generate a specification table. The second examined the existing code
and generated program-function tables. The third examined the two sets of tables and reported
discrepancies. The work was tedious and labour-intensive. They effected a hundred or so minor
changes to the system, but found no serious errors.

A remarkable feature of this work was that it dealt with existing code, including assembly lan-
guage. It involved rigorous analysis but not formal proof.

Wiener [21] claims that certifying the software delayed the plant’s opening by six months, at a
cost of $20 million per month in lost production (Canadian dollars). The software verification cost
$2-4 million. A hardware shutdown system costing $1 million would therefore have been much
cheaper. That is an argument against using software in nuclear power stations. It is no argument
against formal methods, without which the software might not have been approved at all. One has
to ask what safety criteria are used to certify traditional control systems?

IV Software Engineering II 38

Slide 407

Paris Metro Signalling

• reduce train separation from 2:30 to 2 minutes

• by GEC Alsthom. 9,000 lines of verified code

• 4-stage validation process

– requirements validation

– testing

– safety/hazard studies

– certification

• Hoare logic, for proving correctness

• B method, for refinement

The Paris Metro’s new signalling system allows trains to run two minutes apart, a savings of 30
seconds. The increased capacity has eliminated the need for another railway line. The project was
funded in 1982, a prototype was finished in 1985 and the system was deployed in 1989. Initially
the developers used Hoare logic for correctness proofs, as the best available technique in 1982.
Hoare logics are the basis for most approaches to proving correctness of software, but they can be
complicated to use. The developers were unsure how to apply them on such a large scale. Jean-
Raymond Abrial (one of the developers of Z) helped them to re-specify and re-verify the software.

Validation was divided into four stages:validation of requirements, verification and testing,
operations and maintenance, andcertification. They used other tools such as SADT (Structured
Analysis and Design Technique) and performed hazard studies using fault-tree analysis. They used
extensive testing, finding many problems with the specification. Testing is the only way to find
out whether a program meets its real-world requirements; a correctness proof can only show that a
program meets its specification.

Hoare logic [14] concerns statements of the form{P}S{Q}, meaning ‘ifP holds beforehand,
and if execution ofS terminates, thenQ will hold afterwards.’ In its pure form it says nothing at all
if S fails to terminate, but it can be augmented to prove termination as well. It is not a specification
language but a method for proving properties of code.

The B method models a process as an abstract machine. One abstract machine can be imple-
mented by means of another. This accounts for the different levels of abstraction found in computer
systems (machine language, operating systems functions, library functions, modules, subsystems,
etc.). It supports development by top-down refinement, where an abstract machine is implemented
in terms of increasingly lower-level machines.

GEC Alsthom, the developer, is now using the approach for other railway products. One is a
safety system covering all electrified lines in the French railways.

IV Software Engineering II 39

Slide 408

Air Traffic Control Information System

• displays information to controllers: flights, weather, . . .

• requirements: high reliability, guaranteed response times

• built with a mixture of structured and formal methods

– dataflow diagrams

– VDM (Vienna Development Method)

– VVSL (a variant of VDM for modules)

– CSP (Communicating Sequential Processes)

This information system, known as CDIS [10], was developed by Praxis and delivered to the
Civil Aviation Authority to support air traffic controllers working in the London area. It supports
over 50 workstations used by controllers and other staff. It is a safety-critical system with high
reliability requirements: for instance, it must be available 99.97 percent of the time. It is a real-
time system: information must be displayed within one or two seconds of receipt. It is also a large
system, with different aspects such as concurrency and the user-interface.

Several different formal methods were employed in its development. In addition to standard
software-engineering methods such as dataflow and entity-relationship diagrams, the developers
employed VDM to specify the system’s requirements. They found that formalizing the specification
forced them to ask questions that helped them to understand the requirements more thoroughly. But
the specification was unable to distinguish between requirements that were essential and those that
were merely desirable.

VDM alone could not suffice to specify this system because much of its functionality concerned
the user interface, which VDM could not help with. To cope with the sheer size—the specification
comprised 150 operations—a variant of VDM known as VVSL was used to structure the description
into modules.

Concurrency was also an issue because inputs could arrive from many sources at the same time.
This aspect of the system was specified using CSP, Hoare’s language for specifying Communicating
Sequential Processes [13].

Hall claimed that the specification phase was successful, but he also noted numerous deficien-
cies. The specification was hard to read and yet gave only an approximation of the desired behaviour.

The delivered system comprised 197,000 lines of code and the specification documents were
1,200 pages long.

IV Software Engineering II 40

Slide 409

Research into Formal Correctness

• model checking

• hardware verification

• system verification

• protocol verification

• program design calculi

Model checkingis complementary to formal proof; it works for finite-state systems. It simply
consists of enumerating all possible states (109 or more) and checking the desired property. Current
research is investigating ways to prove properties of infinite-state systems by viewing them as finite-
state systems.

Hardwareverification is well advanced. The most successful method, based on higher-order
logic, is due to M. J. C. Gordon here at Cambridge. Correctness properties have been proved for
many real chips.

System verificationinvolves proving the correctness of subsystems, and of their integration, so
that the whole system is proved correct. Bevier et al. [1] describe the proof of a ‘stack’ of compo-
nents ranging from a simple high-level language to a microprocessor design. The aim is to have a
computer system that is entirely free of logical errors, and that can only fail due to environmental
conditions. (Note that for real-world applications, environmental conditions will remain a significant
cause of failures.)

Protocols are used in consumer electronics (e.g. remote controls) and telecommunications.
Cryptographicprotocols are used in security-critical systems, for example to deliver encryption
keys. They are a common source of errors, since they are usually designed to work in the presence
of unreliable media. Many protocols have been verified: the task is easier than verifying the soft-
ware itself. Proofs depend on a model of unreliability. We assume, for example, that a network may
re-order or lose messages, but not corrupt them.

Program design calculiprovide a precise way of constructing code to meet a formal specifica-
tion. Many calculi are under investigation. Some use functional programming languages, which are
particularly easy to reason about. Other methods apply to the usual (imperative) sort of language,
although languages like C are hard to model. A popular line of research involves deriving programs
from suitably constructive proofs.

V Software Engineering II 41

Slide 501

The Z Specification Language

Schemas used to define

• the legal state space

• operations that change the state

• operations that inspect the state

• special cases of an operation

Incremental development of a specification

Data described using set theory

This lecture is based on Spivey [18]. It presents his trivial example, theBirthday Book, a system
that can record people’s birthdays and issue a reminder for them.

Schemasare peculiar to Z. They are a bit like record operations: they describe a collection
of named fields (which are the program variables), with an associated set of constraints. The con-
straints can specify a number of things, including relations that hold among the variables and actions
affecting the variables. You can define a schema for each operation. But an operation can, in fact, be
defined in terms of several schemas: one schema for the normal case, and other schemas for various
exceptional cases. Schemas can be introduced one at a time.

Another popular specification language is VDM (the Vienna Development Method). VDM is
unusual for its use of a three-valued logic, as a way of reasoning about definedness (particularly,
termination). VDM includes methods to help refine the specification into code.

Z was developed at Oxford University by Jean-Raymond Abrial, Bernard Sufrin, Carroll Morgan
and others. VDM was developed at the IBM Laboratory in Vienna by Cliff Jones, Dines Bjørner,
Peter Lucas and others. The two languages look quite different, but in most essential respects they
are the same.

One key difference is the treatment of an operation’sprecondition: a property that must hold
before the operation may be invoked. In VDM, you specify the precondition directly. In Z, if an
operation is built out of several schemas, the precondition is specified in bits and pieces.

Both languages use basic concepts from set theory to describe data and operations. This is called
themodel-orientedapproach; such a specification is a bit like an implementation in set theory (so,
of course, it is not executable). So-calledproperty-orientedspecification languages involve stating
the desired properties of a module without exhibiting a mathematical model for it.

V Software Engineering II 42

Slide 502

Some Z Notation

PX is the set of subsets of X

x ∈ A means x is an element of A (and x /∈ A is its negation)

A⊆ B means A is a subset of B

A∪ B is the union of A and B

f : A 7→ B means f is a partial function from A to B

dom f is the domain of f

f ∪ {x 7→ y} extends f to map x to y

Z includes a formal mathematical language.
f : A→ B meansf is atotal function fromA to B: it mapsall elements ofA to elements ofB. It

is not used below, but is the natural way of specifying arithmetic operations, for instance.
f : A 7→ B is used below to represent a table. We specify apartial function as we do not expect

a table to contain an output for every conceivable input.
dom f is not interesting for total functions; iff : A → B thendom f = A. But if f is a partial

function, thenx ∈ dom f if and only if f (x) is defined.
f ∪ {x 7→ y} is the function that agrees withf except that its domain is enlarged to mapx to y.

Here{x 7→ y} is a trivial function whose domain is{x}. Since a function is a set of pairs,{x 7→ y}
is simply a nicer syntax for the ordered pair ofx andy. Also f ∪ g combines the functionsf andg,
but the result will not be a function unlessf andg agree where their domains intersect.

More generally,f ⊕ g combinesf andg, with g overridingf where their domains intersect. So
f ⊕ g will always be a function providedf andg are. The functionf ⊕ {x 7→ y} is a version off
modifiedto mapx to y. It can be used to modify any function (partial or total), or to extend a partial
function’s domain.

This sort of abstract notation allows us to express data without concern for the implementation.
A partial function could be implemented as an array, a list, a tree, a B-tree on disc, etc.; such
decisions are taken later in the design stage.

Z includes many more symbols: for sequences, Cartesian products, tuples, etc. In addition, there
are all the logical symbols: and, or, not, implies, etc. Unfortunately, VDM frequently uses different
symbols for the same concepts. Both languages often differ from standard mathematical usage.

V Software Engineering II 43

Slide 503

Defining the State Space

BirthdayBook

known: PNAME

birthday : NAME 7→ DATE

known= dom birthday Invariant

State variables

• known: a set of NAMEs

• birthday: a partial map from NAMEs to DATEs

Z schemasallow specifications to be structured and combined. Specifications could be written
using the mathematical language alone, but schemes are more compact and more natural.

Our description on the slide is very abstract. We have not specified anything about the structure
of a NAMEor DATE. We have placed no limit on the number of names stored. Such points can be
specified later. But sincebirthday is a function, we have specified that a name can be assigned at
most one birthday.

A state space has two key features. Thestate variablesare the components that make up the
state. Theinvariant is the relation that must hold of the components. For the birthday book, the state
has two components,knownandbirthday, whereknownis entirely determined bybirthday.

A more realistic system would have a more complicated relationship among its components. We
could add a new component, mapping names to addresses say, with the restriction that you can only
record an address if you also record the same person’s birthday.

BirthdayAndAddressBook
known: PNAME
birthday : NAME 7→ DATE
address: NAME 7→ ADDRESS

known= dom birthday∧ dom address⊆ known

We could have expressed this schema by combiningBirthdayBookwith a small schema speci-
fying address. It is hardly worth the trouble here, but for larger specifications the ability to combine
schemas is invaluable.

Every operation on the state mustpreserve the invariant: it may assume that the invariant holds
at the start, and must ensure that it holds at the finish. The concept of invariant is not specific to
Z, but is fundamental to Computer Science. The ConForm Project [6] found that specifying the
invariant helped the designers identify pathological cases.

V Software Engineering II 44

Slide 504

A State-Changing Operation

AddBirthday

∆BirthdayBook

name? : NAME

date? : DATE

name? /∈ known Precondition

birthday′ = birthday∪ {name? 7→ date?} Operation

Invariant : implicitly present

AddBirthdayaddsname? to the state, assigning to it the birthdaydate?. Since this operation
changes the state, we specify it using a∆ schema that includesBirthdayBook. The schema contains
two copies ofBirthdayBook’s state. The variablesknownandbirthday represent the initial values,
while the primed variablesknown′ andbirthday′ represent the final values.

Variables ending with a question mark, such asname? anddate?, represent the operation’s in-
puts. Output variables end with an exclamation mark; this schema has none, but see below. An
equation such as

birthday′ = birthday∪ {name? 7→ date?},

looks like an assignment statement, but actually itdefinesa final value in terms of initial values and
inputs. The equation specifies that thebirthday function will be extended to mapname? to date?.
The relation between initial and final states does not have to be given by equations, especially if the
input state does not constrain the final state uniquely.

The schemaAddBirthdayis subject to the preconditionname? /∈ known: the name must not al-
ready have a birthday assigned. Otherwisebirthday′ might assign two different birthdays toname?;
it would no longer be a function! A schema specifies an operationprovidedthe precondition holds.

The invariants are added implicitly:known= dom birthday is part of the precondition, while
known′ = dom birthday′ is part of the effect. The latter equation allows us to derive an explicit
value forknown′:

known′ = dom(birthday∪ {name? 7→ date?})
= dom birthday∪ dom{name? 7→ date?}
= dom birthday∪ {name?}

Using the invariants, we obtainknown′ = known∪ {name?}. We have also used basic properties of
domains,dom(f ∪ g) = dom f ∪ dom g anddom{x 7→ y} = {x}.

Formally, a schema consists of variables that are constrained by a formula. The precondition,
invariant and operation are simply parts of that formula, with no special interpretation of their own.

V Software Engineering II 45

Slide 505

A State-Inspecting Operation

FindBirthday

ΞBirthdayBook

name? : NAME

date! : DATE

name? ∈ known Precondition

date! = birthday(name?) Operation

No effect on state — instead, yields an output

FindBirthday looks upname? in the state, returning the associated birthday asdate!. Since
this operation never changes the state, we specify it using aΞ schema that includesBirthdayBook.
Strangely enough, this schema also contains two copies ofBirthdayBook’s state, just as a∆ schema
would. But it also contains implicit constraints that the state cannot change:known′ = knownand
birthday′ = birthday. This means that∆ andΞ schemas have the same internal structure, allowing
them to be combined easily.

The equation
date! = birthday(name?)

defines the output variabledate! in terms of the input variablename? and the state variablebirthday.
The schemaFindBirthday is subject to the preconditionname? ∈ known: the name must have

a birthday assigned. If it does not,birthday(name?) is undefined. Several schemas for one opera-
tion, specifying different preconditions, can be combined to yield a more general operation; we can
specify error situations separately.

V Software Engineering II 46

Slide 506

More Schemas

Remind

ΞBirthdayBook

today? : DATE

cards! : PNAME

cards! = {n : known| birthday(n) = today? }

Remindis a sort of inverse toFindBirthday: it looks up the datetoday? in the state, returning
the associated names as the setcards!. This set is specified to consist of all names inknownwhose
birthday equalstoday?. We are not constrained to find the set of names by searching, as the formula
may suggest; any implementation technique, such as hashing, is acceptable. (The variable is called
cards! because it will hold the names of people you must send cards to.)

InitBirthdayBook
BirthdayBook

known= ∅

InitBirthdayBookis a schema to specify the initial state forBirthdayBook. This is an example of
extending an existing schema with additional constraints, hereknown= ∅. Writing it in this way is
more concise than writing out theBirthdayBookschema and including the additional equation.

The invariant,known = dom birthday, is still present. SinceInitBirthdayBook specifies
known = ∅ we obtaindom birthday = ∅. Thereforebirthday = ∅; initially, no birthdays are
recorded. (The empty set,∅, is also the empty function.)

V Software Engineering II 47

Slide 507

Success versus Failure

Success

result! : REPORT

result! = ok

Typical use: AddBirthday∧ Success

We shall deal with exceptional situations by augmenting each operation to return a status report.
The report can beok or an error value such asalready known.

The trivial schemaSuccesssimply returns a report indicating success. It is useless by itself.
But we can express a schema that combinesAddBirthdaywith a success report by the conjunction
AddBirthday∧Success. This denotes the schema whose state variables are those of the two schemas
combined, and whose logical specifications are joined using∧. The new schema does everything
thatAddBirthdaydoes, and also reportsresult! = ok.

The schemaAddBirthday∧ Success, if expanded out, would be this:

AddBirthdayAndSuccess
∆BirthdayBook
name? : NAME
date? : DATE
result! : REPORT

name? /∈ known

birthday′ = birthday∪ {name? 7→ date?}
result! = ok

V Software Engineering II 48

Slide 508

Specifying Exceptional Cases

AlreadyKnown

ΞBirthdayBook

name? : NAME

result! : REPORT

name? ∈ known

result! = already known

The schemaAlreadyKnownhandles the case of attempting to add a birthday for a name already
present. Its precondition,name? ∈ known, is the negation ofAddBirthday’s. We use aΞ schema
to specify that the state does not change; instead, the output variableresult! receives the value
already known. We may interpret this as an error condition; Z (unlike VDM) has no built-in notion
of exception.

A robustoperation to add birthdays, which handles the error condition, can be defined to be a
combination of the schemas presented above:

RobustAddBirthdaŷ= (AddBirthday∧ Success) ∨ AlreadyKnown

If name? ∈ known then the specified effect isresult! = already known; otherwise it adds the
birthday and yieldsresult! = ok. Specifying an operation in pieces, as here, has many advantages
over writing one huge specification that covers all error conditions. It is easier to read, easier to
write, easier to extend and modify.

Spivey [18] goes on to defineRobustFindBirthdayin precisely the same manner. Finally he
definesRobustRemind̂= Remind∧ Success; sinceRemindhas no precondition, all we must do is
make it report success.

One problem with Z is understanding what a schema really means. At first, schemas were
regarded as shorthand for long formulæ. Later it was decided that schemas required some kind of
a formal semantics, and this has taken many years to get right. Intuitively, a schema abbreviates a
formula of the formpreconditionimplieseffects, whereeffectscontains all specified constraints on
the final state and output variables.

V Software Engineering II 49

Slide 509

More on Z

• Other schema operations

– Schema1 o
9 Schema2

• Refining the design

• Tool support

• Related methods

– object Z

– the B method

Z contains many other means of building new schemas. For example,Schema1 o
9 Schema2 is

intended to specify the effect of applyingSchema1 followed bySchema2. It expands to a schema
that equatesSchema1’s final state variables withSchema2’s initial state variables, without specifying
their actual values. (It does this using existential quantifiers.) Both schemas’ input and output
variables are gathered together to form the inputs and outputs ofSchema1 o

9 Schema2. From the
schemaAddBirthdayo

9 FindBirthDayone can derivedate! = date?. This illustrates Z’s power and
complexity — as with a programming language, one must use this power with care.

Refinement.Z does not supply a method of refining the specification into a design, but it can be
used for this purpose. Spivey [18] describes how to write more concrete Z schemas for the birthday
book that use arrays to implement thebirthday function, and to show that a concrete type (here
arrays) faithfully implements the abstract type (functions).

Tool support.Part of the effort of writing a Z specification is neat presentation. These lecture
notes were produced with the help ofzed-csp.sty , a LATEX style file. More elaborate tools per-
form type checking and other simple consistency checks. Z is not directly concerned with theorem
proving, but there has been some research into support for Z using theorem provers such as HOL
and Isabelle. Commercial tools (suitably priced!) are available too.

Z has been under development for a long time, and the Z Standard is nearing maturity. But
research is continuing; methods under development include Object Z and B.

Object Z [3] extends Z with object-oriented features. ‘The main reason for this extension is
to improve the clarity of large specifications through enhanced structuring.’ Object-Z introduces a
class structure with a private state schema, packaged together with the operations that may affect
that state. This attacks the problem, also found in programming, that a global state can be modified
by any operation anywhere.

The B method, developed by J.-R. Abrial, has been mentioned in a previous lecture. Sophisti-
cated tools have been developed to support it.

VI Software Engineering II 50

Slide 601

Structural induction on lists

To show φ(l) for every list l, prove that

• φ([]) is true (base case)

• whenever φ(l′) is true, then so is φ(x :: l′) for all x, l′

(induction step)

φ([x1, . . . , xn]) is true after n steps

This lecture concerns proving theorems about ML programs. In general, proving programs cor-
rect is extremely difficult. It becomes simple if we restrict attention to terminating, purely functional
code. We can regard such ML programs as mathematical functions and reason about them by induc-
tion.

We begin with an introduction to list induction (sometimes called structural induction). For an
extended discussion of such material, please see Chapter 6 of my ML book [16].

Why is list induction sound? In other words, why do the base case and induction step together
imply φ(l) for all l?

It suffices to show that we haveφ([x1, . . . , xn]) for arbitrary lengthn and elementsx1, . . . , xn.
The base case yieldsφ([]). Applying the induction step toxn and[], we haveφ([xn]). Applying the
induction step toxn−1 and[xn], we haveφ([xn−1, xn]). Eventually we reachφ([x1, . . . , xn]).

VI Software Engineering II 51

Slide 602

No List Equals Its Own Tail

Prove l 6= x :: l by structural induction on l

Base case: [] 6= x :: [] (obvious!)

Induction step: Show y :: l 6= x :: y :: l by contradiction.

If y :: l = x :: y :: l then y = x and l = y :: l.

So l = x :: l

But induction hypothesis says l 6= x :: l CONTRADICTION

A simple example of structural induction is to prove that no list equals its own tail:l 6= x :: l.
The proof requires some obvious properties of lists:

• constructors are distinct,[] 6= x :: l

• constructors are injective, ifx :: l = x′ :: l′ thenx = x′ andl = l′

These are sometimes called ‘freeness’ properties. Their analogues hold for any tree-like data struc-
ture. They express that there is only one way of taking the data structure apart.

Theorem. For every listl we havel 6= x :: l.

Proof By structural induction on the listl. The base case is[] 6= x :: [], which is
immediate by freeness.

The induction step is to showy :: l 6= x :: y :: l from the induction hypothesisl 6= x :: l.
It suffices to assumey :: l = x :: y :: l and derive a contradiction. By freeness we get
y = x andl = y :: l. Thereforel = x :: l, contradicting the induction hypothesis. ut

If there were infinite lists, then the list[1, 1, . . .] would equal its own tail. Infinite lists can
be defined mathematically, but their induction principles are too weak to prove the theorem above.
This is not surprising; the justification of structural induction is that each list is constructed in finitely
many steps.

VI Software Engineering II 52

Slide 603

Append is Associative: the Base Case

fun app([], ys) = ys

| app(x::xs, ys) = x :: app(xs,ys)

Prove app(app(xs

↑
, ys), zs) = app(xs

↑
,app(ys, zs))

By induction on xs:

app(app([], ys), zs) = app(ys, zs) = app([],app(ys, zs))

Structural induction is often used to prove properties of recursive functions. A classic example
is to prove that the append function is associative:

Theorem. For all listsxs, ysandzs, we have

app(app(xs, ys), zs) = app(xs,app(ys, zs)).

Proof By structural induction on the listxs.
The base case isapp(app([], ys), zs) = app([],app(ys, zs)). It follows because

app(app([], ys), zs) = app(ys, zs) = app([],app(ys, zs)).

The induction step assumes

app(app(l, ys), zs) = app(l,app(ys, zs))

as the induction hypothesis and requires proving

app(app(x :: l, ys), zs) = app(x :: l,app(ys, zs)).

(Continued on next slide.)

VI Software Engineering II 53

Slide 604

Append: the Inductive Step

app(app(x :: l, ys), zs) = app(x :: app(l, ys), zs)

= x :: app(app(l, ys), zs)

= x :: app(l,app(ys, zs)) [IND HYP]

= app(x :: l,app(ys, zs)).

Other steps by the definition of app

Simplify both sides. Substituting by the definition ofapp, the left side becomes

app(app(x :: l, ys), zs) = app(x :: app(l, ys), zs)
= x :: app(app(l, ys), zs)
= x :: app(l,app(ys, zs)).

The last step above used the induction hypothesis. The right side becomes

app(x :: l,app(ys, zs)) = x :: app(l,app(ys, zs)).

Both sides are equal. ut
This sort of proof is often routine. The secret is to set up the induction properly, choosing

the right induction formula and induction variable. Induction onxsopens up the recursive definition
of app, which is recursive in its first argument. Induction onysor zswould not open up the definition.

Showing that append is associative justifies replacing(l1@l2)@l3 by l1@(l2@l3) , which
we might do in order to make a program run faster. In a moment, we shall see some more demanding
program proofs.

Exercise 10 Provexs@ [] = xs(in other words,app(xs, []) = xs) by structural induction.

VI Software Engineering II 54

Slide 605

Universal Quantifiers

∀ x φ(x) means φ(x) is true for all x

Infer it if φ(x) holds for ARBITRARY x

Use it to conclude φ(t) for any t

m× n = 0: a statement about mand n

∀n [m× n = 0]: a statement about m

∀m n[m× n = 0]: a (false) sentence

The symbol∀ is called theuniversal quantifier, and∀ xψ(x) means thatψ(x) is true for allx. To
prove∀ xψ(x), we must proveψ(x) for an arbitraryx, making no assumption about its value. If we
know that∀ xψ(x) is true, then we haveψ(t) for every termt.

For instance, we have provedl 6= x :: l above. Sincel andx are arbitrary in the proof, we may
conclude the universally quantified formula∀ x l l 6= x :: l. This states that the inequality holds for
all l andx. To use it later, we may replacel andx by suitable terms.

If we provey× (x/y) = x under the assumptiony 6= 0, theny is not arbitrary: we have assumed
it to be nonzero! So it is wrong to conclude∀ x y[y× (x/y) = x]. (The Part 1b courseLogic and
Proof will revisit these matters.)

Contrast the three formulae on the slide:

• m×n = 0 an assertion about a particularmandn. (From what we know about multiplication,
either variable must equal zero.)

• ∀n [m× n = 0] is an assertion aboutm alone. (Here, by further reasoning, we can conclude
m = 0.)

• ∀m n[m× n = 0] does not refer to any particular variables, and it is false: for example,
2× 6 = 12 6= 0.

Sometimes the induction formula must involve quantifiers, as we shall now see.

VI Software Engineering II 55

Slide 606

Generalizing an Induction Formula

fun nlength [] = 0

| nlength (x::xs) = 1 + nlength xs

fun addlen (k, []) = k

| addlen (k, x::xs) = addlen (k+1, xs)

Want to show addlen(0, l) = nlength(l) Too weak

Try addlen(k, l) = k + nlength(l) Too rigid: k must vary

∀ k addlen(k, l) = k + nlength(l) Correct!

Frequently we must strengthen an assertion before applying induction. Consider proving
addlen(0, l) = nlength(l). This cannot be a useful induction formula, however, as it says noth-
ing about the role of argumentk in addlen. Evaluation ofaddlen(0, l) involvesaddlen(k, l′) for
various positive integersk and listsl′.

The formulaaddlen(k, l) = k + nlength(l) precisely describes the relationship betweenaddlen
andnlength, and puttingk = 0 gives the result we require. But even this formula is not useful for
induction. The induction step would get stuck:

addlen(k, x :: l′) = addlen(k + 1, l′).

The induction hypothesisaddlen(k, l′) = k + nlength(l′) could not be used. The problem is thatk
varies during the evaluation ofaddlen(k, l). We have an induction hypothesis aboutk, but need one
aboutk + 1.

The right induction formula is∀ k [addlen(k, l) = k + nlength(l)]. This formula states that
addlen(k, l) = k + nlength(l) holds for all values ofk. Note thatk is a bound variable; the formula
asserts a property ofl alone. For a givenl, it asserts thataddlenand nlengthare in the correct
relationshipfor all k.

As an induction hypothesis, the formula∀ k [addlen(k, l) = k + nlength(l)] lets us replacek by
anything we please, dropping the quantifier. Generally speaking, the induction formula can be uni-
versally quantified over all variables except the induction variable, making the induction hypothesis
as flexible as possible. But the proofs below use only those quantifiers that are actually necessary.

VI Software Engineering II 56

Slide 607

Correctness of addlen

∀ k addlen(k, l) = k + nlength(l)

Base case: addlen(k, []) = k = k + 0 = k + nlength[]

Induction step:

addlen(k, x :: l) = addlen(k + 1, l)

= k + 1 + nlength(l) [IND HYP, k 7→ k + 1]

= k + nlength(x :: l).

Theorem. For every listxs, we haveaddlen(0, xs) = nlength xs.

Proof It follows by puttingk = 0 in the formula below, which we prove by list induction onl:

∀ k addlen(k, l) = k + nlength(l)

The base case is∀ k addlen(k, []) = k + nlength([]). To prove a universally quantified statement, we
simply drop the quantifier. For allk we clearly have

addlen(k, []) = k = k + 0 = k + nlength([]).

The induction step assumes∀ k addlen(k, l′) = k + nlength(l′) for the induction hypothesis, and
requires proving

∀ k addlen(k, x :: l′) = k + nlength(x :: l′).

This is true (for allk) because

addlen(k, x :: l′) = addlen(k + 1, l′) = k + 1 + nlength(l′) = k + nlength(x :: l′).

The crucial step above is to invoke the induction hypothesis withk + 1 in place ofk, getting
addlen(k + 1, l′) = (k + 1) + nlength(l′). We may do this because the hypothesis is universally
quantified: it holds for allk. ut

VI Software Engineering II 57

Slide 608

An Induction Formula for Reverse

fun nrev [] = []

| nrev(x::xs) = (nrev xs) @ [x]

fun revApp ([], ys) = ys

| revApp (x::xs, ys) = revApp (xs, x::ys)

Want to show revApp(xs, []) = nrev(xs) Too weak

Try revApp(xs, ys) = nrev(xs) @ ys Too rigid

∀ ys revApp(xs, ys) = nrev(xs) @ ys Correct!

Proving revApp(xs, []) = nrev(xs) involves an inductive argument similar to the one we have
just examined. The arguments ofrevAppvary, just as those ofaddlendo. We prove the quantified
formula∀ y revApp(xs, ys) = append(nrev xs, ys).

VI Software Engineering II 58

Slide 609

Correctness of revApp

Base case: revApp([], ys) = ys= [] @ ys= nrev[] @ ys

Induction step:

revApp(x :: xs, ys) = revApp(xs, x :: ys)

= nrev(xs) @ (x :: ys)
[IND HYP, ys 7→ x :: ys]

= nrev(xs) @ [x] @ ys

= nrev(x :: xs) @ ys.

The details of this proof are inML for the Working Programmer[16], pages 227–8. Recall that
@ is the same function asapp.

A similar induction principle applies to binary trees and other recursive datatypes. The equiva-
lence betweeninord andinorder , for example, is proved just like the examples above. (Those
functions were mentioned inFoundations of Computer Science.)

Exercise 11 Provenrev(xs@ys) = nrev ys@nrev xsby structural induction.

Exercise 12 Provenrev(nrev xs) = xsby structural induction.Hint: use the previous exercise as a
lemma.

Exercise 13 Provetake(xs, k) @drop(xs, k) = xsfor every integerk and listxs.

VI Software Engineering II 59

Slide 610

Other Examples

nlength(xs@ ys) = (nlength xs) + (nlength ys)

nrev(xs@ ys) = (nrev ys) @ (nrev xs)

nrev(nrev(xs)) = xs

xs@ [] = xs

(map f) ◦ (map g) = map(f ◦ g)

Correctness-preserving program transformations

What does all this have to do with Software Engineering?
Real engineering consists of proven, practical techniques backed up by theory. For software, we

don’t have enough useful theory to build systems with confidence. We can be confident that software
won’t work first time and count ourselves lucky if it can be got to work in time and on budget.

But here, we see properties established of a form of software: functional ML programs. We
can be sure, for example, thatrevAppgives a correct method of implementing list reversal, which is
specified bynrev. The equations shown on the slide above can also be proved easily. They tell us
that certain changes to programs, such as replacingxs@[] by xs , are safe.

There is a close relationship between the inductive proofs of this lecture and the loop invariants
of Lect. 2. Here is a simple example. Functionaddlencorresponds to an obviouswhile loop for
counting a list’s elements: while a list variablelv (initially, the whole list) is non-empty, add one
to the counterk (initially, zero). The loop invariant isk + length(lv) = length(l), wherel is the
original list. The reasoning needed to prove correctness of this loop is quite similar to the inductive
proof ofaddlen.

Real programs in real languages (like C) are not easily amenable to this sort of proof. Many
programs rely on hardware features in an uncontrolled way, and furthermore, are very large and
complex. In the real world, program proving is still restricted to small library functions.

VI Software Engineering II 60

References

[1] William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and William D. Young. An
approach to systems verification.Journal of Automated Reasoning, 5(4):411–428, 1989.

[2] Dan Craigen, Susan Gerhart, and Ted Ralston. Case study: Darlington nuclear generating
station.IEEE Software, pages 30–32, January 1994.

[3] R. Duke, P. King, G. A. Rose, and G. Smith. The Object-Z specification language: Version 1.
Technical Report 91-1, Department of Computer Science, University of Queensland, St. Lucia
4072, Australia, April 1991.

[4] Marc Eisenstadt. My hairiest bug war stories.Communications of the ACM, 40(4):30–37,
April 1997.

[5] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution.IEEE Transactions on
Software Engineering, 27(2):1–25, February 2001.

[6] J. S. Fitzgerald, P. G. Larsen, T. M. Brookes, and M. A. Green. Developing a security-critical
system using formal and conventional methods. In Hinchey and Bowen [11], pages 333–356.

[7] Susan Gerhart, Dan Craigen, and Ted Ralston. Experience with formal methods in critical
systems.IEEE Software, pages 21–28, January 1994.

[8] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.Fundamentals of Software Engineering.
Prentice-Hall, 1991.

[9] Anthony Hall. Seven myths of formal methods.IEEE Software, 7(5):11–19, September 1990.

[10] Anthony Hall. Using formal methods to develop an ATC information system.IEEE Software,
13(2):66–76, March 1996.

[11] Michael Hinchey and Jonathan P. Bowen, editors.Applications of Formal Methods.
Prentice-Hall, 1995.

[12] Michael Hinchey and Jonathan P. Bowen, editors.Industrial-Strength Formal Methods in
Practice. Springer, 1999.

[13] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[14] C. A. R. Hoare. An axiomatic basis for computer programming. In C. A. R. Hoare and C. B.
Jones, editors,Essays in Computing Science, pages 45–58. Prentice-Hall, 1989. Originally
published in 1969.

[15] Steve Maguire.Writing Solid Code. Microsoft Press, 1993.

[16] Lawrence C. Paulson.ML for the Working Programmer. Cambridge University Press, 2nd
edition, 1996.

[17] Eugene H. Spafford. The Internet worm: Crisis and aftermath.Communications of the ACM,
32(6):678–687, June 1989.

[18] J. M. Spivey. An introduction to Z and formal specifications.Software Engineering Journal,
4(1):40–50, January 1989.

[19] D. A. Turner. Functional programs as executable specifications. In C. A. R. Hoare and J. C.
Shepherdson, editors,Mathematical Logic and Programming Languages, pages 29–54.
Prentice-Hall, 1985.

[20] John Viega, Tadayoshi Kohno, and Bruce Potter. Trust (and mistrust) in secure applications.
Communications of the ACM, 44(2):31–36, February 2001.

[21] Lauren Ruth Wiener.Digital Woes: Why We Should Not Depend on Software.
Addison-Wesley, 1993.

