Lecture Notes, October 1989
A. C. Norman.

1 Introduction

2 Courseobjectives, prerequisites and outline

This course introduces the Computer Science option witlérMathematics Tri-
pos and the first year of the Computer Science Tripos. It leadswards parts
IB and Il of the Computer Science Tripos. Its main aim is to preghe ground
for the more detailed material that follows by teaching demion of ideas about
Computer Science and a variety of programming skills thattemansed later on
in the CST. It is understood that different members of the enxh will have had
very different amounts of contact with computers: some nalle had hardly any,
while others will already be accomplished programmers.r&lage two reasons
why the novices need not feel intimidated by this course avthie experts will
still be challenged. The first is that the programming lamgguased here is called
ML, which is fairly new and which will almost certainly be strgly unfamiliar to
all. The second is that this course is not principally abautimg programs for the
sake of running them on computers (that comes later!) - itishnmore about the
use of programming languages as a way of providing cleargople) expositions
of the various ways of performing computational tasks.

The structure of this course follows the book "Structure &merpretation
of Computer Programs” (Abelson and Sussman, MIT Press, 1988 0-262-
01077-1/0-07-000-422-6) fairly exactly, and in the sixtéectures about the first
half of that book will be covered. Abelson and Sussman expttesmselves in
a language called Scheme, not the ML that is being used hedesa all the
examples that they give will need superficial re- writing t fihem in the notation
required by ML. Although this is a slight inconvenience, ikgg me a chance to
stress here that the view taken in this course is that the ftailgl of syntax
in programming languages are unimportant frivolities. duasge constructs in
ML will be introduced by giving examples, and the practidalsses will provide
opportunities to try them out, but it is not the purpose of ttdurse to provide
either a full or a precise description of what the particldaguage ML is or does.
Two technical reports describing ML is available from the Qoner Laboratory
Bookshop, and a book describing it has been published: A Véikst’Functional

1

Programming using Standard ML”, Prentice Hall, 1987, ISBN3331661-0.
Both the technical reports and Wikstrom'’s book provide fdrdescriptions of the
ML language, and they will certainly be useful for referenaihough the topics
covered and the style used in Wikstrom differ significantbynf this course.

The parts of ML required initially correspond to using thetgyn as a glori-
fied desk calculator. In response to ML's prompt you can typarn expression,
terminated with a semicolon, and ML will respond by calcuigtand displaying
its value.

e.g.

2+2;
22.0/7.0;
22 div 7;
“1.

Whenever ML evaluates an expression it works out what typelofevis being
used - in the above examples the whole numbers are typedtaarichthe ones
with a decimal point as ‘real’. Observe that division in th@tcases will behave
differently, and so different operators are used to in@di¢at Also note negation
is indicated with a * ’ sign, rather than by using a ‘-’ to meautibthe difference
between two numbers and the negation of a single one, as imoann other
programming languages. ML also knows about strings. To gétirsg that has a
double- quote mark as one of its characters you put a batkglas
) before it. Strings can be appended using the operatibrs

"String one " " "string two!";
"string with \"what looks like a string\" within itself";

There are also truth values, which are the values returneatithmetic (and
other) comparisons, and which will be needed when testodre made:

true; true : bool
not true; false : bool
2 > 3 orelse 5 < 7; true : bool

The connective words for building elaborate conditiongiressions are ‘an-
dalso’ and ‘orelse’.

At this level ML’s insistence on decorating results with acigtion of their
type can be seen as fairly frivolous, but it is in fact the exadly visible mani-
festation of some complicated type-consistency checkiag ML is capable of
which will only just be touched on in this course, but whicHlWwe returned to
later in the CST. It corresponds to widely held views within Qaner Science
first that the organisation of data is at least as importatiatsof code, and sec-
ondly that analysis of code (such as is done by ML when it desltice types of

2

your expressions) is important for code comprehensibilélability and perfor-
mance. ML will complain if you mix types up in ways it is not jpared for, and
so expressions such as (not 1), (1 - 1.0), exp("one”) and seilbbe rejected by
it.

Names can be associated with ML values by a statement such as

val pi_approx = 355.0 / 113.0;
val heading = "The start of my program";

and the names thus introduced can be used freely in ML expresss

pi_approx - 4.0 * arctan(1.0);
val subheading = heading ~ " number 1"

but a characteristic feature of ML (and of the parts of Schasesl in Abelson
and Sussman) is that associations between names and vetugs is this way
can not be changed later in the program. [Note that this i difierent from the
use of assignment statements in languages such as BASICe wiegenerally
expected that names will have many different values assatisith them during
the course of running a program].

2.1 Exercises

(1.1) Find out how to connect yourself to a computer and #tarML system run-
ning. Try typing in simple arithmetic expressions, using ki an overexpensive
and clumsy desk calculator. Find out how to exit from ML anstcdnnect your-
self from the computer. Find the Computing Service bookshmplaut a copy of
the technical report that contains an introduction to ML.

(1.2) Check that you can send and receive computer-mail fllmmgupervisor
and some of the other people on the course so that you havevercent way of
asking for help when you get stuck. Investigate the ‘helgtegn on the computer.

(1.3) Type in various expressions for ML in integers, redliga, boolean val-
ues and strings. Observe how ML replies with the value anel ofphe expression
that you enter. See what sort of error messages you get whiemixaip the types.

(1.4) Observe that some terminals have printers attacheeckdhat you can
enable one of these to get a transcript of exactly what yoedyp a session with
ML, and exactly what it responded. This will be invaluableamtyou go for help!

(1.5) Double-check the schedule of practical classes adsdavith this course,
and try examples suggested there.

3 Building abstractionswith procedures

3.1 Procedures

The way so far explained for introducing names for values ni¢/global, in that
after the assertion val jname¢, = jvalue¢ the name jnamegtperdil then end
of the ML session. This is frequently unnecessarily longl smthere is provision
for making shorter term declarations:

let
val <namel>
val <name2>

<valuel>;
<value2>

in
<expression using namel, name2>
end;

E.g. to compute the fourth power of two one could write

let val two_squared = 2 * 2
in two_squared *two_squared end;

and the name twsquared would not be at all visible outside the two lines
where it is required. Local declarations can temporarilgdgiw previous global
(or indeed local) ones, but the old binding becomes visibleeahe local one is
finished with. Thus

val one = 1;

let val one = 2

in one + one end; 4 : int
one + one; 2 :int

Almost all of this course will be based on a view of programgngtyle that
the secret service would have great sympathy with: no deimdr value should
be available anywhere in a program that it is not strictlydege This ‘need-
to-know’ principle can be applied by preferring local ML dings (with let) to
global ones, and keeping the scope of these let clauses dssipassible. | hope
that the demonstrators at the practical classes will hetp@age you to follow
this line. ..

Procedure declarations also introduce local bindings;tfans can be defined
asin

fun square x:int = x * X
fun sumsquares(x:int, y:int) =
square x + square vy;

and then used

square 1 + square 2 + square 3; 14 : int
sumsquares(3, 4); 25 : int

The decorations ‘:int’ after the names of the formal pararssfior the function
limit the types that they can accept, so that in the casesigibeve integer (but
not for instance real) numbers can be used. These expl@tdgnstraints are not
needed in cases when ML can deduce what was required, buhvays safe to
put them in.

ML displays the type of a function with a description of itgaments’ types
(if there are several it puts *’s between them), then anwarfg) then the result
type, so in the above example square is of type int-¢int antsguares is of
type int*int-¢int. Observe that functions with just one @argent can be applied
by just writing the function name followed by the argumerdrgntheses around
the argument are not required, but you can put them in if yioer Isin 1.0 and
sin(1.0) have exactly the same interpretation). The ‘fdrpa@ameters’ given in
the function definition behave exactly like local variablelsen the function is
called - for the duration of evaluating the body of the fuoct{the part after the
‘=") they exist and stand for the arguments passed by thetifumis caller, after

that they can not be accessed.

The effect of calling a procedure can be explained in terms sifibstitution
model. The value of the sumsquares(7+1,7-1) can be obtaynédst evaluating
the argument expressions to obtain 8 and 6, then lookingeabdinly of sum-
squares, i.e.

square X + square y

When we substitute 8 for x and 6 for y in this (x and y were the farpara-
meter names for sumsquares) we obtain

square 8 + square 6

Now the body of square is x * X, and since x was its formal patamee
substitute into this expression to obtain

8x8 + 6+6
which reduces gradually as

64 + 36
100 : int

In this description in each case the arguments for a funatiere evaluated
before the function was called, but it is quite possible toycéhrough the sub-
stitution process by substituting argument expressiasiimction bodies before
they have been fully evaluated. In this case sumsquares{-HWwould have ex-
panded into

square (7+1) + square (7-1)
and thence into
(7+1) =(7+1) + (7-1) =*(7-1)

which would finally have been evaluated arithmetically,inga yield the in-
teger answer 100. A question that can be raised now (but sajyeply answered
a lot later) is what effect can the order in which substitusi@re selected have
on the result finally produced? A particular strength of thleset of ML that we
are using at present (and of the equivalent part of Schentletigprovided some
pitfalls related to name-clashes are side- stepped alliatrah orders that lead to
aresult at all lead to the same result, and so when workimgigr function defin-
itions by hand it the expansion can be done in whatever osd®ost convenient.
It is perhaps worth noting that this result is quite unexeelst difficult to prove,
and indeed several incorrect proofs were put publishedreefaorrect one was
found: the details are another of the topics that you can fookard to (much)
later in the CST.

Most interesting procedures involve behaviour that depémd less smoothly
analytic way on inputs than the above one, and the ML way oingpyith this is
to make the body of the function a conditional expression:

fun abs n = if n < 0 then "n else n;

[In this case the comparison between n and 0 would only bd vdlien n was
an integer, so it is not necessary to write ‘n:int’.]

Of course conditional expressions can be used anywherangatther sort of
expression can - this fact has to be allowed for when tracutigle sequence of
substitutions involving use of a function such as abs.

(if 2 > 3 then 1 else 1) + 7; 6 : int

It is essential that the expressions before and after tise’ el a conditional
form both have the same type, an in particular this meandtbtat must always
exist!

Now conditional expressions and function definitions cabtoeight together
to perform some useful(?) calculation, in this case theaetivn of the square
root of a number. The code given here follows that in Abelgmh®ussman fairly
directly, but for use with ML it turns out to be vital to defink functions before
making any attempt to use them, so the order in which defirstere given here
is almost precisely the opposite to that used in the book. &pepor using a text-
editor on the computer it is easy to write code starting abibigom of the page,
so this does not matter too much! Note that for this exampisiees of square
and abs that work with real arguments will be required:

fun square x:real X * X
fun average(a, b) = (a + b) / 2.0;
fun improve(guess, x) =
average(guess, x/guess);
fun good_enough(guess, x) =
abs(square guess - x) < 0.001;
fun sqrt_iter(guess, x) =
if good_enough(guess, x) then guess
else sqrt_iter(improve(guess, X), X);
fun sgrt x = sqrt_iter(1.0, Xx);
sqgrt 2.0; 1.414... : real

fun abs x = if x < 0.0 then "X else x;

There are several things that | might like to observe abastsaquence of
statements:

1. The definition of (square (x:real)) can not co-exist wilkatt of (square
(x:int)). In ML only built-in operators such as +, - and * (amadspecial
built in function abs) exist in versions for both reals antin

2. Most of the above function definitions did not need the frparameters
decorated with type information: ML could deduce what wasnded. This
very convenient facility is paid for in the way ML forces youdefine pro-
cedures before using them.

3. The test googknough shown above is rotten numerical analysis, as is the
fixed initial guess of 1.0. More cautious code would also cled®@d com-
plain about negative arguments to sqrt. A much better teatitin condition
to apply would be to detect when the error (square guess og¥ stecreas-
ing: please rework my code to install this improved test.

4. When you have bodies of code like the above it is usually eoient to keep
them on a file on the computer and read it into ML, rather thannggato
type it in to the computer each time you want to use it. Thetpralkclasses
should provide some help about creating, editing and reatirfiles of
definitions. An ML function call

use ["filename"];

reads in definitions and tests from the named file (yes thekbtatised are
square in this case).

5. In the above, sqrter calls itself, but the other functions can be introduced
in a neat hierarchy. When several function need to refer niytt@aone

7

another they can be defined in a group, as with the followingseose ex-
ample:

fun f x = g(x + 1)
and g x = if x > 10 then x else f(x+1);

6. The code is presented in lots of very tiny functions, behdanction serves
a (more or less) clearly distinct purpose. This style is mgsirt of the
programming strategy | want to encourage. Last time | talkledut the
‘need-to-know’ as a secret service policy - here | will go lte bther end
of the political spectrum and view each separate functioadive cell in
a (subversive?) organisation - keeping cells small and aihrly limited
links between them limits the damage sustained when oneeof th found
to have become unreliable.

The square root example is expressed in terms of a fairlg lamnber of sub-
functions, but each of these performs a sufficiently cleaggcified task that it
is useful to think not just about the mechanisation (i.e.gprnming) of these
procedures, but about the abstractions that they repreSapposing that its nu-
merical accuracy is adequate, the sqrt function we haveatbtiorselves (thereby
hiding the one that ML originally provided) is just as valiglthe built-in ML one,
and a further one defined by

fun sgrt x = exp(0.5 * log Xx);

is also perfectly proper. When looking at sqrt as a procedalatraction it
is only possible to ask about its behaviour, not about wisahternal actions are
that lead to that external behaviour. This leads to the idaathat happens inside
and what happens outside a procedure should be kept asteegmpossible. The
example given above does not capture the essence of thisndhmat goodenough
and improve are available for direct use by the misguidecergatic use of ‘let’
within procedure bodies remedies that, leading to the ioilg version of the
original code, which although superficially harder to reagtares more of the
proper intent of the programmer.

fun sgrt x =
let
fun improve(guess, x) =
average(guess, x/guess);
fun good_enough(guess, x) =
abs(square guess - x) < 0.001;
fun sqrt_iter(guess, x) =
if good_enough(guess, x) then guess
else sqrt_iter(improve(guess, X), X)
in sqrt_iter(1.0, x) end;

With this definition of sqrtin place the internal functiomsprove, goodenough
and sqrtiter are kept hidden away from the end user. A formal paranoete be
referred to anywhere inside a function, and this includékiwsub-functions, and
a yet cleaner version of the sqrt function can be given byatpg this.

fun sqrt x =
let
fun improve guess =
average(guess, x/guess);
fun good_enough guess =
abs(square guess - x) < 0.001;
fun sqgrt_iter guess =
if good_enough(guess, x) then guess
else sqrt_iter(improve guess)
in sqrt_iter 1.0 end;

[I have taken the view that abs and average are sufficientigrgdly useful to
be properly defined for all to use, and so have assumed thah#ve been defined
globally somewhere.]

Given an understanding of just the parts of ML introducedasatfis possi-
ble to write quite large and useful programs, and the carefal of nested local
definitions can keep the structure of these programs clehtidy

3.2 Exercises

(2.1) Experiment with local and global ‘val’ definitions odwables, particularly
to discover what happens if you have several declaratiomaradbles all with the
same name. For instance, what does the sequence

1;
i+ 1;

val i
val i

do?

(2.2) Find out how to create (and inspect, alter and disddes) on the com-
puter. Put one of the above definitions of sqgrt into a file ared'use’ to make ML
read it.

(2.3) A much better end-test for the square-root proceduvehiere the error
term abs(guess 2 - x) ceases to decrease. Alter the codeotihhhye to incorpo-
rate this improved test.

(2.4) Look in Abelson and Sussman’s book. Compare the syrit&ctoeme
with that of ML (in pretty well all cases the meaning of the eyde programs that
they give is exactly the same as ones given here in ML). liget their exercises.

(2.5) Make a variety of syntax errors in your ML code (e.g. sniat the
word ‘end’ at the end of a ‘let’ clause, get brackets badlyahad, ...) and get
accustomed to the messages that the system gives you.

(2.6) The Student Edition of ‘PC Scheme’ (prepared by Texasrliments
and published (1988) by the Scientific Press with ISBN 0-89824-2) comes
complete with an implementation of the Scheme languageyreadun on an
IBM-style personal computer. Extreme enthusiasts migh tdk look into this
and see if a combination of it and Abelson and Sussman prg@tmore things
to try! Please note, however, that lectures and examinatiene are in terms of
ML and that there is no departmental backup or support for Eti@®e.

(2.7) Buy and read other books from the CST booklist. Find youteGe
Library and put in request slips for books it has missing.diimee Computer Lab
book-locker and work out how to make use of it. Discover trer@om in the
University Library.

3.3 lteration and Recursion

Procedural abstraction encourages us to look at the ekteehaviour of func-
tions, that is the results obtained when they are given varmoguments. Looking
inside procedures at their internal behaviour there areackerisations that can
be made that independent of the finer detail of the operapen®rmed. Sim-
ple examples of patterns of behaviour will be given here et.at the Computer
Science Tripos it will be seen that understanding such pettef behaviour and
selecting computational methods that lead to desirablenpatcan be both very
complicated and of significant practical importance.
Consider the factorial function, defined by

factorial n = n * (n-1) .. * 3 % 2 % 1;
which, with a little regrouping can be seen to give
factorial n = n * factorial(n-1);

This can be expressed as an ML function definition by progdirvalue for
factorial 0, as in

fun factorial n =
if n = 0 then 1 else n + factorial(n-1);

Applying the substitution model for procedure evaluatiioves us to see the
effect of a request for the value of factorial(6).

10

factorial 6

6 * factorial 5 (A)
6 » (5 =* factorial 4)

6 » (5 = (4 = factorial 3))

6 x 5 (4 » (3 * factorial 2)))

6 (5 « (4 ~ (3 r (2 * factorial 1))))

6 x 5 @4 » 3 * (2 » (1 = factorial 0)))))
6 G @ @B+ 2 @1 1))

6« 5 * (@ (@B (2 * 1))

6+ G @4 @B *2)

6+ (5 * (4 * 6)

6 » (5 * 24)

6 * 120

720

Now consider an alternative scheme based on the idea ofrige@piunning
product, and multiplying it by 1, 2, 3, ... and so on up to. Tleatls to code of the
form

fun factorial n
let
fun sub_function(i, so_far) =
if i > n then so_far
else sub_function(i+1, i *s0_far)
in sub_function(1, 1) end;

This new definition seems bulkier (and on that basis aloreedesirable) than
the first one: is it describing the same calculation? To findvwe can trace
through it using the substitution rules to yield the table

factorial 6

sub_function(1, 1) (B)
sub_function(2, 1)

sub_function(3, 2)

sub_function(4, 6)

sub_function(5, 24)

sub_function(6, 120)

sub_function(7, 720)

720

which is conspicuously different in layout to the previousumple. The first
of these behaviour patterns (A) is referred to as ‘recutsishile (B) is known
as ‘iteration’. In scheme A any computer implementation trkeep track of
operations that need to be performed during the unwindinp@fecursion. In

11

this case the amount of such information that has to be keptlglgrows directly
with the value of the input parameter n, and so the recursiarinear one. In the
iterative case only a fixed amount of status information edeel by the computer,
even though sulfunction calls itself over and over again. The ML system has
the property that functions that are iterative in the senseudsed here will only
consume a finite amount of space while running (other impleaimns of other
languages may not be so well behaved!).

Another common pattern of computation is called Tree RecarsConsider
the pattern of expansion when evaluating one of the Fibamarnbers using the
program

fun fib n =
if n =0 orelse n =1 then 1
else fib(n-1) + fib(n-2);

where at each level in the calculation there are two branttescan be ex-
panded out. The cost of running tree recursive programs oam gt an expo-
nential rate as the depth of the tree being traversed ineseasid this can lead
easily lead to code that it is not feasible to execute. In gdrieee recursion can
not be replaced by iteration, but in this case it can: the alooi numbers can be
computed as follows:

fun fib n =
let
fun fib_iter(fi, fj, j) =
if j = n then fj
else fib_iter(fj, fi+fj, j+1)
in fib_iter(0, 1, 0) end;

3.4 Exercises

(3.1) Is there any noticable difference in the time takenh@arious versions of
the factorial function given here when run on arguments semdugh that their
result does not exceed the range of arithmetic that ML suppor

(3.2) Is there any noticable difference in the time takenhgywersions of the
Fibonacci series calculator given here?

(3.3) Find out at least something about the way in which yseraf computer
resources will be controlled/limited. Discover how manyple share access to
the computer you are using, and watch to see how heavy theyseesn the ma-
chine is at different times of day. Find out how to abort an Micalation that you
have started but that is going to take an unreasonable ambtinte, or perhaps
not ever complete at all.

12

(3.4) Devise a recursive program to compute the number oswadgiving
change for a particular amount in terms of combinations ofddks of value 1,
2,5,10, 20 and 50.

(3.5) Can you produce an iterative solution to problem 3.46) (/as the sqrt
function defined earlier iterative or recursive?

3.5 Ratesof Growth

The simple version of the Fibonacci number program extdatbehaviour where
the amount of work done grew explosively with the size of thyauit value, while
some of the other code fragments we have seen have done anobuvirk that
have grown linearly with the value of the numeric input pagten This idea of
‘rate of growth’ is a good abstraction to focus on. It oftemresponds to a much
more useful idea of ‘efficiency’ than anything that can benfdby obtaining
absolute time measurements of any particular real comitee comparisons of
rates of growth tend to remain valid despite changes in ttent@logy of computer
hardware.

The usual notation for rates of growth is the ‘Big O’ one. If soprocess does
an amount of work R that depends on an input parameter n, teegawthat R =
O(f(n)) if fis some function so that R(n) j= K f(n) for some fixednstant K and all
sufficiently large n. In this notation the statement that@cpss is O(n) indicates
that its costs grow no faster than linearly with the size ofrgout parameter. In
a similar way O(1) is a way of saying ‘bounded by some fixed tamts whose
value is not specified here’.

Two things are work noting about Big O notation. Firstly itaals a finite
number of exceptions to the inequality that it expressess isthelpful otherwise
any O(n) process would need to have zero cost when n=0! Thex thhat it
expresses an inequality, so anything that is O(1), for ntsais certainly also
O(n) and O(n 2). Itis easy to fall into a the trap of thinkingtlsomething that
is described as O(f(n)) must get close to using f(n) reseui@esome n - that is
not what the notation says: when it is true it means that thetfan f(n) gives a
sharp bound on the costs of the process.

Big O notation can be used to describe both the amount of speexied by a
computation and the number of computational steps involVéds the recursive
factorial function given earlier used O(n) space and Ofngtiand the recursive
Fibonacci number code used O(n) space and O(2 n) time, wihalatérative
Fibonacci code used O(1) space and O(n) time.

To illustrate how the use of this notation makes it possibl@tmalise (crude)
estimates of computational cost, consider the problem isingt some number
to an integral power. Probably the shortest and neatestisaastraightforward
linear recursion (this statement is almost always true!)

13

fun expt(a, n) = (A)
if n = 0 then 1
else a = expt(a, n-1);

[At a later stage in a Computer Science course (and even mtmes ifvas a
course on programming rather than computer science!) |dvexpress a lot of
worry about some of the programs here - for instance whatédvapi expt(1, 1)
is called, and what is the correct response to give to theesall(0,0)? In this
course my attention is focused elsewhere, and so | will igtioese issues. If you
look at a full description of ML you will find that it provides€ilities for handling
exceptions - these will be ignored for now].

This procedure is O(n) in both space and time. Observe how siemilar
the code is to the recursive factorial program given eafltbis suggests that an
iterative version will be easy to construct, and it will thgeld a growth rate of
O(n) in time (still), but we can tell that its space usage WdlO(1).

fun expt(a, n) = (B)
let
fun expt_iter(i, result) =
if i > n then result
else expt_iter(i+1, a * result)
in expt_iter(1, 1) end;

This may be a very valuable improvement on some computet, s been
achieved at the cost of making the code longer and probab$ydear. The next
advance continues this trend, and relies on the fact that

X 2n =(xxn) 2,
X 2ntl = Xx * X 2n .

which leads to the code

fun evenp n = ((n mod 2) = 0);

fun expt(a:int, n) = ©)
if n =0 then 1
else if evenp(n) then
square(expt(a, n div 2))
else a * expt(a, n-1);

where it is supposed that square has already been definedtéger argu-
ments. Version (C) of the expt function is recursive agairn,dice on at least
every other successive call the parameter n gets halvegreatest possible depth
of recursion is proportional to log(n). [Note that in ordémeagnitude estimates
such as are used here the base for logarithms is unimpdbtant,it worries you

14

please assume logs to base 2]. Thus it can be seen that thisrnver O(log n) in
both time and space. A version which follows the idea of sapgdsut which uses
O(1) space (i.e. is iterative) is left as an exercise.

Raising things to large powers is a mildly eccentric occugmatbut the pat-
tern of operations used to do it can be re-used to show howrforperepeated
additions to achieve the effect of multiplication. A tim#i@ent iterative scheme
for doing this can form the basis of hardware inside a comhte supports the
illusion that the computer can multiply. The patterns usegaper and pencil
long multiplication may also help when devising the iteratiast exponentiation
routine. In summary, for the expt procedures considerediave

method time space
(A) linear recursive O(n) O(n)
(B) linear iterative O(n) 0o(1)
(C) recursive squaring O(log n) O(log n)
(D) <code not given here> O(log n) 0(1)

Now consider a variant on method (C), where instead of calliegsquare
function the indicated multiplication is written out exgtiy

fun expt(a:int, n) =)
if n =0 then 1
else if evenp(n) then
expt(a, n div 2) *expt(a, n div 2)
else a =* expt(a, n-1);

This has turned the code into a tree recursion, and in factihe it takes
to run goes back to being O(n). This example illustrates #ttépough in ML
replacing the call of a procedure by the expanded out bodyatfirocedure does
not effect the value that is eventually produced by a contjmurtait can have a big
effect on the amount of time taken. Here greatest efficieray attained because
ML (in effect) performed substitutions to evaluate the angat to square before
investigating the body of square. In other cases (that wese# later) other
strategies give the best performance.

3.6 Exercises

(4.1) Code and test an iterative O(log n) version of the fuomcéxpt.

(4.2) If aand b are two integers with a ¢, b ¢, 0 then the greateston divi-
sor of a and b is also the greatest common divisor of b and (aljjhddse this to
produce a function that can find the greatest common divisany two positive

15

integers. Is your code recursive or iterative? Can you dstabh estimate for the
rate at which its computing time grows as the values of a and”(d.3) Inves-
tigate the various tests for prime numbers given by Abelsah3ussman, again
considering rates of growth of both space and time for eachodediscussed.

(4.4) Try typing (on one line) val t = CpuTime(); expt(1,100QpuTime()-t;
and similar things with different calculations in the middDiscover if the values
reported at the end behave plausibly like measures of theethken to run the test
code in the middle, and if so what units they report time in.90me computers if
the above code is not all typed on one line the time the compspiEnds waiting
for you to push buttons on the keyboard will be included infthal time reported
- is this true on the system you are using?

(4.5) Define the smallest and simplest ML function that you ttank of that
will have time that grows linearly with the value if its argent. Time it for
various argument values and see if the observed growth eateslinear. If so,
estimate the constant of proportionality relating the argaot to real computer
time used.

(4.6) Exploit the identitesn Cr=n-1Cr-1+n-1Cr,nC0=nC ®=
to define a function that calculates binomial coefficients.a¥\8ort of recursion
does it use? How does its cost grow as n and r grow? Estimatetéé¢hat would
be needed if it were used to computer 60 C 30 . Are there waysmiaving the
code?

3.7 Higher Order functions (control structure)

It was indicated last time that a single shape of code coufdess either the
idea of exponentiation (if it multiplied) or of multiplicetn (if addition was the
underlying step). The code involved is

fun expultiply(a:int, n) =

let fun squouble(a) =
base_operation(a, a)

in if n = 0 then base_identity_value
else if evenp(n) then

squouble(expultiply(a, n div 2))
else base_operation(a,
expultiply(a, n-1))
end;

where basaperation stands for either addition or multiplication &adeidentity value

for 0 or 1. Rather than having to write this code out twice, otacenplement a
product function and once for exponentiation, it is pogsiiol code it once and
make baseperation and the identity value for it into parameters.

16

fun expultiply(a:int, n, opr, identity) =

let fun squouble(a) = opr(a, a)
in if n = 0 then identity

else if evenp(n) then

squouble(expultiply(a, n div 2,
opr, identity))
else operation(a,
expultiply(a, n-1, opr, identity))

end;

The third argument to this function must itself be a functiand in ML this
is perfectly respectable. The text written here to indi¢héeargument is just the
name of the function that is to be passed. The following cdidstiates this,
defining a version of expt that uses a further layer of fumgito perform the
multiplication that it requires internally.

fun expt(a, n) =
let fun prod(x, y) =
let fun sum(p:int, g:int) = p + q
in expultiply(x, y, sum, 0) end
in expultiply(a, n, prod, 1) end;

A second example of an problem where functions as argument&lp a good
abstraction arises when considering the derivative of Erfymctions. The deriv-
ative of a function f(x) at a x=a can be estimated as

(fa + h) - f@@) / h
for small offset values h. In ML we can capture this formuleedily

fun deriv_approx(f, a, h:real) =
(fa+h) - f(@) / h;

which can then be tested, for instance with

fun quadratic(x) = 3.0 *X*X - 17.0;
deriv_approx(quadratic, 2.0, 0.001);
deriv_approx(cos, arctan(1.0), 0.001);

The issue to be stressed here is that permitting functioh® tpassed as ar-
guments to other functions makes it possible to write onegxare (expultiply,
or deriv.approx) that captures the essence of some computatioey taim copy-
ing out all the possible special instances. This clearlp$ek to produce clearer
procedural abstractions for the processes we are desjgamgencourages us to
produce code fragments that will have many uses rather ttsimjsingle use.

17

3.8 Exercises

(5.1) Assuming a function f(i) that returns real values andnéeger n, produce a
function that will form the sum f(1)+f(2)+...+f(n). Testwtith f(i) the reciprocal
of factorial i (this gives approximations to the number & thdhe base of natural
logarithms), f(i) = 1/((4i-3)(4i-1)) (which leads to pi)nd f(i) = 1/i. Note the
existence of useful functions in ML: real(n:int) returnsealrnumber with value
the same as the integer n, floor(x:real) returns an intedae v larger in value
than the real number x.

(5.2) Generalise your summing function so that it accuneslatalues using
an operator and an initial value that are handed to it as azgtsn Demonstrate
it with a call something like fun prod(a:real, b:real) = a’dgcumulate(50, real,
prod, 1.0); to compute factorial 50 using real arithmetic;

(5.3) Collect some of the more general and potentially rdslesanctions that
you have written into a single file, so that it can be loadedatdtart of future
sessions with ‘use’. Comments in ML are written as (* text %, you might
reasonably document your private library, explaining wéeath function does.

(5.4) Suppose that the function of (5.1) is being used to snmesto n terms
as a way of evaluating approximations to useful values (Aonaitz and Stegun’s
big book of mathematical tables can provide lots and lotsxafvgle series to
try summing...). The partial sums of a sequence taking in B, 2. terms form
a sequence which it is hoped will converge towards some lmitfortunately
quite often this convergence is slow. If s n-2 , s n-1, s n areetltonsecutive
values in such a sequence, defneSnassn-(sn-sn-1)2/(sml2ss
n-2). Then the sequence S n often converges much fasterhbariginal one.
Implement a higher order function that can perform thisgfarmation, and try it
on (among other things) the sequence 1 - 1/3 + 1/5 - 1/7 + 1/8wdonverges to
pi/4. The transformation works by assuming that the seqeieancerned is really
a geometric progression of the form s n = p + g*k n with limit puses the three
sample values from the sequence to allow it to find p, g and k. tWappens
if you try to accelerate convergence yet further by applyimg transformation
twice?

(5.5) Exchange your version of the accumulate function wittmebody else,
and read their code. If # denotes the operator being usethegacompute f(1) #
(f(2) # (f(3) # ...)))) or ((((f(1) # f(2)) # f(3) # ... or possly something different
from both the above. Starting from their code produce anractate function
that groups things the other way. Give a test use of the twaiaves of accumulate
that illustrates that they can sometimes give differerdctff. In what cases can it
be guaranteed that they will behave indistinguishably?

(5.6) Produce yet another version of accumulate that gpitgange from 1
to n into two roughly equal sub-ranges and accumulates sdhoen each sub-

18

range before combining these to produce a final value. Clersethe space and
time requirements of this function. Although from an ideathematical point of
view all your versions of an accumulator function will be aglent, when using
computer real arithmetic (i.e. floating point) there will give slightly different
answers: investigate!

3.9 Higher Order functions (as values)

If functions can be passed as arguments, can they be retasesbults? If so,
does that enrich our programming style by allowing furthepagation between
the ‘what’ and the ‘how’ of typical procedures? In ML it is ®isle to return

functions as results, and although many older languageotsupport this (or
put peculiar limitations on how it may be used) it can prowgded ways of mod-
elling behaviours. Looking back to the code previously gifer estimating the
derivative of a function. With minor adaptation it can adcapunction as an ar-
gument and deliver its derivative (again as a function)aseisult. For simplicity

here it is coded with a fixed offset of h=0.001

fun differentiate f
let val h = 0.001;
fun df(a) = (f(a+h)-f(a))/h
in df end;

and now this can be used to compute functions that are to bedpguch as

(differentiate cos)(1.0) + sin(1.0);
(differentiate (differentiate sin))(0.0);

The point to be made here is that defining differentiate is Wy puts all the
information and mechanism about differentiating insiceghocedure, and makes
it possible to use it in a general way.

When functions are being passed backwards and forwardssiefslito be able
to write one without having to invent a name for it. For ingt@aim using expultiply
it was necessary to have a function that added (or multiptied integers, and in
the code shown earlier this was named using a ‘fun’ definitién alternative
would have been to use an ‘anonymous function’. These ateewri

fn <formal arguments> => <body>

asin
expultiply(2, 10, fn(x:int,y:int)=>x xy, 1);
or (derivative (fn x => 3.0 *X*X-17.0))(2.0);

19

[There are some who suggest that ML was wrongminded in usiagkey-
words ‘fn’ and ‘fun’ for the two different ways of introducgifunctions, and they
tend to pronounce ‘fn’ as ‘lambda’, the Greek letter usedwlgere for introduc-
ing anonymous functions].

Further uses of this idiom would be to recode expultiply sat hstead of
accepting arguments (a, n, operation, identity) and dgtpatforming a calcula-
tion, it accepted just the last two of those values and retlianfunction of two
arguments which would be either multiply or expt. This mos&engly towards
viewing programs as things with large numbers of levels atrastion, starting
at the top with recipes for general methods, preparing apsations of these to
get functions to perform particular operations and thengithese to solve prob-
lems. Keeping this layered structure in place so that codtenrat one level is
not corrupted by issues that should only be visible at amagteemajor part of the
challenge of understanding the proper development of laagkages of computer
code.

3.10 Exercises

(6.1) In ML, provided f does not try to call itself, there is ddference between
the effect of a function definition fun f arg = body; and a vatigdinition involving
an anonymous function to the right of the equal sign val f =rip=, body; Try
some of the previous examples using the second version af/titax to become
convinced that all still works. ML does not make it possildearite anonymous
functions that call themselves - some of the technical s#uat led to this deci-
sion may emerge during the final year of the CST courses. Asasdilinction
definitions, ‘let’ statements can be expanded in terms a$ osanonymous func-
tions: let val x = A in B end; can be replaced by (fn x =¢ B)(A); fadhat this
form is actually a little shorter to type] Convert some pres@ode to avoid the
use of ‘let’. This demonstrates that ‘fun’ and ‘let’ do notntobute much to the
semantic power of ML, although they do help make code morgatala.

(6.2) Define a function called compose which can take two argesment real
functions and return the function that is their compositibhus one would expect
compose(sin, sqrt)(2.0); to have the same value as si€)it [warning: it may
be necessary to decorate arguments to compose with typenation. See how
ML displays the types of things that would be suitable asm@gnts to check what
should be written].

(6.3) Double is to add as square is to multiply. Produce atfondhat will
derive double from add and square from multiply. What effemtdif have if
given (a) difference and (b) quotient?

(6.4) Comment on the relationship between 0; fn x:int =¢, 0;:fntx=¢, (fn
y:int =¢ 0); [hint: the type information that ML displays whgou enter one of

20

the above is closely related to the answer to this questiany What about (fn
x:real =¢ 0);

(6.5) Adjust the differentiation code so that rather thamgi® single fixed
value of h to estimate a derivative it tries values h = 0.110.0and so on until
two estimated derivatives are within 1code arranged sottieaparts of it that
have different concerns are well separated, using blocictsires, functions as
arguments and results etc where such things lead to exgosivif your solution
that are easy to untangle.

(6.6) Reorganise your files on the computer so that you camgissh be-
tween important and frivolous files, and so that files that waunt but are not
going to update on a daily basis are put away somewhere tidgaie. Find out
how limits on your use of file space are enforced, and how yaulcsover if you
are close to any such limits.

4 Building abstractionswith data

4.1 Constructor and selector functions

This section of the course is concerned with combining togrepieces of ele-
mentary data to build complex structures in much the wayttiefirst section of
the course was about combining small operations and expnsd® create proce-
dures that could have complicated (and hence interestidgiseful) behaviours.
As was the case when discussing procedures there will bederlyimg emphasis
here on arranging the presentation of data so that a cldgaratisn can be drawn
between those aspects of it which are essential for the pagio hand and those
that are purely incidental affect of the particular way tihdias been represented
on the computer.

A first example of a class of objects best represented by ceitepdata will be
the rational numbers. A rational number will have a numeraa a denominator:
for instance (13/97) has 13 as its numerator and 97 as itswieator, but behaves
as a single value composed of those two parts. Without maknygstatements
in advance about how the numbers will be represented it isoredble to ask
for functions that create and inspect rationals. A congbruftinction and two
selectors will be needed, such that

make_rat(p,q) returns a representation of p/q,
numer z selects the numerator from a rational,
denom z selects the denominator.

Note that using just these operations it should be possdbeitd procedures
to perform arithmetic on rationals, for instance

21

fun add_rat(x, y) =
make_rat(numer x +*denom y+numer y *denom X,
denom x*denom Y);

ML provides secure and automatic ways of introducing abswata types
such as the rational numbers used here, but for now thesdavitjnored, and
makerat, numer and denom will be implemented using a primitiva danstruct-
ing facility that ML has. In ML a list of objects, separated bymmas and en-
closed in parentheses, can be considered as making up e sorgposite object.
Thus we can have

fun make_rat(a:int,b:int) = (a, b);

Extracting components from this form of composite objecaahieved by
defining a function that has as its argument a template thHanwitch the ob-
ject. The object’s components can then be accessed in theedamody. Thus we
can write

fun numer (a:intb:int)
fun denom (a:int,b:int)

= a,
= b;

[At this stage it can be revealed that all functions in ML ajeéake a single
argument, and all the cases that have been seen where it asdiisgveral argu-
ments are involved really just reduce to packing the argusiato one composite
object at the call and unpacking them again at the start gbtheedure. If this is
fully understood it can be seen that maie¢ could equally well have been defined

by
fun make_rat x:(int *int) = X;

without that calling for any re-implementation of numer atehom].

If functions for addition, subtraction, multiplication @ulivision are complete
for rational numbers the above implementation of the absttatastructure for
rationals can be tested. Experimentation will rapidly shioat it is unsatisfactory
in that, for instance, denom(makat(2,6)) comes out as 6 rather than the value 3
that was probably really wanted. The most obvious way ofemtimg this will be
to re-implement makeat as

fun make_rat(p, Q)

let val g = gcd(p, Q)
in (p div g, q div g) end;

which ensures that all rationals are kept in lowest tern@utjnout the system.
But note that since we want to think of rational numbers as emented by an
abstract datatype there may be alternative implementatione would be to leave
makerat in its original form and replace numer and denom by

22

fun numer(p, q) = p div gcd(p, q);
fun denom(p, q) = q div gcd(p, q);

[I have assumed that a function gcd has been defined, andt tha ionly
accept integer arguments, since this allows me to leaveheutinht’ restrictions
on the structure components in these definitions].

It is important to note that whichever solution is selectedill not make it
necessary to make changes to adtand the higher level functions. We have a
hierarchy of levels of abstraction again, and should stoveeep the concerns of
these different levels separate.

4.2 EXxercises

(7.1) Complete the coding of procedures for the four basicaimns applied to
rational numbers. Using the initial datastructure (thdtmbt reduce fractions to
lowest terms) add up 1/1 + 1/2 + 1/3 + ... + 1/10. What is the denator of your
answer?

(7.2) Install a datastructure that does reduce fractiontheo lowest terms
and recompute the sum of the first ten reciprocals. What devatar do you get
now? Does it make much difference to efficiency if the gcd walions are done
in makerat or on numer and denom? Would it be proper to be doubleiceahd
make both makeat and numer and denom reduce fractions to lowest terms8 Doe
your code need adjustment if you are going to have to copeneijative rational
numbers?

(7.3) Change your rational arithmetic package so that thenatvalue (p/q)
is represented by the ML-level structure (q, p) (rather tin@n(p, q) used before).

(7.4) Define suitable datastructures for representing §agments in the plane
in terms of their endpoints. Adapt it to deal with line-segnsein 3-space. Pro-
duce a function that will find the mid point of a line segment.

(7.5) Constructor and selector functions can still form ukpéirposes by ex-
pressing abstraction boundaries even when the abstraattdiging handled can
be represented using a single item of primitive data. Wriitable constructor
and selector functions to support a data type ‘number indhge 0 to 4. Write
functions to add, subtract and multiply such quantitiesngishe rule that the
required result is the remainder when the natural integrritres divided by 5.

4.3 Alternativerepresentations of datastructures

One thing that can be asked about a programming system istvalfithe facilities
in it are really necessary’. Here it will be demonstrated tha ability to cluster
several integers into a single item of composite data (ad teebuilding data

23

structures, and also to allow functions to seem to accemrakarguments) is,
contrary to plausible intuition, not strictly needed.

This will be done by showing how the use of functions as resllies makes
it possible to achieve a remarkably similar effect, and ttengple taken here will
be to recreate a version of makat and its friends. Consider

fun make_rat(p:int, g:int) =
let
fun extract n =
if n = 0 then p else g
in extract end;

and

fun numer x:int->int = x(0);
fun denom x:int->int = x(1);

then we can try using the substitution model for proceduabaiation to dis-
cover the value that will be returned by numer(ma&&u, v)). The call to numer
expands into

(make_rat(u, v))(0)
which is
extract(0)

in an environment where p=u and g=v. This quickly reduceféovalue u.
Similarly denom(makeat(u, v)) = v, and so the above definitions behave as is
required to simulate the pair datastructure.

It can properly be complained that in ML the passing of twouangnts to
makerat implies an implicit use of the built-in mechanism for atieag and un-
packing pairs of objects. This too can be avoided if we needde exercise 8.4
below. In languages like ML it is even possible to dispensi Wwuilt-in integer
arithmetic, simulating that in terms of function values. ekoise 8.5 provides a
start towards an explanation of how this can be done.

A more practically useful feature of ML is that it provides ayof packaging
data that is similar in its idea to the constructor/accesstfan ideas shown above,
but which allows ML to check that access to the data is onlyentadough the
defined interface. To use this facility we would tell ML

datatype rational_number =

make_rat of int *int;
fun numer(make_rat(p,q))
fun denom(make_rat(p,q))

P;
a;

24

where the first statement introduces and names the new patatyd causes
a constructor function makeat (that will expect two integer arguments) to be
brought into existence. Of course if our programs were adymeyrfect this feature
of ML would be no different from any of the previously mentezhimplementions
of makerat and its friends. As we live in a real and imperfect world #xtra
checking that is made possible by introducing a new datatypavay that makes
ML fully aware of its separate identity is very valuable iede

4.4 EXxercises

(8.1) Code and test the functional representation of thematinumber datatype.
Inspect and try to make sense of the types of all the functéosexpressions
involved as ML displays them.

(8.2) Any positive integer can be expressed (in binary mmats a string of
bits bn, ..., b2, b1, b0. Write a function that constructs f@mumber the value
that has binary representation bn, O, ..., 0, b2, 0, b1, 0[Di@e bits have been
spread out and zero bits interleaved between them. Hinbrdpose the number
by dividing by two, rebuild by multiplication by four]. Hercproduce a version
of makerat that packs the numbers a and b together as a binary numéiage
with the bits b2, a2, b1, al, b0, a0.

(8.3) If p and qg are positive integers, the value 2 p multgply 3 g can be
used to encode the ordered pair (p, q). Write constructor aletter functions
based on this packing scheme. What order of growth is theteeicdsts of the
various implementations of makat and numer that have been discussed in this
section? In a similar way 2 p (2q+1) also encodes the pair)p,cgde up the
constructor and selector functions and work out what thestare. A yet further
packing scheme would imagine p and g represented as bireyyriambers and
would create a combined number by interleaving the bits aigh@ Investigate
that sceme too.

(8.4) Define a function that adds 1 to an integer. Now definenation that
adds two to an integer. And one that adds 37 to an integer. réleseethe creation
of these by writing a function that could create them all:

fun incrementby n:int =
let fun addn a = a + n
in addn end;

then

val addl = incrementby 1;
val add37 = incrementby 37

Test this function and several variants on the idea. Now vgthie interpreta-
tion of and value returned by

25

incrementby 2 3;

Compare the types, as displayed by ML, and behaviours ofnmengby and
(fn (x:int,y:int)=¢ x+y).
(8.5) In ML I might like to define a series of functions as fola

fun not at all f a = a;

fun once f a = f(a);

fun twice f a = f(f(a));

fun three_times f a = f(f(f(a)));

and then try to provide a successor function to help me génargher func-
tions in the sequence

fun successor n f a = n f f(a);

Are there any problems that prevent me from building up admfiulation of
integer arithmetic in this way? [Note: this exercise makeay use of the idea
introduced in 8.4, and it is critical, for instance, thatdesiwas defined as ‘twice
f a =" rather than ‘twice(f,a) =’. As written above it also ied on the fact that a
sequence of names ‘a b ¢ d’ in ML will be treated as if they wareketed in
the order ‘((a b) c) d’. Even if this is unspeakably confusyog can still type the
examples in and try them with, for instance

three_times (fn x=>x+1) 2;

The types that ML assigns to the above functions will als&lodd, contain-
ing symbols 'a, ‘b and so on. These are a manifestation of Majsability of
type-checking functions even when it does not know exactigtvtype the argu-
ments will end up having, and 'a, 'b stand for arbitrary tyjpes

(8.6) After 8.5 consider

val g86a = twice three_times;
val q86b = three_times twice;

How can you interpret the two values just defined?

(8.7) Set up ML ‘datatype’s for line segments, numbers modlranges of
real numbers (e.g. (1.0 to 1.5)). Work through the intervihmetic examples in
Abelson and Sussman.

(8.8) ‘abstype’ in somewhat similar to ‘datatype’, but ibpides extra security
by arranging that only a limited number of functions haveesscto the internal
components of a compound object. Check the full ML manual to éat how
to use ‘abstype’ and use it wherever possible (or at leasoredle) in future
exercises.

26

45 Lists, treesand sets

The datastructures introduced so far have all been of fixaesl @and format and
have been capable of binding together nothing more than adewbers or strings.
This section of the course introduces variable sized datzstes. The first of
these is the list . In ML lists are written in square brackets:

[11 21 3’ 41 5]1

is a list of integers (of length 5). There is obviously somersg low-level
relationship between a list in this sense and a tuple as sebere

1, 2, 3, 4, 5).

The distinction that ML draws between the two concepts meguinat all the
items in a list have the same type, but then treats all lis(saf) integers as being
compatible with one another, whereas with tuples the entan be of different
types but the type of the whole tuple includes informatioawtthow many items
there are in it. Thus [1,2] is typed as ‘int list’ while (1,2)‘int*int’.

Lists in ML can be extended using an operator ‘::". This putrgle extra
item on the front of an existing list, and long lists can beltbup by using it
repeatedly

S S (A (e SR 1))
is another way of writing
[1, 2, 3, 4, 5];

that stresses this structure, and that the front of a listislnmore accessible
than the end. The empty list [] can also be written as ‘nil’iethsome people
prefer.

I will use archaic, arcane, universally vilified but univaltg known names for
the selector functions on lists, defining them by

fun car (@ :: b)

a,
fun cdr (@ :: b) b;

[When these definitions are introduced to ML it will moan. Thoenplaint it
has is because these definitions do not explain what the imemanf car and cdr
should be if given empty lists. | view it as an error to try taikicar or cdr of an
empty list, and will not worry further about this issue].

If x stands for any nonempty list, then we have

x = car(x) :: cdr(x)

and if g is an object, and | a list of similarly typed objects,

27

g =car(q I
and | = cdr(g ::).

Given the idea of lists, which can be though of as (finite) seges, there are
a fairly large number of useful operations that can be imadjirsuch as finding
the length of a list, appending two lists together or reveyshe order of items in
a list. Higher level operations involving lists include laling a new list which has
elements obtained by applying some given function to themeigs of an initial
list. See exercise 9.2 for an observation about the ML syflmiagoding these.

Lists provide a useful low-level representation for datat tomes in varying
amounts but which is naturally rather flat and list-like. Bome applications it is
necessary to look at yet more flexible classes of structuve inStance consider
the representation of algebraic formulae. Something liR&L3-2 fits in with
an abstraction in terms of tree-like structures, whereetlage leaves containing
operand values and internal tree nodes representing operat

I\

ML makes it possible to define a new datatype that will permitouwork with
trees of this sort:

datatype tree = leaf of int
| node of string xtree =*tree;

where the vertical bar indicates that the type permits twaauaés, one for
leaves and on for internal nodes. A leaf node can the be ecmtstt by using the
constructor function

leaf(2)
and the whole of the above tree could be built by saying

val lhs = node(" =*",
leaf(32),
leaf(17));

node("-", lhs, leaf(2));

Functions to use trees can decompose them using patterhingaic formal
parameter specifications in an extension of the mechanisahinghe definitions
of car and cdr. Thus to add up all the integers in the leavedreiea

28

fun addup(leaf(n)) = n
| addup(node(op,lhs,rhs)) =
addup(lhs) + addup(rhs);

Trees represent a richer class of extensible datastrgctoas lists: it may
not be obvious that it is also useful to have weaker abstnagtiA good example
of one such is the ‘finite set’. Lists can easily be used toesgnt finite sets (at
least sets where all the members have the same type), batteetwo things that
are wrong with this from the point of view of abstract datastures. Firstly use
of lists reveal an order in which their elements are presamd, so the lists [1,2]
and [2,1] would be considered different. With sets thereukhte no ordering
of the items included. Then an item is either present in asgti®not: there is
no interpretation to having an item in a set ‘twice’. This me#hat lists such as
[1,2,1] are not good representations of sets (because otpeated entry). See
exercise 9.7 for suggestions that show that the abstragtiaset datatype can be
supported in several different ways.

46 Exercises

(9.1) Write and test functions to find the third element of a(sipposing the list
is long enough), to find the last element of a list, and to agpeo lists.

(9.2) ML provides a neat way of defining functions that worklists, making
the test that is almost always needed for the special case efmgty list fit in
neatly with picking out the car and cdr components of nontgrigts. Here is a
sample of it

fun map(f, nil) = nil
| map(f, a::b) =
f(a)::map(f,b);

where vertical bars are used to separate collections afidisjases to be con-
sidered in the function definition. Given the above, whattheevalues computed

by

fun square aint = a *Q;
mapcar(square, [1,2,3,4,5)]);
and mapcar(fn x=>[x], [1,2,3]);

(9.3) Write a function that takes a list and returns a list bpaksible permu-
tations of the original list. Thus permutations [1,2,3]Juttbhand back

M1,2,31, [1,3,2], [2,1,3], [2,3,1],
[3.1,2], [3,2,1]]

29

but any other ordering of the permutations in the resultistld be consid-
ered acceptable.

(9.4) Here are a pair of ML functions (called cryptically adar), defined
in terms of one another. What do they do? How do they do it? Whties
computational complexity of the processes that they géer&an you produce
functions that compute the same results but which have |lonsgr computing
time and/or space?

fun r(nil) = nil
| r(p:a) = a(r q, [p])
and a(nil, v) = v
| a(u, v) = a(r(cdr(r u)),
car(r u):v);

[Note: in the definition of a the first clause is activated & first argument to
a is an empty list, the second one in all cases when u is not atydist].

(9.5) Write code to evaluate an arithmetic expression repitesl by a tree
datastructure. Change your definition of tree and your etialuaode so that the
items in leaf nodes are rational numbers, and get it workgajra

(9.6) Investigate the symbolic differentiation examplé ande in Abelson &
Sussman, and produce a version of it in ML. Keep a clear stpaitaetween the
parts of your program that are to do with the representatidmeoalgebraic forms,
those that implement differentiation rules and any thatcareerned with trying
to keep expressions reduced to simple form.

(9.7) For an abstract datatype to represent sets we neegporsitihe follow-
ing operations:

create an empty set,

adjoin a new element to a set,

test if a given object is a member of a set,
remove an element from a set,

exhibit one of the members of a non-empty set.

Given these, we can define set intersection and union, furgto apply op-
erations to all members of a set and so on. Implement the ab®gport sets of
integers, using as a base representation

1. Lists, where the set constructor operation ensures thésinever has re-
peated entries in it,

2. as above, but with the numbers in the list maintained irrdiog order
(which may make set inclusion tests slightly faster),

3. Binary trees with the integers stored in the leaves, asisgsstl in Abelson
& Sussman.

30

4.7 An example datatype: complex numbers

On several occasions so far it has been pointed out that sartieytar datatype
could be implemented in a number of different ways. So fardéesion about
which representation should be used has been made once raalil idnen the
datatype was implemented in terms of constructor and selémctions. There
are occasions when the implicit insistence that this makasdata should have
a single format of representation is unreasonable. As astiition of what can
be done about this we will follow through code to work with qaex numbers,
introducing three levels of abstraction. At the top we wiltfj perform arithmetic
on complex numeric values. The middle one will be the parthef ¢tode that
knows that there will be two distinct representations usedifese numbers, and
beneath that there will be two parallel packages, one imgigimg the numbers
using rectangular (x + iy) co-ordinates and the other usoigrg (r, theta). It will
be useful to give recipes for arithmetic on the two particudgresentations first.

datatype rect = make_rect of real *real;
fun rect_x(make_rect(x,y)) = X;
fun rect_y(make_rect(x,y)) = v;

fun rect_plus(u, v) =
make_rect(rect_ x u + rect_x v,
rect y u + rect y v);
fun rect_times(u, v) =
let val ux = rect_x u;
val uy = rect_y u;
val vx rect x v;
val vy = rect y v;
in make_rect(ux *VX-Uy *Vy,UX *Vy+VX *Uy)
end,;
fun rect r u =
sgrt(square(rect_x u) + square(rect_y u));
fun rect theta u =
(* use arctan to compute angle *);

which provides addition (easy) and multiplication (somawharder) in rec-
tangular co-ordinates. It also provides functions that pota the absolute value
of a complex number and the argument of it (i.e. the angle &etvwthe real axis
and a line joining the origin to the given number). Now for t@responding
code that works in polar co-ordinates:

datatype polar = make polar of real *real;
fun polar_r(pol(r, theta)) = r;
fun polar_theta(pol(r, theta)) = v;

31

fun polar_times(u, v) =
let val ur = polar_r u;
val utheta = polar_theta u;
val vr = polar_r v;
val vtheta = polar_theta v;
in make_polar(ur *vr,utheta+vtheta)
end,;
fun polar_quotient(u, v) =
let val ur = polar_r u;
val utheta = polar_theta u;
val vr = polar_r v;
val vtheta = polar_theta v;
in make_polar(ur/vr,utheta-vtheta)

end;
fun polar x u =

polar_r(u) * cos(polar_theta u);
fun polar y u =

polar_r(u) * sin(polar_theta u);

Observe, as could have been predicted, that both the pothremtangular
representations can support functions that extract thel y @o-ordinates of com-
plex values and also the polar co-ordinates, but the exparisbe accesses differ
significantly across the two representations. Observethtgoaddition and sub-
traction are easy in rectangular co-ordinates, while mpligttion and division are
easy in polars. This suggests that it might be useful to prediunctions to convert
between the representations:

fun to_polar(u) =

make_polar(rect_r u, rect_theta u);
fun to_rect(u) =

make_rect(polar_x u, polar_y u);

and it then becomes easy to implement some operations thaopsly looked
tricky:

fun polar_plus(u, v) =
to_polar(
rect_plus(to_rect u, to_rect v));
fun rect_quotient(u, v) =
to_rect(polar_quotient(to_polar u,
to_polar v));

That allows us to complete our two separate implementatadnsomplex
arithmetic. One will be more efficient when most of the opera performed
are additive, the other if most are multiplicative. A way d@tiing close to the

32

best of both worlds will be to provide the user with complexnters that tend
to select for themselves the representation that will bet s@ssible. Define the
datatype by

datatype complex = casel of rect
| case2 of polar;

which just states that a complex number is either a rect ofa,gbese types
being labelled as casel and case2. We can then introduceumtos functions
that create complex values given x,y or r,theta representat

fun complex_from_xy(x,y) =
casel(make_rect(x,y))

fun complex_from_rtheta(r,theta) =
case2(make_polar(r,theta))

and all possible selector functions

rect_x(u)
polar_x(u);

fun complex_x(casel(u))
| complex_x(case2(u))

and so on.

Then complex addition and subtraction can be arranged ve lgweeir results
in rectangular form, while multiplication and division giback polar-represented
answers. Of course the user of the package is prevented bgthers of abstrac-
tion from knowing this, and will at most be able to deduce swmhething of that
sort is going on by making detailed timing measurements enrtiplementation
of complexes that has been provided. Use of the ML datatypense described
so far goes some way towards keeping the internal and ekieteils of struc-
tures well separated. A further ML feature, called ‘abstypevides yet stronger
support for ensuring that all access to data is through ti@adly associated sup-
port functions. Details of this can be found in the ML teclahieeports and in
Wikstrom’s book.

4.8 Exercises

(10.1) Code and test complete versions of both the rectanguathpolar repre-
sentations of complex numbers.

(10.2) Glue them together as suggested above to providegée simified
datatype called complex.

(10.3) Create a further layer to your code to provide a speef@kesentation
for complex numbers that happen to have a zero imaginary part

(10.4) Do a similar job for rational numbers, making a specase for ones
with a denominator that is 1. Then create a layer of code thateaments a

33

datatype called ‘number’ that can have instances that trergiationals or com-
plexes. [Note: the code that you write will require that wéegr numbers are to
be combined they have the same type, and so is not concertteddding rational

to complex values and so on].

(10.5) Large integers can be represented by lists of diggishat for instance
the number 199731 might be stored as the list [1,3,7,9,BlfHve stored the units
digit as the first element of the list since this will probabiake the rest of the
code easier. Write code to add, subtract and multiple big ruspland implement
a layer of datastructure that allows numbers up to 10000 tstdred as normal
ML ints, while representing larger numbers in list form.

4.9 Approachesto theimplementation of generic operators

The examples given above show that it can be useful to havatope that can
be applied to many different classes of data, for instanogetiing to perform
addition should have an interpretation for integers, raa8onals and complex
numbers, and possibly other classes of object. ML can deglokeanly with cer-
tain classes of generic operators - ones that are known agripgohic’. These
are ones where the operations to be performed in the implkati@m of the op-
erator are independent of the full specification of the typthe operands. Good
examples of this sort of generality will be found in the prdeees that work on
lists - most of these are valid regardless of what the typ&@felements in the
lists are. If you have tried out some list processing examptai will have seen
ML describe the types associated with these functions withb®Is 'a, b and so
on in them, where these markers stand for arbitrary typeesgons.

The support required by arithmetic is of a quite differerarelcter, in that it
is clearly of the essence that the insides of a package torpeifsay) complex
arithmetic will be different from that which does rationaitmetic. We are still
used to the abstraction of being able to use a single set db@igni+, -, * and /)
to denote the range of operations involved, with the dedaitede to be activated
depending on both the operator involved and the type of issas.

The next short section of this course introduces one paatieway of address-
ing the problem of providing convenient and flexible supgortlarge numbers
of related classes of datastructures, while preservingl gbstraction barriers so
that no piece of code need be aware of information that nqtgstp relevant to it.
The scheme is known as ‘message passing’.

Message passing represents an alternative attack on thkeemprof control-
ling datatypes to the one embodied in ML, one where typedhgakan not be
performed on the basis of a static analysis of the code imgbI\t is quite pos-
sible to express message passing code in ML, but the propeyeareral version
of the code involved will have to reveal all the mechanismdoping with para-

34

meters which have types that can only be determined at nu-tFor an initial
discussion of the message passing idea this detail will ppressed, and the ex-
amples that follow, although they look like ML, can not be diseith the ML
system. To indicate this the notes here will have verticas ba the left of any
such pseudo-code.

Back to consideration of the problem of supporting arithmétihe face of
the problem that +, - and so on may need to work with integesy rationals,
complex numbers, and indeed they have quite natural irgepons when applied
to elements from abstract rings and fields, to polynomiaisigy series, matrices
and so on. The structuring techniques we have introducedrsudke it possible
to implement each of these arithmetic domains in a tidy weyyiging the outside
world with a procedural interface that successfully hidgsrnal structure. But
the user-level function for addition had to be coded as a-leimgled list of cases,
dispatching into whichever underlying package was relevfiram still setting
my face firmly against any discussion of mixed mode arithopétiings are quite
complicated enough without that extra worry].

The most objectionable feature of this way of organisingdhbiis that if
(when!) a new arithmetic type is introduced, all the usgelenterfaces have to
be re-coded to cope with it. Thus implementing the new typelues more than
just coding the required computations (which will gengrédirm a neat module
of code), it involves distributed adjustment of an inteefdayer.

The first step towards tidying things up is to recognise thattop level dis-
patch functions are really just implementing a big tabl&klgnfrom operation and
datatype to the detailed code that is relevant for, for msta multiplying com-
plex numbers. This leads to the suggestion that objectddbeuepresented with
manifest type:

[l datatype object = thing of string * <any>;
I fun type_of(thing(t,0)) = t;

I fun representation_of(thing(t,0)) = o;

Then all operators can be invoked in a uniform way using a navectfon
apply, asin

Il apply("™, thing("int", 1));

I fun apply(op, arg) =

[l lookup_method(op, type_of arg)(

35

I representation_of arg);

and now lookupmethod can be a single general purpose function that in-
spects some tables to find the body of code needed, in thisticasene asso-
ciated with the operator name ” ” and the type name "int”. Thielé inspected
by lookupmethod will need updating whenever a new datatype or opesaio-
vented, but it will be regular, static, stylised and hendatieely easy to work
with.

Message passing is an idea that corresponds to viewingakapanethod ta-
ble as a matrix, and recognising that if we concentrate ors me/get the original
dispatch functions corresponding to each user-level opetaut that each column
captures exactly the information associated with a pddradatatype. This can
be implemented by representing all data objects as fureffontunately we have
come across this trick before), which take an operation tpdsérmed as their
first argument. A small example illustrating this idea camgl#en as code to cre-
ate a representation of a simple integer that responds t@sés|for its successor
and predecessor, and to enquiries as to whether it is pmsidgative or zero:

|| fun make_int n =
I let fun rep_of int op =
I if op="inc" then make_int(n+1)
[l else if op="dec" then make_int(n-1)
[l else if op="=0" then make_bool(n=0)
[l else if op="<0" then make_bool(n<0)
[l else make_error("Unknown op on int")
I in rep_of int end;

which could then be used by making calls such as
I val one = make_int 1;
I (one "dec")("=0");

which ought to return a value standing for true. [mdiaol and makeerror
have not been shown: their behaviour is left to the imagimatas is the problem
of interpreting displayed results to determine if they argrect].

36

Even though the above code may look just as ugly as the tygpatbh that we
had earlier in the definition of an addition function, it istndhe reason | assert
this is that it is less in breach of the modularity that we wahen implementing
a new datatype.

410 Exercises

(11.1) Message passing does not give any trouble to ML peaovall operations
implemented for a datatype take the same number of argunoérasnsistent
types, and provided the results returned as responses toealages are of a
single type. Thus it is possible to produce a message- gpasdel of integer
arithmetic supporting the operations "+”, -, "*”, "div’;’=" and "¢" provided
that the boolean results from the last two requests are edcaslintegers (say O
and 1 for false and true). Write code to demonstrate this.

(11.2) Write a function that accepts a ‘message passingaritag from 11.1
and derives from it the regular ML integer that it represerjtdint: if all else
fails positive number’s values can be determined by deanéingethem until they
reach 0 and seeing how many steps were needed].

(11.3) Read the section in Abelson & Sussman relating to miipes. [Note:
ML does not provide ‘put’ and ‘get’, and for that reason aslvasl ML's type-
checking and shortness of time further discussion of finérobaver datatypes is
deferred until a later time in the CST].

(11.4) Design an ML datatype that comes as close as possibkEng able to
cover all possible ML objects. For instance consider thgalmttempt datatype U
=i of int— b of bool — prod of (U*U) — fun of (U -¢, U); Exploitinggch a uni-
versal datatype implement more complete examples of megses$ing systems.

5 Modularity, Objectsand State

5.1 Mutability - advantages and disadvantages

None of the ‘variables’ that have been used so far have irefaatvaried in their
values. All the functions that have been written behave inag that depends
solely on the arguments that they are given, and not on therhisf their previ-
ous use. Datastructures have been created once and forchliage remained im-
mutable once built. The illusion of change has come abooutyin having many
instances of variables (e.g. corresponding to the manycatians of a procedure
that is called repeatedly), and by creating edited copiemta.

In this section of the course we investigate the ability terathings. The
main motivation for introducing this is not to increase thevpr or capability

37

of our programming language, but to make it possible to preduore natural
computational models of certain classes of real world bieliav In particular it
IS sometimes quite unreasonable or inconvenient to haveimeessive identical
calls to the same function giving the same result, e.g. ttedam number gen-
erator might be wanted or the operation being abstractetddpitocedure could
be withdrawing money from a bank account.

Take the second of these examples. A bank account has statke mhst
be able to alter as transactions are made using it. Normdhra¢ions in ML
introduce immutable associations between names and v@ues though these
associations can be hidden by newer definitions of variakigsthe same name
as the original one). To produce an updatable value in MLnkeisessary to make
an explicit request for one:

val balance = ref 100;

makes a fixed association between the name ‘balance’ anddaialgbe cell
(a reference), which initially has the integer 100 stored.ifNow of course the
type of balance is not just int, it is ‘int ref’, and to extrabe int from an int ref
it will be necessary to apply an explicit operator. In theecaSML this is written
as exclamation mark, so we can now ask

lbalance > 10; true:bool

and so on.
Updating a reference is done with the *:=" operator.

fun withdraw amount =
if amount < !balance then
(balance := !balance - amount;
amount)
else 0;

[Note that this code does not permit overdrafts]. The seloicoperator intro-
duces the idea of sequential steps in the computation, iakptlve update operator
to proceed for its effect and then returning the amount digtuathdrawn. [ML
provides a way of raising exceptions, and in a real versidhisfcode it might be
more useful to use this mechanism to complain rather thamgtisrning O in the
‘insufficient funds’ case. There is not room for a survey @&ad about exception
handling in this course, but those interested in it shoutthady find out about
ADA as well as ML and various recently designed experimeatajuages].

The above code does not satisfy proper requirements forroodelarity. The
variable called balance has its initial value set up in arexitile way, and is not
protected from interference by other pieces of code [forkbla@lances this is
deemed a bad thing!]. The solution uses ideas that have leegnbefore - the
variable to store the balance is made local, and so that iaireravailable, it is
necessary to use a function-producing function to generate to access it:

38

fun make_account initial_balance:int =
let val balance = ref initial_balance;
fun withdraw amount =
<code as before>
in withdraw end;

where it now is possible to maintain several accounts sanebusly:

val student = make_account 50;

val company_director = make_account 230000;
student 24; (* textbook *)

student 11; (= train fares *)
company_director 35000; (* fast car *)

It should be clear that updatable cells provide a new dedréexibility and
power when designing abstractions. The cost of this powaotsnstantly appar-
ent - introducing the new operators !, ;, := and ref into MLKRedike a simple
extension. But use of these facilities has a global effecheri@nguage. The sub-
stitution model of procedure invocation is no longer vadidd even to the extent
that it is the order in which parts of a program are elaboratdnow alter the
meaning of the code. This cuts away the whole basis for foresdoning about
programs that has up until now been available to us. Althahghe are ways of
providing precise explanations of how code behaves in tteedhassignment and
sequentiality, they are more complicated and include modedeeper pitfalls for
the unwary than semantic models for side-effect free coatjmut. Some of the
details will be covered later in the CST.

5.2 Exercises

(12.1) Compare and contrast

fun make_incl x:int =
fny =>x+y;

and

fun make_inc2 x:int =
let val save = ref x
in fn y => save = lsave + vy;

(12.2) Using a message-passing style of code, design aomevsithe bank-
balance recorder that accepts both "deposit” and "withinamessages and up-
dates the balance accordingly.

(12.3) Which of the following ML expressions can possibly beamingful?
For those that are devise initial settings for the varialreslved to allow them to
be evaluated.

39

IMexclaim;
IX = 33;
car(x) =
car(x)
cdr(x)

i
X=X

(12.4) In ‘The Art of Computer Programming’ by D. E. Knuth (\&)I(Addison-
Wesley, 1974), you will find a lengthy section on the generanf (pseudo-)
random sequences of numbers. On the basis of informatiteddubm there, im-
plement a function random such that successive uses ofvedglseudo-random
integers in the range 0 to 999.

(12.5) A turtle starts its life at co-ordinates (0.0, 0.0jhe plane pointing due
north. It accepts a sequence of requests which are each of tme forms

turn <angle>
move <length>

and keeps as internal state information about where it ipldment a turtle.

5.3 Sameness. Environments

Prior to the introduction of the idea of assignment there neadifficulty in decid-
ing when two datastructures were identical. [It is impolesib produce a general
method for deciding if two pieces of code compute the sametiom, and so
the issues of equality between functions will not be conreiddere]. With ‘ref’
objects it things become more complicated, and in partiauiach harder to for-
malise. Using an example from the previous section, conside

val acl
val ac2

make_account 100;
make_account 100;

where obeying the code in makecount does not involve any update opera-
tions, and in the two cases makecount is called with the same argument. Thus
it seems that the definitions of acl and ac2 can be discusseit wie framework
of substitution semantics and they must be the same. But e$edhis is not so,
in that acl and ac2 each independently record their ownrkestaand the effect
above is quite different from that of

local val ac = make_account 100
in val acl = ac;
val ac2 = ac end;

[‘local’ is very like ‘let’ but just allows definitions to apgar within the scope
that it introduces].

40

This example is a manifestation that the presence of asgignoperators any-
where in a program can alter the meaning of even assignmsatghrts of the
code.

When list and tree-like datastructures are being handleatepdvithin one
structure will effect any other structures that share sabg containing the over-
written node. There are occasions when the exploitatiorhigf toupled with
careful control over which sub-trees are shared, can siyngfid speed up algo-
rithms, but note that it also denies the implementation efglogramming lan-
guage the flexibility of making copies of common datastrresy(e.g. distributing
them across several separate co-operating computing elehoe of commoning
up structures observed to be the same shape (e.g. to saed.spac

As a piece of notation the programming language Lisp intceduhe idea that
two objects are eq if they are the same object (so the efféatpdating a com-
ponent of one are seen in the other), and equal if they aretstas with identical
types and components but with no consideration given tessfisharing.

In a move towards understanding how imperative program& \@arompu-
tational model for their evaluation will be sketched. Theplaces the idea of
substitution to cope with variables with a concept of eviaurerelative to an ‘en-
vironment’. An environment is just a record of the values afiables, though it
should be stressed right from the start that during the eoofsiny computation
many different environments will be created, and so it isest boose notation to
talk of ‘the’ value of a variable. The use of environmentsl\w# illustrated by
repeating the sumsquares example previously expandegl signstitution:

sumsquares(7+1,7-1) <empty env>
sumsquares(8, 6) <empty env>
square x + square y {x=8, y=6}
square 8 + square 6 {x=8, y=6}
X* X {x=8}
88 {x=8}
64 {x=8}

X* X {x=6}

6* 6 {x=6}

36 {x=6}
64 + 36 {x=8, y=6}
100

where whenever a procedure is invoked its body is evalualative to an en-
vironment that shows an association between the names tdrthal parameters
and the actual arguments. In this model execution of a ‘katesnent involves
evaluating its body in an environment extended to includmdibg for the newly
introduced local variables. It is useful to display the esien part to an environ-
ment separated from its parent, since this will help whersic@ring cases names

41

are re-used in an inner block, and it will be essential foraaeustanding of func-
tional values as arguments and result values. The folloveirag example where
two distinct variables each called x are used.

fun silly(x, y) =
X+ (let x =y + 3
in x + vy end);

Tracing the execution of a call to silly shows that the bodthef‘let’ clause is
evaluated in an environment that binds x twice. When suclythaccur the inner
binding takes precedence over outer ones.

silly(2,5); <empty env>
x + (let..)) {x=2,y=5}
2+ (let x =5+ 3

in X +Y) {x=2,y=5}

now concentrate on the let expression, which is evaluated as

X +y {x=8H{x=2,y=5}
8 +5
13

and hence the final result is

2 + 13
15

The environment model for program execution turns out twidea conve-
nient basis for implementing computer languages. Theresalofle issues that
arise when functions are treated as first class objects @imave passed around as
freely as (say) integers, but these will not be consideredigcourse.

5.4 Exercises

(13.1) Two versions of the factorial function were used tosirate the use of
substitution semantics for program evaluation. Work thfothe same examples
using environments. [For code not using any imperativaufestan environment-
based evaluator should always get the same results as @wgidisbased one].
(13.2) An environment for use in integer-only calculaticmild be repre-
sented by a ‘(string*int) list’, with the strings naming ialsles and the integers
indicating values. Using such a representation, and hglaithmetic expressions
as trees, show how code to evaluate the expressions couksipmdd.
(13.3) Consider makaccount as shown earlier in these notes. It produces a
function-value (withdraw) as its result. The body of withdrneeds access to the

42

variable ‘balance’. In the environment model of computatilis is achieved by
demanding the the value of withdraw should consist of theedodwithdraw to-
gether with the environment (established by makeount) that contains a binding
for balance. Follow through some examples using med¢@unt and the function
it returns to see how this can work.

(13.4) The function

fun copy_list(nil) = nil
| copy_list(a::b) = a:copy_list(b);

copies a list. What parts of the resulting list is eq to theesponding parts of
the original, and what parts are equal ?
(13.5) Compare and contrast

let tworefsl a =
let r = ref a
in (r,r) end;

let tworefs2 a =
(ref a, ref a);

5.5 Continuations

The environment way of modelling computation allows us tpewith some of
the complexity of having mutable objects present in our ersg by making it
explicit that the state of all such objects must be carried@iwith the text that
describes what computations are to be performed. We stilbdbave a fully sat-
isfactory way of explaining the order in which calculatiqlasd hence potential
update operations) will get elaborated. The purpose ofgdéetion is to intro-
duce one particular way of providing such an explanationigiaitraction of this
scheme (which will be referred to as the ‘continuation pagsstyle of comput-
ing) is that is actually reduces the number and complexitthefbasic concepts
that have to be built into our model of computation! So farrien building unit
for programs has been the function - it is handed a set of aggtsrand in due
course it yields a result. The simplification that the Coraiinon Passing Style
(CPS) makes involves showing that there is no real need fatifurs to return to
their caller. The only thing that will have to be modelledivi calling functions,
and the issues about returning from them (maybe having tagk to implicitly
saved environments, with all sorts of potential worrieswlibe consequences of
side effects on same) do not arise. How is this achieved?

The central idea is that a function which used to expect nraegts will now
be given n+1, where the extra arguent will be a further fumc{the continuation
) which will be called when the function has otherwise fingits work. To take
a simple example, we would re-write

43

fun ff(x) = x + 1;
as
fun ff(x, continuation) = continuation(x+1);

The continuation will have as its argument the value dedigday the function.
Thus returning a value has been replaced by invoking thereaatton. Of course
this willoften be an iterative-style function call, and seed not be thought of as
expensive. The use of continuations makes it possible (@ohekd necessary) to
make the order of execution of code much more explicit thas pvaviously pos-
sible - for instance nested function calls will require rmplié continuations which
indicate that the inner call is to be completed before therane is triggered:

fun f(x) = g(h(x));
has to become something like

fun f(x, contl) =
let fun cont2(n) = g(n, contl)
in h(x, cont2) end;

which might more succinctly be coded as
fun f(x, cont) = h(x, fn n=>g(n, cont));

Note how the calls to g and h have been turned inside out satat only
get processed when h gets around to invoking its continuiatio

So far as calling functions is concerned there need be naamhstinction
between the argument representing a continuation and ealbttmer arguments.
Indeed conditional behaviour will be modelled by giving adtion two (or more)
alternative continuations; with the understanding th#tiscase the continuations
do not need (useful) arguments one would model ML's if by a QRrfgtion

CPSif(test:bool, contl, cont2) =
if test then contl() else cont2();

and then the absolute value function might be expressed as

fun CPSabs(x, cont) =
CPSif(x < 0, fn () => cont("x),
fn () => cont(X));

A delightful property of CPS is that it makes calling functsoand returning
results visibly the same operation, and so reveals a petrapgpected symmetry
about computation. An insight that this can give us is thatefallow function
calls to be expressed with multiple arguments (and in thiseegection | am view-
ing multiple arguments as a primitive facility and not loogiclosely enough to

44

be able to see how it may be modelled in terms of tuples) thdtipieuresults are
naturally supportable. Most programming languages (ohaly ML) do not pro-
vide totally satisfactory syntax for this, but in CPS we caovghvhat is required
as in a function which computes both the quotient and reneaiafitwo numbers:

fun CPSdivide(p, g, cont) = cont(p div q, p mod q);

5.6 Exercises

(14.1)Show how an expression f(g(x,y), h(y,x)) would benslated into CPS,
giving two versions, one corresponding to calling g first gr&other to calling h
first.

(14.2)Investigate the use of continuations as a way of niadetonditional
constructions (e.g. a three-way if that takes one of thriéerdint actions depend-
ing on whether its control expression is j, = or ¢,0), and rpetconstructs (e.g.
styled after a BASIC FOR loop).

(14.3)Read the full ML manual to find out about exceptions, Hredraise
operator. Is the ML exception mechanism as powerful andrgéas the full use
of continuations? Are there facilities it provides that aot easily modelled using
continuations?

(14.4)Convert both the recursive and iterative versionbefactorial program
(section 3) into CPS. What differences are visible and how dg tklate to the
distinction between iterative and recursive code?

(14.5)How easy does it look as if it would be to mechanise ridesformation
of code from ordinary style into CPS? In some informal notatan you give a
set of rules that would do the job?

(14.6)Investigate the behaviour of and possible uses fametion fun whatdo_| _do(X,
cont) = cont(cont); [NB: the ML typechecker will not accepistiexample - you
can still consider what might happen if it did]. What about Amotheroddity(x,
cont) = x(cont); given that an identity operation is spedif@s fun donothing(x,
cont) = cont(x);

5.7 Queues, tables, objects, streams

The first abstraction to be considered in this section isdhatqueue. Queues can
be thought of as objects subject to an enquiry ‘are you enguigl’two operations.
The first of these picks off the first item from any non-emptyeugg, the second
adds an item to the end of any queue (empty or not). Very ofte=ues will be
used on interfaces between separate bodies of code, wiiheotreer adding items
and the other consuming them. In such cases it is clearlyssacgto think of the
update operations as altering the internal state of theeqy€ne could imagine

45

an attempt to model queues where the_@dcth procedure produced a new queue
with the extra item included. This is all very well, but dodgbie issue as to how
this new queue is passed across to the consumer process.u@unaaf queues?].

As always there are choices to be made when implementingeguand these
need to be made on the basis of code modularity, clarity abdstaess as well
as the rates of growth of computing time and space used byrtpkementation.
Perhaps the simplest representation of a queue will be dsr@mee (so it can be
updated) to a list. Then the implementation will be someghiie

fun is_empty q =
lg = [I;
fun take _from q =
let (head_item :: tail) = Iq
in g = tail; head_item end;
fun add_to(q, item) =
Ig = add_to_end_of list(!q, item);

where the details of adtb_end of list are left as an exercise. [In ML it would
be yet better to introduce a new datatype for queues, themalbgcting them from
confusion with other objects that might be represented feseneces to lists]. In
this implementation the first two functions are pretty wethhaved, but adtb
can be expected to use both time and space proportional toutheer of items
stored in the queue. Store use can be reduced by designinip s of list to
work not be creating a new list but by corrupting the end ofxéstimg one. Then
time can be brought down to O(1) by keeping, instead of thglsinead-pointer
g used so far, a pair of pointers to represent a queue, one toetld and one to
the tail. [Note: In ML the list datatype protects its usemfrupdating the linkage
between list elements. See exercise 15.2 for the ML way ofmgakexplicit that
mutability is needed in the datastructure used to impleraenieue].

A second class of object that seems to provide a natural nobdehny useful
behaviours, and which necessarily involves update omersitis the table. For the
purposes of this course a table is a way of recording an adswtbetween keys
and values. Itis possible to add new entries to a table,&lelesting ones and al-
ter the values stored against currently- present keys. stntof table can provide
a model for the records that a bank should keep associatstigroer names with
accounts. Equally it captures the essential features ofliirtories in a com-
puter system, dictionaries, method-lookup tables for d@bjeiented computing
and many other forms of aggregate data. In special casestalaly be read-only,
or may be known to have keys that are all integers taken frameseestricted
range, and of course in these cases special implementatiapde possible to
take advantage of the limited patter of use: here most engphasbe given to
the general case.

One natural way of implementing a table will be as an obje¢ypé

46

(<key> =+ <value>) list ref

where the ref makes it possible to replace the entire bodyeotable to reflect
changes, and the items in the list pair together keys andesallf there are n
items stored in the table both access and updating are Ogoggses, and this
will frequently be considered unacceptably slow. [Here |@sing the common
abuse of notation that was mentioned earlier, and using ©O(s)iggest that the
worst case performance that grows proportionally to n igalht attained. In this
example it will be].

A list structured as shown above is known (by the Lisp prognamy parts of
the world, at least) as an ‘association list’.

Two-dimensional (and higher) tables do not actually negdhaw implemen-
tation - they can be viewed as simple tables where the key @rgasite data
type. Thus a two-dimensional array in ML might be a simplddalindexed by
keys of type int*int. Equally, however, multi-dimensiortables can be modelled
as tables which themselves have sub-tables as entries. IAgsA®eing an imple-
mentation trick, this idea that a 2D table is really a tableabfes has implications
at the level of the abstraction that the table provides, @t thdistinguishes be-
tween the two keys, making it easy to take a row (or possibliyron) slice of the
complete table.

Tables that use just a single integer key can be viewed asoneny dimen-
sions if the key is looked at as if it were a large number witbhedigit of it an
index in some new dimension. If the radix for the big-numlepresentation is
made two then an integer value (from some pre-specified jaagebe viewed as
the recipe for a path towards the leaves of a binary tree. 8uoke with maxi-
mum depth n can have up to 2 n leaves, or put the other way a tteawems
in it need only have depth log(n). This leads to the idea ofaggnting general
tables as trees and attempting to make access and updafartipgetional to the
tree depth (i.e. O(log n), one hopes). For keys that are ensep some known
range (e.g. 0 to 31) it is easy to find a good way of deciding @lerthe tree
various values should be stored, for less well specifiedemsf keys there are a
variety of amazingly ingenious methods that guarantee &p keees reasonably
bushy and thereby guarantee to achieve O(log n) computisig.c6ome of these
will be covered in later years of the CST courses.

Queues and tables both represent attempts to capture theidetal aspects
of things that contain internal state that varies with tinhe.each case concen-
tration has been on the object that owns the state. The fimabpthis section
of the course provides a different way of looking at hist@gnsitive behaviour,
not based on looking at the object that does the behavingtlthesequence of
interactions it has with surrounding code.

A sequence of items of data received from such a body of codt@as/n

a7

as a stream. For the present a working model or example ofca piestream

generating code will be an object that responds to a singésage (which might
be called "next”) by returning the next item of data from thexjgence that it
computes, or possibly a marker value indicating that it rexssimitted all the data
that it wants to. The next section will discuss both the impatation of stream-
generating functions and the use of streams as connedsugetio hold together
large bodies of code.

5.8 Exercises

(15.1) Produce the version of adiol end of _list that creates a whole new copy of
the list in the process of adding an item to the end.

(15.2) The following datatype defines a basis for implenmgntjueues of in-
tegers using update-the-tail queues. Produce a queuegeaukimg it.

datatype cdr_mutable_list = empty |
item of int +(cdr_mutable_list ref);

(15.3) Implement two packages of code that provide suppotables indexed
by integers and holding integer values, and which allow netses to be added
to the tables. Design your code so that access to the tabjesiirtwo packages
costs O(n) and O(log n) steps (on average) respectively. siould also make
provision for an enquiry as to whether a table holds an emtrysbme specified
key.

(15.4) Based on one of the table-packages of 15.4 show howristroot a
function memoify such that if one has a function fn of type dmt then memo-
ify(fn) is also a function of type int-¢ int, computing thensavalues as the original
fn but which keeps a tabular record of all the values it evenates and thereby
avoids ever having to obey its body more than once for anyqodat argument
value.

(15.5) In a previous exercise you wrote a function that geteera list of all
the permutations of some set of items. Can this code be rewsbip generate
a stream of permutations? Can the code to multiply two loregts (originally
coded representing the integers as lists of digits) be adaptaccept streams as
inputs and produce a stream output?

5.9 Streams- useand implementation

Streams provide a useful tool for building abstractionsalee they provide as-
pects of both data management and control structure butatjether in one neat
concept. Also, looking at the sequence of values that maka sipeam often
gives a clearer view of what is happening as a process evthiaesdoes trying

48

to inspect the changing internal state of the code that gée®ethe stream. It is
possible to think of the stream as if it were a static valuéailt its past and future
elements visible, and thus possible to reason about thigyatbthese values.

Having introduced streams, it becomes natural to produogeskinctions
which operate on streams and produce stream values. Towstarit will not
be necessary to know how streams are implemented, just feywbshave, and
in many respects streams behave like lists. Code to handie Wik therefore
be expressed in terms of a constructor :: and selector furttar and cdr, but
with the understanding that the stream versions of theseatgre will not be ex-
actly the same as the list ones. Note that this interfaced¢aists is different from
the message-based one introduced earlier, but is justaaetitf view of the same
underlying concept.

The first operation applicable to a stream is that of applgmme given func-
tion to all the items in the stream, collecting the results im new stream. This
process is known as mapping. For instance the function thetrss its argument
could be mapped over a stream of integers. The second highdegeam func-
tion to be mentioned performs filtering - it takes values fritsrinput stream and
applies a test function to each. The output stream is madé ustahose input
values which satisfy the test. The power of filtering can hesitated by giving a
concise program which describes the stream of all prime rusabl'he function
prime stream below should be invoked with the stream of inte¢&r8,4,5,.. }
as its input, and it generates as its output the stream olg{)3,5,7,. . }.

I fun prime_stream (p::rest) =
I let fun not_ p n = (n mod p) <> O;
I in p : prime_stream(

I filter(not_p, rest)) end;

where filter is the stream function that generates an streamisting of all
items in its input that satisfy the given predicate (whichihirs case achieves the
effect of removing all multiples of p from the stream). Thetieal bars in the
margin by this example are there as a reminder that the coda @ not directly
valid as ML. Using MLs list notation in the same informal waydenote stream
operation the coding of map and filter should be easy exexcise

It is also possible to produce other general and useful inmstapplicable to
streams. One will merge pairs of streams either by simpéglerving of elements
or with the selection of which input stream to take an itenmfioeing controlled
by a user-provided function applied to the two input strea@®ihers, only really
useful for streams of finite length, can combine all the itema stream using
some user-provided function after the style of the funciioexercise 5.4.

49

One way of understanding the relationship between strearddists is to
show how a variation on lists can be used to implement stredihs variation
is based on an idea known as ‘lazy cons’. In ordinary ML thera function,
usually written using an infix ::, to create a new componeat thll be part of a
list. One can imagine that inside ML this is a perfectly oedinfunction, called
(say) cons. In ordinary ML all calls to this function proceedhe regular manner,
i.e. the arguments for cons are evaluated and then the boohynsfis processed.
That body performs system-level operations to allocateesstiore. The selector
functions car and cdr are then do nothing more than to rettiey two components
that cons stored away. Lazy cons is different. The systent negsgnise lazy
cons, and must not evaluate its (second) argument in advdiesystem level
code then stores away not the value of the second argumeranhunevaluated
expression. To compensate for this change, the cdr funialso altered so that
it knows that what it will find stored directly in the datastture will not be a
value but will still be an expression in need of evaluatiorneverall effect is
that the tail of a list (now a stream!) only gets evaluated nveemebody tries
to inspect it. A consequence is that it becomes quite prap#rink in terms of
infinite streams, since at any particular stage in the psaeg®nly a finite portion
will have been evaluated, the rest will be represented byalnated expressions
stored away in the cdr fields of stream cells.

Perhaps surprisingly it is perfectly possible to model #tg of behaviour in
ML. ML defines that the arguments of a function must be evalidtefore the
body is processed, and so the system can be tricked intoidglayaluation of
any expression by writing that expression as the body of satherwise vacuous
function. When it is time to find the value, the packaging timitcan be invoked
(with an arbitrary argument), an operation which is knowrfage’. Using this
trick a stream of integers could be introduced as

datatype int_stream =
cell of int * (int->int_stream));

and then the stream of integers starting at some given vataelild be con-
structed using the function

fun make_ints n:int =
cell(n, fn w=>make_ints(n+1));

and the car and cdr functions might be coded as

fun car(cell(p,q))
fun cdr(cell(p,q))

P;
q(0);

where the application of g to 0 in the definition of cdr is theceboperation.

50

The ability that streams provide to cope with structurescivtdre notionally
non-terminating is very powerful, but it seems that the Us&tr@ams causes the
order of evaluation of pieces of a program to become depéiethe patterns of
access to data, and this can lead to grave confusion if assiginoperations that
make functions history or order-of-evaluation sensitikewsed as well.

5.10 Exercises

(16.1) The sequence of characters typed at a terminal mjgietea to a computer
as a stream of numeric codes representing those charaStera; how it is pos-
sible to convert this stream of characters (integers, dgjuato a stream of lines
(where each line is represented by a list of the codes of theacters involved).
Make your design such that it can easily be adapted for uséfenstht computers
where the code generated by the jreturn¢, key will not alweyhé same.

(16.2) Is is possible (even in theory) to produce a streamrdmesents the
digits in the decimal representation of pi?

(16.3) Enumerate, in ascending order and with no repestiat the positive
integer that have no prime factors other than 2, 3 and 5. Thmeration should
be in the form of a stream, which will start 2,3,4,5,6,8,91P015,..., and an effi-
cient way of generating it produces this by merging togetheanmber of streams
each derived from the basic streams 1,2,4,8,16..., 1.3,9,and 1,5,25,....

(16.4) Generate streams that yield that successive teriménite power se-
ries expansions of the sine and cosine functions. Is it ptesg produce a stream-
manipulating function that derives from these the infinibevpr series stream for
the tangent function? Given a series stream for the tangewtibn can the coef-
ficients in an expansion of arctan be derived?

(16.5) Show how, given two infinite streams (A and B), it is polesto con-
struct a stream that has as its elements every possible vpayrofg together items
taken from A and B.

6 Concluding observations

6.1 From formalism, through implementation to application

This introduction to programming and datastructures hassed two ideas. The
first is that the specification of a procedure or a datatyperepresent a firewall
that separates the concerns of users of the procedure ofrtypehose of its im-
plementer. Making this separation of concerns explicibégsus to recognise that
even simple datatypes may admit several very differentemgeintations, and that

51

there can be substantial variations between the efficisgidifferent procedural
solutions to some given problem.

The second idea is that there can be formal models suppornamy aspects
of computing. These include ideas relating to the estimatibtime and space
use in a process (as expressed in big-O notation), sulstitand environment
explanations of the process of computation, analysis ofyibes of objects being
manipulated and the demonstration of a relationship betwseuse of ‘let’, ‘fn’
and ‘fun’ in ML.

Overall the emphasis has been not on the values computedi®y/ mmgram,
but on the way in which the structure of a program can be madeflect the
nature of the problem domain in which it is applicable. Thewiaken is that
this approach will lead to bodies of code where each part ltéesaa purpose and
specification, and hence can be designed and validatedeagamable degree of)
isolation.

It might seem that this is a self-evidently reasonable godlwill have been
adopted by everybody without the need for lecture coursagicBlarly for large
programs this does not seem to be the case: recognisingdperpabstractions
that lie beneath the surface of a computational task andldechow to partition
the complete problem into units is hard. Avoiding reliancefeatures of a sub-
function or datastructure that are incidental results cdrdiqular implementation
rather than explicitly recognised parts of the specificatsoalso very easy. Some
of the ideas introduced in this course help keep interfaicegle and narrow and
thus assist in the construction of good code:

Assignment-free functions guarantee to behave condigtghénever they are
called: they are neither sensitive to history nor subjethédnfluence of variables
or structures other than their arguments.

Objects thought of in a message passing style provide a wagaapsulating
information that has to be updated in place, so that the oy v which the
variable data can be accessed will be through messages skeabject. Viewing
the sequence of messages as a stream can sometimes prouitieea Way of
isolating the updates and obtaining a more global desonf the behaviour of
the complete system.

Datatypes, enforced by your programming language, can logthin docu-
menting the structure of code and impose a degree of congyste the way in
which functions are invoked. The design of type systems fogmamming lan-
guages is still an active area of research, and there are dehoate balances
that have to be struck between type systems that are veryesdmu which are
clumsy and inflexible, and ones that compromise securityderoto provide the
user with additional capabilities. ML is fairly typical ohaemerging generation
of well type-checked programming languages.

These notes will no doubt contain errors of various sortagireg from simple

52

typing mistakes to places where brainstorms have led to taddgkplanation or
bad examples. When you detect any of these, please let me krtbwe hope that
the notes issued in future years will be better. The firsteotacseek extra assis-
tance with this course will be at the associated practieasgs, and by discussing
issues with others who are taking the course. College sigmsrand Directors
of Studies should also be able either to provide help divemtto organise group
problem solving sessions. Good Luck!

6.2 Exercises

(17.1) Starting with the Physics of silicon and working upsgtowards studies
of the social impact of Robotics on society, identify leveigbstraction at which
it is possible to talk about computers.

(17.2) Take one of the example programs that you have dex@ldpring the
term, selecting one that is about a page long. Toss coinddotsenumber n in
the range 2 to 4, and rework your code to introduce n bugs,wstiould be as
subtle and non obvious as you can manage. Exchange youptsdrprogram
with an analogous bug-seeded one prepared by a friend, ahthénntroduced
errors. Do any unintentional bugs or infelicities get urer@d this way? How
easy is it to manufacture bugs and how easy is it to find them?

(17.3) When the course giving an introduction to computedWware is suffi-
ciently under way, read the sections of Abelson & Sussmarték lon the design
of program and datastructures for modelling electronicuiis and adapt it for the
particular case of digital (computer) circuits.

(17.4) Compare and contrast (as possible initial teachinguages) ML as
used in this lecture course with the Scheme programmingiggused by Abel-
son and Sussman. If you have used BASIC or Pascal beforadmthem in the
comparison.

(17.5) Consider the definition of a function Y given below. tipassible for
ML to assign a type for Y, and if so what is that type. Suppodrgpuld be used,
what would the value (Y f) expand into?

fun Y f =
let fun g h = f (h h)
in g g end,

(17.6) Check the lecture schedules for the rest of this antket@ining years
of the CST to see what further questions can be related to Mthengrogramming-
related issues introduced in this introductory coursert 8taking into algorithm
design and analysis, the technology of constructing cargpfior languages like
ML, and formal methods for reasoning about programs andipgothem to be
(in)correct.

53

