
Lecture Notes, October 1989
A. C. Norman.

1 Introduction

2 Course objectives, prerequisites and outline

This course introduces the Computer Science option within the Mathematics Tri-
pos and the first year of the Computer Science Tripos. It leads on towards parts
IB and II of the Computer Science Tripos. Its main aim is to prepare the ground
for the more detailed material that follows by teaching a collection of ideas about
Computer Science and a variety of programming skills that canbe used later on
in the CST. It is understood that different members of the audience will have had
very different amounts of contact with computers: some willhave had hardly any,
while others will already be accomplished programmers. There are two reasons
why the novices need not feel intimidated by this course while the experts will
still be challenged. The first is that the programming language used here is called
ML, which is fairly new and which will almost certainly be strongly unfamiliar to
all. The second is that this course is not principally about writing programs for the
sake of running them on computers (that comes later!) - it is much more about the
use of programming languages as a way of providing clear (to people) expositions
of the various ways of performing computational tasks.

The structure of this course follows the book ”Structure andInterpretation
of Computer Programs” (Abelson and Sussman, MIT Press, 1985,ISBN 0-262-
01077-1/0-07-000-422-6) fairly exactly, and in the sixteen lectures about the first
half of that book will be covered. Abelson and Sussman express themselves in
a language called Scheme, not the ML that is being used here, and so all the
examples that they give will need superficial re- writing to put them in the notation
required by ML. Although this is a slight inconvenience, it gives me a chance to
stress here that the view taken in this course is that the fine details of syntax
in programming languages are unimportant frivolities. Language constructs in
ML will be introduced by giving examples, and the practical classes will provide
opportunities to try them out, but it is not the purpose of this course to provide
either a full or a precise description of what the particularlanguage ML is or does.
Two technical reports describing ML is available from the Computer Laboratory
Bookshop, and a book describing it has been published: A Wikstrom, ”Functional

1

Programming using Standard ML”, Prentice Hall, 1987, ISBN 0-13-331661-0.
Both the technical reports and Wikstrom’s book provide formal descriptions of the
ML language, and they will certainly be useful for reference, although the topics
covered and the style used in Wikstrom differ significantly from this course.

The parts of ML required initially correspond to using the system as a glori-
fied desk calculator. In response to ML’s prompt you can type in an expression,
terminated with a semicolon, and ML will respond by calculating and displaying
its value.

e.g.

2+2;
22.0/7.0;
22 div 7;
˜1;

Whenever ML evaluates an expression it works out what type of value is being
used - in the above examples the whole numbers are typed as ‘int’ and the ones
with a decimal point as ‘real’. Observe that division in the two cases will behave
differently, and so different operators are used to indicate it. Also note negation
is indicated with a ‘ ’ sign, rather than by using a ‘-’ to mean both the difference
between two numbers and the negation of a single one, as is common in other
programming languages. ML also knows about strings. To get astring that has a
double- quote mark as one of its characters you put a backslash (
) before it. Strings can be appended using the operator ‘’̂, thus

"String one " ˆ "string two!";
"string with \"what looks like a string\" within itself";

There are also truth values, which are the values returned byarithmetic (and
other) comparisons, and which will be needed when tests are to be made:

true; true : bool
not true; false : bool
2 > 3 orelse 5 < 7; true : bool

The connective words for building elaborate conditional expressions are ‘an-
dalso’ and ‘orelse’.

At this level ML’s insistence on decorating results with a description of their
type can be seen as fairly frivolous, but it is in fact the externally visible mani-
festation of some complicated type-consistency checking that ML is capable of
which will only just be touched on in this course, but which will be returned to
later in the CST. It corresponds to widely held views within Computer Science
first that the organisation of data is at least as important asthat of code, and sec-
ondly that analysis of code (such as is done by ML when it deduces the types of

2

your expressions) is important for code comprehensibility, reliability and perfor-
mance. ML will complain if you mix types up in ways it is not prepared for, and
so expressions such as (not 1), (1 - 1.0), exp(”one”) and so onwill be rejected by
it.

Names can be associated with ML values by a statement such as

val pi_approx = 355.0 / 113.0;
val heading = "The start of my program";

and the names thus introduced can be used freely in ML expressions:

pi_approx - 4.0 * arctan(1.0);
val subheading = heading ˆ " number 1";

but a characteristic feature of ML (and of the parts of Schemeused in Abelson
and Sussman) is that associations between names and values set up in this way
can not be changed later in the program. [Note that this is very different from the
use of assignment statements in languages such as BASIC, where it is generally
expected that names will have many different values associated with them during
the course of running a program].

2.1 Exercises

(1.1) Find out how to connect yourself to a computer and startthe ML system run-
ning. Try typing in simple arithmetic expressions, using MLas an overexpensive
and clumsy desk calculator. Find out how to exit from ML and disconnect your-
self from the computer. Find the Computing Service bookshop and but a copy of
the technical report that contains an introduction to ML.

(1.2) Check that you can send and receive computer-mail from your supervisor
and some of the other people on the course so that you have a convenient way of
asking for help when you get stuck. Investigate the ‘help’ system on the computer.

(1.3) Type in various expressions for ML in integers, real values, boolean val-
ues and strings. Observe how ML replies with the value and type of the expression
that you enter. See what sort of error messages you get when you mix up the types.

(1.4) Observe that some terminals have printers attached. Check that you can
enable one of these to get a transcript of exactly what you typed in a session with
ML, and exactly what it responded. This will be invaluable when you go for help!

(1.5) Double-check the schedule of practical classes associated with this course,
and try examples suggested there.

3

3 Building abstractions with procedures

3.1 Procedures

The way so far explained for introducing names for values in ML is global, in that
after the assertion val ¡name¿ = ¡value¿ the name ¡name¿ persists until then end
of the ML session. This is frequently unnecessarily long, and so there is provision
for making shorter term declarations:

let
val <name1> = <value1>;
val <name2> = <value2>

in
<expression using name1, name2>

end;

E.g. to compute the fourth power of two one could write

let val two_squared = 2 * 2
in two_squared * two_squared end;

and the name twosquared would not be at all visible outside the two lines
where it is required. Local declarations can temporarily shadow previous global
(or indeed local) ones, but the old binding becomes visible once the local one is
finished with. Thus

val one = 1;
let val one = 2
in one + one end; 4 : int
one + one; 2 : int

Almost all of this course will be based on a view of programming style that
the secret service would have great sympathy with: no definition or value should
be available anywhere in a program that it is not strictly needed. This ‘need-
to-know’ principle can be applied by preferring local ML bindings (with let) to
global ones, and keeping the scope of these let clauses as small as possible. I hope
that the demonstrators at the practical classes will help encourage you to follow
this line. . .

Procedure declarations also introduce local bindings; functions can be defined
as in

fun square x:int = x * x;
fun sumsquares(x:int, y:int) =

square x + square y;

and then used

4

square 1 + square 2 + square 3; 14 : int
sumsquares(3, 4); 25 : int

The decorations ‘:int’ after the names of the formal parameters for the function
limit the types that they can accept, so that in the cases given above integer (but
not for instance real) numbers can be used. These explicit type constraints are not
needed in cases when ML can deduce what was required, but it isalways safe to
put them in.

ML displays the type of a function with a description of its arguments’ types
(if there are several it puts ‘*’s between them), then an arrow (-¿) then the result
type, so in the above example square is of type int-¿int and sumsquares is of
type int*int-¿int. Observe that functions with just one argument can be applied
by just writing the function name followed by the argument (parentheses around
the argument are not required, but you can put them in if you like: sin 1.0 and
sin(1.0) have exactly the same interpretation). The ‘formal parameters’ given in
the function definition behave exactly like local variableswhen the function is
called - for the duration of evaluating the body of the function (the part after the
‘=’) they exist and stand for the arguments passed by the function’s caller, after
that they can not be accessed.

The effect of calling a procedure can be explained in terms ofa substitution
model. The value of the sumsquares(7+1,7-1) can be obtainedby first evaluating
the argument expressions to obtain 8 and 6, then looking at the body of sum-
squares, i.e.

square x + square y

When we substitute 8 for x and 6 for y in this (x and y were the formal para-
meter names for sumsquares) we obtain

square 8 + square 6

Now the body of square is x * x, and since x was its formal parameter we
substitute into this expression to obtain

8* 8 + 6* 6

which reduces gradually as

64 + 36
100 : int

In this description in each case the arguments for a functionwere evaluated
before the function was called, but it is quite possible to carry through the sub-
stitution process by substituting argument expressions into function bodies before
they have been fully evaluated. In this case sumsquares(7+1,7-1) would have ex-
panded into

5

square (7+1) + square (7-1)

and thence into

(7+1) * (7+1) + (7-1) * (7-1)

which would finally have been evaluated arithmetically, again to yield the in-
teger answer 100. A question that can be raised now (but only properly answered
a lot later) is what effect can the order in which substitutions are selected have
on the result finally produced? A particular strength of the subset of ML that we
are using at present (and of the equivalent part of Scheme) isthat provided some
pitfalls related to name-clashes are side- stepped all evaluation orders that lead to
a result at all lead to the same result, and so when working through function defin-
itions by hand it the expansion can be done in whatever order is most convenient.
It is perhaps worth noting that this result is quite unexpectedly difficult to prove,
and indeed several incorrect proofs were put published before a correct one was
found: the details are another of the topics that you can lookforward to (much)
later in the CST.

Most interesting procedures involve behaviour that depends in a less smoothly
analytic way on inputs than the above one, and the ML way of coping with this is
to make the body of the function a conditional expression:

fun abs n = if n < 0 then ˜n else n;

[In this case the comparison between n and 0 would only be valid when n was
an integer, so it is not necessary to write ‘n:int’.]

Of course conditional expressions can be used anywhere thatany other sort of
expression can - this fact has to be allowed for when tracing out the sequence of
substitutions involving use of a function such as abs.

(if 2 > 3 then 1 else ˜1) + 7; 6 : int;

It is essential that the expressions before and after the ‘else’ in a conditional
form both have the same type, an in particular this means thatboth must always
exist!

Now conditional expressions and function definitions can bebrought together
to perform some useful(?) calculation, in this case the extraction of the square
root of a number. The code given here follows that in Abelson and Sussman fairly
directly, but for use with ML it turns out to be vital to define all functions before
making any attempt to use them, so the order in which definitions are given here
is almost precisely the opposite to that used in the book. On paper or using a text-
editor on the computer it is easy to write code starting at thebottom of the page,
so this does not matter too much! Note that for this example versions of square
and abs that work with real arguments will be required:

6

fun abs x = if x < 0.0 then ˜x else x;
fun square x:real = x * x;
fun average(a, b) = (a + b) / 2.0;
fun improve(guess, x) =

average(guess, x/guess);
fun good_enough(guess, x) =

abs(square guess - x) < 0.001;
fun sqrt_iter(guess, x) =

if good_enough(guess, x) then guess
else sqrt_iter(improve(guess, x), x);

fun sqrt x = sqrt_iter(1.0, x);
sqrt 2.0; 1.414... : real

There are several things that I might like to observe about this sequence of
statements:

1. The definition of (square (x:real)) can not co-exist with that of (square
(x:int)). In ML only built-in operators such as +, - and * (anda special
built in function abs) exist in versions for both reals and ints.

2. Most of the above function definitions did not need the formal parameters
decorated with type information: ML could deduce what was intended. This
very convenient facility is paid for in the way ML forces you to define pro-
cedures before using them.

3. The test goodenough shown above is rotten numerical analysis, as is the
fixed initial guess of 1.0. More cautious code would also detect and com-
plain about negative arguments to sqrt. A much better termination condition
to apply would be to detect when the error (square guess - x) stops decreas-
ing: please rework my code to install this improved test.

4. When you have bodies of code like the above it is usually convenient to keep
them on a file on the computer and read it into ML, rather than having to
type it in to the computer each time you want to use it. The practical classes
should provide some help about creating, editing and reading in files of
definitions. An ML function call

use ["filename"];

reads in definitions and tests from the named file (yes the brackets used are
square in this case).

5. In the above, sqrtiter calls itself, but the other functions can be introduced
in a neat hierarchy. When several function need to refer mutually to one

7

another they can be defined in a group, as with the following nonsense ex-
ample:

fun f x = g(x + 1)
and g x = if x > 10 then x else f(x+1);

6. The code is presented in lots of very tiny functions, but each function serves
a (more or less) clearly distinct purpose. This style is again part of the
programming strategy I want to encourage. Last time I talkedabout the
‘need-to-know’ as a secret service policy - here I will go to the other end
of the political spectrum and view each separate function anactive cell in
a (subversive?) organisation - keeping cells small and withclearly limited
links between them limits the damage sustained when one of them is found
to have become unreliable.

The square root example is expressed in terms of a fairly large number of sub-
functions, but each of these performs a sufficiently clearlyspecified task that it
is useful to think not just about the mechanisation (i.e. programming) of these
procedures, but about the abstractions that they represent. Supposing that its nu-
merical accuracy is adequate, the sqrt function we have defined ourselves (thereby
hiding the one that ML originally provided) is just as valid as the built-in ML one,
and a further one defined by

fun sqrt x = exp(0.5 * log x);

is also perfectly proper. When looking at sqrt as a proceduralabstraction it
is only possible to ask about its behaviour, not about what its internal actions are
that lead to that external behaviour. This leads to the idea that what happens inside
and what happens outside a procedure should be kept as separate as possible. The
example given above does not capture the essence of this aim,in that goodenough
and improve are available for direct use by the misguided. Energetic use of ‘let’
within procedure bodies remedies that, leading to the following version of the
original code, which although superficially harder to read captures more of the
proper intent of the programmer.

fun sqrt x =
let

fun improve(guess, x) =
average(guess, x/guess);

fun good_enough(guess, x) =
abs(square guess - x) < 0.001;

fun sqrt_iter(guess, x) =
if good_enough(guess, x) then guess
else sqrt_iter(improve(guess, x), x)

in sqrt_iter(1.0, x) end;

8

With this definition of sqrt in place the internal functions improve, goodenough
and sqrtiter are kept hidden away from the end user. A formal parameter can be
referred to anywhere inside a function, and this includes within sub-functions, and
a yet cleaner version of the sqrt function can be given by exploiting this.

fun sqrt x =
let

fun improve guess =
average(guess, x/guess);

fun good_enough guess =
abs(square guess - x) < 0.001;

fun sqrt_iter guess =
if good_enough(guess, x) then guess
else sqrt_iter(improve guess)

in sqrt_iter 1.0 end;

[I have taken the view that abs and average are sufficiently generally useful to
be properly defined for all to use, and so have assumed that they have been defined
globally somewhere.]

Given an understanding of just the parts of ML introduced so far it is possi-
ble to write quite large and useful programs, and the carefuluse of nested local
definitions can keep the structure of these programs clear and tidy.

3.2 Exercises

(2.1) Experiment with local and global ‘val’ definitions of variables, particularly
to discover what happens if you have several declarations ofvariables all with the
same name. For instance, what does the sequence

val i = 1;
val i = i + 1;

do?
(2.2) Find out how to create (and inspect, alter and discard)files on the com-

puter. Put one of the above definitions of sqrt into a file and use ‘use’ to make ML
read it.

(2.3) A much better end-test for the square-root procedure is where the error
term abs(guess 2 - x) ceases to decrease. Alter the code that you have to incorpo-
rate this improved test.

(2.4) Look in Abelson and Sussman’s book. Compare the syntax of Scheme
with that of ML (in pretty well all cases the meaning of the example programs that
they give is exactly the same as ones given here in ML). Investigate their exercises.

9

(2.5) Make a variety of syntax errors in your ML code (e.g. miss out the
word ‘end’ at the end of a ‘let’ clause, get brackets badly matched, ...) and get
accustomed to the messages that the system gives you.

(2.6) The Student Edition of ‘PC Scheme’ (prepared by Texas Instruments
and published (1988) by the Scientific Press with ISBN 0-89426-114-2) comes
complete with an implementation of the Scheme language ready to run on an
IBM-style personal computer. Extreme enthusiasts might like to look into this
and see if a combination of it and Abelson and Sussman provideyet more things
to try! Please note, however, that lectures and examinations here are in terms of
ML and that there is no departmental backup or support for PC Scheme.

(2.7) Buy and read other books from the CST booklist. Find your College
Library and put in request slips for books it has missing. Find the Computer Lab
book-locker and work out how to make use of it. Discover the tea room in the
University Library.

3.3 Iteration and Recursion

Procedural abstraction encourages us to look at the external behaviour of func-
tions, that is the results obtained when they are given various arguments. Looking
inside procedures at their internal behaviour there are characterisations that can
be made that independent of the finer detail of the operationsperformed. Sim-
ple examples of patterns of behaviour will be given here. Later in the Computer
Science Tripos it will be seen that understanding such patterns of behaviour and
selecting computational methods that lead to desirable patterns can be both very
complicated and of significant practical importance.

Consider the factorial function, defined by

factorial n = n * (n-1) * ... * 3 * 2 * 1;

which, with a little regrouping can be seen to give

factorial n = n * factorial(n-1);

This can be expressed as an ML function definition by providing a value for
factorial 0, as in

fun factorial n =
if n = 0 then 1 else n * factorial(n-1);

Applying the substitution model for procedure evaluation allows us to see the
effect of a request for the value of factorial(6).

10

factorial 6
6 * factorial 5 (A)
6 * (5 * factorial 4)
6 * (5 * (4 * factorial 3))
6 * (5 * (4 * (3 * factorial 2)))
6 * (5 * (4 * (3 * (2 * factorial 1))))
6 * (5 * (4 * (3 * (2 * (1 * factorial 0)))))
6 * (5 * (4 * (3 * (2 * (1 * 1)))))
6 * (5 * (4 * (3 * (2 * 1))))
6 * (5 * (4 * (3 * 2)))
6 * (5 * (4 * 6))
6 * (5 * 24)
6 * 120
720

Now consider an alternative scheme based on the idea of keeping a running
product, and multiplying it by 1, 2, 3, ... and so on up to. Thatleads to code of the
form

fun factorial n
let

fun sub_function(i, so_far) =
if i > n then so_far
else sub_function(i+1, i * so_far)

in sub_function(1, 1) end;

This new definition seems bulkier (and on that basis alone less desirable) than
the first one: is it describing the same calculation? To find out we can trace
through it using the substitution rules to yield the table

factorial 6
sub_function(1, 1) (B)
sub_function(2, 1)
sub_function(3, 2)
sub_function(4, 6)
sub_function(5, 24)
sub_function(6, 120)
sub_function(7, 720)
720

which is conspicuously different in layout to the previous example. The first
of these behaviour patterns (A) is referred to as ‘recursion’, while (B) is known
as ‘iteration’. In scheme A any computer implementation must keep track of
operations that need to be performed during the unwinding ofthe recursion. In

11

this case the amount of such information that has to be kept clearly grows directly
with the value of the input parameter n, and so the recursion is a linear one. In the
iterative case only a fixed amount of status information is needed by the computer,
even though subfunction calls itself over and over again. The ML system has
the property that functions that are iterative in the sense discussed here will only
consume a finite amount of space while running (other implementations of other
languages may not be so well behaved!).

Another common pattern of computation is called Tree Recursion. Consider
the pattern of expansion when evaluating one of the Fibonacci numbers using the
program

fun fib n =
if n = 0 orelse n = 1 then 1
else fib(n-1) + fib(n-2);

where at each level in the calculation there are two branchesthat can be ex-
panded out. The cost of running tree recursive programs can grow at an expo-
nential rate as the depth of the tree being traversed increases, and this can lead
easily lead to code that it is not feasible to execute. In general tree recursion can
not be replaced by iteration, but in this case it can: the Fibonacci numbers can be
computed as follows:

fun fib n =
let

fun fib_iter(fi, fj, j) =
if j = n then fj
else fib_iter(fj, fi+fj, j+1)

in fib_iter(0, 1, 0) end;

3.4 Exercises

(3.1) Is there any noticable difference in the time taken by the various versions of
the factorial function given here when run on arguments small enough that their
result does not exceed the range of arithmetic that ML supports?

(3.2) Is there any noticable difference in the time taken by the versions of the
Fibonacci series calculator given here?

(3.3) Find out at least something about the way in which your use of computer
resources will be controlled/limited. Discover how many people share access to
the computer you are using, and watch to see how heavy the pressure on the ma-
chine is at different times of day. Find out how to abort an ML calculation that you
have started but that is going to take an unreasonable amountof time, or perhaps
not ever complete at all.

12

(3.4) Devise a recursive program to compute the number of ways of giving
change for a particular amount in terms of combinations of UKcoins of value 1,
2, 5, 10, 20 and 50.

(3.5) Can you produce an iterative solution to problem 3.4? (3.6) Was the sqrt
function defined earlier iterative or recursive?

3.5 Rates of Growth

The simple version of the Fibonacci number program exhibited a behaviour where
the amount of work done grew explosively with the size of the input value, while
some of the other code fragments we have seen have done amounts of work that
have grown linearly with the value of the numeric input parameter. This idea of
‘rate of growth’ is a good abstraction to focus on. It often corresponds to a much
more useful idea of ‘efficiency’ than anything that can be found by obtaining
absolute time measurements of any particular real computer, since comparisons of
rates of growth tend to remain valid despite changes in the technology of computer
hardware.

The usual notation for rates of growth is the ‘Big O’ one. If some process does
an amount of work R that depends on an input parameter n, then we say that R =
O(f(n)) if f is some function so that R(n) ¡= K f(n) for some fixedconstant K and all
sufficiently large n. In this notation the statement that a process is O(n) indicates
that its costs grow no faster than linearly with the size of aninput parameter. In
a similar way O(1) is a way of saying ‘bounded by some fixed constant, whose
value is not specified here’.

Two things are work noting about Big O notation. Firstly it allows a finite
number of exceptions to the inequality that it expresses. This is helpful otherwise
any O(n) process would need to have zero cost when n=0! The other is that it
expresses an inequality, so anything that is O(1), for instance, is certainly also
O(n) and O(n 2). It is easy to fall into a the trap of thinking that something that
is described as O(f(n)) must get close to using f(n) resources for some n - that is
not what the notation says: when it is true it means that the function f(n) gives a
sharp bound on the costs of the process.

Big O notation can be used to describe both the amount of space needed by a
computation and the number of computational steps involved. Thus the recursive
factorial function given earlier used O(n) space and O(n) time, and the recursive
Fibonacci number code used O(n) space and O(2 n) time, while the iterative
Fibonacci code used O(1) space and O(n) time.

To illustrate how the use of this notation makes it possible to formalise (crude)
estimates of computational cost, consider the problem of raising some number
to an integral power. Probably the shortest and neatest codeis a straightforward
linear recursion (this statement is almost always true!)

13

fun expt(a, n) = (A)
if n = 0 then 1
else a * expt(a, n-1);

[At a later stage in a Computer Science course (and even more ifthis was a
course on programming rather than computer science!) I would express a lot of
worry about some of the programs here - for instance what happens if expt(1, 1)
is called, and what is the correct response to give to the callexpt(0,0)? In this
course my attention is focused elsewhere, and so I will ignore these issues. If you
look at a full description of ML you will find that it provides facilities for handling
exceptions - these will be ignored for now].

This procedure is O(n) in both space and time. Observe how very similar
the code is to the recursive factorial program given earlier- this suggests that an
iterative version will be easy to construct, and it will thenyield a growth rate of
O(n) in time (still), but we can tell that its space usage willbe O(1).

fun expt(a, n) = (B)
let

fun expt_iter(i, result) =
if i > n then result
else expt_iter(i+1, a * result)

in expt_iter(1, 1) end;

This may be a very valuable improvement on some computers, but it has been
achieved at the cost of making the code longer and probably less clear. The next
advance continues this trend, and relies on the fact that

x 2n = (x n) 2 ,
x 2n+1 = x * x 2n .

which leads to the code

fun evenp n = ((n mod 2) = 0);

fun expt(a:int, n) = (C)
if n = 0 then 1
else if evenp(n) then

square(expt(a, n div 2))
else a * expt(a, n-1);

where it is supposed that square has already been defined for integer argu-
ments. Version (C) of the expt function is recursive again, but since on at least
every other successive call the parameter n gets halved, thegreatest possible depth
of recursion is proportional to log(n). [Note that in order of magnitude estimates
such as are used here the base for logarithms is unimportant,but if it worries you

14

please assume logs to base 2]. Thus it can be seen that this version is O(log n) in
both time and space. A version which follows the idea of squaring but which uses
O(1) space (i.e. is iterative) is left as an exercise.

Raising things to large powers is a mildly eccentric occupation, but the pat-
tern of operations used to do it can be re-used to show how to perform repeated
additions to achieve the effect of multiplication. A time-efficient iterative scheme
for doing this can form the basis of hardware inside a computer that supports the
illusion that the computer can multiply. The patterns used in paper and pencil
long multiplication may also help when devising the iterative fast exponentiation
routine. In summary, for the expt procedures considered, wehave

method time space

(A) linear recursive O(n) O(n)
(B) linear iterative O(n) O(1)
(C) recursive squaring O(log n) O(log n)
(D) <code not given here> O(log n) O(1)

Now consider a variant on method (C), where instead of callingthe square
function the indicated multiplication is written out explicitly

fun expt(a:int, n) = (C’)
if n = 0 then 1
else if evenp(n) then

expt(a, n div 2) * expt(a, n div 2)
else a * expt(a, n-1);

This has turned the code into a tree recursion, and in fact thetime it takes
to run goes back to being O(n). This example illustrates thatalthough in ML
replacing the call of a procedure by the expanded out body of that procedure does
not effect the value that is eventually produced by a computation, it can have a big
effect on the amount of time taken. Here greatest efficiency was attained because
ML (in effect) performed substitutions to evaluate the argument to square before
investigating the body of square. In other cases (that we will see later) other
strategies give the best performance.

3.6 Exercises

(4.1) Code and test an iterative O(log n) version of the function expt.
(4.2) If a and b are two integers with a ¿ b ¿ 0 then the greatest common divi-

sor of a and b is also the greatest common divisor of b and (a modb). Use this to
produce a function that can find the greatest common divisor of any two positive

15

integers. Is your code recursive or iterative? Can you establish an estimate for the
rate at which its computing time grows as the values of a and b do? (4.3) Inves-
tigate the various tests for prime numbers given by Abelson and Sussman, again
considering rates of growth of both space and time for each method discussed.

(4.4) Try typing (on one line) val t = CpuTime(); expt(1,1000); CpuTime()-t;
and similar things with different calculations in the middle. Discover if the values
reported at the end behave plausibly like measures of the time taken to run the test
code in the middle, and if so what units they report time in. Onsome computers if
the above code is not all typed on one line the time the computer spends waiting
for you to push buttons on the keyboard will be included in thefinal time reported
- is this true on the system you are using?

(4.5) Define the smallest and simplest ML function that you can think of that
will have time that grows linearly with the value if its argument. Time it for
various argument values and see if the observed growth rate seems linear. If so,
estimate the constant of proportionality relating the argument to real computer
time used.

(4.6) Exploit the identities n C r = n-1 C r-1 + n-1 C r , n C 0 = n C n =0
to define a function that calculates binomial coefficients. What sort of recursion
does it use? How does its cost grow as n and r grow? Estimate thetime that would
be needed if it were used to computer 60 C 30 . Are there ways of improving the
code?

3.7 Higher Order functions (control structure)

It was indicated last time that a single shape of code could express either the
idea of exponentiation (if it multiplied) or of multiplication (if addition was the
underlying step). The code involved is

fun expultiply(a:int, n) =
let fun squouble(a) =

base_operation(a, a)
in if n = 0 then base_identity_value

else if evenp(n) then
squouble(expultiply(a, n div 2))

else base_operation(a,
expultiply(a, n-1))

end;

where baseoperation stands for either addition or multiplication andbaseidentity value
for 0 or 1. Rather than having to write this code out twice, onceto implement a
product function and once for exponentiation, it is possible to code it once and
make baseoperation and the identity value for it into parameters.

16

fun expultiply(a:int, n, opr, identity) =
let fun squouble(a) = opr(a, a)
in if n = 0 then identity

else if evenp(n) then
squouble(expultiply(a, n div 2,

opr, identity))
else operation(a,

expultiply(a, n-1, opr, identity))
end;

The third argument to this function must itself be a function, and in ML this
is perfectly respectable. The text written here to indicatethe argument is just the
name of the function that is to be passed. The following code illustrates this,
defining a version of expt that uses a further layer of functions to perform the
multiplication that it requires internally.

fun expt(a, n) =
let fun prod(x, y) =

let fun sum(p:int, q:int) = p + q
in expultiply(x, y, sum, 0) end

in expultiply(a, n, prod, 1) end;

A second example of an problem where functions as arguments provide a good
abstraction arises when considering the derivative of simple functions. The deriv-
ative of a function f(x) at a x=a can be estimated as

(f(a + h) - f(a)) / h

for small offset values h. In ML we can capture this formula directly

fun deriv_approx(f, a, h:real) =
(f(a+h) - f(a)) / h;

which can then be tested, for instance with

fun quadratic(x) = 3.0 * x* x - 17.0;
deriv_approx(quadratic, 2.0, 0.001);
deriv_approx(cos, arctan(1.0), 0.001);

The issue to be stressed here is that permitting functions tobe passed as ar-
guments to other functions makes it possible to write one procedure (expultiply,
or deriv approx) that captures the essence of some computation, rather than copy-
ing out all the possible special instances. This clearly helps us to produce clearer
procedural abstractions for the processes we are designing, and encourages us to
produce code fragments that will have many uses rather than just a single use.

17

3.8 Exercises

(5.1) Assuming a function f(i) that returns real values and an integer n, produce a
function that will form the sum f(1)+f(2)+...+f(n). Test itwith f(i) the reciprocal
of factorial i (this gives approximations to the number e that is the base of natural
logarithms), f(i) = 1/((4i-3)(4i-1)) (which leads to pi), and f(i) = 1/i. Note the
existence of useful functions in ML: real(n:int) returns a real number with value
the same as the integer n, floor(x:real) returns an integer value no larger in value
than the real number x.

(5.2) Generalise your summing function so that it accumulates values using
an operator and an initial value that are handed to it as arguments. Demonstrate
it with a call something like fun prod(a:real, b:real) = a*b;accumulate(50, real,
prod, 1.0); to compute factorial 50 using real arithmetic;

(5.3) Collect some of the more general and potentially re-usable functions that
you have written into a single file, so that it can be loaded at the start of future
sessions with ‘use’. Comments in ML are written as (* text *), so you might
reasonably document your private library, explaining whateach function does.

(5.4) Suppose that the function of (5.1) is being used to sum series to n terms
as a way of evaluating approximations to useful values (Abramowitz and Stegun’s
big book of mathematical tables can provide lots and lots of example series to
try summing...). The partial sums of a sequence taking in 1, 2, 3, ... terms form
a sequence which it is hoped will converge towards some limit- unfortunately
quite often this convergence is slow. If s n-2 , s n-1 , s n are three consecutive
values in such a sequence, define S n as s n - (s n - s n-1) 2 / (s n - 2sn-1 + s
n-2). Then the sequence S n often converges much faster than the original one.
Implement a higher order function that can perform this transformation, and try it
on (among other things) the sequence 1 - 1/3 + 1/5 - 1/7 + 1/9 which converges to
pi/4. The transformation works by assuming that the sequence concerned is really
a geometric progression of the form s n = p + q*k n with limit p: it uses the three
sample values from the sequence to allow it to find p, q and k. What happens
if you try to accelerate convergence yet further by applyingthe transformation
twice?

(5.5) Exchange your version of the accumulate function withsomebody else,
and read their code. If # denotes the operator being used, do they compute f(1) #
(f(2) # (f(3) # ...)))) or ((((f(1) # f(2)) # f(3) # ... or possibly something different
from both the above. Starting from their code produce an accumulate function
that groups things the other way. Give a test use of the two versions of accumulate
that illustrates that they can sometimes give different effects. In what cases can it
be guaranteed that they will behave indistinguishably?

(5.6) Produce yet another version of accumulate that splitsthe range from 1
to n into two roughly equal sub-ranges and accumulates values from each sub-

18

range before combining these to produce a final value. Characterise the space and
time requirements of this function. Although from an ideal mathematical point of
view all your versions of an accumulator function will be equivalent, when using
computer real arithmetic (i.e. floating point) there will all give slightly different
answers: investigate!

3.9 Higher Order functions (as values)

If functions can be passed as arguments, can they be returnedas results? If so,
does that enrich our programming style by allowing further separation between
the ‘what’ and the ‘how’ of typical procedures? In ML it is possible to return
functions as results, and although many older languages do not support this (or
put peculiar limitations on how it may be used) it can providegood ways of mod-
elling behaviours. Looking back to the code previously given for estimating the
derivative of a function. With minor adaptation it can accept a function as an ar-
gument and deliver its derivative (again as a function) as its result. For simplicity
here it is coded with a fixed offset of h=0.001

fun differentiate f
let val h = 0.001;

fun df(a) = (f(a+h)-f(a))/h
in df end;

and now this can be used to compute functions that are to be applied, such as

(differentiate cos)(1.0) + sin(1.0);
(differentiate (differentiate sin))(0.0);

The point to be made here is that defining differentiate in this way puts all the
information and mechanism about differentiating inside the procedure, and makes
it possible to use it in a general way.

When functions are being passed backwards and forwards it is useful to be able
to write one without having to invent a name for it. For instance in using expultiply
it was necessary to have a function that added (or multiplied) two integers, and in
the code shown earlier this was named using a ‘fun’ definition. An alternative
would have been to use an ‘anonymous function’. These are written

fn <formal arguments> => <body>

as in

expultiply(2, 10, fn(x:int,y:int)=>x * y, 1);
or (derivative (fn x => 3.0 * x* x-17.0))(2.0);

19

[There are some who suggest that ML was wrongminded in using the key-
words ‘fn’ and ‘fun’ for the two different ways of introducing functions, and they
tend to pronounce ‘fn’ as ‘lambda’, the Greek letter used elsewhere for introduc-
ing anonymous functions].

Further uses of this idiom would be to recode expultiply so that instead of
accepting arguments (a, n, operation, identity) and actually performing a calcula-
tion, it accepted just the last two of those values and returned a function of two
arguments which would be either multiply or expt. This movesstrongly towards
viewing programs as things with large numbers of levels of abstraction, starting
at the top with recipes for general methods, preparing specialisations of these to
get functions to perform particular operations and then using these to solve prob-
lems. Keeping this layered structure in place so that code written at one level is
not corrupted by issues that should only be visible at another is a major part of the
challenge of understanding the proper development of largepackages of computer
code.

3.10 Exercises

(6.1) In ML, provided f does not try to call itself, there is nodifference between
the effect of a function definition fun f arg = body; and a valuedefinition involving
an anonymous function to the right of the equal sign val f = fn arg =¿ body; Try
some of the previous examples using the second version of thesyntax to become
convinced that all still works. ML does not make it possible to write anonymous
functions that call themselves - some of the technical issues that led to this deci-
sion may emerge during the final year of the CST courses. As wellas function
definitions, ‘let’ statements can be expanded in terms of uses of anonymous func-
tions: let val x = A in B end; can be replaced by (fn x =¿ B)(A); [note that this
form is actually a little shorter to type] Convert some previous code to avoid the
use of ‘let’. This demonstrates that ‘fun’ and ‘let’ do not contribute much to the
semantic power of ML, although they do help make code more readable.

(6.2) Define a function called compose which can take two one-argument real
functions and return the function that is their composition. Thus one would expect
compose(sin, sqrt)(2.0); to have the same value as sin(sqrt(2.0)); [warning: it may
be necessary to decorate arguments to compose with type information. See how
ML displays the types of things that would be suitable as arguments to check what
should be written].

(6.3) Double is to add as square is to multiply. Produce a function that will
derive double from add and square from multiply. What effect does if have if
given (a) difference and (b) quotient?

(6.4) Comment on the relationship between 0; fn x:int =¿ 0; fn x:int =¿ (fn
y:int =¿ 0); [hint: the type information that ML displays when you enter one of

20

the above is closely related to the answer to this question] Now what about (fn
x:real =¿ 0);

(6.5) Adjust the differentiation code so that rather than using a single fixed
value of h to estimate a derivative it tries values h = 0.1, 0.01,... and so on until
two estimated derivatives are within 1code arranged so thatthe parts of it that
have different concerns are well separated, using block structures, functions as
arguments and results etc where such things lead to expositions of your solution
that are easy to untangle.

(6.6) Reorganise your files on the computer so that you can distinguish be-
tween important and frivolous files, and so that files that youwant but are not
going to update on a daily basis are put away somewhere tidy and safe. Find out
how limits on your use of file space are enforced, and how you can discover if you
are close to any such limits.

4 Building abstractions with data

4.1 Constructor and selector functions

This section of the course is concerned with combining together pieces of ele-
mentary data to build complex structures in much the way thatthe first section of
the course was about combining small operations and expressions to create proce-
dures that could have complicated (and hence interesting and useful) behaviours.
As was the case when discussing procedures there will be an underlying emphasis
here on arranging the presentation of data so that a clear distinction can be drawn
between those aspects of it which are essential for the purposes in hand and those
that are purely incidental affect of the particular way thatit has been represented
on the computer.

A first example of a class of objects best represented by composite data will be
the rational numbers. A rational number will have a numerator and a denominator:
for instance (13/97) has 13 as its numerator and 97 as its denominator, but behaves
as a single value composed of those two parts. Without makingany statements
in advance about how the numbers will be represented it is reasonable to ask
for functions that create and inspect rationals. A constructor function and two
selectors will be needed, such that

make_rat(p,q) returns a representation of p/q,
numer z selects the numerator from a rational,
denom z selects the denominator.

Note that using just these operations it should be possible to build procedures
to perform arithmetic on rationals, for instance

21

fun add_rat(x, y) =
make_rat(numer x * denom y+numer y * denom x,

denom x* denom y);

ML provides secure and automatic ways of introducing abstract data types
such as the rational numbers used here, but for now these willbe ignored, and
makerat, numer and denom will be implemented using a primitive data construct-
ing facility that ML has. In ML a list of objects, separated bycommas and en-
closed in parentheses, can be considered as making up a single composite object.
Thus we can have

fun make_rat(a:int,b:int) = (a, b);

Extracting components from this form of composite object isachieved by
defining a function that has as its argument a template that will match the ob-
ject. The object’s components can then be accessed in the function body. Thus we
can write

fun numer (a:int,b:int) = a;
fun denom (a:int,b:int) = b;

[At this stage it can be revealed that all functions in ML always take a single
argument, and all the cases that have been seen where it seemsas if several argu-
ments are involved really just reduce to packing the arguments into one composite
object at the call and unpacking them again at the start of theprocedure. If this is
fully understood it can be seen that makerat could equally well have been defined
by

fun make_rat x:(int * int) = x;

without that calling for any re-implementation of numer anddenom].
If functions for addition, subtraction, multiplication and division are complete

for rational numbers the above implementation of the abstract datastructure for
rationals can be tested. Experimentation will rapidly showthat it is unsatisfactory
in that, for instance, denom(makerat(2,6)) comes out as 6 rather than the value 3
that was probably really wanted. The most obvious way of correcting this will be
to re-implement makerat as

fun make_rat(p, q)
let val g = gcd(p, q)
in (p div g, q div g) end;

which ensures that all rationals are kept in lowest terms throughout the system.
But note that since we want to think of rational numbers as implemented by an
abstract datatype there may be alternative implementations. One would be to leave
makerat in its original form and replace numer and denom by

22

fun numer(p, q) = p div gcd(p, q);
fun denom(p, q) = q div gcd(p, q);

[I have assumed that a function gcd has been defined, and that it can only
accept integer arguments, since this allows me to leave out the ‘:int’ restrictions
on the structure components in these definitions].

It is important to note that whichever solution is selected it will not make it
necessary to make changes to addrat and the higher level functions. We have a
hierarchy of levels of abstraction again, and should striveto keep the concerns of
these different levels separate.

4.2 Exercises

(7.1) Complete the coding of procedures for the four basic operations applied to
rational numbers. Using the initial datastructure (that did not reduce fractions to
lowest terms) add up 1/1 + 1/2 + 1/3 + ... + 1/10. What is the denominator of your
answer?

(7.2) Install a datastructure that does reduce fractions totheir lowest terms
and recompute the sum of the first ten reciprocals. What denominator do you get
now? Does it make much difference to efficiency if the gcd calculations are done
in makerat or on numer and denom? Would it be proper to be double-certain and
make both makerat and numer and denom reduce fractions to lowest terms? Does
your code need adjustment if you are going to have to cope withnegative rational
numbers?

(7.3) Change your rational arithmetic package so that the rational value (p/q)
is represented by the ML-level structure (q, p) (rather thanthe (p, q) used before).

(7.4) Define suitable datastructures for representing line- segments in the plane
in terms of their endpoints. Adapt it to deal with line-segments in 3-space. Pro-
duce a function that will find the mid point of a line segment.

(7.5) Constructor and selector functions can still form useful purposes by ex-
pressing abstraction boundaries even when the abstract object being handled can
be represented using a single item of primitive data. Write suitable constructor
and selector functions to support a data type ‘number in the range 0 to 4’. Write
functions to add, subtract and multiply such quantities, using the rule that the
required result is the remainder when the natural integer result is divided by 5.

4.3 Alternative representations of datastructures

One thing that can be asked about a programming system is ‘which of the facilities
in it are really necessary’. Here it will be demonstrated that the ability to cluster
several integers into a single item of composite data (as used for building data

23

structures, and also to allow functions to seem to accept several arguments) is,
contrary to plausible intuition, not strictly needed.

This will be done by showing how the use of functions as resultvalues makes
it possible to achieve a remarkably similar effect, and the example taken here will
be to recreate a version of makerat and its friends. Consider

fun make_rat(p:int, q:int) =
let

fun extract n =
if n = 0 then p else q

in extract end;

and

fun numer x:int->int = x(0);
fun denom x:int->int = x(1);

then we can try using the substitution model for procedure elaboration to dis-
cover the value that will be returned by numer(makerat(u, v)). The call to numer
expands into

(make_rat(u, v))(0)

which is

extract(0)

in an environment where p=u and q=v. This quickly reduces to the value u.
Similarly denom(makerat(u, v)) = v, and so the above definitions behave as is
required to simulate the pair datastructure.

It can properly be complained that in ML the passing of two arguments to
makerat implies an implicit use of the built-in mechanism for creating and un-
packing pairs of objects. This too can be avoided if we need to, see exercise 8.4
below. In languages like ML it is even possible to dispense with built-in integer
arithmetic, simulating that in terms of function values. Exercise 8.5 provides a
start towards an explanation of how this can be done.

A more practically useful feature of ML is that it provides a way of packaging
data that is similar in its idea to the constructor/access function ideas shown above,
but which allows ML to check that access to the data is only made through the
defined interface. To use this facility we would tell ML

datatype rational_number =
make_rat of int * int;

fun numer(make_rat(p,q)) = p;
fun denom(make_rat(p,q)) = q;

24

where the first statement introduces and names the new datatype and causes
a constructor function makerat (that will expect two integer arguments) to be
brought into existence. Of course if our programs were always perfect this feature
of ML would be no different from any of the previously mentioned implementions
of makerat and its friends. As we live in a real and imperfect world the extra
checking that is made possible by introducing a new datatypein a way that makes
ML fully aware of its separate identity is very valuable indeed.

4.4 Exercises

(8.1) Code and test the functional representation of the rational number datatype.
Inspect and try to make sense of the types of all the functionsand expressions
involved as ML displays them.

(8.2) Any positive integer can be expressed (in binary notation) as a string of
bits bn, ..., b2, b1, b0. Write a function that constructs froma number the value
that has binary representation bn, 0, ..., 0, b2, 0, b1, 0, b0.[The bits have been
spread out and zero bits interleaved between them. Hint: decompose the number
by dividing by two, rebuild by multiplication by four]. Hence produce a version
of makerat that packs the numbers a and b together as a binary number ending
with the bits b2, a2, b1, a1, b0, a0.

(8.3) If p and q are positive integers, the value 2 p multiplied by 3 q can be
used to encode the ordered pair (p, q). Write constructor and selector functions
based on this packing scheme. What order of growth is there in the costs of the
various implementations of makerat and numer that have been discussed in this
section? In a similar way 2 p (2q+1) also encodes the pair (p, q) - code up the
constructor and selector functions and work out what their costs are. A yet further
packing scheme would imagine p and q represented as binary (say) numbers and
would create a combined number by interleaving the bits of p and q. Investigate
that sceme too.

(8.4) Define a function that adds 1 to an integer. Now define a function that
adds two to an integer. And one that adds 37 to an integer. Generalise the creation
of these by writing a function that could create them all:

fun incrementby n:int =
let fun addn a = a + n
in addn end;

then

val add1 = incrementby 1;
val add37 = incrementby 37;

Test this function and several variants on the idea. Now whatis the interpreta-
tion of and value returned by

25

incrementby 2 3;

Compare the types, as displayed by ML, and behaviours of incrementby and
(fn (x:int,y:int)=¿x+y).

(8.5) In ML I might like to define a series of functions as follows:

fun not_at_all f a = a;
fun once f a = f(a);
fun twice f a = f(f(a));
fun three_times f a = f(f(f(a)));

and then try to provide a successor function to help me generate further func-
tions in the sequence

fun successor n f a = n f f(a);

Are there any problems that prevent me from building up a fullsimulation of
integer arithmetic in this way? [Note: this exercise makes heavy use of the idea
introduced in 8.4, and it is critical, for instance, that twice was defined as ‘twice
f a =’ rather than ‘twice(f,a) =’. As written above it also relies on the fact that a
sequence of names ‘a b c d’ in ML will be treated as if they were bracketed in
the order ‘((a b) c) d’. Even if this is unspeakably confusingyou can still type the
examples in and try them with, for instance

three_times (fn x=>x+1) 2;

The types that ML assigns to the above functions will also look odd, contain-
ing symbols ’a, ’b and so on. These are a manifestation of ML’scapability of
type-checking functions even when it does not know exactly what type the argu-
ments will end up having, and ’a, ’b stand for arbitrary types].

(8.6) After 8.5 consider

val q86a = twice three_times;
val q86b = three_times twice;

How can you interpret the two values just defined?
(8.7) Set up ML ‘datatype’s for line segments, numbers modulo 5, ranges of

real numbers (e.g. (1.0 to 1.5)). Work through the interval arithmetic examples in
Abelson and Sussman.

(8.8) ‘abstype’ in somewhat similar to ‘datatype’, but it provides extra security
by arranging that only a limited number of functions have access to the internal
components of a compound object. Check the full ML manual to find out how
to use ‘abstype’ and use it wherever possible (or at least reasonable) in future
exercises.

26

4.5 Lists, trees and sets

The datastructures introduced so far have all been of fixed size and format and
have been capable of binding together nothing more than a fewnumbers or strings.
This section of the course introduces variable sized datastructures. The first of
these is the list . In ML lists are written in square brackets:

[1, 2, 3, 4, 5];

is a list of integers (of length 5). There is obviously some strong low-level
relationship between a list in this sense and a tuple as seen earlier:

(1, 2, 3, 4, 5).

The distinction that ML draws between the two concepts requires that all the
items in a list have the same type, but then treats all lists of(say) integers as being
compatible with one another, whereas with tuples the entries can be of different
types but the type of the whole tuple includes information about how many items
there are in it. Thus [1,2] is typed as ‘int list’ while (1,2) is ‘int*int’.

Lists in ML can be extended using an operator ‘::’. This puts asingle extra
item on the front of an existing list, and long lists can be built up by using it
repeatedly

1 :: (2 :: (3 :: (4 :: (5 :: []))));

is another way of writing

[1, 2, 3, 4, 5];

that stresses this structure, and that the front of a list is much more accessible
than the end. The empty list [] can also be written as ‘nil’, which some people
prefer.

I will use archaic, arcane, universally vilified but universally known names for
the selector functions on lists, defining them by

fun car (a :: b) = a;
fun cdr (a :: b) = b;

[When these definitions are introduced to ML it will moan. The complaint it
has is because these definitions do not explain what the behaviour of car and cdr
should be if given empty lists. I view it as an error to try taking car or cdr of an
empty list, and will not worry further about this issue].

If x stands for any nonempty list, then we have

x = car(x) :: cdr(x)

and if q is an object, and l a list of similarly typed objects,

27

q = car(q :: l)
and l = cdr(q :: l).

Given the idea of lists, which can be though of as (finite) sequences, there are
a fairly large number of useful operations that can be imagined, such as finding
the length of a list, appending two lists together or reversing the order of items in
a list. Higher level operations involving lists include building a new list which has
elements obtained by applying some given function to the elements of an initial
list. See exercise 9.2 for an observation about the ML syntaxfor coding these.

Lists provide a useful low-level representation for data that comes in varying
amounts but which is naturally rather flat and list-like. Forsome applications it is
necessary to look at yet more flexible classes of structure. For instance consider
the representation of algebraic formulae. Something like 32*17-2 fits in with
an abstraction in terms of tree-like structures, where there are leaves containing
operand values and internal tree nodes representing operators

-
/ \

/ \

* 2
/ \

/ \
32 17

ML makes it possible to define a new datatype that will permit us to work with
trees of this sort:

datatype tree = leaf of int
| node of string * tree * tree;

where the vertical bar indicates that the type permits two variants, one for
leaves and on for internal nodes. A leaf node can the be constructed by using the
constructor function

leaf(2)

and the whole of the above tree could be built by saying

val lhs = node(" * ",
leaf(32),
leaf(17));

node("-", lhs, leaf(2));

Functions to use trees can decompose them using pattern matching in formal
parameter specifications in an extension of the mechanism used in the definitions
of car and cdr. Thus to add up all the integers in the leaves of atree,

28

fun addup(leaf(n)) = n
| addup(node(op,lhs,rhs)) =

addup(lhs) + addup(rhs);

Trees represent a richer class of extensible datastructures than lists: it may
not be obvious that it is also useful to have weaker abstractions. A good example
of one such is the ‘finite set’. Lists can easily be used to represent finite sets (at
least sets where all the members have the same type), but there are two things that
are wrong with this from the point of view of abstract datastructures. Firstly use
of lists reveal an order in which their elements are present,and so the lists [1,2]
and [2,1] would be considered different. With sets there should be no ordering
of the items included. Then an item is either present in a set or it is not: there is
no interpretation to having an item in a set ‘twice’. This means that lists such as
[1,2,1] are not good representations of sets (because of therepeated entry). See
exercise 9.7 for suggestions that show that the abstractionof a set datatype can be
supported in several different ways.

4.6 Exercises

(9.1) Write and test functions to find the third element of a list (supposing the list
is long enough), to find the last element of a list, and to append two lists.

(9.2) ML provides a neat way of defining functions that work onlists, making
the test that is almost always needed for the special case of an empty list fit in
neatly with picking out the car and cdr components of non-empty lists. Here is a
sample of it

fun map(f, nil) = nil
| map(f, a::b) =

f(a)::map(f,b);

where vertical bars are used to separate collections of disjoint cases to be con-
sidered in the function definition. Given the above, what arethe values computed
by

fun square a:int = a * a;
mapcar(square, [1,2,3,4,5]);

and mapcar(fn x=>[x], [1,2,3]);

(9.3) Write a function that takes a list and returns a list of all possible permu-
tations of the original list. Thus permutations [1,2,3]; could hand back

[[1,2,3], [1,3,2], [2,1,3], [2,3,1],
[3,1,2], [3,2,1]]

29

but any other ordering of the permutations in the result listwould be consid-
ered acceptable.

(9.4) Here are a pair of ML functions (called cryptically a and r), defined
in terms of one another. What do they do? How do they do it? What isthe
computational complexity of the processes that they generate? Can you produce
functions that compute the same results but which have lowerorder computing
time and/or space?

fun r(nil) = nil
| r(p::q) = a(r q, [p])

and a(nil, v) = v
| a(u, v) = a(r(cdr(r u)),

car(r u)::v);

[Note: in the definition of a the first clause is activated if the first argument to
a is an empty list, the second one in all cases when u is not an empty list].

(9.5) Write code to evaluate an arithmetic expression represented by a tree
datastructure. Change your definition of tree and your evaluation code so that the
items in leaf nodes are rational numbers, and get it working again.

(9.6) Investigate the symbolic differentiation example and code in Abelson &
Sussman, and produce a version of it in ML. Keep a clear separation between the
parts of your program that are to do with the representation of the algebraic forms,
those that implement differentiation rules and any that areconcerned with trying
to keep expressions reduced to simple form.

(9.7) For an abstract datatype to represent sets we need to support the follow-
ing operations:

create an empty set,
adjoin a new element to a set,
test if a given object is a member of a set,
remove an element from a set,
exhibit one of the members of a non-empty set.

Given these, we can define set intersection and union, functions to apply op-
erations to all members of a set and so on. Implement the aboveto support sets of
integers, using as a base representation

1. Lists, where the set constructor operation ensures that no list ever has re-
peated entries in it,

2. as above, but with the numbers in the list maintained in ascending order
(which may make set inclusion tests slightly faster),

3. Binary trees with the integers stored in the leaves, as discussed in Abelson
& Sussman.

30

4.7 An example datatype: complex numbers

On several occasions so far it has been pointed out that some particular datatype
could be implemented in a number of different ways. So far thedecision about
which representation should be used has been made once and for all when the
datatype was implemented in terms of constructor and selector functions. There
are occasions when the implicit insistence that this makes that data should have
a single format of representation is unreasonable. As an illustration of what can
be done about this we will follow through code to work with complex numbers,
introducing three levels of abstraction. At the top we will just perform arithmetic
on complex numeric values. The middle one will be the part of the code that
knows that there will be two distinct representations used for these numbers, and
beneath that there will be two parallel packages, one implementing the numbers
using rectangular (x + iy) co-ordinates and the other using polars (r, theta). It will
be useful to give recipes for arithmetic on the two particular representations first.

datatype rect = make_rect of real * real;
fun rect_x(make_rect(x,y)) = x;
fun rect_y(make_rect(x,y)) = y;

fun rect_plus(u, v) =
make_rect(rect_x u + rect_x v,

rect_y u + rect_y v);
fun rect_times(u, v) =

let val ux = rect_x u;
val uy = rect_y u;
val vx = rect_x v;
val vy = rect_y v;

in make_rect(ux * vx-uy * vy,ux * vy+vx * uy)
end;

fun rect_r u =
sqrt(square(rect_x u) + square(rect_y u));

fun rect_theta u =
(* use arctan to compute angle *);

which provides addition (easy) and multiplication (somewhat harder) in rec-
tangular co-ordinates. It also provides functions that compute the absolute value
of a complex number and the argument of it (i.e. the angle between the real axis
and a line joining the origin to the given number). Now for thecorresponding
code that works in polar co-ordinates:

datatype polar = make_polar of real * real;
fun polar_r(pol(r, theta)) = r;
fun polar_theta(pol(r, theta)) = y;

31

fun polar_times(u, v) =
let val ur = polar_r u;

val utheta = polar_theta u;
val vr = polar_r v;
val vtheta = polar_theta v;

in make_polar(ur * vr,utheta+vtheta)
end;

fun polar_quotient(u, v) =
let val ur = polar_r u;

val utheta = polar_theta u;
val vr = polar_r v;
val vtheta = polar_theta v;

in make_polar(ur/vr,utheta-vtheta)
end;

fun polar_x u =
polar_r(u) * cos(polar_theta u);

fun polar_y u =
polar_r(u) * sin(polar_theta u);

Observe, as could have been predicted, that both the polar and rectangular
representations can support functions that extract the x and y co-ordinates of com-
plex values and also the polar co-ordinates, but the expenses of the accesses differ
significantly across the two representations. Observe alsothat addition and sub-
traction are easy in rectangular co-ordinates, while multiplication and division are
easy in polars. This suggests that it might be useful to produce functions to convert
between the representations:

fun to_polar(u) =
make_polar(rect_r u, rect_theta u);

fun to_rect(u) =
make_rect(polar_x u, polar_y u);

and it then becomes easy to implement some operations that previously looked
tricky:

fun polar_plus(u, v) =
to_polar(

rect_plus(to_rect u, to_rect v));
fun rect_quotient(u, v) =

to_rect(polar_quotient(to_polar u,
to_polar v));

That allows us to complete our two separate implementationsof complex
arithmetic. One will be more efficient when most of the operations performed
are additive, the other if most are multiplicative. A way of getting close to the

32

best of both worlds will be to provide the user with complex numbers that tend
to select for themselves the representation that will be most sensible. Define the
datatype by

datatype complex = case1 of rect
| case2 of polar;

which just states that a complex number is either a rect or a polar, these types
being labelled as case1 and case2. We can then introduce constructor functions
that create complex values given x,y or r,theta representations:

fun complex_from_xy(x,y) =
case1(make_rect(x,y))

fun complex_from_rtheta(r,theta) =
case2(make_polar(r,theta))

and all possible selector functions

fun complex_x(case1(u)) = rect_x(u)
| complex_x(case2(u)) = polar_x(u);

and so on.
Then complex addition and subtraction can be arranged to leave their results

in rectangular form, while multiplication and division give back polar-represented
answers. Of course the user of the package is prevented by thebarriers of abstrac-
tion from knowing this, and will at most be able to deduce thatsomething of that
sort is going on by making detailed timing measurements on the implementation
of complexes that has been provided. Use of the ML datatype scheme described
so far goes some way towards keeping the internal and external details of struc-
tures well separated. A further ML feature, called ‘abstype’ provides yet stronger
support for ensuring that all access to data is through the officially associated sup-
port functions. Details of this can be found in the ML technical reports and in
Wikstrom’s book.

4.8 Exercises

(10.1) Code and test complete versions of both the rectangular and polar repre-
sentations of complex numbers.

(10.2) Glue them together as suggested above to provide a single unified
datatype called complex.

(10.3) Create a further layer to your code to provide a specialrepresentation
for complex numbers that happen to have a zero imaginary part.

(10.4) Do a similar job for rational numbers, making a special case for ones
with a denominator that is 1. Then create a layer of code that implements a

33

datatype called ‘number’ that can have instances that are either rationals or com-
plexes. [Note: the code that you write will require that whenever numbers are to
be combined they have the same type, and so is not concerned with adding rational
to complex values and so on].

(10.5) Large integers can be represented by lists of digits,so that for instance
the number 199731 might be stored as the list [1,3,7,9,9,1].I have stored the units
digit as the first element of the list since this will probablymake the rest of the
code easier. Write code to add, subtract and multiple big numbers, and implement
a layer of datastructure that allows numbers up to 10000 to bestored as normal
ML ints, while representing larger numbers in list form.

4.9 Approaches to the implementation of generic operators

The examples given above show that it can be useful to have operators that can
be applied to many different classes of data, for instance something to perform
addition should have an interpretation for integers, reals, rationals and complex
numbers, and possibly other classes of object. ML can deal very cleanly with cer-
tain classes of generic operators - ones that are known as ‘polymorphic’. These
are ones where the operations to be performed in the implementation of the op-
erator are independent of the full specification of the type of the operands. Good
examples of this sort of generality will be found in the procedures that work on
lists - most of these are valid regardless of what the type of the elements in the
lists are. If you have tried out some list processing examples you will have seen
ML describe the types associated with these functions with symbols ’a, ’b and so
on in them, where these markers stand for arbitrary type expressions.

The support required by arithmetic is of a quite different character, in that it
is clearly of the essence that the insides of a package to perform (say) complex
arithmetic will be different from that which does rational arithmetic. We are still
used to the abstraction of being able to use a single set of symbols (+, -, * and /)
to denote the range of operations involved, with the detailed code to be activated
depending on both the operator involved and the type of its operands.

The next short section of this course introduces one particular way of address-
ing the problem of providing convenient and flexible supportfor large numbers
of related classes of datastructures, while preserving good abstraction barriers so
that no piece of code need be aware of information that not properly relevant to it.
The scheme is known as ‘message passing’.

Message passing represents an alternative attack on the problem of control-
ling datatypes to the one embodied in ML, one where typechecking can not be
performed on the basis of a static analysis of the code involved. It is quite pos-
sible to express message passing code in ML, but the proper and general version
of the code involved will have to reveal all the mechanism forcoping with para-

34

meters which have types that can only be determined at run-time. For an initial
discussion of the message passing idea this detail will be suppressed, and the ex-
amples that follow, although they look like ML, can not be used with the ML
system. To indicate this the notes here will have vertical bars to the left of any
such pseudo-code.

Back to consideration of the problem of supporting arithmetic if the face of
the problem that +, - and so on may need to work with integers, reals, rationals,
complex numbers, and indeed they have quite natural interpretations when applied
to elements from abstract rings and fields, to polynomials, power series, matrices
and so on. The structuring techniques we have introduced so far make it possible
to implement each of these arithmetic domains in a tidy way, providing the outside
world with a procedural interface that successfully hides internal structure. But
the user-level function for addition had to be coded as a long-winded list of cases,
dispatching into whichever underlying package was relevant. [I am still setting
my face firmly against any discussion of mixed mode arithmetic, things are quite
complicated enough without that extra worry].

The most objectionable feature of this way of organising things is that if
(when!) a new arithmetic type is introduced, all the user-level interfaces have to
be re-coded to cope with it. Thus implementing the new type involves more than
just coding the required computations (which will generally form a neat module
of code), it involves distributed adjustment of an interface layer.

The first step towards tidying things up is to recognise that the top level dis-
patch functions are really just implementing a big table lookup from operation and
datatype to the detailed code that is relevant for, for instance, multiplying com-
plex numbers. This leads to the suggestion that objects should be represented with
manifest type:

|| datatype object = thing of string * <any>;
||
|| fun type_of(thing(t,o)) = t;
||
|| fun representation_of(thing(t,o)) = o;

Then all operators can be invoked in a uniform way using a new function
apply, as in

|| apply("˜", thing("int", 1));
||
|| where
||
|| fun apply(op, arg) =
||
|| lookup_method(op, type_of arg)(

35

||
|| representation_of arg);

and now lookupmethod can be a single general purpose function that in-
spects some tables to find the body of code needed, in this casethe one asso-
ciated with the operator name ” ” and the type name ”int”. The table inspected
by lookupmethod will need updating whenever a new datatype or operator is in-
vented, but it will be regular, static, stylised and hence relatively easy to work
with.

Message passing is an idea that corresponds to viewing the lookup method ta-
ble as a matrix, and recognising that if we concentrate on rows we get the original
dispatch functions corresponding to each user-level operator, but that each column
captures exactly the information associated with a particular datatype. This can
be implemented by representing all data objects as functions (fortunately we have
come across this trick before), which take an operation to beperformed as their
first argument. A small example illustrating this idea can begiven as code to cre-
ate a representation of a simple integer that responds to requests for its successor
and predecessor, and to enquiries as to whether it is positive, negative or zero:

|| fun make_int n =
||
|| let fun rep_of_int op =
||
|| if op="inc" then make_int(n+1)
||
|| else if op="dec" then make_int(n-1)
||
|| else if op="=0" then make_bool(n=0)
||
|| else if op="<0" then make_bool(n<0)
||
|| else make_error("Unknown op on int")
||
|| in rep_of_int end;

which could then be used by making calls such as

|| val one = make_int 1;
||
|| (one "dec")("=0");

which ought to return a value standing for true. [makebool and makeerror
have not been shown: their behaviour is left to the imagination, as is the problem
of interpreting displayed results to determine if they are correct].

36

Even though the above code may look just as ugly as the type-dispatch that we
had earlier in the definition of an addition function, it is not. The reason I assert
this is that it is less in breach of the modularity that we wantwhen implementing
a new datatype.

4.10 Exercises

(11.1) Message passing does not give any trouble to ML provided all operations
implemented for a datatype take the same number of argumentsof consistent
types, and provided the results returned as responses to allmessages are of a
single type. Thus it is possible to produce a message- passing model of integer
arithmetic supporting the operations ”+”, ”-”, ”*”, ”div”,”=” and ”¿” provided
that the boolean results from the last two requests are encoded as integers (say 0
and 1 for false and true). Write code to demonstrate this.

(11.2) Write a function that accepts a ‘message passing integer’ as from 11.1
and derives from it the regular ML integer that it represents. [Hint: if all else
fails positive number’s values can be determined by decrementing them until they
reach 0 and seeing how many steps were needed].

(11.3) Read the section in Abelson & Sussman relating to mixing types. [Note:
ML does not provide ‘put’ and ‘get’, and for that reason as well as ML’s type-
checking and shortness of time further discussion of fine control over datatypes is
deferred until a later time in the CST].

(11.4) Design an ML datatype that comes as close as possible to being able to
cover all possible ML objects. For instance consider the initial attempt datatype U
= i of int — b of bool — prod of (U*U) — fun of (U -¿ U); Exploiting such a uni-
versal datatype implement more complete examples of message passing systems.

5 Modularity, Objects and State

5.1 Mutability - advantages and disadvantages

None of the ‘variables’ that have been used so far have in factever varied in their
values. All the functions that have been written behave in a way that depends
solely on the arguments that they are given, and not on the history of their previ-
ous use. Datastructures have been created once and for all, and have remained im-
mutable once built. The illusion of change has come about through having many
instances of variables (e.g. corresponding to the many invocations of a procedure
that is called repeatedly), and by creating edited copies ofdata.

In this section of the course we investigate the ability to alter things. The
main motivation for introducing this is not to increase the power or capability

37

of our programming language, but to make it possible to produce more natural
computational models of certain classes of real world behaviour. In particular it
is sometimes quite unreasonable or inconvenient to have twosuccessive identical
calls to the same function giving the same result, e.g. the a random number gen-
erator might be wanted or the operation being abstracted by the procedure could
be withdrawing money from a bank account.

Take the second of these examples. A bank account has state which must
be able to alter as transactions are made using it. Normal declarations in ML
introduce immutable associations between names and values(even though these
associations can be hidden by newer definitions of variableswith the same name
as the original one). To produce an updatable value in ML it isnecessary to make
an explicit request for one:

val balance = ref 100;

makes a fixed association between the name ‘balance’ and an updatable cell
(a reference), which initially has the integer 100 stored init. Now of course the
type of balance is not just int, it is ‘int ref’, and to extractthe int from an int ref
it will be necessary to apply an explicit operator. In the case of ML this is written
as exclamation mark, so we can now ask

!balance > 10; true:bool

and so on.
Updating a reference is done with the ‘:=’ operator.

fun withdraw amount =
if amount < !balance then

(balance := !balance - amount;
amount)

else 0;

[Note that this code does not permit overdrafts]. The semicolon operator intro-
duces the idea of sequential steps in the computation, allowing the update operator
to proceed for its effect and then returning the amount actually withdrawn. [ML
provides a way of raising exceptions, and in a real version ofthis code it might be
more useful to use this mechanism to complain rather than just returning 0 in the
‘insufficient funds’ case. There is not room for a survey of ideas about exception
handling in this course, but those interested in it should certainly find out about
ADA as well as ML and various recently designed experimentallanguages].

The above code does not satisfy proper requirements for codemodularity. The
variable called balance has its initial value set up in an inflexible way, and is not
protected from interference by other pieces of code [for bank balances this is
deemed a bad thing!]. The solution uses ideas that have been seen before - the
variable to store the balance is made local, and so that it remains available, it is
necessary to use a function-producing function to generatecode to access it:

38

fun make_account initial_balance:int =
let val balance = ref initial_balance;

fun withdraw amount =
<code as before>

in withdraw end;

where it now is possible to maintain several accounts simultaneously:

val student = make_account 50;
val company_director = make_account 230000;
student 24; (* textbook *)
student 11; (* train fares *)
company_director 35000; (* fast car *)

It should be clear that updatable cells provide a new degree of flexibility and
power when designing abstractions. The cost of this power isnot instantly appar-
ent - introducing the new operators !, ;, := and ref into ML looks like a simple
extension. But use of these facilities has a global effect on the language. The sub-
stitution model of procedure invocation is no longer valid,and even to the extent
that it is the order in which parts of a program are elaboratedcan now alter the
meaning of the code. This cuts away the whole basis for formalreasoning about
programs that has up until now been available to us. Althoughthere are ways of
providing precise explanations of how code behaves in the face of assignment and
sequentiality, they are more complicated and include more and deeper pitfalls for
the unwary than semantic models for side-effect free computation. Some of the
details will be covered later in the CST.

5.2 Exercises

(12.1) Compare and contrast

fun make_inc1 x:int =
fn y => x + y;

and

fun make_inc2 x:int =
let val save = ref x
in fn y => save := !save + y;

(12.2) Using a message-passing style of code, design a version of the bank-
balance recorder that accepts both ”deposit” and ”withdraw” messages and up-
dates the balance accordingly.

(12.3) Which of the following ML expressions can possibly be meaningful?
For those that are devise initial settings for the variablesinvolved to allow them to
be evaluated.

39

!!!!exclaim;
!x := 33;
car(x) = x;
car(x) = y;
cdr(x) = x;

(12.4) In ‘The Art of Computer Programming’ by D. E. Knuth (vol2) (Addison-
Wesley, 1974), you will find a lengthy section on the generation of (pseudo-)
random sequences of numbers. On the basis of information culled from there, im-
plement a function random such that successive uses of it deliver pseudo-random
integers in the range 0 to 999.

(12.5) A turtle starts its life at co-ordinates (0.0, 0.0) inthe plane pointing due
north. It accepts a sequence of requests which are each of oneof the forms

turn <angle>
move <length>

and keeps as internal state information about where it is. Implement a turtle.

5.3 Sameness. Environments

Prior to the introduction of the idea of assignment there wasno difficulty in decid-
ing when two datastructures were identical. [It is impossible to produce a general
method for deciding if two pieces of code compute the same function, and so
the issues of equality between functions will not be considered here]. With ‘ref’
objects it things become more complicated, and in particular much harder to for-
malise. Using an example from the previous section, consider

val ac1 = make_account 100;
val ac2 = make_account 100;

where obeying the code in makeaccount does not involve any update opera-
tions, and in the two cases makeaccount is called with the same argument. Thus
it seems that the definitions of ac1 and ac2 can be discussed within the framework
of substitution semantics and they must be the same. But of course this is not so,
in that ac1 and ac2 each independently record their own histories, and the effect
above is quite different from that of

local val ac = make_account 100
in val ac1 = ac;

val ac2 = ac end;

[‘local’ is very like ‘let’ but just allows definitions to appear within the scope
that it introduces].

40

This example is a manifestation that the presence of assignment operators any-
where in a program can alter the meaning of even assignment-free parts of the
code.

When list and tree-like datastructures are being handled updates within one
structure will effect any other structures that share sub-trees containing the over-
written node. There are occasions when the exploitation of this, coupled with
careful control over which sub-trees are shared, can simplify and speed up algo-
rithms, but note that it also denies the implementation of the programming lan-
guage the flexibility of making copies of common datastructures (e.g. distributing
them across several separate co-operating computing elements) or of commoning
up structures observed to be the same shape (e.g. to save space).

As a piece of notation the programming language Lisp introduces the idea that
two objects are eq if they are the same object (so the effects of updating a com-
ponent of one are seen in the other), and equal if they are structures with identical
types and components but with no consideration given to issues of sharing.

In a move towards understanding how imperative programs work a compu-
tational model for their evaluation will be sketched. This replaces the idea of
substitution to cope with variables with a concept of evaluation relative to an ‘en-
vironment’. An environment is just a record of the values of variables, though it
should be stressed right from the start that during the course of any computation
many different environments will be created, and so it is at best loose notation to
talk of ‘the’ value of a variable. The use of environments will be illustrated by
repeating the sumsquares example previously expanded using substitution:

sumsquares(7+1,7-1) <empty env>
sumsquares(8, 6) <empty env>
square x + square y {x=8, y=6}
square 8 + square 6 {x=8, y=6}
x* x {x=8}
8* 8 {x=8}
64 {x=8}

x* x {x=6}
6* 6 {x=6}
36 {x=6}

64 + 36 {x=8, y=6}
100

where whenever a procedure is invoked its body is evaluated relative to an en-
vironment that shows an association between the names of theformal parameters
and the actual arguments. In this model execution of a ‘let’ statement involves
evaluating its body in an environment extended to include a binding for the newly
introduced local variables. It is useful to display the extension part to an environ-
ment separated from its parent, since this will help when considering cases names

41

are re-used in an inner block, and it will be essential for an understanding of func-
tional values as arguments and result values. The followingis an example where
two distinct variables each called x are used.

fun silly(x, y) =
x + (let x = y + 3

in x + y end);

Tracing the execution of a call to silly shows that the body ofthe ‘let’ clause is
evaluated in an environment that binds x twice. When such things occur the inner
binding takes precedence over outer ones.

silly(2,5); <empty env>
x + (let...) {x=2,y=5}
2 + (let x = 5 + 3

in x + y) {x=2,y=5}

now concentrate on the let expression, which is evaluated as

x + y {x=8}{x=2,y=5}
8 + 5
13

and hence the final result is

2 + 13
15

The environment model for program execution turns out to provide a conve-
nient basis for implementing computer languages. There aresubtle issues that
arise when functions are treated as first class objects that can be passed around as
freely as (say) integers, but these will not be considered inthis course.

5.4 Exercises

(13.1) Two versions of the factorial function were used to illustrate the use of
substitution semantics for program evaluation. Work through the same examples
using environments. [For code not using any imperative features an environment-
based evaluator should always get the same results as a substitution based one].

(13.2) An environment for use in integer-only calculationscould be repre-
sented by a ‘(string*int) list’, with the strings naming variables and the integers
indicating values. Using such a representation, and holding arithmetic expressions
as trees, show how code to evaluate the expressions could be designed.

(13.3) Consider makeaccount as shown earlier in these notes. It produces a
function-value (withdraw) as its result. The body of withdraw needs access to the

42

variable ‘balance’. In the environment model of computation this is achieved by
demanding the the value of withdraw should consist of the code for withdraw to-
gether with the environment (established by makeaccount) that contains a binding
for balance. Follow through some examples using makeaccount and the function
it returns to see how this can work.

(13.4) The function

fun copy_list(nil) = nil
| copy_list(a::b) = a::copy_list(b);

copies a list. What parts of the resulting list is eq to the corresponding parts of
the original, and what parts are equal ?

(13.5) Compare and contrast

let tworefs1 a =
let r = ref a
in (r,r) end;

let tworefs2 a =
(ref a, ref a);

5.5 Continuations

The environment way of modelling computation allows us to cope with some of
the complexity of having mutable objects present in our universe by making it
explicit that the state of all such objects must be carried along with the text that
describes what computations are to be performed. We still donot have a fully sat-
isfactory way of explaining the order in which calculations(and hence potential
update operations) will get elaborated. The purpose of thissection is to intro-
duce one particular way of providing such an explanation. A big attraction of this
scheme (which will be referred to as the ‘continuation passing’ style of comput-
ing) is that is actually reduces the number and complexity ofthe basic concepts
that have to be built into our model of computation! So far themain building unit
for programs has been the function - it is handed a set of arguments and in due
course it yields a result. The simplification that the Continuation Passing Style
(CPS) makes involves showing that there is no real need for functions to return to
their caller. The only thing that will have to be modelled will be calling functions,
and the issues about returning from them (maybe having to go back to implicitly
saved environments, with all sorts of potential worries about the consequences of
side effects on same) do not arise. How is this achieved?

The central idea is that a function which used to expect n arguments will now
be given n+1, where the extra arguent will be a further function (the continuation
) which will be called when the function has otherwise finished its work. To take
a simple example, we would re-write

43

fun ff(x) = x + 1;

as

fun ff(x, continuation) = continuation(x+1);

The continuation will have as its argument the value delivered by the function.
Thus returning a value has been replaced by invoking the continuation. Of course
this willoften be an iterative-style function call, and so need not be thought of as
expensive. The use of continuations makes it possible (and indeed necessary) to
make the order of execution of code much more explicit than was previously pos-
sible - for instance nested function calls will require multiple continuations which
indicate that the inner call is to be completed before the outer one is triggered:

fun f(x) = g(h(x));

has to become something like

fun f(x, cont1) =
let fun cont2(n) = g(n, cont1)
in h(x, cont2) end;

which might more succinctly be coded as

fun f(x, cont) = h(x, fn n=>g(n, cont));

Note how the calls to g and h have been turned inside out so thatg will only
get processed when h gets around to invoking its continuation.

So far as calling functions is concerned there need be no special distinction
between the argument representing a continuation and all the other arguments.
Indeed conditional behaviour will be modelled by giving a function two (or more)
alternative continuations; with the understanding that inthis case the continuations
do not need (useful) arguments one would model ML’s if by a CPS function

CPSif(test:bool, cont1, cont2) =
if test then cont1() else cont2();

and then the absolute value function might be expressed as

fun CPSabs(x, cont) =
CPSif(x < 0, fn () => cont(˜x),

fn () => cont(x));

A delightful property of CPS is that it makes calling functions and returning
results visibly the same operation, and so reveals a perhapsunexpected symmetry
about computation. An insight that this can give us is that ifwe allow function
calls to be expressed with multiple arguments (and in this entire section I am view-
ing multiple arguments as a primitive facility and not looking closely enough to

44

be able to see how it may be modelled in terms of tuples) then multiple results are
naturally supportable. Most programming languages (including ML) do not pro-
vide totally satisfactory syntax for this, but in CPS we can show what is required
as in a function which computes both the quotient and remainder of two numbers:

fun CPSdivide(p, q, cont) = cont(p div q, p mod q);

5.6 Exercises

(14.1)Show how an expression f(g(x,y), h(y,x)) would be translated into CPS,
giving two versions, one corresponding to calling g first andthe other to calling h
first.

(14.2)Investigate the use of continuations as a way of modelling conditional
constructions (e.g. a three-way if that takes one of three different actions depend-
ing on whether its control expression is ¡, = or ¿0), and repetitive constructs (e.g.
styled after a BASIC FOR loop).

(14.3)Read the full ML manual to find out about exceptions, andthe raise
operator. Is the ML exception mechanism as powerful and general as the full use
of continuations? Are there facilities it provides that arenot easily modelled using
continuations?

(14.4)Convert both the recursive and iterative versions of the factorial program
(section 3) into CPS. What differences are visible and how do they relate to the
distinction between iterative and recursive code?

(14.5)How easy does it look as if it would be to mechanise the transformation
of code from ordinary style into CPS? In some informal notation can you give a
set of rules that would do the job?

(14.6)Investigate the behaviour of and possible uses for a function fun whatdo I do(x,
cont) = cont(cont); [NB: the ML typechecker will not accept this example - you
can still consider what might happen if it did]. What about funanotheroddity(x,
cont) = x(cont); given that an identity operation is specified as fun donothing(x,
cont) = cont(x);

5.7 Queues, tables, objects, streams

The first abstraction to be considered in this section is thatof a queue. Queues can
be thought of as objects subject to an enquiry ‘are you empty’and two operations.
The first of these picks off the first item from any non-empty queue, the second
adds an item to the end of any queue (empty or not). Very often queues will be
used on interfaces between separate bodies of code, with onepartner adding items
and the other consuming them. In such cases it is clearly necessary to think of the
update operations as altering the internal state of the queue. [One could imagine

45

an attempt to model queues where the additem procedure produced a new queue
with the extra item included. This is all very well, but dodges the issue as to how
this new queue is passed across to the consumer process. On a queue of queues?].

As always there are choices to be made when implementing queues, and these
need to be made on the basis of code modularity, clarity and robustness as well
as the rates of growth of computing time and space used by the implementation.
Perhaps the simplest representation of a queue will be as a reference (so it can be
updated) to a list. Then the implementation will be something like

fun is_empty q =
!q = [];

fun take_from q =
let (head_item :: tail) = !q
in !q = tail; head_item end;

fun add_to(q, item) =
!q = add_to_end_of_list(!q, item);

where the details of addto endof list are left as an exercise. [In ML it would
be yet better to introduce a new datatype for queues, therebyprotecting them from
confusion with other objects that might be represented as references to lists]. In
this implementation the first two functions are pretty well behaved, but addto
can be expected to use both time and space proportional to thenumber of items
stored in the queue. Store use can be reduced by designing addto endof list to
work not be creating a new list but by corrupting the end of an existing one. Then
time can be brought down to O(1) by keeping, instead of the single head-pointer
q used so far, a pair of pointers to represent a queue, one to the head and one to
the tail. [Note: In ML the list datatype protects its users from updating the linkage
between list elements. See exercise 15.2 for the ML way of making it explicit that
mutability is needed in the datastructure used to implementa queue].

A second class of object that seems to provide a natural modelof many useful
behaviours, and which necessarily involves update operations, is the table. For the
purposes of this course a table is a way of recording an association between keys
and values. It is possible to add new entries to a table, delete existing ones and al-
ter the values stored against currently- present keys. Thissort of table can provide
a model for the records that a bank should keep associating customer names with
accounts. Equally it captures the essential features of filedirectories in a com-
puter system, dictionaries, method-lookup tables for object oriented computing
and many other forms of aggregate data. In special cases tables may be read-only,
or may be known to have keys that are all integers taken from some restricted
range, and of course in these cases special implementationsmay be possible to
take advantage of the limited patter of use: here most emphasis will be given to
the general case.

One natural way of implementing a table will be as an object oftype

46

(<key> * <value>) list ref

where the ref makes it possible to replace the entire body of the table to reflect
changes, and the items in the list pair together keys and values. If there are n
items stored in the table both access and updating are O(n) processes, and this
will frequently be considered unacceptably slow. [Here I amusing the common
abuse of notation that was mentioned earlier, and using O(n)to suggest that the
worst case performance that grows proportionally to n is actually attained. In this
example it will be].

A list structured as shown above is known (by the Lisp programming parts of
the world, at least) as an ‘association list’.

Two-dimensional (and higher) tables do not actually need any new implemen-
tation - they can be viewed as simple tables where the key is a composite data
type. Thus a two-dimensional array in ML might be a simple tables indexed by
keys of type int*int. Equally, however, multi-dimensionaltables can be modelled
as tables which themselves have sub-tables as entries. As well as being an imple-
mentation trick, this idea that a 2D table is really a table oftables has implications
at the level of the abstraction that the table provides, in that it distinguishes be-
tween the two keys, making it easy to take a row (or possibly column) slice of the
complete table.

Tables that use just a single integer key can be viewed as onesin many dimen-
sions if the key is looked at as if it were a large number with each digit of it an
index in some new dimension. If the radix for the big-number representation is
made two then an integer value (from some pre-specified range) can be viewed as
the recipe for a path towards the leaves of a binary tree. Sucha tree with maxi-
mum depth n can have up to 2 n leaves, or put the other way a tree with n items
in it need only have depth log(n). This leads to the idea of representing general
tables as trees and attempting to make access and update timeproportional to the
tree depth (i.e. O(log n), one hopes). For keys that are integers in some known
range (e.g. 0 to 31) it is easy to find a good way of deciding where in the tree
various values should be stored, for less well specified classes of keys there are a
variety of amazingly ingenious methods that guarantee to keep trees reasonably
bushy and thereby guarantee to achieve O(log n) computing costs. Some of these
will be covered in later years of the CST courses.

Queues and tables both represent attempts to capture the behavioural aspects
of things that contain internal state that varies with time.In each case concen-
tration has been on the object that owns the state. The final part of this section
of the course provides a different way of looking at history-sensitive behaviour,
not based on looking at the object that does the behaving but at the sequence of
interactions it has with surrounding code.

A sequence of items of data received from such a body of code isknown

47

as a stream. For the present a working model or example of a piece of stream
generating code will be an object that responds to a single message (which might
be called ”next”) by returning the next item of data from the sequence that it
computes, or possibly a marker value indicating that it has transmitted all the data
that it wants to. The next section will discuss both the implementation of stream-
generating functions and the use of streams as connective tissue to hold together
large bodies of code.

5.8 Exercises

(15.1) Produce the version of addto endof list that creates a whole new copy of
the list in the process of adding an item to the end.

(15.2) The following datatype defines a basis for implementing queues of in-
tegers using update-the-tail queues. Produce a queue package using it.

datatype cdr_mutable_list = empty |
item of int * (cdr_mutable_list ref);

(15.3) Implement two packages of code that provide support for tables indexed
by integers and holding integer values, and which allow new entries to be added
to the tables. Design your code so that access to the tables inyour two packages
costs O(n) and O(log n) steps (on average) respectively. Youshould also make
provision for an enquiry as to whether a table holds an entry for some specified
key.

(15.4) Based on one of the table-packages of 15.4 show how to construct a
function memoify such that if one has a function fn of type int-¿int then memo-
ify(fn) is also a function of type int-¿int, computing the same values as the original
fn but which keeps a tabular record of all the values it ever computes and thereby
avoids ever having to obey its body more than once for any particular argument
value.

(15.5) In a previous exercise you wrote a function that generated a list of all
the permutations of some set of items. Can this code be redesigned to generate
a stream of permutations? Can the code to multiply two long integers (originally
coded representing the integers as lists of digits) be adapted to accept streams as
inputs and produce a stream output?

5.9 Streams - use and implementation

Streams provide a useful tool for building abstractions because they provide as-
pects of both data management and control structure bundledtogether in one neat
concept. Also, looking at the sequence of values that make upa stream often
gives a clearer view of what is happening as a process evolvesthan does trying

48

to inspect the changing internal state of the code that generates the stream. It is
possible to think of the stream as if it were a static value with all its past and future
elements visible, and thus possible to reason about the totality of these values.

Having introduced streams, it becomes natural to produce some functions
which operate on streams and produce stream values. To startwith it will not
be necessary to know how streams are implemented, just how they behave, and
in many respects streams behave like lists. Code to handle them will therefore
be expressed in terms of a constructor :: and selector functions car and cdr, but
with the understanding that the stream versions of these operators will not be ex-
actly the same as the list ones. Note that this interface to streams is different from
the message-based one introduced earlier, but is just a different view of the same
underlying concept.

The first operation applicable to a stream is that of applyingsome given func-
tion to all the items in the stream, collecting the results into a new stream. This
process is known as mapping. For instance the function that squares its argument
could be mapped over a stream of integers. The second high level stream func-
tion to be mentioned performs filtering - it takes values fromits input stream and
applies a test function to each. The output stream is made up of just those input
values which satisfy the test. The power of filtering can be illustrated by giving a
concise program which describes the stream of all prime numbers. The function
prime stream below should be invoked with the stream of integers{2,3,4,5,. . .}
as its input, and it generates as its output the stream of primes{2,3,5,7,. . .}.

|| fun prime_stream (p::rest) =
||
|| let fun not_p n = (n mod p) <> 0;
||
|| in p :: prime_stream(
||
|| filter(not_p, rest)) end;

where filter is the stream function that generates an stream consisting of all
items in its input that satisfy the given predicate (which inthis case achieves the
effect of removing all multiples of p from the stream). The vertical bars in the
margin by this example are there as a reminder that the code given is not directly
valid as ML. Using MLs list notation in the same informal way to denote stream
operation the coding of map and filter should be easy exercises.

It is also possible to produce other general and useful functions applicable to
streams. One will merge pairs of streams either by simple interleaving of elements
or with the selection of which input stream to take an item from being controlled
by a user-provided function applied to the two input streams. Others, only really
useful for streams of finite length, can combine all the itemsin a stream using
some user-provided function after the style of the functionin exercise 5.4.

49

One way of understanding the relationship between streams and lists is to
show how a variation on lists can be used to implement streams. This variation
is based on an idea known as ‘lazy cons’. In ordinary ML there is a function,
usually written using an infix ::, to create a new component that will be part of a
list. One can imagine that inside ML this is a perfectly ordinary function, called
(say) cons. In ordinary ML all calls to this function proceedin the regular manner,
i.e. the arguments for cons are evaluated and then the body ofcons is processed.
That body performs system-level operations to allocate some store. The selector
functions car and cdr are then do nothing more than to retrieve the two components
that cons stored away. Lazy cons is different. The system must recognise lazy
cons, and must not evaluate its (second) argument in advance. The system level
code then stores away not the value of the second argument, but an unevaluated
expression. To compensate for this change, the cdr functionis also altered so that
it knows that what it will find stored directly in the datastructure will not be a
value but will still be an expression in need of evaluation. The overall effect is
that the tail of a list (now a stream!) only gets evaluated when somebody tries
to inspect it. A consequence is that it becomes quite proper to think in terms of
infinite streams, since at any particular stage in the processing only a finite portion
will have been evaluated, the rest will be represented by unevaluated expressions
stored away in the cdr fields of stream cells.

Perhaps surprisingly it is perfectly possible to model thissort of behaviour in
ML. ML defines that the arguments of a function must be evaluated before the
body is processed, and so the system can be tricked into delaying evaluation of
any expression by writing that expression as the body of someotherwise vacuous
function. When it is time to find the value, the packaging function can be invoked
(with an arbitrary argument), an operation which is known as‘force’. Using this
trick a stream of integers could be introduced as

datatype int_stream =
cell of int * (int->int_stream);

and then the stream of integers starting at some given value ncould be con-
structed using the function

fun make_ints n:int =
cell(n, fn w=>make_ints(n+1));

and the car and cdr functions might be coded as

fun car(cell(p,q)) = p;
fun cdr(cell(p,q)) = q(0);

where the application of q to 0 in the definition of cdr is the force operation.

50

The ability that streams provide to cope with structures which are notionally
non-terminating is very powerful, but it seems that the use of streams causes the
order of evaluation of pieces of a program to become dependent on the patterns of
access to data, and this can lead to grave confusion if assignment operations that
make functions history or order-of-evaluation sensitive are used as well.

5.10 Exercises

(16.1) The sequence of characters typed at a terminal might appear to a computer
as a stream of numeric codes representing those characters.Show how it is pos-
sible to convert this stream of characters (integers, actually) into a stream of lines
(where each line is represented by a list of the codes of the characters involved).
Make your design such that it can easily be adapted for use on different computers
where the code generated by the ¡return¿ key will not always be the same.

(16.2) Is is possible (even in theory) to produce a stream that represents the
digits in the decimal representation of pi?

(16.3) Enumerate, in ascending order and with no repetitions, all the positive
integer that have no prime factors other than 2, 3 and 5. The enumeration should
be in the form of a stream, which will start 2,3,4,5,6,8,9,10,12,15,..., and an effi-
cient way of generating it produces this by merging togethera number of streams
each derived from the basic streams 1,2,4,8,16..., 1,3,9,27,... and 1,5,25,....

(16.4) Generate streams that yield that successive terms ininfinite power se-
ries expansions of the sine and cosine functions. Is it possible to produce a stream-
manipulating function that derives from these the infinite power series stream for
the tangent function? Given a series stream for the tangent function can the coef-
ficients in an expansion of arctan be derived?

(16.5) Show how, given two infinite streams (A and B), it is possible to con-
struct a stream that has as its elements every possible way ofpairing together items
taken from A and B.

6 Concluding observations

6.1 From formalism, through implementation to application

This introduction to programming and datastructures has stressed two ideas. The
first is that the specification of a procedure or a datatype canrepresent a firewall
that separates the concerns of users of the procedure or typefrom those of its im-
plementer. Making this separation of concerns explicit enables us to recognise that
even simple datatypes may admit several very different implementations, and that

51

there can be substantial variations between the efficiencies of different procedural
solutions to some given problem.

The second idea is that there can be formal models supportingmany aspects
of computing. These include ideas relating to the estimation of time and space
use in a process (as expressed in big-O notation), substitution and environment
explanations of the process of computation, analysis of thetypes of objects being
manipulated and the demonstration of a relationship between the use of ‘let’, ‘fn’
and ‘fun’ in ML.

Overall the emphasis has been not on the values computed by some program,
but on the way in which the structure of a program can be made toreflect the
nature of the problem domain in which it is applicable. The view taken is that
this approach will lead to bodies of code where each part has aclear purpose and
specification, and hence can be designed and validated in (a reasonable degree of)
isolation.

It might seem that this is a self-evidently reasonable goal and will have been
adopted by everybody without the need for lecture courses. Particularly for large
programs this does not seem to be the case: recognising the proper abstractions
that lie beneath the surface of a computational task and deciding how to partition
the complete problem into units is hard. Avoiding reliance on features of a sub-
function or datastructure that are incidental results of a particular implementation
rather than explicitly recognised parts of the specification is also very easy. Some
of the ideas introduced in this course help keep interfaces simple and narrow and
thus assist in the construction of good code:

Assignment-free functions guarantee to behave consistently whenever they are
called: they are neither sensitive to history nor subject tothe influence of variables
or structures other than their arguments.

Objects thought of in a message passing style provide a way ofencapsulating
information that has to be updated in place, so that the only way in which the
variable data can be accessed will be through messages sent to the object. Viewing
the sequence of messages as a stream can sometimes provide a further way of
isolating the updates and obtaining a more global description of the behaviour of
the complete system.

Datatypes, enforced by your programming language, can bothhelp in docu-
menting the structure of code and impose a degree of consistency in the way in
which functions are invoked. The design of type systems for programming lan-
guages is still an active area of research, and there are somedelicate balances
that have to be struck between type systems that are very secure, but which are
clumsy and inflexible, and ones that compromise security in order to provide the
user with additional capabilities. ML is fairly typical of an emerging generation
of well type-checked programming languages.

These notes will no doubt contain errors of various sorts - ranging from simple

52

typing mistakes to places where brainstorms have led to muddled explanation or
bad examples. When you detect any of these, please let me know in the hope that
the notes issued in future years will be better. The first place to seek extra assis-
tance with this course will be at the associated practical classes, and by discussing
issues with others who are taking the course. College supervisors and Directors
of Studies should also be able either to provide help directly or to organise group
problem solving sessions. Good Luck!

6.2 Exercises

(17.1) Starting with the Physics of silicon and working upwards towards studies
of the social impact of Robotics on society, identify levels of abstraction at which
it is possible to talk about computers.

(17.2) Take one of the example programs that you have developed during the
term, selecting one that is about a page long. Toss coins to select a number n in
the range 2 to 4, and rework your code to introduce n bugs, which should be as
subtle and non obvious as you can manage. Exchange your corrupted program
with an analogous bug-seeded one prepared by a friend, and find the introduced
errors. Do any unintentional bugs or infelicities get uncovered this way? How
easy is it to manufacture bugs and how easy is it to find them?

(17.3) When the course giving an introduction to computer hardware is suffi-
ciently under way, read the sections of Abelson & Sussman’s book on the design
of program and datastructures for modelling electronic circuits and adapt it for the
particular case of digital (computer) circuits.

(17.4) Compare and contrast (as possible initial teaching languages) ML as
used in this lecture course with the Scheme programming language used by Abel-
son and Sussman. If you have used BASIC or Pascal before, include them in the
comparison.

(17.5) Consider the definition of a function Y given below. Is it possible for
ML to assign a type for Y, and if so what is that type. SupposingY could be used,
what would the value (Y f) expand into?

fun Y f =
let fun g h = f (h h)
in g g end;

(17.6) Check the lecture schedules for the rest of this and theremaining years
of the CST to see what further questions can be related to ML andthe programming-
related issues introduced in this introductory course. Start looking into algorithm
design and analysis, the technology of constructing compilers for languages like
ML, and formal methods for reasoning about programs and proving them to be
(in)correct.

53

