Introduction to Algorithms

A C Norman. Michaelmas 1994

1 Introduction

This is a set of four lectures aimed just for the Diploma cla#isleads in to
the “Data Structures and Algorithms” course that is timetdlbmmediately after
it. The DS&A course is also attended by CSB 4tudents, who had a couple
of courses on programming last year as well as one on Disttateematics.
The programming side of things is covered to a large exterthbyfact that the
Diploma class gets taught Modula-3 early in the term, this¢burse provides
survival training with regard to the mathematics that the&BSourse needs to
rely on. Those Diploma students who have just completedtadidgree in mathe-
matics (elsewhere or here, and possibly including Part @htmeasonably collect
a copy of these notes, observe the topics covered and noy about attending
these four lecturés

Later in the year there is a course that has “Discrete Matliesias its title.
There may be a small amount of overlap between this coursehatane, but
I do not mind! Firstly because some things can usefully be saice and make
more sense the second time, and secondly because the aigraghere will be
somewhat compressed and will relate only the the DS&A cquvbde Discrete
Mathematics has other applications in Computer Science.

This set of four lectures is not directly examined. Some ef¢bncepts in-
troduced may, however, help in answers to DS&A questiond,itamay give a
preview of Discrete Maths and hence make that easier to cape w

2 Proofs and Induction

A significant issue in designing proper computer procedioaslve problems is
that of proving that theyalwayswork. There is a very large body of empirical
evidence that just writing a program and testing it (evetirtgst on a very large
number of examples) is not sufficient: formal proof is neaegsExamples given
in this course will not all have a very obviously computerfseling — | hope
that when the DS&A course follows it you will see some of thelagations of
notation introduced here.

The first piece if notation to introduce here is the symbel™which | will
pronounce “implies”. The idea is that if you know that thentippn the left is true
then you can deduce that the one on the right is. A major ushki®fg in the
following construction:

If you know bothd and A = B

'However note that before dropping aother lectures you ought to discuss your plans with
your Director of Studies.

Then you may dedude
whatever the statementsand B are. Eg:

All cats are animals

and Arthur is a cat
therefore

Arthur is an animal

To bring the example better into line with the original folam it is perhaps
helpful to see “All cats are animals” as shorthand for stagdior all possible state-
ments of the form % is a cat=- x is an animal”, with arbitrary words (including
in particular including “Arthur”) substituted for the maakz.

What you find is that the more you strain to make real-world glasprecise
the more murky they appear. Some of this is a direct refleafahe flexibility
and imprecision of natural language. Often things that stimathematical in
style fit into the structure of formal proofs more easily.

The notation A = B” can be read as “IfA thenB” or “ Bis true if A is”. So
far we have use this in cases where we have some way of knohand ts true.
Another use of the same rule is when we can tell (from somer citwgrce) that
B is false. It is then valid to deduce thatmust be false also. For instance given
that all cats are animals, knowing that the statement “therms an animal” is
false assures us that the moon is not a cat. Wow! If you werass cf mediaeval
philosophers you would know these rulesasdus ponenandmodus tolensand
we could talk about deduction using them as syllogisms. ehbp rules look like
natural common sense, but it is worth noting that in commaesp (especially
of a political nature!) the rules are very often not adheoeds an exercise try to
spot examples where people try to carry forward an argumstiireak the formal
rules of logic. Eg modified from a Thurber story

People who eat carrots and have long ears cause earthquakes
and there was just an earthquake
therefore
It was caused by the rabbits
therefore We wolves are justified in taking them into protective custody
... to protect ourselves

Some people would consider that the above line of argumlestrihtes various
other bad forms of deduction, such as starting the argunfeniith an assertion
that is false, and slightly adjusting the interpretatiofyjprbtect” part way through
(etc).

On occasions it will also be useful to write things the othe@yvaround as
in “B «< A”, which can perhaps unexpectedly be read dschly if B”. To

2

see how, observe that being true whileB is false contradicts the implication.
Finally A & B is a shorthand for having both = B andA < B, and to prove
it you normally need to prove both thieand theonly if parts — often separate
proofs will be required for these two parts. A very commonfasion is to mix
up whether you are in the process of proving ther < part.

Often the sorts of things you want to prove in computer s@eg@and math-
ematics) will be general statements true &br cases of some condition. One
approach to this is known gsoof by induction It comes in a number of variants,
so | will deal with the simplest one first:

Suppose | want to prove that some result is true for all integkies ofn, ie
n=1,n=2,n =3, ...then | can start by proving these casevhich will be
the first onen = 1, and then showing that if the result is true for some paricul
value ofn then it must also be true for the next step upH1).

As an example, consider the Tower of Hanoi problem — you hasetaf
graduated discs and three pegs. A larger disc may never &g @il top of a
smaller one, and the discs live on the pegs. In a single mowemay move one
disc from the top of the pile on one peg to the top of the pile wotlaer peg, but
you must keep to the rule that large discs may never be pldo@adeamall ones.
The result to be proved is that however many discs there erpdassible (starting
with all discs piled in order on one peg) to make a sequenceowesithat end up
with the discs on another nominated peg.

The proof by induction goes as follows

Base case:With one disc it is easy - just move it!

Induction step: Suppose we can achieve the desired effect wiiscs, and now
we havek + 1. Calls the discs X, Y and Z and suppose all discs start on X
and are to be moved to Y. Observe that if we just ignore theboftargest)
disc the remaining discs are subject to the same rules of the Hanoi game,
so by our induction hypothesis there is a sequence of moatstids up
with all of them on peg Z. From this state it is possible to mtheslargest
disc from X to Y. For the remainder of the sequence again tlge$ disc
can be ignored, and again moving theliscs from Z to Y can be done. In
the end all discs are on peg Y in the desired order, so we hawenshow
to generate a sequence of steps that niovel discs.

The two parts above are sufficient to prove the general refiutine writes an
abbreviationH,, for the statement “The Hanoi puzzle can be solved if there are
n discs” then we proved{; directly, and then set up a chaf, = H,, then
H, = H3, H; = H4 and so on for ever. So you see that the inductive step in the
proof is just a way of building up (all at once) a chain of simpt-" deductions.

It is vital in proofs by induction to have a base case. In many exampées th
you will come across it will be incredibly trivial, but it igi important to write it
down.

In the above example the inductive step took the view thainwiteving stage
n it was legal to assume that stage- 1 was trué. An alternative variant on the
induction idea is that when proving staggou assume that the result has already
been proved foall values less than, not just the special value — 1.

A lion may be asleep somewhere in a desert, can we find it oogdischat it
is absent?

Base case!lf the desert has area less than 10 square metres then we @¢adhefin
lion [since this example is slightly a joke | am going to assutat this
remark is “obviously” true].

Inductive step: Divide the desert into two sub-deserts each of equal ared. Cal
these N and S (or E and W if you like). Observe that their aréa &ach
case smaller than that of the whole desert. Thus by an ir@ubiipothesis
we can find the lion (or its absence) in each sub-desert. Ifivektfie lion in
one part we report success, if it is not found in either sukedst is utterly
absent.

This proof needs one more crucial component — an argumenif thia take any

desert at all and keep dividing it in two we will always end uphwa region of

sand that has area less than 10 square metres. The base reaseiméact a bit

guestionable, especially if you imagine a large desertydwreing split strictly

North/South so that the 10 square metre base case is in facy aery long but

very very thin strip of territory. Such concerns do not dam#we structure of the
inductive proof, but should serve to warn you that all the fie¢ails must be in
place for a proof to be valid.

I will show one more example of a proof that uses a form of inidunc The
result | want to prove is that any arithmetic expression tisats just addition and
multiplication and that has only even numbers written in il evaluate to an
even value. This will be structurally much closer to manyhaf proofs needed for
DS&A methods. The inductive proof will be in terms of the nuenlof operators
in an expression.

Base case:With no operators at all the expression is just a number, gnithd
statement of the problem that is an even one.

Inductive step: If there is at least one operator then the whole expressiuirttie
form A & B where® will be either an addition or multiplication operator,

2Well, the notation that when proving stage+ 1 | assumed the result true far;, but that
amounts to the same thing!

and A and B are sub-expressions. | will treat things liket+ 4 + 6 as
(2+4) + 6 here. There are then two cases to consider

The leading operator is + Each ofA and B will have fewer operators than
the whole expression, hence by induction each will evalitede even
number. The sum of two even numbers is even, hence the whole ex
pression is even as required.

The leading operator is * Similarly, since the product of two even num-
bers is even.

3 Sets, Relations

Very many computer data structures are best reasoned asiogt things called
“sets”. For the purpose of this course a set is collectiorhinfgs, and is written
by listing the members of the set inside curly brackets.. @arfstance the set
whose members are the first five whole numbers might be wrfieh2,3,4. It

is perfectly possible to have a set with no members at alljtasthen (obviously)
written as{}, and known as the empty set. There are a number of rules adtsut s
and a collection of things you are allowed to do with them:

e The members of a set should not be thought of as being thengaarticular
order, even though when you write down a representation ef gmi have
to list them somehow. So for instan¢#,2,3}, {3,1,2 and{2,1,3} are alll
just different ways of writing down the same set.

e Any particular object can either be in a set or not. The comsege of this is
that when you list the members of a set you should never seguptigates.
It is not possible for an object to be a member of a set twice@erntimes,
s0{1,1,1,2,2,3 is not a valid things to write.

e As well as having the null s€ft} it is (of course) quite proper to have sets
that have a single member. Set members can be arbitrarysthimgud-
ing other sets. Thus we can have the number 1, and the $pt§{1}},
{{{1}}}. These are all quite different things. For instance the{$ét
{{}}} is a set with two members (one of which is the empty set, theroth
is a set whose sole member is the empty set).

e It is quite common to use upper case letters to stand for setdaaver
case ones for the items that may be members of those sets. ofdteon
x € Alis used to indicate set membershipis an object andl is a set. Eg
3 €{1,2,3,4,5} is true. The notatiom C B is used to indicate that is

a subset of3, ie it has as its members some selection from the members of
B.Eg{2,4} c {1,2,3,4,5}.

e The notationA N B is a set whose members are just those things that are
present in bott and B (theintersectior), while AU B has all the members
that are in either (or bothd and B (theunion).

e The exact rules for the treatment of very infinite sets areneetded in this
course, but informal notation will be used to describe sengases, such as
the integery..., —2,-1,0,1,2,...}. The expressioz?|z € {0,1,...}}
stands foq0, 1,4,9,...}.

e Given a finite set you can find out how many members it has. Thebeu
is known as the cardinality of the set (or more simply as itge)siand is
sometime writtenA| as in|{2,4,6}| = 3.

An ordered pairis just a pair of things grouped together where (unlike the
situation with sets) the ordering of the two items does matShch pairs will
be written with parentheses as in (1,2) rather than curlghka®s. This idea will
be extended to ordered triples, quadruples, 5-tuples ad sand in generat-
tuples. The objects in amtuple do not need to be all of the same sort. Eg here is
a 4-tuple

(1, "string", {{}, {22}}, x}

where the third member of the 4-tuple is a set.

Given one or more sets there are ways of constructing biggeosit of them.
The outer product of two setd and B is the set of ordered pairg, b) with
a € Aandb € B. Eg{a,b} x {1,2} = {(a,1),(a,2),(b,1),(b,2)}. The pow-
erset of a set is the collection of all subsets of. Eg. powersef(p,q,7})=
O AptAd Ark Ap.ad g rtAp.r} {p, ¢ r}}

You might like to convince yourself thatl x B| = | A||B| and|powersetA)| =
2l41, For the powerset example try induction on the size of the set

Given a setX , arelationis some property that may or may not hold between
one member ofX and another. For instance if attention is restricted to sets
numbers then the operatox™® for “is less than” is a valid relation, as would be
“=""for equality. Sometimes people will want to use a generah@asay R for an
unspecified relation, and then rather than something ctentke x = y they will
write zRy to show that relates tay under R.

Relations are not only things that arise with numbers. In alfatnee (or many
computer data structures you will come across later) thagiogl “is an ancestor
of” can be relevant. Given a set of people one could specigyréiationship

“likes” (useful for a computer-based system for arrangiegt&g plans at large
dinners?). A final example is the “is married to” relation.

Relations can have different properties, and the examplesg@bove can
illustrate some of the important ones:

Reflexive: Given any member of the set,say, does the relation hold true be-
tweenzx and itself. For= it does, for< and “is married to” it does not and
for “likes” the status is unclear to me. Relations that have pinoperty are
known as reflexive. From any (possibly non-reflexive) relatyou can de-
rive something called the reflexive closure by forcing eaemix to relate
to itself but otherwise leaving conditions unchanged.

Symmetric: Of the examples given here,and “is married to” have the property
that if (x,y) relate theny,x) do too. This makes them symmetric, whitds
clearly not. Again the extent to which “likes” is a symmetrgtation on any
particular set is an interesting social consideration. rEfilexive closure of
a relation extends a relation to force symmetry. Eg the syimeneosure
of < is #£.

Transitive: If x = y andy = 2 then we may deduce that= ~. Similarly for
<, and these relations are, on account of this, known as transi here is
such a thing as a transitive closure, which is discusseceiméixt section.

4 Relations and Graphs and Matrices

Relations can seem rather abstract things, of dubiousyutdne of the things that
makes them come alive in computer science is just an alteenaty of looking
at them (and especially at relations on finite sets). Takd A'send a relation R
on it, and identify the members of with nice dots drawn somewhere on a piece
a paper. Then take the relation, and if two members in thesagiy,y) are related
(ie xRy) draw a directed arc from the spot that stands:foo the one that stands
for y. By a “directed arc” | mean that the line drawn has an arrow @hdawing
which way it goes, so that there is no possible confusion éeitvthe arci,y) and
the one (,z). The effect is that the relation has been represented apa gr

Now set up a square table, with one row for each possibdte y and one
column for each. Fill in the cell at position ¢/) with a true or false marker that
indicates whetherRy holds. The relation has been represented as a matrix. And
in passing we have shown that any graph can be representadatsig and any
matrix that has just boolean values can be interpreted aspgiio give yourself
concrete example, try drawing the graphs and matrices &rdlations= and <
as they apply to the séfi, 2, 3,4, 5}.

Now | can come back to the transitive closure of a relationy@idal applica-
tion is to start with a set consisting of cities, and a relatidich is true if there
is a direct non-stop rail link between the two cities invalv& hen the transitive
closure of this relation will indicate whether there is argyof travelling by rail
between two places, ignoring the original requirementstti@journey be direct
and non-stop. In terms of graph operations this is now prigh&asonably easy
to visualise.

Interpreted in this new image, a reflexive closure just adtls loops to each
vertex in the graph so you can do a small round trip and get tmekhere you
started. Note the difference between being somewhere angl dlele to get some-
where by taking a single step of a journey — adding the loogs doake a real
difference.

A symmetric closure extends the rail network so that if itesgible to go from
Ato B then it is also possible to get back fraihto A.

There are a great many natural and important problems tleahaiurally
thought of in terms of graphs — and so relations can provideesmathemati-
cal notation and underpinning while sometimes booleaniogstimay be a useful
concrete representation for computers to use. Samplegmmsahclude:

1. Is the graph connected (ie each vertex can be reached frgrotiaer)? If
not, how many pieces does it fall into?

2. What is the longest path you can take through the graph wiithsiting any
vertex more than once. What is the longest path that doesawarre any
edge more than once?

3. Given a connected graph, is there any vertex which if resdavould leave
it not connected? This is important for communication nekspin that
such a vertex would be critical for the reliability of the wamet.

4. How many colours are needed to colour each vertex of thehgsa that
vertices that are joined by an edge have different colours?

5. Within the graph, where is the largest subset of verticatdre all mutually
directly connected.

6. Given two graphs are they really the same shape, onlyridiffen the way
they happen to have been described?

A special sort of graph (and hence relation) has all arcsirstain one subset
of its vertices (call that subset), and ending in anotherX), and only one arc
issuing from any one vertex. This can be seen as a way of egiieg a function
from the setA to B.

Looking at relations and functions as graphs is probablyetigest way of
working out how many of them there are. For instance for aSetith sizen the
number of relations possible28’. These range from the vacuuous one where the
relation is never true to the almost equally silly one wheiie always satisfied.
See this by observing that each relation’0man be seen as anby n matrix with
boolean entries, so there aréentries in all, and each can be either true or false
(2 possible values) so there &€ possibilities in all.

5 Big-O and © notation

All the while in Computer Science we are concerned with howglibrings are go-
ing to take. It is almost always necessary to make a few siyipdj assumptions
before starting of cost estimation, and for algorithms thesomost commonly
used are:

1. We only worry about the worst possible amount of time tloae activity
could take. The fact that sometimes our problems get solvied faster
than that is nice, but the worst case is the one that is mosbriiaut to
worry about.

2. We do not know what brand of computer we are using, so rétiaer mea-
suring absolute computing times we will look at rates of giroas our com-
puter is used to solve larger and larger problems of the same ©ften
there will be a single simple number that can be used to cterse the
size of a problem, and the idea is to express computing timégrations
of this parameter. If the parameter is calle@nd the growth rate ig(n)
then constant multipliers will be ignored, $60000 f (n) and0.000001 f (n)
will both be considered equivalent to jugtn).

3. Any finite number of exceptions to a cost estimate are uartapt so long
as the estimate is valid for all large enough values.of

4. We do not restrict ourselves to just reasonable values of apply any
other reality checks. Cost estimation will be carried thtoag an abstract
mathematical activity.

Despite the severity of all these limitations cost estiorafor algorithms has
proved very useful, and almost always the indications iegirelate closely to the
practical behaviour people observe when they write and ragrams.

The notations bit-O an® are used as short-hand for some of the above cau-
tions.

A function f(n) is said to be)(g(n)) if there are constantsand N such that
f(n) < kg(n) whenevem > N.

A function f(n) is said to be9(g(n)) if there are constants, k, andV such
thatk,g(n) < f(n) < kog(n) whenevem > N.

Note that neither notation says anything abg(t) being a computing time
estimate, even though that will be a common use. Big-O justiges an upper
bound to say thaf(n) is less than something, whil® is much stronger, and
indicates that eventually and g agree within a constant factor. Here are a few
examples that may help explain:

sin(n) = 0O(1)

sin(n) # ©O(1)

200 + sin(n) = ©O(1)

1234560 + 654321 = O(n)
2n—7 = O(17Tn?)

log(n) = O(n)

nlOO — O(2n)
14+100/n = ©O(1)

Various important computer procedures have costs that ge#(n log(n)).
In the proofs of this the logarithm will often come out as onedase 2, but
observe thatog,(n) = ©(log,,(n)) [indeed a stronger statement could be made
— the ratio between them is utterly fixed], so with Big-O@motation there is
no need to specify the base of logarithms — all versions analggvalid.

6 Recurrence Formulae

When analysing algorithms one will often end up with a proofirmjuction that
shows that the method described does indeed always solpedbiem it was sup-
posed to. Quite frequently this proof can be extended tal\delay of estimating

the costs involved. Look back to the Tower of Hanoi examphel, @ow we know

that given a tower of, discs it can be moved from one peg to another, consider
how many elementary moves will be used if we follow the regipplicit in the
inductive proof. To do this start by introducing a name fa tost, say\/ (n) for

the number of steps to movediscs. Then from the base case of the induction
we haveM (1) = 1. The induction step shows that success is possible by a route
which gives

Mn)=Mmn—-1)+14+Mn—-1)=2Mn—-1)+1

10

This is a recurrence formula that we would like to solve to femie explicit
representation of the cost growth functidri(n). Note that the proof we have
does not show that this will necessarily be the most effiorgat of moving the
discs, just that it is one way that achieves the desired fordiguration. Thus any
result we get out from solving the recurrence will probal#yput inside a Big-O
to indicate that it is just an upper bound for the cost of s@uhe problem.

This course will not have either the time or inclination tamshyou all the
clever ways there are of solving recurrence formula, antkatsjust provides a
cook-book listing some of the more commonly arising onesiadatating their
solutions. Symbols with names like stand for constants, and will sometimes
need to have values larger than O or 1 for the results quoted valid.

fin)=f(n=1)+k : f(n)=06(
f(n)=kif(n—=1)+ky : f(n)=06(
f(n)=kif(n/k1) +kin = f(n)=6(
f(n) = f(n/k1) +kan = f(n) =0O(og(n))
fn)=kif(n/ka)+... + f(n)=6(
fn)=f(n=1)+f(n—=2) : f(n)=06(

whereg = (v/5 + 1)/2 ~ 1.618034, the golden ratio. In each case more careful
analysis would specify the exact constraints on the valti#seaconstants permit-
ted, and limitations on the initial values ¢f0) or f(1). Often an exact solution
(not just one correct to within the constant factor tAgiermits) can be found, for
instance for the Hanoi problem the solutionli§n) = 2" — 1.

7 Conclusion

If you want more reading on this sort of material, | recomm#&ddncrete Mathe-
matics” by Knuth, Graham and Patashnik. It obviously cargaiuch more that
can fit in my four lectures, but a great deal of what it contaiosld find direct
use somewhere in a computer science course.

11

