Databases

A C Norman, Lent Term 1995

These notes prepared by A C Norman and N H M Caldwell, 1995

1 Introduction: What is a database?

First let me introduce these lecture notes. They are not glEtenpresentation of
all the material covered in the lectures — rather they prewd overview of the
topics around which the course is based. The textbooks l&tthe end should be
consulted to find complete and accurate technical disausgiball these issues.
However some of the textbooks are sturdy 800+ page volumess@obviously
they contain much more than the lecture course can possiigrcthese notes
should help you sort out which sections are vital and whiah sfoould read just
for interest.

The term “database” may be used loosely as a term for almgsbaaly of
information kept on a computer. Here the emphasis will beases that tend to
have most of the following properties:

Persistent data: The information must be preserved beyond the end of the run
of just one program. Thus | will not view the contents of a comep's
memory while it is running a program to be (of itself) a dasdbanless
perhaps steps have been taken to keep that computer runmdngacting
over a very extended period of time;

Multiple uses: Data become most interesting when related information ks co
lected together and multiple applications share acces$s to i

Scale: Utterly tiny amounts of information do not call for databasehnology,
so we will often be thinking about substantial amounts obinfation;

Enterprise Data: Frequently databases hold information that is central & th
operation of some organisation (“mission critical” in sedire engineering
parlance), and anything that compromises either the acgwhthe data
or smooth access to it would have severe repercussions. réhability
becomes a serious issue;

Modelling the Real World: The data stored will be a representation of some in-
formation that has a relevance and reality outside the ctenptihus (usu-
ally) the storage of temporary results computed during skemgthy math-
ematical calculation will not count;

Security Matters: Information in many databases will be sensitive in one way or
another, so although it is important to make the intendetbpet of access
to data easy, preventing improper access is usually alah vit

Flexibility is needed: All the other issues listed here imply that use of any real
database will evolve over time, and so abstractions mustskd go that
incidental implementation decisions do not inhibit this.

1

Coping with these demands will naturally lead to costs: indize and com-
plexity of the database management software, in the desigri Beeded to es-
tablish a database and set up ways in which controlled ssib§éte information
stored can be accessed, and in the machine resources neeggport it all. So
perhaps the first suggestion from this course is that if yote len application
with simple data, structured in a way that is not going to ggarwithout need
for multiple users or security or with severe constraintshenabsolute delay that
can be tolerated for one operation, then avoid databasedkdy and store your
information in simple files with some clever index structuBait as soon as you
start to find multiple uses for (subsets of) your data, andipialconcurrent users
need support, it is time to move to use of a data base managpackage.

When considering the costs of using database technologytifabavill often
need to include the cost of learning how to apply it) it is @g$ instructive to
think about the value of data. | will give a simple (perhapsresimple) calcula-
tion that suggests that perhaps it is quite high. First ssppbat the real-world
data exists somewhere outside any computer, that it isrdiélk@al or numeric,
and that there is no obvious way of setting up machines to iscirectly. Given
these assumptions | will just look at the cost of having somdgtsit at a keyboard
typing the data into a computer. | will not make any allowafarecollecting the
information in the first place, proof-reading it once it ha&eb typed, or editing it
later to correct the mistakes.

A respectable typing rate is around 60 words per minute catratf five letters
per average word, so | will estimate (coarsely) that databeapresented at five
bytes per second. This is 18 Kbytes per hour, which figure tbghaccurate to
within a factor of two. Continuing this calculation leads ke tconclusion that a
simple floppy disc (that costs 25p when bought in bulk) takes weeks to fill
even if we have somebody typing at fairly high speed full timiRounding all
estimates fairly vigorously, | will count this as having t&500, or 2000 times
the cost of the floppy disc.

The amount of information stored on a single floppy disc i gtetty small
by today’s standards. Consider a CD-ROM, which can be stampeohdulk
for not much more than a pound, or where you can have a versairyou can
record for yourself for a unit cost of und€tO. If | consider such a disc totally
filled (around 600 Mbytes) and again suppose that this is thetal have had
to get typed in at some stage, the cost of the keyboarding stlpe is around
£200,000. Even if | store the data on a hard disc (as of earl H8uitable one
could be bought for arounfll60) there is duge difference between the cost of
the computer hardware involved in storage and the valueeod#ita itself.

Of course sometimes the information in a database can bectedl in some
other way that might be more efficient e.g. some supermaviétase bar-code
scanners at their checkouts to collect information. But imegal the cost of col-

2

lecting data will increase as the need for reliability irages (spotting errors and
making corrections is time consuming and expensive), aaddliue (as distinct
from the cost) of data will be higher yet. The message | wagetoacross is that
even medium sized databases may represent significantrmeis, and large
ones have to be recognised as enormously valuable - and emte treating
with care.

Date[1] lists as some of the potential benefits of use of a DBMS:

Control of redundancy: If all your data is stored together you may avoid the
need for multiple copies of the same information. While thayrsave disc
space a much more important issue is that it removes theljildgshat the
multiple copies get out of step with one another.

Access Control: DBMS software should be able to support some form of au-
thentication, and only allow access to data to users or egapns that are
properly registered.

Persistence: Some modern (often experimental!) database managers aiegno
towards being able to capture and preserve almost any datawse that
can be created within a program, so that it can be re-loadeédised again
on another day.

Integrity Constraints: A severe problem with real data is that of errors — for
instance those caused by the original incorrect input df eewalues. A
DBMS must make it easy to specify various consistency chdukisdan
help flush out erroneous entries and which can prevent badfidah cor-
rupting the results of too many queries.

Backup and Recovery: Database software should also provide coherent strate-
gies to allow the reconstruction of information after altnasitrary hard-
ware (and software) crashes.

Economy of Scale: Use of a database may focus explicit attention on the support
of uses of that data, and make it possible to concentrateebplg with
relevant in-depth technical knowledge in a small groupeathan letting
distributed amateurs deal with each separate application.

This course imot going to be about the detailed procedures for laying out
data on discs or algorithms for searching it in clever antiieys. The low level
details of database implementation are of course fun anghlbceed. However a
first course on databases should assume that suitable setalaagement pack-
ages already exist: it should worry about how raw real-wddth can be organ-
ised in ways that avoid unnecessary hardware dependenagskraf error, and

3

talk about how the data can then be mapped onto the major mtidgldatabase
managers support.

2 Applications of Databases

Database technology is pervasive wherever computers adamusupport of large
enough projects. However the fact that faé# problems associated with them
do not arise until there are multiple uses (and possiblys)s#rthe data, or until
there is a large amount of information to be stored will mdeat most students
(and indeed a great many academics) will not have persodaliegct experience
of them. The uses of a database may have a strong influencenoin $twould be
organised and implemented, so here are a few sample appiisatogether with
brief commentary on the aspects of them that are likely to bstrchallenging:

Bank Customer Records: You would presumably be upset if anything caused
your bank to lose track of how much money you have lodged gt (or
less upset if they forgot about your overdraft). Banks anddsug Societies
will often have very large databases, with a large volumepofates, and a
need for real-time response to some queries (such as chedetgrmine
if enough money is available to make it reasonable to witlvdrash from
a hole-in-the-wall automated teller. There are very heagkperiods for
bank transactions. A bank will have a large number of locahbhes, and
one might like to be able to take advantage of the factrit@dt transactions
involving any one customer involve activity quite close battbranch. A
key issue is the high volume of updates to the data.

Retail Business: A retail business (consider a supermarket chain) will need t
keep records that relate to stock levels, suppliers, ordales volumes,
VAT, payroll, shop repairs and its advertising campaignsleast! In dif-
ferent parts of the company quite different sorts of acaes$ information
will be required — individual departments should only beediol access the
information relevant to their work. A key issue is the ricllection of ways
in which information has multiple uses.

Computer Aided Manufacture: The manufacture of almost any reasonably com-
plicated object will involve a range of computer activityhi$ may involve
engineering design, with elaborate computer models andlatans of the
object, through to the keeping of detailed records of sepplof compo-
nents and failure rates of units that involve those comptsném most cases
the object being made will go through a number of differenisiens or
models, and there will be financial as well as directly tecahinformation

4

to be kept. In some cases this may require the support of wenplicated
forms of data in a database — much more than records thatqusit the
number of tins of baked beans sold.

Telephone-based insurance companieswill need to be able to retrieve customer
records whenever you phone them. | include this to sugges#xttra prob-
lem that can arise if there are real-time constraints on hoerigs to the
database must be satisfied.

Historical records: These may provide an example of a sort of database that is,
by its nature, not subject to update (unless of course araaothgist un-
earths new information). Being read-only might in many waiyspéfy
database management, but in some applications this midgtdlaaced out
by the need to perform very elaborate sorts of search to fethfbrmation
that is wanted, for instance in an attempt to trace the lif@ohdividual by
piecing together information from many different sorts@tord. Note par-
ticularly that a retrieval from such a database may invaineh more effort
than just using a single word as a key that points to the redumformation.

It should be clear from the above that databases can be vapdvarhere
will be major parameters that influence how they should bdempnted. These
include the ratio of updates to inspect-only accesses (ges)y the degree of
uniformity and simplicity in the data stores, whether th&atlase is enormous or
just large and whether queries will all fall into a small nuenbf regular patterns.

3 Problems in database design and use

The real concern of this section is more to explain what salut databases
are most tricky and critical. Obviously performance will bee difficult issue.
Arranging for robustness in the face of potentially fakildhardware will raise
other problems. But the really critical challenges that @&&base administrators
are at a quite different level:

1. If the same information is extracted from the databaseetwising different
access routes, is it certain that the results will match?

2. Is it possible to prevent “obviously” wrong informatioro ending up in
the database?

3. If it is necessary to reconfigure the database — either toramodate
changed hardware or to allow for new styles of use of the datar-exist-
ing uses of it continue uninterrupted?

5

4. Can the database be documented well enough that it will bsilde to
support and extend its structure many years after its Imitstallation.

5. Will the formal database structure that has been set up for adequate
model for the real-world objects or activities that it is poped to record
information about?

These challenges relate more to controlling the structtitteodatabase than
to any details of its algorithmic implementation.

4 Separation of concerns: the ANSI/SPARC archi-
tecture

A database can be considered from three major perspectineskeeping the
various issues that arise neatly attached to one of theséised to as “using the
ANSI/SPARC (three-schema) architecture”. The three viewsitlered are:

1. Aninternal one, which is concerned with physical disc drives, the layou
of data onto blocks, detailed indexing procedures and ireiggnhe inter-
pretation of how data is mapped onto a real computesch®ma for this
would be a document describing all relevant internal-lelethils of how
the database in question is configured.

2. Theconceptual levelalso has a schema to document its view of the data.
This time the idea is to suppose that low level details hawnlendled
elsewhere, and concentrate on specifying the types ofrnrdtion to be
stored, the relationships that the database may be caltadtohandle and
what operations will be provided for accessing and updatifgrmation.

It is the job of a conceptual schema to describe the complrietare of a
database, so when setting one up it will be necessary to stadelall the
uses that the data will be put to.

3. At any one time a database can be described by just on@ahtend one
conceptual schema. But there can then be seesttainal models of the
data. In general there will be one external schema for eagbrmse that
the database has, and this must document just the parts wifdinenation
that is relevant to that use. Note that this does not at alihntieat an ex-
ternal schema will be just a subset of the conceptual one —a thait it
exposes may need to be retrieved indirectly from the coneg¢ptodel, and
sometimes information will need re-arranging or filterirgfdre it is made
available to the (external) user.

Before continuing it is perhaps necessary to stress thatdhstdmer” of a
database will, for the purposes of this course, always bephcation program.
In the simplest cases this program will just sit there allayva user to type in
queries, it will forward these to the database proper, vecairesult and display
it for the user. But in more realistic cases the program wilkenseveral (perhaps
many) database queries in response to one interactiont/liiiman user, and will
update records in the database as well as just read from tfbmparts of this
program that perform calculations, run communicationsvogts and organise
convenient interactive user interfaces aot of concern to a database course. The
external schema of a database explains how this prograsittatke more central
database manager.

The three levels all describe the same database, but atinegashciple dif-
ferent people design and work with each. A major goal of detealdesign, and
one that has made the ANSI/SPARC architecture very sucdeissfeferred to as
data independence This has two sub-flavours:

Physical: If the conceptual schema of a database can be kept sepa@iethe
internal one, itshould be possible to change the internal schema without
disrupting anything else. A circumstance where this besoanétal practi-
cal concern is when the computer on which the database istexbas its
configuration changed, or when new low level data manageaigotithms
are invented. There are also possibilities that followingasurements on
the actual pattern of use of a database the administratdéd @aant to re-
arrange the internal schema so that especially frequeatfppned opera-
tions take less time. Changing the internal schema will vétignaalter the
performance of a database, but we do not want that to makerawppsly
supported styles of access to become totally unavailable.

Logical: Logical data independence represents the ideal state wbhaceptual
and external views are well separated, so that changes iooteeptual
schema do not cause existing application programs (all aélwhse one
of the external schemas) to fail. It can be useful to changectimceptual
schema either to add new sorts of information to the systemo, add extra
constraints that police consistency conditions that hadipusly been ig-
nored, or to remove or rearrange the storage of informatiahis now no
longer frequently accessed.

The main consequence of the ANSI/SPARC architecture ang@jitication to
data independence is that there have to be explicit mapgiaggansform queries
from the language used at one level to that needed by the next.

A secondary matter (well, historically it was not secondatrwll!) is that a
strict adherence to data independence makes it hard for fotte digher level

7

schemas to provide the lower level ones with hints that mighke a big dif-
ference to performance. For instance if following the teredtdata independent
design, a conceptual schema will utterly ignore such isagdhbe size of sectors
or tracks on the discs that will be used at the internal levad, so will sometimes
specify records that would (in a naive implementation) @egjainst the hardware.
Bigger and better database management software systemswateduce or re-
construct most of what they need to deliver reasonable pedioce, and because
many databases will last for many years, designs optimisedrie generation
of equipment may look rather silly next year when new comysuéad discs are
installed.

The conceptual level of a database is defined in some notttainwill be
referred to as ®ata Definition Languageor DDL. The termStorage Definition
Languageor SDL relates to a notation used to define the internal schema. The
ways that external users see the data are sometimes knongwassand one can
have avVDL to describe one. At the external level there will also neduktaData
Manipulation Language (DML) in which operations on the data are expressed.
Often the DML will be embedded within some ordinary prograimgrianguage,
either using language-extension keywords, wrapped up afiexiton of library
routines, or supported by some way in which ordinary prograan exchange
messages with the Database Manager (DBMS).

5 Databases and Reality

A quite unexpected problem with databases is that it is lysnal at all easy to
design them so that they are proper mirrors of the real wonfhile starting to
plan this course | came across a concrete example of suclbkeproand one that
relates to what is really quite a small amount of data. Tyi@ibllege was keeping
separate records relating to students in several differffioes, and it turned out
that even after putting in real work chasing oddities it @@vmpossible to dis-
cover exactly how many undergraduates were around! The etgas shown by
the different lists differed by two or three, and the difieces seemed not to be
simple to reconcile. Some of the difficulty is that the ternmdergraduate” ends
up not being quite precise enough:

1. The Admissions office might count the number of applicarite had been
made offers, had achieved the relevant grades and had ricated that
they were going to withdraw;

2. The Tutorial offices might count exam entries;

3. The Junior Bursar looks at students who need accommodatibha under-
graduate room ballot;

4. The College office needs to report how many students armgeftants
from their local authorities as undergraduates, and howynaase being
funded in some other way.

In each case there can be odd or marginal cases. These irstludknts who
are away from Cambridge for a year hoping to recover from skneAlso ones
studying abroad for a year on some exchange scheme. Sonentstutiop out
completely, but at odd times of year, for academic, financrabther reasons.
Exam entries get muddled, and it is even the case that a feversis will be
entered for two sets of examinations in different subjectsrie year. In even a
medium sized College one can get two different students eatddc) Smith and
both reading the same subject — and thereby causing confusioave known
of students changing their names (by deed poll) partwaytirdheir stay here,
further muddling things. Frequently in curious cases thecestatus of a maybe-
student will be unclear for quite a long time, and it will nat &t all clear cut when
their status in any particular batch of records should beatgzti

Of course the funny cases are each individually fairly uneam, but with
about 600 undergraduates (hah — for some purposes a Parailematician
is an undergraduate too..., and where shall we list affdisidents?) some
uncertainty remains.

A further indication of how hard it is to collect nicely stituced data that nev-
ertheless ties in with the real world is the large incidenfogrossly inappropriate
guestions on forms that have to be completed. They oftercateliassumptions
that the designer of the form made when deciding what to askhaw such as-
sumptions can fail. Kent's book[3] is by now pretty old, atsltypography is a
reminder of a few unhappy years when some authors were dntoteéand golf-
ball-typewriter typed final copy to their publishers. But ¥péores at length the
relationship between the tidy virtual world of electrorigastored data and the
reality that it is intended to model.

The message that this gives us is that an unthinking acasptafrwords that
are in common use as adequate descriptions for classesittdstu be installed
in databases can lead to trouble: more careful thought datke

6 Entities and Relationships

Two vital words associated with database designemtity andrelation!. An
entity is just any object that a database will want to inclueierence to. Date
gives an example where a database will contain entitiestleaguppliers, projects,

Later on we will cover a database strategy that is known assthgonal model, but for now
the term “relation” is not implying that we are using thattgarar approach.

parts, warehouses, locations, employees and departrivéhés starting to design
a database identifying the entities that are needed will bera early step. A
relation links several entities, and although many refetiooncern themselves
with just pairs of entities it is perfectly possible to havgher order relations.

The purpose of identifying entities and relations is to gaime degree of con-
trol over the semantics of the database that is eventuadigded. Note that when
identifying entities and relations present in some scernat is to be modelled
by a database you are concerning yourself with the concelettel and are not
pre-judging any internal details.

When listing the sorts of entities that will be used it will @albe useful to
think about their types (for instance some numeric datarefgiresent amounts of
money, other data that may end up stored using exactly the sameric repre-
sentation may indicate size rather than value) and to dedidé constraints apply
(so the age of a person might reasonably be constrainedhetireeen 0 and 969
(the age that Methuselah is reported as having lasted to)).

7 The network model

The “network model” for databases is hardly even mentiondtie latest edition
of Date’s book, but you can read about it in EImasri and Naj&fh Or if you
go back to a 5th edition of Date you will find a lengthy appenaldout it, with
yet earlier editions giving it even greater prominence. ayothere is much more
emphasis on “relational” databases (discussed later)n&tveork model emerged
from the CODASYL (Conference on Data System Languages) Data Bask
Group (DBTG) in 1971. This is (in computer terms) an enormplshg time
ago, so why still discuss it? There are two major reasons:

1. Databases are often very long lasting entities. Manyela@tabases will
last much longer than the particular computer systems on which they ar
mounted. Thus there will be databases initially estabdisinethe 1970s
that are still in use, and where altering the associated aad#é be very
hard. The existence of such “legacy” systems means thastillisiseful to
understand the previous major generation of databaseitpem

2. Understanding the places where the network model was avddw use can
help justify the relational replacement. In the same wayjlithve necessary
to study relational databases even when they have beemcedds the next
big 20-year wave of ideas (whiahay be object orientated databases).

One of the most important examples of a network-based DBMSoieduct
called IDMS, and some of this section may relate specifidallyat, while other

10

remarks will be true of network-based databases in genéirdbes not support
the full three levels of the ANSI/SPARC suggestion, but $tids to keep some
separation of concerns. It provides three components:

1. A“Schema DDL”", which is used to define the global struciirthe mater-
ial that is to be stored. It slightly mixes together concéhas ANSI/SPARC
separate into their conceptual and internal schemas;

2. A“Sub-Schema DDL” that defines external views of the data ¢nes that
will be used by individual applications);

3. A DML (data manipulation language) which is a set of reeoyerecord
operations that work on the structures defined by the two DOlbss will
be embedded in some existing programming language — anddst mraal
database applications over the time-frame where this styl®rk was most
common, this would mean COBOL. (Although a FORTRAN DML is also
supported through the use of a database library to extendrigaage.) The
access is batch oriented and not all convenienadianoc queries.

The presentation here witlot reveal too much about how network databases
are mapped onto physical discs, or how multiple simultaeesers are supported,
or what is done to ensure recovery following hardware failulrwill provide a
logical explanation of what is done. The entire databaskbeilmade up out of
recordsandlinks. There will be types associated with both records and liklesh
link type will associate one record fromparent (or owner) type with an ordered
collection of records from ahild (or member) type. Any particular record of
the parent type has exactly one link (and thus one assoaataaf child records)
associated with it. Each child record is in at most one linkgecified link
type). The individual records will comprise fields that cintwhatever strings,
numbers or other material the database is concerning its#if The detailed
representation of links is a business for the DBMS to wormfitith, not for us.
Even if, internal to the database, some quite differentimdpscheme is used, it
is normal (and convenient) to think of a parent record coimgi a pointer to its
first child, a pointer chain following through there to fugtichildren, and ending
by referring back to the parent. This forms a loop or ring. Vde therefore
reasonably expect that given an instance of a parent, we manhe first child,
given a child we can find the next child (or have a LAST indica&iurned), and
given a child we can find its parent, and this is indeed the.case

A somewhat more detailed presentation of the various coesrof the CO-
DASYL DBTG proposals will now be given (but some of the goriméss been
suppressed).

11

7.1 Schema DDL

There are four main parts to the Schema DDL.:
e Schema Entry
e Area Entry
e Record Entry

— Record Subentry
— Data Subentry

e Set Entry

— Set Subentry
— Member Subentry

The Schema Entry NAMES the data model (database), and carspdsify
procedures to be called for the validation of access righgo(procedure, pass-
word protection), and on error. Thus there is overall priovigor privacy, security
and integrity in the proposals.

The Area Entry describes the LOGICAL data storage regionss(émabling
records to be stored on different discs dependent on somileuédt value), and
specifies procedures to be called to effect OPEN and CLOSE laaswehen er-
rors occur. Access is specified on OPENing and is usually EXSIME for UP-
DATE and PROTECTED for RETRIEVAL. Areas can also be specified BSIT
PORARY in order to define a scratchpad which will persist omiyrf OPEN to
CLOSE.

In the Record Entry, there must be one entry for each RECORD TYRE. T
Record Subentry is about accessing the record as a whole dmgfne the type
name, with possibly KEY information including control oveuplicates and or-
dering, and a reference to the AREA or AREAs on which the recoodimences
are to be stored. An important clause covers the placemertofd occurrences
when they are created — LOCATION MODE IS — and this can be setRHZT
(near a given DBKEY — a physical address), CALC (e.g. hashxpnddA set-
name SET (logical level version of direct placement) or SESTFDEFAULT (up
to the DBMS). This clause mixes concerns of the internal lext the concep-
tual level, and is contrary to the ideals of data indepeneeite Data Subentry
gives the ‘record layout’ by FIELD, defining field-name, tygred length attribute
by attribute for each record type.

The Set Entry defines the relationships in terms of parenchitdirecords that
exist in the data model. For each association (or set) ofl ckitords with parent

12

records, an OWNER type must be specified, and for each SETreccer (each
ring structure) the ordering of MEMBERS and the insertiontetyg must be spec-
ified. For most sets, MEMBER types must be defined in the Memhbe&try
to determine whether for each MEMBER type membership in assRIANDA-
TORY (must have a proper OWNER), or OPTIONAL. This Subentryl @ai$o
give details of KEYs for ordering set occurrences, locatimgmber records etc.
If membership is MANDATORY, then the actual insertion mayNMANUAL or
AUTOMATIC and in the latter case the occurrence of the sethactvthe newly
created MEMBER record is to be appended is explicitly defined.

7.2 The Sub-Schema DDL

On the whole, this provides a restricted view of the data rhodée structure
of the sub-schema definition closely follows the patternrs¢the Schema DDL.
However AREAs are now called REALMSs. It is also the case thatatiocBET
and RECORD types need be visible (but nothing new can be addéd) Data
Subentry for records can now specify changes of data typeulate new units
etc. New privacy controls may be introduced at sub-scheead, record or set
level.

7.3 Data Manipulation Language

The access to the database is always via some subschema.pkoatpn pro-
grammer will compile in an environment containing subscaemiormation, and
will be able to create work areas for each record type withstlmee names and
components as are specified in the subschema through usiligWOKE <sub-
schema statement.

The security of data as well as the control of concurrentsceeffected by
the OPEN and CLOSE “verbs” (COBOL terminology for a commandj, @REN
can specify either the SETs (high-level) or REALMs (more ptg3 that are to
be manipulated. Query processing would be run as ‘PROTECTECRREVAL
whereas update processing would be made via ‘EXCLUSIVE UHDAThiIs is
not enforced and is left to the discretion of the applicapoogrammer.

Once a process has OPENed SETs or REALMSs, data access id@oRsibords
of given type are read into the work areas defined by INVOKEe program has
available the following CURRENT records:

e CRU — the Current-of-Run Unit which is the record currently lgdiooked
at (regardless of type)

e CURRENT of each record TYPE — the last record of each specificttype
be looked at

13

e CURRENT of each SET — which is the OWNER or MEMBER last looked
at (‘touched’) in that set

e CURRENT of each AREA/REALM

The programmer “navigates” around the database transfeatiention from
record to record by RECORD SELECTION EXPRESSIONS (RSEs). Nornfally
a new record is selected, each of the currency indicatotskhange — although
it is possible to suppress all changes except those to the Tdrektablish a par-
ticular record currency, the FIND verb is used and the RSE ekatsin a number
of ways:

e via DBKEY

e via KEY and mode CALC (hash table or index access)

e NEXT, PRIOR, FIRST, LAST in the current occurrence of given SET
e the OWNER (parent) in given set using any currency indicator

e by making CURRENT of RECORD TYPE, REALM or SET the CRU

The verb GET actually transfers data from the CRU to the waek gand in IDMS
the verb OBTAIN= FIND + GET.

There are a number of other verbs available such as STORE(ttatabase!)
which creates a new record of specified type from data in thesponding work
area, and also inserts the record into the appropriate e of any set in which
its membership is AUTOMATIC. The verb MODIFY may be used tealata
values in the CRU obtaining the new values from the work ared ¢@n some-
times alter its set membership from one set occurrence tthanjo The verb
INSERT (or CONNECT) places the CRU in a selected occurrenceebomore
sets, whereas REMOVE (or DISCONNECT) has the opposite effelse VErb
DELETE (or ERASE) erases the CRU and may delete members oftedtare
owned by the CRU (i.e. any of its child records). The actualltes a DELETE
invocation depends on which qualifiers are used, but an icijugs use could
cheerfully delete the entire database. Currency and nawgate a complex and
dangerous way of moving around a database.

After all that, it is no wonder that the relational databaselai has won many
adherents.

8 The Relational Approach

The Relational Model was founded in 1970 by a paper from E.FdGtuen of
IBM Thomas J. Watson Research Center). It aims to provide a siard clear

14

mathematical representation to aid database design. Taexalel description is
at a high level, and the nature of the proposed DMLs is sudtttley will ensure
data independence. There is no provision in the proposalthéostorage level
specification and so this is left entirely to the DBMS impleoen

To understand and discuss relational data models, we nuadt aefew terms
and define a few crucial ideas:

e An entity is an object which exists in the enterprise and which is mhsti
guishable from other objects in the enterprise.

e An attribute is a function which maps from an entity set into a domain
(set of permitted values) such that every entity can be destby a set of
(attribute, data value) pairs with one pair for each attaetnf the entity set.

e An attribute value setis the set of values that may be taken by a given
attribute taking account @ll possible populations of the database.

¢ A relationship is a n-ary association arising naturally between entities.

e Populations: the population is the collection of valuearrently derived
from a real-world entity set.

e Relations (not relationships): are current entity descriptions or current
entity associations. (Both entity descriptions and retediops may be rep-
resented in relations.)

e Functions: Those relations which are necessarily functional (whextévat
means) in any achievable real world state.

The relational model is founded on the idea al@main or value set which
is specified by an underlying simple (scalar) data type wigdihe smallest se-
mantic unit of dat&. The domain is essentially a datatype providing a set of scala
values from which the actual values of the various attributefined in terms of
the domain are drawn.

A record in the relational model is known asugle which is a set of attribute
values dtaken from domains Qwhere 1<i < n). Thus we write (¢, ds, ..., d,)
where n is thelegreeof the tuple (ie number ddttributes). Tuples defined over
the same domains;2and with the sameieanings are grouped to formelations.
The number of domains then becomes the degree of the relafiba number
of tuples in a relation is known as tleardinality of the relation and varies with
time. It should be noted that different attributes in a ielamay share the same
underlying domain (but the intended semantics of the atiesowill be different)

2This criterion for nondecomposition of domains is First Mait Form — explained later.

15

and so it is necessary to name both the underlying domainhenidle played by
a given attribute in a relation.

A relation can be thought of as a table with the columns remtasg the at-
tributes and the rows representing the tuples, but this epanoximation only for
three very important reasons:

1. There are no duplicate tuples in a relation (follows fract that relation is
a mathematical set of tuples). Thus a proper implementati@relation
should not permit duplicate tuples to be entered. (SQL utaf@tely does
allow this.)

2. Tuples are unordered (top to bottom) and this is also aedgtition conse-
quence. Thus there is no such concept as positional adugessnextness
in the model.

3. Tuples are unordered (left to right) and this is again adséhition con-
sequence. Attributes should only be referenced by namethene should
in particular be no importance attached to the first attalfue. it does not
have to be the primary key (explained now)).

In order to address a tuple in a relational database, we weglibbse gori-
mary key for each relation. As a result of the no duplicate tuple camst, it
will always be possible to accomplish this. The process leicseg a primary key
involves determining theandidate keysof the relation. A candidate key for a re-
lation R is a subset K of the set of attributes of R where K pessethe properties
of uniquenessandirreducibility . Uniqueness means that no two distinct tuples
of R will have the same value of K, and irreducibility meanattho proper subset
of K has the uniqueness property. If there is more than ondidate key for a
given relation then which one becomes the primary key musthosen. (The
other candidate keys are then calldtbrnate keys)

8.1 The Relational DML

Two formalisms are available to serve as the basis for cglatiDMLs, and both
have been used in that capacity. Both formalisms are equivalghat any ex-
pression in one formalism can be reduced to an expressidreiather. The two
formalisms in question are the relational algebra and tlaioaal calculus. The
Relational Algebra is efficient at providing query operai@t the relation level,
whereas the Calculus operates at the tuple level in orderowade efficient up-
date (which would be cumbersome at relation level). | wilhtsmt myself with
presenting only the relational algebra. (Concrete exampidhe algebra will
(probably) be given in the lectures.)

16

The Algebra allowsset operations to be performed on pairs of relations R,S
having the same domains underlying their correspondingnaos (and hence also
the same degree; the two relations should also have the saar@mgs). Thus tu-
ples from R,S are comparable and the standard Boolean operaan be mean-
ingfully applied. The Algebra supports:

Intersection: RN S — a relation that contains those tuples commonto R and S
(Notation RS)

Union: R U S — a relation that contains all the tuples from R and S (Notati
R+S)

Difference: R\ S — set of tuples that belong to R but NOT to S (Notation R-S)

Quadratic Join: If R is a relation over domains (..., D,,) and S is a relation
over domains (B. .., D)), then the quadratic join R S has the domains
(Dy,...,Dn,D1,. . .,D,), and therefore it consists of concatenations
(dy,....d,.d,....d) where (d,...,d,,) e Rand (d,...,d)) ¢ S. As the no-
tation suggests, this is essentially the Cartesian produbedwo relations
and so the resulting cardinality of R S is the product of the cardinalities
of Rand S.

There are three data manipulation operations specific toela¢éional data
model, namelyselection projection andequi-join.

Selectionexpressions define filters that accept or reject the tuples ref
lation. Exactly what can be specified in a selection expoasdepends on the
underlying DBMS. The simplest selection expressions >y constraining the
values in a particular attribute. Most systems permit Baoleambinations of
such elementary selectors. More generally if two attrig@,C;) in a relation
are defined over the same domain D, it should be possible t&ESHELvia ex-
pressions involving the domain valuesdi. The most general case is of selection
by a tuple-predicate f(d . .,d,) that returns the boolean true or false to indicate
whether tuple (d. . .,d,) is to be accepted or rejected.

Projection serves two functions. Firstly it permutes a subset of therook
(roles) of a relation: secondly it permits redefinition ofe identifiers. The latter
is needed in some DBMS to enable correct data linkage via thig@a, and may
aid sensible tabulation. Projection (because it specifsedhaet of a relation), like
selection, can only decrease or maintain the cardinality.

Equi-join provides the cross-reference by value between two rekgtiand
requires good tactics as it is the most costly operation.u/ksgstwo relations R
defined by columns (C. . .,C,,) with domain O underlying G, and S defined by
columns (G,. ..,C,) with domain B underlying G. A common requirement is

17

to combine data from tuples in R and S that match on some coarmoolumns.
Thus if columns Cin R, q in S share the domain,; D;. R and S can be joined
“WHERE C; = C}”. Similarly if there is more than one pair of columns thatigha
an underlying domain. In the worst case (when all tuples thdactor in the
JOIN share the same single value of the “join key”) the r@sgitelation can have
cardinality that is the product of the cardinalities of the tfactors.

The set operations together with selection, projection egu-join may be
combined to form relational expressions in order to poseemmomplex queries.

8.2 SQL — Structured Query Language

The first prototype of this language appeared in 1974-75 jtamas been revised
since thernculminating in an ISO/ANSI standard known as “SQL/92” (or Inter-
national Standard Database Language SQL (1992)). Theastds\document is
over 600 pages long, and so | will not even pretend to pres@itis any depth.
The fact that SQL/92 has diverged greatly from being a clogdementation of
the relational model is another reason why | will not spenc@imime on it.

SQL/92 consists of three components: a data definition aggua data ma-
nipulation language, and a view definition. The data definitanguage possesses
a schema definition and a table definition (table is SQL-speakelation). The
data manipulation language is based on relational calawuithsrelation-valued
queries. The view definition consists of named relationgkessions. An SQL
database consists of one or more schemas (database am@agrigeto some in-
dividual user), with transaction support in terms of “cortirand “rollback”.

SQL data definition consists of issuing a CREATE SCHEMA invawrafol-
lowed by an AUTHORIZATION< user> in order that the user can then GRANT
privileges. The principal task after this is to define thee@alihat will store the
data. This is done via the CREATE TABLE command:

CREATE TABLE Giti es

(CITY CHAR (15) NOT NULL,
POP DECI MAL (10),
PRI MARY KEY (CITY))

The above example defines a table with two columns (SQLusdgtin “col-
umn” where the relational model talks of an “attribute”) wéaé¢he CITY column
will be used as the primary key. The domains as allowed by S@Lnat user-
defined types in any real sense but merely a slightly exteiséeaf primitive
built-in data types that one would expect to find in any ordinarogramming
language. No support is available for strong typing or iithace. SQL tables
are allowed to have duplicate rows (ie tuples) and the tadnledurther consid-
ered to have a left-to-right column ordering. Tables can b&ERed at any time

18

to insert/delete a column or to insert/delete a column defalue (NULL is the
“default default”).

Data manipulation comprises four principal statements BEL INSERT,
UPDATE and DELETE. | will content myself with giving some gite exam-
ples for these operations which should be (fairly) selftemptory but will not
demonstrate the full power of the language.

| NSERT
INTO Cities (CITY, POP)
VALUES (‘ Canbridge’, 75000) ;

UPDATE Citi es
SET POP = 85000

WHERE Cities.CITY = ' Canbri dge’ ;
DELETE

FROM Citi es

WHERE Cities.CITY = ‘Oxford ;

SELECT Cities.CITY, Cities.POP
FROM Cities
VWHERE Cities. POP > 50000
ORDER BY Cities.CITY

The SELECT statement should not be confused withsthection operator
from the relational algebra as the use of various optiorealsgs in a SELECT
statement can enable it to perform a complex series of sahsciprojections and
joins.

SQL supports views via the CREATE VIEW statement. It should be=dh
that INSERTs and UPDATEs on a view will only fail if they viaéathe view-
defining conditionsand if a special optional clause has been included, otherwise
they will not fail. 1 hope that you all realise that this is loglly wrong. A view
will typically be accesible via the standard data manipafastatements as given
above.

9 Redundancy and Normal Forms
Codd’s original paper on the relational model presented aodgetogy for helping
to maintain functional dependencies in the form of critéoiaschema definitions

that store information on a “ONE FACT, ONE PLACE” basis. Themalisation
strategies that | will present are based on removing recwydfiom the schema

19

vianonloss decompositionvhere no information is lost in the process of breaking
up relations into smaller ones.
Firstly, a definition of what it means to be functionally dagdent:

Let R be a relation, and let X and Y be arbitrary subsets of gtefattributes
of R. Then Y is functionally dependent on X (or X functionallgtdrmines Y (X
—Y)) iff each X-value in R has associated with it precisely dhealue in R.

Thus whenever two tuples in R agree on their X-value, theyadgee on their
Y-value. It should be noted that the functional dependenafanterest here will
be ones that relate to the real-world semantics associatedhe data being rep-
resented. Thus dependencies that just happen to be truk tioe data currently
stored but which could potentially be broken next time thtabase is updated
will not count. This is a major reason why the delicacies ofiglbng real-world
data have an important effect on database design.

First Normal Form A relation is in INF if and only if all underlying domains
contain scalar values only.

1st Normal Form Example

MAKER | MODEL DOORS| C.C. | STYLE DEALER | TEL
AUDI 100 CD 4 2200| SALOON | SMITH 8331
MG MAESTRO 4 1600 | H'BACK | JONES | 6221
MG METRO 2 1300| H'BACK | JONES | 6221
ROVER | VITESSE 4 3500 H'BACK | JONES | 6221
ROVER | 2000 4 2000| H'BACK | JONES | 6221
VW GOLF GTI 2 1800 | H'BACK | SMITH 8331

Second Normal FormA relation is in 2NF if and only if it is in INF and every
non-key attribute is fully functionally dependent on thepary key.

Without 2NF, the functional dependency of a non-key attelmn a subset of
the key (in our example, main dealer is only dependent on nmeake not (maker
and model)) can be broken. This problem can only arise if thmary key is
composite in nature (multi-attribute).

Third Normal Form A relation is in 3NF if and only if it is in 2NF and there are
no functional dependencies between non-key attributes.

Otherwise we could break such a functional dependency lbgdating an
additional tuple into the relation. Here is the previousregke converted into
3NF.

20

MODELS

MAKER | MODEL DOORS| C.C. | STYLE
AUDI 100 CD 4 2200 | SALOON
VW GOLF GTI 2 1800 | H'BACK
MG METRO 2 1300 | H'BACK
MG MAESTRO 4 1600 | H'BACK
ROVER | 2000 4 2000 | H’'BACK
ROVER | VITESSE 4 3500 | H'BACK

DEALERS FOR MAKERS
MAKER | DEALER

AUDI SMITH

VW SMITH

MG JONES
ROVER | JONES

NUMBERS OF DEALERS

DEALER | TEL
JONES | 6221
SMITH 8331

Boyce-Codd Normal FormLet R be a relation of degree n defined over domains
D (1 <i < n). A proper subset of K n domains forms determinant if some
other attribute value in R is functionally dependent on thkigs taken in these
k domains. Then a relation is in BCNF if and only if the only detagrants are
candidate keys.

The intuition behind BCNF is that if something determines himg then it
should determine everything, hence it should appear ordg.olh should be noted
that BCNF is strictly stronger than 3NF and is conceptuallypemin that it does
not refer to more liberal normal forms as such. Breaking BCNFnaehat we
run the risk of storing a determined value in more than onegla

In order to demonstrate BCNF and the next level of normalisgdNF) we
will exhibit a relation in BCNF.

Qantas Airways run a fleet of Boeing 747’'s. Individual airtdiffer in pay-
load, seating capacity and range, and so each aircraft aegystbme of the routes,
being operated by particular crews. Spare parts are hel@jat rairports visited
by Qantas aircraft, but only those required for models wigithat airport. (The
relation we exhibit is all key, and therefore in BCNF, but clganformation is
redundantly stored.)

21

BCNF EXAMPLE
Aircraft Crew Spares Depo
City of Brisbane | Capt Thomas Auckland
City of Brisbane | Capt Thomas Tullamarine
City of Brisbane | Capt West | Auckland
City of Brisbane | Capt West | Tullamarine
City of Melbourne| Capt West | Amsterdam
City of Melbourne| Capt West | Singapore
City of Melbourne| Capt West | Tullamarine
City of Darwin Capt Smith | Auckland
City of Darwin Capt Smith | Tokyo
City of Darwin Capt Smith | Tullamarine
City of Darwin Capt Thomas Auckland
City of Darwin Capt Thomas Tokyo
City of Darwin Capt Thomas Tullamarine

Fourth Normal Form Given a relation R with (sets of) attributes A, B, and C, the
multi-valued dependenceA —— B holds in R iff the set of B-values occurring
for a given (A-value, C-value) pair is independent of the QsealThen a relation
is in 4NF if and only if, whenever there is a multi-valued degency in R, say
A —— B, then all attributes of R are functionally dependent on Ayjizalently:
R is in 4NF if R is in BCNF and all multi-valued dependencies inr@ i fact
functional dependencies.)

I will now exhibit the Qantas aircraft schema in 4NF.

AIRCRAFT CREW

City of Brisbane | Capt Thomas
City of Brisbane | Capt West
City of Melbourne| Capt West
City of Darwin Capt Smith
City of Darwin Capt Thomas
AIRCRAFT SPARES DEPOT|
City of Brisbane | Auckland
City of Brisbane | Tullamarine
City of Melbourne| Amsterdam
City of Melbourne| Singapore
City of Melbourne| Tullamarine
City of Darwin Auckland
City of Darwin Tokyo

City of Darwin Tullamarine

22

Fifth Normal Form Let R be a relation, and let A, B,., Z be arbitrary subsets
of the set of attributes of R. Then R satisfies jbi@ dependency* (A, B, ...,
Z) if and only if R is equal to the join of its projections on A, B,., Z. Thus
a relation is in 5NF (also calleprojection-join normal form (PJ/NF) iff every
join dependency in R is implied by the candidate keys of R.

So are Normal Forms a wholly ‘good thing’? They do remove a Ioemnof
serious problems resulting from redundant informatiort,thay also have their
problems in that decomposition may lead to poor performgheeause of the
need to run round tables), decomposition may make it easyeakbsemantic
constraints, and finally one sort of normalisation may causeher to be broken.
Constraints of referential integrity can aid us, but | do reténthe time to go into
the nature of these constraints.

10 Missing Values and other problems

10.1 The Problem of the Missing Values

In the real world, it is often the case that you don't actuéiihpw the answer to
a question, or the question is in fact inappropriate orewvaht in your particular
circumstances. The Problem of the Missing Values is that wetrdecide how
the database shall represent such real world situations. afbéa of concern has
sparked a tremendous controversy in the literature ane ikestill no consensus.
I shall outline the two opposing “solutions” but | stressttheither of them should
be considered to be thigght answer as Missing Values are a really nasty problem.
The first “solution” is to usenulls to represent missing information. Thus in
a historical database storing genealogical informatiomyweuld insert a special
marker (a null) in any tuple where we didn’t know the date offbfor instance.
Thus we insert a null in any attribute position in order toorecthe fact that we
don’t know the given fact — i.e. that the requested value iKBIOWN. A null
is not a blank and it does not equate to zero, it is simply areterchined value.
It may well be the case that certain attributes had bettercaotain nulls and
so some current relational database software includes Didnsions to allow
the database designer to specify whether a given attribateb® assigned nulls
or not. The problem with using nulls is a consequence of radisg based on
three valued logic (true, false, and unknown). Thus when skecueries like
“How many people were born before 1st Jan 19007?” of our hygiatal historical
database, we cannot be sure what the answer really meare@eated identities
such as (Number Born Prior to 1st Jan 1990) + (Number Born Aftst Bec
1899) = (Total Number of Entries in Database) will also noldhd~or this and
similar reasons, some researchers hold that null values maylace whatsoever

23

in a mathematically based model such as the relational maddlthat their very
introduction destroys the mathematical validity of the miod

The alternative “solution” is to useéefaults instead of nulls. Thus wherever
we have to represent missing information, we insert theuliefalue associated
with the corresponding domain. This has a number of consexgse For instance,
on the insertion of a new tuple into the relation, the usertraupply a value for
each attribute where a default value would be illegal (swcireattribute which by
itself or in tandem with others forms a candidate key), amdstystem will supply
default values for any other attribute where the user is len@bspecify a value.
There is a need to support a builtin function to return theudifvalue associated
with a particular domain. When applying aggregate functiorthe relation (say
to average the wage earned by each employee), there is acitaxged to ignore
default values. There is a certain amount of trouble causedses where every
value in the domain is a possible real (in the sense of beimglefault) value,
and so explicit user support is required to handle thesesca$es use of defaults
is considered not to result in the normalisation breakdoawsed by the use of
nulls. Default values are a somewhat inelegant solutionireq significant user
interaction, but their proponents claim that default valaee intuitively closer to
what we use in the real world.

10.2 The Problems of Aggregates and Nonscalar Domains

Itis often the case that we wish to manipulate groups of dcororder to answer
such queries as “What is the monthly wages bill for the qualitgtrol section?”
This cannot be accomplished using selections, projectmasjoins. In SQL,
this sort of query can be satisfied using the GROUP BY field ani Builtins,
but this is an SQL fudge to provide this sortaggregatefunction. There is no
generalised solution in the basic relational model for hiagdsets of tuples as
first-class values.

One extension which provides some help towards solvingeagge require-
ments and also support for more complex datatypes is to abahe insistence
that all domains must correspond to scalar types. This cattemplished by a
method known as theested relational model(akaNF2 — Non First Normal
Form). Thus in a database comprising details on scientific paperare now
allowed to have the attribute authorlist which is a simplead@uthornames and
so the domain of authorlist is relation valued. This (oneslenesting of relations
enables us to represent dates as an attribute whose dontlanredation consist-
ing of attributes Day, Month and Year. Care must be taken wismgunested
relations in this way as the model is too liberal in terms dtiga that would be
valid members of the domain underpinning Month say but nbtl\@mponents
of a calendar date. Extensions must be made to the DML in teff&ST and

24

UNNEST (flatten) operators in order to provide this funcéltity.

One concern raised about using NF2 is that it endangers titityaf nor-
malisation strategies, and introduces additional pdgsaisi for needing nulls. A
variation has been proposed to use encapsulated relalaaé/attributes where
you are unable to look simultaneously at both the inner sirecof an attribute
and the outer face it presents at the higher level of theioalat

Recursively nested relational models have been suggesteth(ltiple levels
of nesting) but there is little experience of using thesénenreal world.

11 Object Orientated Databases

It may be the case that object-orientated databases will be tleessmrs to re-
lational databases, and so it is a thoroughly good idea tbepdeeper than the
hype. An object-orientated DBMS (OODBMS) comprises an obpeentated
programming language combined with persistence and ttiosasupport facili-
ties. (You will all by now be Modula3 and C++ wizards and so edxgtdatatypes
and class-based methods should hold no fear.)

Proponents of OODBMS tend to be rather fanatical in their si@md so
presentmanifestos (rather than polite proposals) as to which features shoeld b
mandatory in an OO database.

For a database to be truly object-orientated, it must allbyea identifiers,
user-defined types and at least simple inheritance. Thetshjeust be encapsu-
lated so that they can only be used via an interface. Suppst afso be provided
for aggregates in terms of bulk types, sets and relationse-bhading (for per-
sistence) is mandatory in that new programs must be incarpdiby name using
dynamic lookup. The database must implement concurrengya@nd recovery
procedures as necessary features for transaction supgpoaily ad hoc queries
(or ‘database browsing’) must be efficiently supported ewvelarge databases.
(Of course this is only one of many OO philosophies, OO matife come in
more flavours than ice-cream — which is clearly evidence o&dive research
area.)

The key mantra to chant isEVerything is an object’ (sometimes refined
by high adepts to “Everything is first-class object). Objects can be divided
into two worlds — builtin, primitive,immutable objects (such as integers e.g.
666, character strings e.g. “Help!”), and complex, usualigr-creatednutable
objects (like Student, Vehicle). Every object must hawass(i.e. a type), and
individual objects are often calledstancesin order to distinguish them from
their defining class. Each class will have a setrithodswhich are functions
and operators which can be applied to objects of that givesscl

Objects are alwaysncapsulatedin that the internal structure of an object is

25

hidden from the users, and they must access the objects bngne#ls to the
object’s methods — the methods naturally can manipulatentieenal structure.
Key terms to bandy about are “private memory” (instancealdes representing
an object’s internal state) and “public interface” (intaxé definitions — inputs
and outputs to the various methods). Hence we laeapsulation— data
independence The methods are invoked ligessagesvhich are function calls
with a little extra syntactic sugar.

Each and every object has its very own unique identity catitgbject ID” or
OID. Immutable objects are said to be “self-identifying'tivat they are their own
OIDs, whereas mutable objects have (conceptual) addrasgbsir OIDs, which
are then usable elsewhere in the database as (conceptudypto reference the
objects in question. Objects in OO databases do not thereted to have user-
defined candidate keys for entity identification and refeedout as the OIDs are
not directly visible to the user something has to be avaslédnl user interaction. It
is claimed by some that being able to represent two or motadi®bjects which
are identical in all user-visible aspects (ie differingym OID) is an advantage
of the OO approach over the relational model. This is reallyidus because how
will the user be able to distinguish between the objects?

To create a new instance of a given class, it is necessanntbaddew mes-
sage. Objects can also contain OIDs pointing to other abjpbich means that
the very same object can be shared by many objects, and sudredobject
is said to belong to multipleollection objects. Naturally there is also scope for
class hierarchiese.g. the object class Student is said to sibclassof object
class Human or equivalently object class Human is said to beparclassof
the object class Student if and only if every object of thesgl&tudent is neces-
sarily an object of the class Human. Thus objects of a subdas inherit the
instance variables (structural inheritance) and the nusti{behavioural inheri-
tance) of their superclass. Some systems suppoltiple inheritance, where a
given class can be a subclass of several superclassesasisuusly.

Clearly in an OO database, object instances must be the hatutsof secu-
rity, authorisation, recovery and concurrency.

We conclude this overview of the OO database model by voiaifewv con-
cerns about generally held (mis)conceptions regardinglG®claimed that OO
simplifies database design and development due to its dap#iprovide system
supported high-level modelling structures. The real pobls deciding for any
given data whether it should be modelled as instance vasaiy in a procedural
fashion as a method. It is also claimed that OO databases odelrnomplex
objects without the need for normalisation strategies swvied of relational data-
bases. Unfortunately the normalisation strategies haga Heveloped to handle
problems which are inherent in any data where functionaéddpncies exist, and
not just relational models. OO is not a magic wand with which @an wave

26

away these very real problems. Finally many folk (includsajtware vendors)
will convey their belief that the relational model has hadday, and that the time
has come for the OO model to conquer the world. They firmly ekgeat the
relational model will be swept aside in the same way that #étational model
swept aside the network model and the hierarchical modekréel'is however
a significant difference between relational and pre-retati models in that the
prerelational models werad hoc schemes which worked by dint of convoluted
low-level strategies and twisting the real-world data tdH& model’s structure,
whereas the relational model is founded foursquare on d Hudioretical basis
which has been refined through years of research. (A fuludision of the need
to marry the relational model and the OO model together cdolred in Date[1],
chapter 25).

References

[1] C J Date.An Introduction to Database Systems. Addison Wesley, 6 edition,
1994.

[2] R Elmasri and S Navathe. Addison Wesley, 2 edition, 1994.
[3] William Kent. Data and Reality. North Holland, 1978.

27

