
C and C++

A C Norman, Lent Term 1996

Part IB, Part II(G) and Diploma

extern int
errno

;char
grrr

;main(r,
argv, argc) int argc ,

r ; char * argv[];{int P();
#define x int i, j,cc[4];printf(" choo choo\n") ;
x ;if (P(! i) | cc[! j]
& P(j)>2 ? j : i){ * argv[i++ +!-i]
; for (i= 0;; i++);
_exit(argv[argc- 2 / cc[1 * argc]|-1<<4]) ;printf("%d",P(""));}}

P (a) char a ; { a ; while(a > " B "
/ * - by E ricM arsh all- * /); }

code by Eric Marshall, SDC.

1 Introduction: Why These Languages?

These notes cover the languages C and C++. In fact this means that there will be
coverage ofthree languages, which represent a historical development that has taken
place over about the last twenty years and which is still continuing. The most primitive
of these is best described as the “traditional” dialect of C sometimes referred to by
the initials “K&R” (which stand for Kernighan and Ritchie who originally designed
it). There is still a lot of code written in this dialect around, so all proper Computer
Scientists need to be able to make sense of it. There are even some compilers that only
support it in use, but if at all possible these should be shunned. The second language
will be known here as just plain C but if you need to stress which dialect is involved or
make a big point that the K&R one is not what you mean, the qualification ANSI-C can
be used. “ANSI” is the name of the formal standardisation authority responsible for
defining this version of the language. Their report[7] was published in 1989, and these
days if you find a way in which a C compiler does not meet the ANSIspecification
you should consider it to be broken1. Various vendors of C compilers put in language
and library extensions to their ANSI C compilers, and a few ofthe more interesting
of these will be mentioned. C++ is a more modern language but is broadly upwards
compatible with ANSI C and so (with luck!) existing C code canbe compiled with
a C++ compiler and linked in with freshly written C++ code when new projects are
started. Of course in reality it is a bit harder than that. At present C++ does not have a
format standard, although an ANSI committee is hard at work preparing one. An effect
of that is that different C++ compilers will not all provide the same facilities, and even
when they do there may be subtle differences in the meaning they attribute to some
contorted fragments of code. These notes will give some examples of constructions
that (at the time of writing) remain delicate.

Why, then, does it make sense to study this family of languages? The following
reasons are some of the more important ones:

Management Says So.One compelling reason for studying or using a programming
language is that the use of that particular language is Company Policy. In a
University environment this translates that there will be examination questions
on it at the end of the year!

Legacy Code.Essentially all of the Unix Operating system is written in C, as will be
the majority of the important commercial packages you can buy for use on your
personal computer. Almost all existing computer companieswill have signifi-
cant bodies of old code that has to be maintained, and a large proportion of this
“legacy code” that is not written in COBOL is written in C.

Library Linkage. If you write a new application that is to run under Microsoft Win-
dows, or the Unix-based X-windows system, or the desktop on alocally designed

1Of course pretty well every compiler, like every other program you ever come across, will be broken
in various ways!

1

Acorn RISC-PC, or a Macintosh, . . . , you need to interface to a large body of
library code that helps run the graphical interface for you.In all the above cases
(and of course many others) there will be well developed C or C++ interfaces
to this library, and very often this will be theonly language that makes it easy
to make full use of the system. As well as user-interface libraries that force you
to use C you might come across data-base ones, or numerical ones (eg the NAG
library can be called either from Fortran or (yes you guessed) from C).

Practical, Portable, Efficient Code. For a reasonable range of system-building tasks
C represents a plausible compromise between practical reality and a Computer
Scientist’s ideal. The main dreadful features that K&R C hadthat made it con-
stitutionally insecure and dangerous have been very well addresses by the ANSI
dialect, and C++ tends to be even more careful about cross-checking things (al-
though it introduces a whole new collection of delicacies ofits very own). When
written with care and style C code can be ported to all the machines you will ever
want to2, and again if used with caution it can be used to write code that is per-
formance critical.

Employment Prospects.As already suggested, C and C++ are associated with rea-
sonable scale real commercial projects, and thus with making money. So even
if C is not the very latest and most wonderfully forward looking programming
language it may be a useful one to be able to claim familiaritywith!

Embedded Applications. C and C++ can reasonably be used to write code for ded-
icated controllers (eg to look after machine tools, networkinterfaces, industrial
plant, car engines, . . .) as well as being suited for use on general purpose work-
stations. This opens up a large extra range of applications.

Closeness to the Machine.With C the statements used in the program language can
relate in a clear and direct manner to machine-code constructs. This tends to
reduce to opportunity for surprises by way of unexpectedly bad performance,
and makes it easier to write code that interacts directly with hardware. It also
means that C is a useful language to know when learning about the design of
computer instruction sets, as the language user’s perspective meets that of the
hardware designer.

Fairly Simple Compiler. Following on from the fact that each class of C (or to a
slightly lesser extent C++) statement maps neatly onto machine code of a wide
range of computers, the language is a good one to keep in mind when first study-
ing compiler construction. The extra complications that have to be handled with
some more elaborate languages can be considered later on, while C provides

2And unlike some other nominally more machine independent languages, you will find C compilers
available on all those machines.

2

plenty of scope for discussing compiler optimisations (andthe limits to what
can be done automatically).

Availability of Cheap, Reliable Compilers. For most sorts of Unix workstation and
for a variety of personal computers, the Free Software Foundation’s “g++” com-
piler will be available and has the stunning advantage of being free! For IBM-
style personal computers there is a highly competitive market in C and C++
compilers. Some of the smaller and cheaper of these look backwards to the days
when personal machines were uncomfortably small, and are invarious ways
limited or full of non-standard space-saving tricks, but the more modern and
professional versions are of stunningly high quality — muchbetter than any
workstation software development tools I have ever seen. Because of the com-
petition, prices are almost reasonable.

Development Tools.No compiler (be it for C, C++ or any other language) stands
totally on its own: associated development tools and subroutine libraries are
needed. Because of its widespread use C has collected a good range of these,
and C++ inherits most of them. In a typical University Unix environment these
tools will still be fairly primitive, but theEMACSeditor can be configured to help
lay out C code in a systematic manner, and there are Unix toolslike “prof” and
“pixie” (on some systems) that can help you collect information about which
parts of your code are most heavily used. Debuggers such as “gdb” (or “sdb”or
“adb”) may assist when your programs fail. Resource Control packages can help
keep track of all the files in a large project.

On personal systems the development environments have beenmuch more care-
fully designed, and the debugging tools that I have seen on Microsoft Windows,
the Macintosh and on Acorn machines are all streets ahead of the ones made
available on most Unix systems. I would single out the debugger that comes
with Microsoft’s Visual C++ (32-bit edition) running under Windows NT as be-
ing almost good enough to justify the rather large amounts ofdisc space and
memory it needs!

Historical Interest. C was developed as a successor toBCPL (which was invented
by Martin Richards), and that in turn was at first intended to bea language
that would be used to write the compiler for a languageCPL. These roots carry
the historical thread from C++ and the present back to the mid 1960’s. By
looking at the ways languages, their compilers and the programs written in them
have changed over that time-scale we can get some insight into how Computer
Science (as well as Computer Application) has changed, and perhaps that will
help us when we try to peer forward and predict future developments.

C and C++ are Fun. Some programming languages are very carefully designed to
ensure that only correct code will pass the compiler’s scrutiny. They emphasise
precision of expression in an utterly humourless and intense way. C and C++

3

are not like that. They expect the programmer to be competentand careful, but
provide some scope for the inclusion of cunning tricks in code, and even jokes.
To try to support this claim I am including a collection of somewhat curious
sample C programs with these notes. . .

The above collection of strengths embodied in C++ may suggest that it is the per-
fect language for all imaginable uses. The fact that in Cambridge we do not teach it
as the first and only language presented to students suggeststhat the department here
thinks otherwise. So here are a few possible causes for caution. Even though I have not
given as many disadvantages as I listed advantages, some of them should be viewed as
pretty serious limitations:

C++ is not Standardised. Until there is a formal standard for C++ (and until, several
years after that, the bulk of compilers have caught up with the standard), every
C++ compiler will support a slightly different language, and the behaviour or
portability of code can not be assured. By falling back to (ANSI) C the benefits
of a standard language can be obtained, but at the cost of losing the new features
that C++ provides.

C++ is complicated. A comittee of the relevant standards-issuing body is at workon
codifying C++. During 1995 it issued its first major document for public review.
This will evolve into the official C++ standard, but the final form will probably
have changed in several quite significant ways. This first draft of the standard
is over 700 pages long, and that is dense description rather than gentle tutorial
explanation.

Incomplete compile-time checking.As compared to (for instance) Module-3, C and
C++ are insecure languages. In particular uses of casts and union types (which
will be described in the lectures) make it possible to write outrageously incorrect
code and have the compiler accept it quite placidly. Even when used with care
C pointers can too easily escape and allow incorrect code to corrupt almost arbi-
trary fragments of code or data. Writing safety-critical code in C is probably a
really bad idea. Note that K&R C was an almost complete calamity on this front
— both ANSI C and C++ are much better, but still they are not the language of
choice for missile guidance systems programming, aircraft“fly-by-wire” con-
trol, nuclear power station monitoring software or some medical applications.

Cryptic Syntax. Real code has to be re-cycled, modified and maintained. Clear syn-
tax makes it easier for somebody coming across a fragment of long-neglected
code to understand it. C can be cryptic in places, while C++ raises this to a high
art. In contrast, ADA had as a design goal that code written init should be easy
to read even if that made it more verbose and hence more tedious to write in the
first place.

4

Reliance on Programmer Discipline.The “Spirit of C” is that the programmer knows
what to do and will take full responsibility for the code as written. The job of
a compiler is to convert this source code into equivalent machine code that will
run fast on the relevant target hardware. This works acceptably well with expe-
rienced, conservative, well-disciplined programmers whoare not working under
over-severe time constraints. Or put another way, in reality a lot of C code that
is written is ill thought out and shoddy, and the compiler does little even to point
this out. In many cases this will lead to much higher whole-life-cycle costs than
would the initial use of a much more pedantic and fussy language.

Lack of Modern Features. C lacks objects, and while C++ adds these, it does so in
a way that is more static and limited than some other object oriented languages
(notably the CLOS component of Common Lisp). Neither C nor C++ provides
language-defined facilities to support any form of parallelprocessing or multi-
tasking. The standard libraries for the languages provide somewhat primitive
input and output control, and certainly no direct support for persistent data or
database searches. Despite the illusion it likes to give, memory management in
C++ is (following on from that in C) primitive (in particular it does not have a
Garbage Collector). People who want to do large-scale scientific calculations
(the sort that involve thousands of millions of floating point operations, where it
is sometimes important to save space or time by using single precision floating
point arithmetic) find C and C++ seriously deficient. Various of these limitations
can be addressed by the provision of extra library functionsfor C code to call,
but that again runs into portability and standardisation problems.

Rational alternatives to the C family of languages could include

Higher Level Languages.Either Modula-3 or ML could provide much better guaran-
tees of the correctness of programs. For example ML has been used in a number
of large-scale projects involving formal specification andverification of hard-
ware design, while Modula-3 is designed to encourage (enforce?) good practise
in multi-programmer projects.

Other Pragmatic Programming Languages. If the task you need to solve creates
and discards data in a sufficiently wild way it may make sense to use a language
that provides automatic garbage collection. Equally if your program needs ar-
bitrary precision arithmetic, maybe a language that supports that already will
be helpful: Lisp should be considered. For other application areas Prolog (for
medium-sized database search, pattern matching and back-tracking) or Snobol
(transformations on strings of characters) may be best suited. Some small tasks
may of course be most conveniently solved in BASIC3.

3Indeed Microsoft’s Visual Basic is clerarly the language ofchoice for lashing some sorts of one-off
Windows interfaces.

5

Databases and Spreadsheets.Particularly on personal computers various packages
exist to provide reasonable programability in a framework well suited to various
tasks that commonly arise in an office environment. When a University comes
to add up exam marks and sort candidates into rank order the software to do that
should be created by adding rules to a database or spreadsheet package rather
than by writing a complete program from scratch in C.

Packages.Increasingly it will be the case that tasks can be solved by using a bought-in
package that does what is needed: so no fresh programming is needed. Except
in artificial cases where the time spent writing a program is not recorded and
charged for this will often be the best way to go, even if the package obtained
turns out to be slightly limited and awkward to use. Just because you know how
to program in C++ there is no need to write your own screen editor — there are
more than enough ones out there already.

2 Course Content and Textbooks

This course starts with the assumption that those taking it understand about program-
ming in general (from the earlier courses that involve ML andModula-3), and that they
have taken the local Data Structures and Algorithms course so examples based on that
can be used to illustrate aspects of C++ programming. The position taken is that C++
is the main language being described. ANSI C will be treated as if it were just a subset
of C++, so most of the discussion of it will be in the form of passing notes that indicate
where C++ features are not available in it. The exception to this will be in Chapter 19
which pays particular attention to some of the fine print in the ANSI standard for C.

In a limited length course that is not accompanied by large amounts of mandatory
practical work it will not be possible to show you every last detail of C++ and turn
you all into expert programmers in it. The objective here is to show you enough of
the important aspects of the language that you can go away andstart writing code, and
to give you enough understanding that you can find your way around the textbooks.
I want to stress that in twelve lectures I can not possible turn you into C++ wizards,
and so I will not try that. Instead I will introduce the language and try to get across
some of the feeling and spirit associated with it. My hope is that by the end of the
course you would be able to implement smallish bodies of code(eg implementations
of things from the Data Structures and Algorithms course) provided you had one of the
textbooks available for reference. The rest only comes withlots of practical exposure
over a period of several year.

These lecture notes are intended to accompany the course, and not to replace ei-
ther the lectures or the textbooks. Although the material covered here will broadly
match that in the lectures the detailed order of presentation will certainly differ, as (for
instance) points get explained when they arise in an exampleprogram that you get
shown.

6

If you go into a large bookshop and find the section devoted to C++ you will find
that there are a very large number of textbooks available, and more will come out each
month. In the end the selection should depend on your own interests and preferences,
and a judgement you may like to make on how much use of C++ you will make after
this particular lecture course ends.

Very many textbooks on C++ start with the assumption that the reader is already
a seasoned programmer in plain C. Indeed it is often assumed that it is old-fashioned
K&R C that is the starting point for a study of C++. Another whole shelf-full of
C++ books in the shops relate very specifically to various particular (IBM pc) imple-
mentations of C++. These often spend many of their pages explaining how to wave
a mouse around and drive the relevant idiosyncratic development toolkit, and how to
make write programs in the specific context of Microsoft Windows. Neither of these
approaches is really satisfactory for the course given here. At least one other book I
considered recommending has been omitted from this list because I consider the ty-
pography and layout grimly distracting and ugly. The books suggested here represent
perhaps plausible compromises: the ones on C rather than C++ represent more definite
recommendations since that section of the market is more stable.

C++ Primer (2nd edition), Stanley Lippman, 1991, Addison Wesley.

This is at least at present my main recommendation. It costs just under£30, and
will serve as a reasonable reference manual as well as a textbook to learn C++
from.

The Standard C++ Library, Plauger, 1994.

This has only appeared on the bookshop shelves during the final few months of
1994, but covers the current draft specification that will turn into ANSI’s formal
recipe for a C++ library. Do not expect all existing implementations of the
language to meet this description yet, and consider waitinganother year to get
edition two or three of this book as the standard gets closer to adoption. Despite
these quibbles, this book is something of a landmark, because the other C++
books give decidedly light coverage of library issues.

C++ with Object Oriented Programming, Paul Wang, 1994, ITP.

One reason for me to include this on my list is that I know Paul Wang — and I am
quite happy to direct royalties in his direction. He takes the view that teaching
should start directly with C++ rather than going through C first, and his book is
a little more gentle than Lippman’s.

The Annotated C++ Reference Manual, Ellis and Stroustrup, 1990, Addison Wes-
ley.

For reference rather than as a gentle introduction, and hence I suggest that most
of you donot rush out and buy this. The time to buy definitive reference material
relating to C++ will be when the standardisation process is complete and the

7

language has stabilised. However, borrowing this from the library for a few days
may be interesting. The same comment applies to pretty well any other C++
book with Stroustrup as author!

ANSI X3J16 working drafts, 1994-.

At various later stages in their development of a standard for C++ the techni-
cal committees involved releases drafts for public comment. The first of these
has now been circulated. There are three reasons why I suggest that you do not
search for it on the internet and download it: (a) at over 700 pages it would use up
your free printing allowance too fast, (b) since this is justthe first public-review
document the language C++ will change in a number of significant ways be-
tween now and the final standard and (c) official standards documents are dense
and detailed, and generallynot useful for learning languages. The information
included is also much too much to relate to a twelve lecture course.

ANSI X3.159, American National Standards Institute, 1989.

This is the official standard for C, subject to later statements in clarification or
amendment. It is not readily available in bookshops, and probably only really
needed by those who are going to try to write their own C compilers or set
themselves up as utter expert in all the dark corners of the standard. Find a copy
in a library (there should be one in the book-locker) and inspect it for a few
minutes. The version published by ANSI has an accompanying “rationale” that
explains the thinking behind some of the decisions made by the committee, and
this is both readable and enlightening. Most recent reportswere that a copy of
this document would set you back£180!

C, a Reference Manual,Harbison and Steele, 1987, Prentice Hall.

Probably the most sensible general purpose C book to have on your bookshelf.
The main reason it does not now count as quite essential is that this course now
views C as a subsidiary language to C++. However most C++ books give only
rather superficial coverage of the pre-processor and the C library, so until C++
has been standardised and these aspects of it are well documented in an explicitly
C++ context this will remain a very useful reference work to own.

The C Programming Language, Kernighan and Ritchie, Prentice Hall.

You might reasonably believe that the book by the original inventors of a lan-
guage would be the best volume for you to have on your shelves,and that it
would give the clearest and most definitive description of the language. In the
case of Snobol, Griswold’s original manual still probably counts as a classic, but
for C there book by K&R is less precise, less complete and lessbalanced than
several alternatives. This applies both to their original 1978 language definition

8

and to their updated book documenting ANSI C. I mention the book here to sug-
gest that for all ordinary student use it is not the correct choice (and when I last
looked its cost per page seemed exorbitant too).

Obfuscated C and Other Mysteries,Don Libes, 1993, Wiley.

This costs too much at over£40, but gives some insight into the real problems of
writing portable and reliable C code: even when it does so by giving examples
of the converse. Some of these examples are included in thesenotes, but with-
out much explanation — if you want the full story on them turn to Don Libes’
commentaries. I enjoy this book.

Microsoft Foundation Class Primer, Jim Conger, 1993, Waite Group.

Earlier I dismissed as irrelevant books that concentrated on just one particular
brand of computer or version of C++ compiler. With this book I make a (quali-
fied) exception. It isnot a book to teach you C++, but it does give a respectably
clear explanation of a large-scale application of the language, viz the construc-
tion of programs that work under Microsoft Windows. I have found its expla-
nations both clear and helpful — so if you find yourself involved in a Windows
project sometime this may help you out.

Computer Related Risks, Peter G Neumann, 1995, Addison Wesley

This book is not directly about either C or C++, but it is about the consequences
of failure in computer systems. Any time you write part of anyimportant body
of code you should read and re-read both this and Fred Brooks’ “Mythical Man
Month” to remind yourself that programming is not a cost-free abstract activity
done just for fun. The Computer Related Risks book is the best collection I
know that gives detailed citations of (numerous) cases where programmer error
or system-designer oversight led to death or major loss. It is a macabre mixture
of the horrifying and hilarious! Strongly recommended.

3 Practical Work with C and C ++

It is impossible to get a real feel for any programming language without writing a
reasonable number of programs of your own. On the Cambridge Unix systems this
may involve the use of “g++”, the GNU4 compiler for C++. Equally, on Thor it may
be that the approved C++ compiler is one provided by Sun, calledCC.

4The acronym GNU recursively stands for “GNU is Not Unix”, andyou should read the interesting
accompanying copyright notice, which basically says that all GNU software can be copied — and that
nobody may do anything to prevent anybody else from freely copying it. If you are concerned about
possible future commercial exploitation of any of your codeyou may like to make a special point of
reading the GNU Public Library License. It is reproduced as Appendix A, and further limitations that
apply to DOSg++ executables are listed in Appendix B

9

To useg++ you should prepare a source file with a name such assample.cc ,
and then go

g++ sample.cc

After a suitable pause and if your program was syntacticallycorrect,g++5 will leave
a filea.out with the compiled version of your code in it. Your code is thenactivated
by saying just

a.out

If you want the executable version of your code called something more interesting that
a.out just add-o program name to the command line that invokesg++.

If you happen to have convenient access to a PC that has a C++ compiler installed
on it there is probably extensive on-line documentation to help you get started. If the
compiler involved has an integrated development system youshould probably use that
to create your files, and then compiling and running programswill be a very minor
matter of pointing the mouse at some suitable button. But if you do take that route,
please note that new releases of most PC compilers are made at1 year to 18 months
intervals, and since C++ has been a rapidly developing language it is almost certain
that old compilers will fail to support some of the potentially interesting features6. I
have used Zortech (now Symantec) C++ and Microsoft’s Visual C (the 32-bit edition)
and been pleased with both. The Borland compilers are readilyavailable and cheap,
and so are also worth considering. If you move on from just learning the language to
working on large-scale projects there are other compilers on the market, and (which is
perhaps more important) a selection of tools and libraries that may help you control
a project or prototype your user interfaces. You can also obtain g++ for DOS, and a
copy of that will be on the Computer Laboratory teaching filespace from which you can
take a copy. Note that different releases of this software have different installation rules
and different collections of bugs — the version on the Computer Laboratory filespace
is reasonably up to date and furthermore is the one that I haveused when checking
some of the course examples on a PC. With DOS GCC the basic recipefor compiling
and running a simple program will be involve ensuring that a an environment variable
(DJGPP) has been set up to point to one of the files from the distribution kit, and then
just

gcc sample.cc -lgpl -lm
go32 a.out

In this case the driver programgcc treats files whose name ends in “.c ” as con-
taining ordinary C programs, and ones whose name ends “.cc ” as being in C++. The
curious-lgpl -lm just links in some extra libraries — if you accidentally forget to
request them you will probably see complaints about undefined symbols.

5Usecc or gcc if your program is in C rather than C++.
6Templates and Exceptions are the current leading edge, and in MSDOS/Windows products the last

year or so has seen a major (and very welcome) move from 16-bitto full 32-bit implementations of
languages

10

Many other computers that you might gain access to will have C++ compilers
installed on them, but you should be aware first that the requirements on filenames you
use for your source code are not standardised, and that sinceC++ is still a developing
language some implementations will be more bug-free and more up to date than others.

To finish this section I should follow tradition and present afirst example of code
from the C family. I will use the most primitive version of thelanguage (ie K&R C),
and in accordance with long and honoured tradition the entire purpose of the program
in figure 1 will be to print the message “hello world!”. The version of this program that
I have selected to show here was written by Bruce Holloway, is in the Public Domain,
and is explained further in [4]. For the moment I will omit a detailed explanation of
how the code works (after all it achieves a very simple result, so maybe there will be
no problem7), but it does illustrate a worthwhile range of C constructs.If you want to
try it out please compile using the commandcc rather thang++ so that you hand it to
a compiler that accepts old-style C.

There are a number of small example programs included in these notes, and it is
hoped that you will type in and try (and then modify) the smaller ones of these, and
at least try to puzzle through some of what is going on in the larger ones. A selection
of machine-readable resources will be available on the Computer Laboratory teaching
file-space too.

4 Debugging

A first, and probably best suggestion about debugging C and C++ code is that you
should try very hard to arrange not to have to do any. All possible effort should go
into ensuring that code is absolutely correct. This is because wild C code can all
too easily overwrite memory that contains code or is not related to the data structures
mentioned in the erroneous fragment of program. An effect isthat a significant number
of mistakes show up not as neat local failures but indirectlybecause of the way they
lead to corruption that causes catastrophic failure in unrelated parts of your code.

A second reason to be especially cautious with C and C++ is that the (cheap)
compilers that the department provides for your use are not equipped with powerful or
convenient debugging tools. For the purposes of this course8 you should suppose that
if a program fails it just stops, without even guaranteeing to finish sending all recent
output to the screen.

As a consequence, a proper policy when writing code is to use asomewhat defen-
sive style, so that at well chosen places you apply consistency checks, and at other well
chosen places you arrange to be able to make the program report on its progress — so
that if it then fails the log of progress reports will allow you to reconstruct what was go-
ing on in the run-up to the crash. Section 8 will explain how the extra print statements

7Huh?
8Unless you have access to one of the more expensive PC compilers that comes with a elaborate

debugger that allows you to inspect the values of variables after a program has crashed.

11

/ * Program by Bruce Holloway, Digital Research * /
#include "stdio.h"
#define e 3
#define g (e/e)
#define h ((g+e)/2)
#define f (e-g-h)
#define j (e * e-g)
#define k (j-h)
#define l(x) tab2[x]/h
#define m(n,a) ((n&(a))==(a))

long tab1[]={ 989L,5L,26L,0L,88319L,123L,0L,9367L };
int tab2[]={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 } ;

main(m1,s) char * s; {
int a,b,c,d,o[k],n=(int)s;
if(m1==1){ char b[2 * j+f-g]; main(l(h+e)+h+e,b); printf(b); }
else switch(m1-=h){
case f:

a=(b=(c=(d=g)<<g)<<g)<<g;
return(m(n,a|c)|m(n,b)|m(n,a|d)|m(n,c|d));

case h:
for(a=f;a<j;++a)

if(tab1[a]&&!(tab1[a]%((long)l(n))))return(a);
case g:

if(n<h)return(g);
if(n<j){n-=g;c=’D’;o[f]=h;o[g]=f;}
else{c=’\r’-’\b’;n-=j-g;o[f]=o[g]=g;}
if((b=n)>=e)for(b=g<<g;b<n;++b)o[b]=o[b-h]+o[b-g]+c ;
return(o[b-g]%n+k-h);

default:
if(m1-=e) main(m1-g+e+h,s+g); else * (s+g)=f;
for(* s=a=f;a<e;) * s=(* s<<e)|main(h+a++,(char *)m1);

}
}

Figure 1: A C program to print “hello world!”.

12

can be left in your source file even when your code is believed to be finished, ready to
be re-activated when the next “last bug” surfaces and needs to be tracked down.

5 Simple Data and Simple Operations

This section explains the most basic parts of C++. It will not be a complete explana-
tion of anything, but is intended to provide enough understanding that modest chunks
of code can be read and hence the more elaborate features thatcome later can be ex-
plained. At this stage I will show how to write individual functions, but not include
enough information to turn them into complete or useful runnable programs.

The first feature of C++ to explain is how to write comments. This is in the natural
expectation that all the (serious) code you ever write will need plenty of these. There
are in fact two ways of writing comments in C++. The main rule is that everything
from “// ” until the end of a line will be ignored. In new C++ code you might well use
just this style. But (oh joy) C had a different convention (which C++ still honours),
whereby a comment starts with “/ * ” and ends with “* / ”. Missing out the “* / ” can
cause an arbitrarily large segment of your code to be discarded, and the comment
delimiters do not nest, so there is possible danger if you write some code and later
comment it out as here:

here is some code
/ * Write a comment marker to start commenting code out

debugging code here, now not wanted
debug code / * with comment * /
more debug code // unexpectedly (?) not commented out
end of unwanted debug code

* / // intended to match first ’/ * ’

Many programmers will lay block comments out in some stylised format to help
keep code in a consistent style. Three useful layouts for theblock of comments that
will precede each function definition or small block of definitions are:

/ *
* Here is a block comment to explain what my code

* is supposed to do. Valid for C or C++.

* /

/ *** *
* Nice layout for comment at start of major block? *
*** * /

/// //
// This style is ONLY valid in C++, not plain C. //
/// //

13

C++ as a language design supposes that the programmer has good taste and will
write code with care and thought. You may like to consider thepossible pitfalls of the
following uses of ”/ * ” comments:

/ * here is the start of a comment
/ * here is continuation of it
/ * the extra ’/ * ’ has no significance to C!
/ * however if I try to put ’ * /
/ * (oops) in my comment I may be in trouble * /

/ * / This is comment / * /
this is not in comment, but another ’/ * /’
even within quote marks switches me back to
within comment / * / Maybe it is wonderful to
have the same string to start and end comments?
But what / * // * // * / if you miss one out?

Now on to more active aspects of the language. The primitive data types supported
are integers, floating point numbers, arrays and pointers. Each of these come in several
variants. Variables may be declared using syntax such as:

int x, y; // simple integer variables
double z; // double precision floating point
int m[10]; // an array of integers
double pi = 3.14159; // initialised declaration

The variables so declared can be used in arithmetic expressions with the usual
operations applied to them, however the notation used for comparisons (especially the
equality test) are worth making a special note of.

Unary -: Negate a value, as in- x .

+, -, * , /: Ordinary arithmetic operations, which can be used on eitherinteger
or real values, as in(x+y) * (p-1) .

%: Used in integer contexts to compute a remainder.

˜, &, |, :̂ Bitwise negation, AND, OR and exclusive OR operations (on inte-
gers).

<<, >>: Left and right shifts of the bit patters in an integer.

<, <=, >, >=, ==, !=: Comparison operators. Note especially that the test
for equality is written as==, which is not the convention used by other program-
ming languages! In C++ zero is used to representfalse and non-zero values
(with 1 as the standard case) standing fortrue.

14

=: A single= sign is used to indicate assignment. So note thata=0 sets the variable
tt a to zero, whilea==0 tests to see if it is already zero.

+=, -=, ...: Any binary operator can be combined with= to allow assignments
such asa += 2; which adds two toa, or b &= 1; which masksb with 1.
++,--: The use of++ and-- is discussed later on.

!, &&, ||: These operators are used to operator on truth values, as in composite
tests such as(a>b) && !(p<q) . Note that in the formA && Bif A evalu-
ates to false (ie zero) thenB is not evaluated at all, and similarly inA || B if
A is true (nonzero) thenB is not evaluated.

* , &, ->, ?: The use of* and& as unary operators,-> as an infix operator and
of ? will be discussed later.

The meanings described above apply when the operators concerned are used in asso-
ciation with integer or floating point values: in C++ the same operators can be re-used
for totally different purposes when user-defined data typesare introduced.

Floating point values occur in two flavours, and variables ofthe two sorts are de-
clared using the wordsfloat anddouble . The first of these is for single-precision
floating point, the second for double. There are not many9 reasons to use single pre-
cision arithmetic, and there are some curious pitfalls, so until you have finished this
course and read one of the textbooks carefully please use only double .

Integers are much more complicated, in that C++ provides many different integer
data types. These are:

char signed char unsigned char
short int unsigned short int
int unsigned int
long int unsigned long int

enumeration types

The language allows an implementation to choose the exact precision used by each
of these. The intent is thatchar holds a character, and it will generally be an 8-bit
data type, ie one byte.int is expected to be the integral data type that is most natural
for the computer on which you are working. On most current workstations this will
be a 32-bit (4-byte) type, but with some compilers on smallermachines it will be 16-
bit, while on some newer larger workstations it is 64-bits.short may be the same
as int or it may provide less bits, andlong may be the same asint or it may
be longer! Usually (of if thesigned qualifier is used) integer are taken to have a
range that includes both positive and negative numbers: on atypical computer (with

9There are two important reasons why you might need to use single precision floating point. You
may need to work with data files or structures whose format hasalready been defined and where that
format includes single precision floats, or you may havevery large arrays of floating point data where
saving space by storing just single precision values is vital.

15

2’s complement10 arithmetic) wherechar is 8-bits this would mean (for instance) that
a variable of typesigned char could hold values in the range -128 to +127. The
qualifier unsigned changes this interpretation and indicates that values should be
interpreted as positive numbers, and sounsigned char would cover than range 0
to 255. Note that if you are attempting to write C or C++ code that will port effortlessly
across a wide range of machines you need to avoid making hidden assumptions about
the exact widths of these integral types.

Integer constants can usually be written in the obvious way,as in 0, 123, 999999
and so on. The compiler will give the constant that has been written one of the types
int , unsigned int , long int or unsigned long int depending on how
large it is, and almost always this will cause things to behave the way you want them
to. In a few cases it is desirable (or even essential) to ensure that a numeric constant
has a known type. AppendingU to a number forces the compiler to treat it as unsigned,
while suffixesS or L indicate short or long values. Thus0L stands for a zero of type
unsigned int .

Octal and hexadecimal11 constants can also be written. Any integer written with
a leading zero will be interpreted as being in octal (thus0377 is a bit-pattern with 8
low-order bits set, and so (on a 2’s complement machine) represents the value 255).
Hexadecimal constants are introduced by0x and use the lettersa to f to stand for
digits with weight 10 to 15. For example0xff is again 255 (probably), and on a
32-bit machine0x80000000 is the most significant bit in anint .

Enumeration types will be discussed later on.
What about characters? It has been explained that the typessigned char and

unsigned char are signed and unsigned integral ones capable to holding one“char-
acter”. The typechar (without eithersigned or unsigned qualifier) will be iden-
tical to one or other of these, but the choice of which is left up to the compiler writer,
who is expected to choose whichever will be faster or most natural on the computer
involved. Again this is a region where care can be called for when writing portable
code. Character constants are written in single quote marks,as in’A’ . Such constants
stand for some numeric code that will be used to represent thespecified character. The
language makes no guarantees about the encoding used, save that a character constant
will yield a number small enough to fit in achar . In particular it is not guaranteed
that ’0’ . . .’9’ will be consecutive codes, even though on most implementations
they will be. Within character constants the character “\ ” is very special: it causes
the character following it to be grabbed and used to allow thespecification of various
characters that might otherwise be hard to express12:

10C++ does not insist that the computer it runs on uses 2’s complement arithmetic, but the meaning
of bitwise operations, shifts and hexadecimal constants would give trouble otherwise.

11Base 16.
12This is not quite a complete list of the possibilities

16

’\n’ ⇒ Newline character
’\t’ ⇒ (Horizontal) tab character
’\b’ ⇒ Backspace
’\\’ ⇒ A backslash (\)
’\’’ ⇒ A single quote mark
’\"’ ⇒ A double quote mark

’\nnn’ ⇒ nnn must be up to three octal digits, and this
is the character with that code. The most sen-
sible use for this is just’\0’ to stand for the
character code zero.

For almost all purposes you should think of character constants as being of typeint
rather thanchar , and when you declare variables to hold character values youshould
useint variables. This may seem strange at first!

To a first approximation, strings in C++ are just arrays of characters, and string
constants can be written ny enclosing the required text in double quotes:

"Here is a sample string ending in a newline\n"

Now I can introduce the feature that perhaps gives C and C++ their most essential
flavour: pointers. IfT stands for some type, and can be used to declare variables, than
T * can be used to declare variables that can contain pointers toobjects of typeT. The
unary* operator follows a pointer and retrieves the value pointed to.

Consider the following:

char * s = "test string"; // s points at start of string
int c0 = * s; // makes c0 == ’t’
s = s + 1; // increment pointer

// Note that C++ permits declarations to be written after
// regular executable statements, while C would not, thus
// (for this reason alone) this sample code is valid C++
// but not valid C. cf C++ allows "for (int i=0; ...)"

int c1 = * s; // c1 == ’e’
int c3 = * (s+3); // c3 == ’s’
int c4 = s[4]; // c4 == ’t’

The statements shown are intended to indicate that arithmetic on pointers can be
used to step along a vector, and the last line to suggest that the neat array reference
syntaxs[4] is really nothing more than short-hand for* (s+4) .

It is very common to want to access in turn each item in a vector, and C++ provides
especially convenient notations to support this. The syntax x++ means return the value
of the variablex but after this value has been evaluated, incrementx . Combined with
the* operator this can be used as* x++ which follows the pointerx and then moves
x on to point to the next item to be processed. By analogy* y-- follows the pointer
y then decrementsy thus supporting backwards scans of data. Sometimes it is useful
to perform the increment or decrement operation before doing the indirection, and in

17

such cases the++ or -- is just written before the variable name. A useful idiom this
provides is that of astack. For a stack of characters, growing upwards and with the
stack pointer pointing directly at the most recent character pushed, I could write

char stack_area[100]; // make space for the stack
char * sp = stack_area; // points to start of array

* ++sp = <value>; // push value onto stack

* ++sp = <value>; // push another value
// Note I have not implemented any overflow check here.
int res1 = * sp--; // pop off a value
int res2 = * sp; // access top value, but leave it
sp--; // pop stack as separate operation

The++ and-- operations do not have to be used in association with addresses and
indirection, they work on any integral data types as well as on pointers.

The unary operator& can be used to take the address of a variable or other item.
When arithmetic is done on pointers C++ applies rules that try to be helpful —

adding one to a pointer increases the address referenced by the size of the object
pointed at. The unit of addressing is supposed to be the same as the size of achar . In
the examples given above the pointers were all tochar s. If you have a pointerp into
an array of integers then++p is still equivalent to the statementp = p+1; but things
will be arranges to that p moves on to point at the next integer. On a 32-bit machine
if you looked at the bit patterns involved this might appear thatp has had 4 added not
1! Similarly the expressionp[i] will still mean just the same as* (p+i) , but on a
32-bit system it will compile into code that looks a little more as if you had written
* (p+4 * i) where the multiplication by 4 is to allow for the size of each integer. Peo-
ple who are being silly can exploit the rule thata[b] means just the same as* (a+b)
by deducing that in turn that can be re-written as* (b+a) and henceb[a] . This can
lead to odd-looking code like3["magic"] that should normally be avoided.

The macroNULL that is defined in various of the standard headers representsa
value that will never arise as a “proper” pointer and can be used to mark the ends of
linked lists etc.

Conditional statements in C++ are written as

if (expression)
statement1

else
statement2

where the parentheses around the expression to be tested areessential. Theelse
clause is optional.

Iteration is expressed either as

while (expression)
statement

18

or as

for (initialiser; end-condition; step-on)
statement

where it seems easiest to explain the three components in theheader of afor loop
by giving an example:

char * s = "Some String";
char buffer[100];
for (int i=0; * s!=0 && i<100; i++)

buffer[i] = * s++;

This example code copies the string pointed at bys into the arraybuffer , stop-
ping either when a zero “character” is found (this is how C++marks the end of a string)
or when 100 characters have been copied. Note that in C++ it is possible to declare the
int variablei as shown, while in plain C it would be necessary to declarei before
thefor loop.

Within the body of a loop constructbreak can be used to exit from the loop, and
continue to go on at once to the next iteration.

C++ naturally has agoto statement, and labels are set by following their names
with a colon. See Figure 2 for a program that illustrates how,in some circumstances,
the careful use ofgoto statements can enhance the legibility of C code.

The other interesting control structure featured in C++ is calledswitch , and in
one statement it can dispatch to a large number of places, selecting which on the basis
of the value of some integer. In straight-forward use the syntax used is illustrated by

char * m;
int i = some_random_function();
switch (i)
{

default: m = "Unknown Number"; break;
case 2: m = "The only even prime"; break;
case 10: m = "What I get when I count my fingers"; break;
case 1729:

m = "smallest sum of 2 cubes in 2 different ways";
break;

case ’A’:m = "character code for ’A’ on this computer";
break;

case 0: m = "don’t be silly"; break;
}

The switch construct finds many uses for dispatching on the basis of integer code
values (eg in an emulator for some real computer one might well switch on the
opcode field from the next instruction to be simulated) or character values.

C++ function definitions are written as in the following example

19

/ * Program by Spencer Hines, Online Computer Systems * /
#include <stdio.h>
#include <malloc.h>
main(togo,toog)
int togo;
char * toog[];
{char * ogto, tgoo[80];FILE * ogot; int oogt=0, ootg, otog=79,
ottg=1;if (togo== ottg) goto gogo; goto goog; ggot:
if (fgets(tgoo, otog, ogot)) goto gtgo; goto gott;
gtot: exit(); ogtg: ++oogt; goto ogoo; togg: if (ootg > 0)
goto oggt; goto ggot; ogog: if (!ogot) goto gogo;
goto ggto; gtto: printf("%d goto \’s\n", oogt); goto
gtot; oggt: if (!memcmp(ogto, "goto", 4)) goto otgg;
goto gooo; gogo: exit(ottg); tggo: ootg= strlen(tgoo);
goto tgog; oogo: --ootg; goto togg; gooo: ++ogto; goto
oogo; gott: fclose(ogot); goto gtto; otgg: ogto= ogto +3;
goto ogtg; tgog: ootg-=4;goto togg; gtgo: ogto= tgoo;
goto tggo; ogoo: ootg-=3;goto gooo; goog: ogot= fopen(
toog[ottg], "r"); goto ogog; ggto: ogto= tgoo; goto
ggot;}

Figure 2: A C program to illustrate the use of “goto ”.

20

int fib(int n)
{

if (n < 2) return 1;
else return fib(n-1) + fib(n-2);

}

where the header line defines the type of both arguments and result from the function,
andreturn is used to exit from the function with a result. As a special case a func-
tion can be defined to return the typevoid , which indicates that no value at all will
be returned. In the definitions of such functionsreturn is used without a follow-
ing expression. In old K&R C the above example would have to bewritten slightly
differently:

int fib(n)
int n;

{
if (n < 2) return 1;
else return fib(n-1) + fib(n-2);

}

with the type of the argument specified below the header line rather than as part of it.
This old style needs to be recognised so that you can make sense of existing code, but
should not be used when new code is being written.

It should be observed that C++ assignments and function calls can be used as state-
ments, terminated by a semicolon. A null statement can be made by writing a semi-
colon after nothing at all. Collections of small statemnentscan be grouped by wrap-
ping them up in a pair of braces ({ s1 ; s2 ; s3 }). Similarly if an expression
rather than a statement is wanted, several expressions can be combined so that they get
evaluated one after the other (and only the last value preserved) by concatenating them
with a comma (“, ”) as connective. For instance* ++x might alternatively have been
expressed as(x+=1, * x) .

6 Library Functions that Everybody Needs

C++ can be used as a language for programming raw hardware where the purpose of
the code is to activate various input and output hardware. IfI/O ports happen to be
memory mapped (as is the case with some styles of microprocessor) the usual C++
operators can make it possible to use them. For instance on anIBM PC there may
be video memory at addresses around 0xc0000, so with at leastsome compiler and
configuration of a machine code13 such as

for (char * p = 0xc0000; p<0xc1000; p++) * p = ˜ * p;

13The use of integer constants with pointer variables as shownhere is pretty dubious, and at a min-
imum a proper piece of C++ code will need to contain extra decorations (calledcasts) to reassure the
compiler that the programmer really intended that.

21

might have some effect on what was displayed.
More normally all input and output for C++ will be done by calling library func-

tions and using and types, operators and variables defined insystem-provided header
files. To use these facilities it is necessary to know which system files declare the
functions you want to use. The facilities listed in this section represent a tiny selection
of some of the ones most needed while getting started: browsea textbook to find out
what else is available.

For C the ANSI standard provides a clear definition of a core offunctions that
can be relied upon. For C++ the situation is much less stable. At present it seems
reasonable to expect that the ANSI C functions will always beavailable, and that C++
adds a new set of capabilities known asiostream . But as the C++ standardisation
process continues things are very likely to change.

All real C++ systems will provide a significant collection of extra library functions
that can be called. Under Unix, for instance, there will be all of the Unix system
calls, and probably the entire interface to X-Windows. On anIBM PC there will
be functions that give access to low-level MSDOS features, plus all of the Microsoft
Windows interface. Similarly on other systems. This courseviews such extra libraries
as to a large extent outside its scope, but serious C++ users will eventually need to
come to terms with at least one (and probably several) of them.

For C++ simple input and output can be arranged using theiostream library.
This provides pre-declared variablescin andcout that are used to refer to the de-
fault input and output streams (often connected to the keyboard and screen of your
computer), and operations that can be performed on these variables to cause text to be
read or printed. Really simple functionality is supported bythe use of operators<<
and>>14 applied tocin andcout . The following program illustrates this — together
with a few other new features of C++.

#include <iostream.h>

int main() // not really long enough to need comments?
{ int a, b;

cout << "Please type in two numbers\n";
cin >> a; // read in integer a, then b.
cin >> b;
cout << "The sum is " << (a+b) << endl;
return 0; // exit back to Unix or DOS or whatever

}

The line starting#include directs C++ to process the standard header file named
there. Without that header file the variablescin andcout and all operations on them
would be undefined.

The program defines a function calledmain . A convention with C++ is that a
program is started by calling a function with that name, so every complete program

14Recall that on integer types these called for shifts left andright of bit-patterns.

22

is expected to definemain . Themain function returns an integer code that may be
available to the command-line decoder that launched the program. A value of zero
usually indicated success15. The uses of>> and<< are influenced not only by the
presence ofcin or cout as one operand, but by the type of the other operand, so
for instance printing uses a reasonable default format withintegers printed in decimal
and strings displayed in the obvious way. The printing the predefined objectendl
causes a newline to appear. The usagecout << endl is slightly different from
cout << "\n" in that in addition to putting out a newline character it forces any
pending output to appear on the user’s screen or in the relevant output file. This effect
becomes important if the printing was to collect a record of what went on prior to a
collapse — if"\n" were used in place onendl output can remain buffered and may
be lost when the code fails.

The example also shows that uses of<< for output can be chained together. The
reason this is possible is that the expression

cout << a << b << c;

will parse as

((cout << a) << b) << c;

and it is arranged that(cout << x) just returnscout after printingx .
On occasions it is more useful to read and print things one character at a time. The

iostream way of achieving this is illustrated in:

#include <iostream.h>

int main()
{ char c;

while (cin.get(c))
cout.put(c);

return 0;
}

where the “. ” operator applied tocin andcout selects an associated operation, and
get and tt put are single-character input and output functions.cin.get returns a
true value until it reaches the end of the input stream.

If instead of having a variable that is directly of a class type you have one that
contains a pointer to an object then the selector “-> ” should be used instead of “. ”. In
generala->b is equivalent to(* a).b .

As one might expect there are extra facilities for setting input and output into octal
or hexadecimal modes, controlling the widths of values processed and directing data to
places other than the standard streams — but the facilities listed thus far are sufficient
for now so far as C++ is concerned!

15SeeEXIT SUCCESSandEXIT FAILURE in your C manual.

23

Until C++ has totally displaced C16 it is necessary to know at least the bare bones
of C-style input-output too. This centres around a package known asstdio and
the standard streams are known asstdin andstdout . Character-at-a-time input is
done usinggetchar() which normally returns a character, but which hands back
the special valueEOF17 at end of file. Correspondinglyputchar is a function of one
argument that sends one character tostdout .

#include <stdio.h>

int main()
{ int c; // use integer variable here so that

// it can hold the non-character EOF
// when needed.

while ((c = getchar()) != EOF)
putchar(c);

return 0;
}

More elaborate printing is done usingprintf , which has as its first argument a
format string. This is printed, except where it contains%characters. These cause one
of the subsequent arguments toprintf to be printed in some specified format. The
latter “d” causesprintf to print a (decimal) integer and “s ” a string: there are very
many other options.

#include <stdio.h>

int main()
{ int a = 100;

char * s = "string";
printf("An integer %d and a string %s\n", i, s);
return 0;

}

With both C and C++ schemes there are full sets of facilities to open and close
files and control format, and to do transfers on blocks of characters as well as single
characters18. There will also be schemes that allow variants on the usual reading and
printing operations to work on arrays of characters held in memory rather than on text
kept in files or accessed directly from the keyboard.

It is not going to be a good idea to try to mix C and C++ style input and output in
the same program!

16Perhaps it never will.
17EOFoften has the value -1, but it is defined in the standard headerand you should nor rely on its

exact value.
18At least on some systems it can bemuch more efficient to read and write large files in blocks of

several thousand characters at a time

24

As well as supporting input and output, standard libraries look after memory allo-
cation and string manipulation. Memory allocation is another area where C++ differs
from C. The C++ code

{ int vector[10];
for (int i=0; i<10; i++) vector[i] = i;
...

}

declares a vector of length 10, initialises it and presumably uses it within the block
(delimited by{}) shown. With this form the vector only exists for as long as your
program is executing code within the block, and the size of the array must be a con-
stant. These limitations can be relaxed but at a cost (the required memory may not be
available) by allocating the vector dynamically. The operator new allocates memory,
andfree can be used to release it. Inappropriate use offree can be the source of
amazingly obscure and hard-to-track bugs.

int n; // size of array
cin >> n; // read in size as variable value
int * vector = new int[n]; // Try to allocate...
if (vector == 0) goto failure; // ... Oh Dear?
for (int i=0; i<n; i++) vector[i] = i;
...
delete vector; // when vector is finished with

In C instead of using operatorsnew andfree there are library functionsmalloc
andfree that serve the same purpose.

Typical string operations available in thestring library are:

strcpy(char * dest, char * src): Copies characters from the source string
to the destination.

strcmp(char * a, char * b): returns an integer that is negative, zero or posi-
tive depending on whether stringa comes before, is equal to or comes afterb in
lexical order.

strlen(char * s): Returns the length of the given string. Note that a string such
as"abcd" has length 4, but in memory it will be stored with an extra byteat its
end — this byte contains zero and is used to mark the end of the string.

Spot the odd behaviour of

strlen("A string\0with a zero character in it")

which returns 8, treating the string as ending at the’\0’ character.
After #include <ctype.h> a range of character classification functions be-

come available.isalpha , islower , isupper , isdigit and isspace detect

25

letters, lower and upper case letters, digits and white-space. toupper andtolower
force the case of letters.

This sampling of library facilities should at least give a start to your programming,
but checking reference manuals to find complete lists of functions and options will
eventually be necessary.

7 Header Files and Separate Compilation

Although C++ is a perfectly good language for writing small programs, it can (and
very often has been) used for very substantial projects. These will involve keeping
source code in a collection of files rather than in just one file, and compiling each of
these files separately. The natural problem that arises is that of ensuring that code in all
the separate source files is kept consistent: for instance that if a function is defined in
one file then calls to it from another pass it the correct number and types of argument.
Languages such as Modula-3 have rigidly designed in mechanisms for solving this
problem, while in C and C++ more is left up to the programmer.

The main method used to keep things in step is the use ofheader files. These will
be generally be files that contain just declarations that specify the types of variables
and functions. They can also contain the definitions of user-defined data types or pretty
well anything else. The C++ directive#include (which should be written at the start
of a line) in a main program file causes the compiler to scan theheader file there, thus
bringing the declarations into effect. It is then able to confirm that both definitions and
uses of functions and variables are compatible with the declarations. Note of course
that local variables should not be mentioned in header files — it is just ones defined at
the top level in your file that can even possibly be visible from another file.

#include statements may name one of the system-provided header files by writ-
ing the header identification in angle brackets, as in the examples shown so far, or can
specify an arbitrary user-provided file by writing its name in double quotes.

Declarations of variables in C++ for inclusion in header files look very much like
the ones we have seen already, save that initialisations of the variables are not permit-
ted. Declarations of functions look just like the header line from the function defini-
tion, but terminated with a semicolon. In each case you should usually put the word
extern in front of the declaration. This keyword tells C++ that the value being de-
clared will be referenced from several different files so thecompiler must ensure that
its name is made globally available in compiled (object) files. Figure 319 shows all
the files you might want for a somewhat minimal multi-file project. It is worth setting
up your code in this way while your files are still small, so that by the time they get
large you are thoroughly used to the mechanisms involved. Unlessall the things that
you define in one file and use in another are declared in header files the C++ compiler
will have no early warning if your usage is inconsistent. But still many C++ systems

19Note that the multiple blanks shown in theMakefile are tab characters: Unix is fussy about this.

26

----- File proj.h -----
// Sample header file
extern long int count; // declare variable
extern long int ack(long int m, long int n);

----- File proj1.cc -----
#include "proj.h"

long int ack(long int m, long int n)
{ // well known function to waste time!

count++; // count number of times called
if (m == 0) return n+1;
else if (n == 0) return ack(m-1, 1);
else return ack(m-1, ack(m, n-1));

}

----- File proj2.cc -----
#include <iostream.h> // standard header
#include "proj.h" // private header

long int count = 0; // define variable

int main()
{

cout << ack(4,2) << endl;
return 0;

}

----- File Makefile -----
Small Unix "Makefile" for 2-source-file program

proj: proj1.o proj2.o
g++ -o proj proj1.o proj2.o

proj1.o: proj1.c proj.h
g++ -c proj1.c

proj2.o: proj2.c proj.h
g++ -c proj2.c

end of Makefile

Figure 3: A C++ program in several files.

27

(unlike C) provide a measure of protection20 that can result in an “undefined func-
tion” error message when you try try to link together the object files from inconsistent
sources. This is typically achieved by arranging that when you define a function such
asack in Figure 3 the name C++ uses internally for the function includes the name
ack that you used, but adds extra characters that encode information about the number
and type of arguments expected. This process is known as “name mangling”. So if you
see diagnostics that refer to long long names that are built from the names you used
plus a load of gibberish that is probably what is happening.

There are extra complications here if you want to mix C and C++ code (the usual
reason you need to do this is when there is some existing library of C code to be linked
to). If the declarations in the header file are written simplythey all refer to functions
compiled using the C++ conventions. An extra annotation

extern "C" {
extern void somefunction(int arg1, char * arg2);
}

is needed to direct a C++ compiler to expect or generate object code using conventions
compatible with C. With C linkage you should not expect as goodcross-file type-
checking as you get in regular C++ mode, and funtion names should not be overloaded.

Good C and C++ compilers should provide an option that will print a warning
message if you define anything that has not been declared earlier. This idea of such
a warning is that you discipline yourself to keep declarations just in header files and
definitions in source files, and the compiler message can allow you to check that every-
thing that could possibly need to be in the header file is in fact there.

C++ does nothing to prevent you from putting function definitions or indeed ab-
solutely anything into header files. It works as if before thecompiler started looking
at your program in any detail it scanned it and textually replaced each line starting
with #include with the contents of the named file. In very nearly all circumstances
you shouldonly put declarations in header files andneveruse#include to pull in
chunks of random source code.

8 Basic Features of the Pre-Processor

The#include facility was described as having the effect of transformingthe user’s
source code before the compiler proper got to look at it. WithC++ there are a number
of other operations that are implemented as if they are textual rearrangements of the
source done very early in the compilation process. In early Ccompilers these transfor-
mations were even performed by a separate program, known as the C pre-processor.
Nowadays the pre-processor is usually implemented as part of the full compiler, but
its behaviour is still kept somewhat separate. Preprocessor directives live on lines of
their own, and start with the# character. Apart from#include the most important

20Referred to as “type-safe linkage.

28

ones relate to conditional compilation. This is a facility that makes it possible to have
one source file where some of the details in it depend on (say) the computer it will
be run on. The C++ compiler for each different computer will establish, for the ben-
efit of the pre-processor, some predefined symbol that can then be tested so that the
desired fragment of code can be included. For instancegpp under MSDOS defines
(at pre-processor time) a flag calledMSDOS, so if you want code that produces a
customised banner you might write your source file as

#include <iostream.h>

int main()
{

cout <<
#ifdef __MSDOS__

"The compiler though \"MSDOS\"\n";
#else

"Possibly not MSDOS?\n";
#endif

return 0;
}

and only one of the strings will be passed to the<< operator and printed. Observe that
C++ conditional compilation is a transformation that is utterly unaware of the bound-
aries between C++ statements and other syntax rules, because it is done as simple
adjustment to the text in the file.

Apart from symbols that are pre-defined by the C++ compiler that you use it is
possible to parameterise your code on that basis of other symbols, and then cause them
to be defined (or not) by giving command-line options to the compiler. For example
if the above example was stored in a file"Am-I-DOS.cc" on Unix it could still
compiled using the command

g++ -D__DOS__ Am-I-DOS.cc

and the-D on the command line causes the specified symbol to become defined. One
use I make of this capability is with a file compression utility I have. The source code is
in one file, and contains both the code for the compression case and the decompression
(which I want to end up as separate programs). The two algorithms share quite a
lot of code, and I use#ifdef EXTRACT . . .#else . . .#endif to separate those
(smaller) chunks of code that make the whole program into either a compressor or an
extractor. The entry in theMakefile I use with this file contains essentially the two
lines:

g++ compression.cc -o squash
g++ -DEXTRACT compression.cc -o unsquash

which uses the same master source file but builds two quite distinct executables.
The remaining pre-processor features I will describe aremuch less important in

C++ than they were in plain C. However I have not yet described for you the C++

29

constructions that render them (almost) obsolete. So what Iwill do here is document
whet the pre-processor can do, then indicate how the addition of simple extra keywords
to ways of using C++ that you already know can achieve similar effects in what is often
a safer way.

The symbols tested with#ifdef are referred to asmacros, and except after the
word #ifdef any use of them will get expanded to some replacement text. The
symbols MSDOS andEXTRACTseen so far did not have useful values to expect
to — all that was of interest was whether they could be considered to be “defined”.
However a pre-processor directive named#define makes it possible to set up macros
that do have useful expansions. These macros can either be simple words (that can
expand into arbitrary text), or can take arguments. Here aresome examples

#define MAXIMUM_LINE_LENGTH 128 // A parameter
char line_buffer[MAXIMUM_LINE_LENGTH]; // use it.

#define FIRST_CHAR line_buffer[0]
#define LAST_CHAR line_buffer[MAXIMUM_LINE_LENGTH-1]

#define number_is_even_(n) \
(((n) % 2) == 0) // macros may extend over several

// lines by use of a trailing "\".

It is often considered sensible to use some clear lexical convention so that anybody
reading your code can tell when a name you use is actually a macro. C++ does not
enforce this (of course!). The convention used in the example is to spell simple macros
in upper case, and to have “” as the final character of those macros that accept argu-
ments. The use of macros can very greatly clarify programs, see for instance Figure 4
which may help you with your Morse Code. Most sensible large C programs will use
macros (probably defined in header files) to establish usefulparameters such as the
size of buffers that are to be allocated, and to introduce macros with parameters that
provide clean abstract access to data structures. Consider the merits of

#define RADIX_FOR_NUMERIC_INPUT 10
#define RADIX_FOR_NUMERIC_OUTPUT 10
#define ASCII_CODE_FOR_LINEFEED 10
#define NUMBER_OF_COMMANDMENTS 10
char * commandment[NUMBER_OF_COMMANDMENTS];

and the way that it could lead to code that would be much easierto maintain than a
corresponding version that just had the literal text “10” scattered through it.

In C++ macros aremuch less important than they are in C. This is because most
of the benefits of a simple macro can be achieved by putting theword const in an
initialised declaration, and in most cases macros with arguments can be replaced by
ordinary C++ functions that have been decorated with theinline directive:

const double VAT_rate = (17.5/100.0);

30

/ * Program by Jim Hague, University of Kent, Canterbury * /
#define DIT (
#define DAH)
#define __DAH ++
#define DITDAH *
#define DAHDIT for
#define DIT_DAH malloc
#define DAH_DIT gets
#define _DAHDIT char
_DAHDIT _DAH_[]=

"ETIANMSURWDKGOHVFaLaPJBXCYZQb54a3d2f16g7c8a90l?e’b .s;i,d:"
;main DIT DAH{_DAHDIT
DITDAH _DIT,DITDAH DAH_,DITDAH DIT_,
DITDAH _DIT_,DITDAH DIT_DAH DIT
DAH,DITDAH DAH_DIT DIT DAH;DAHDIT
DIT _DIT=DIT_DAH DIT 81 DAH,DIT_=_DIT
__DAH;_DIT==DAH_DIT DIT _DIT DAH;__DIT
DIT’\n’DAH DAH DAHDIT DIT DAH_=_DIT;DITDAH
DAH_;__DIT DIT DITDAH
DIT?_DAH DIT DITDAH DIT_ DAH:’?’DAH,__DIT
DIT’ ’DAH,DAH_ __DAH DAH DAHDIT DIT
DITDAH DIT_=2,_DIT_=_DAH_; DITDAH _DIT_&&DIT
DITDAH _DIT_!=DIT DITDAH DAH_>=’a’? DITDAH
DAH_&223:DITDAH DAH_ DAH DAH; DIT
DITDAH DIT_ DAH __DAH,_DIT_ __DAH DAH
DITDAH DIT_+= DIT DITDAH _DIT_>=’a’? DITDAH _DIT_-’a’:0
DAH;}_DAH DIT DIT_ DAH{ __DIT DIT
DIT_>3?_DAH DIT DIT_>>1 DAH:’\0’DAH;return
DIT_&1?’-’:’.’;}__DIT DIT DIT_ DAH _DAHDIT
DIT_;{DIT void DAH write DIT 1,&DIT_,1 DAH;}

Figure 4: Use of#define to improve code style.

31

inline int abs(int x)
{

if (x < 0) return -1; else return x;
}

Theconst decoration tells the compiler that the value set up must never and will
never change, while theinline annotation advises the compiler that it may well be
worth merging the body of the given function into any place where the function is
called from, thereby avoiding any function-call overhead.In general for C++ code
these ways of expressing things are much preferred over the use of macros, since they
ensure that the syntactic structure of code is preserved andthey allow C++ to keep do
better type-checking and error reporting than do macros. They also avoid some of the
funny things than can occur with macros and side-effects andbracketing, as in

#define square(x) (x * x)
int x = 1;
cout << square(x++) << endl; // (x++ * x++) so x gets

// incremented twice!
cout << square(x+x) << endl; // (x+x * x+x) which is

// NOT (x+x) squared!

For cases whereinline functions do not provide enough generality (for instance
the square macro above could have been tried on either real or integer arguments,
while a regular C++ function could not have coped with both cases all at once) there
are things called “templates”, which will be mentioned later on.

A reasonable person would expect that a formal definition andcomplete under-
standing of the pre-processor would not raise any big problems. Unexpectedly it does,
especially with regard to the treatment of macros that expand to other macros and pairs
of adjacent symbols that expand to text that seems to mean something special. These
notes will not discuss what happens in such cases — they just warn that people who
want to make truly elaborate use of the pre-processor or who intend to play tricks with
it need to read the standards documents very carefully indeed.

// The following examples are intended to raise
// doubts in your mind about just how the preprocessor
// will work.
#define startcomment / * some comment text
#define endcomment * /
#define divide_operator /
a = b /divide_operator divide_operator * ??? endcomment;
#define mytest(x) (x == 0 || mytest(x))
if (mytest(0)) cout << "zero"; // valid ??
#define int #define
int x = 3; // wow, what does this now mean, if anything?

32

9 A more-or-less sensible example

Figure 5 gives a first fairly realistic application of C++. It computes checksums of
files which might be useful if you want to verify that a file has been transferred safely
from one machine to another — checksum at either end and see ifthe numbers match.
It introduces a few C++ features that have not been mentioned before but which, in
context, should not cause great difficulty:

Arguments for main : argc will give a count of how many words were written on
the command-line when the program was called, andargv is an array of strings,
with each string being one of these words.argv[0] will be the first item on
the line, ie the name of the program being run. Henceargv[1] is the first word
after that.

ifstream : The line starting “ifstream ” is the declaration of a variables called
infile of type ifstream . This type is defined in the standard C++ header
files, and when a variable of that types is declared some extraarguments can be
given (as shown). The effect is thatinfile ends up as a C++ stream (support-
ing the same operations as doescin) attached to the given file.

infile.fail() : This just checks that the file that was wanted could indeed be
opened successfully.

cerr : Very similar tocout , cerr is (by convention) used as a place to send error
messages.

Use of& in function header: Normally arguments to C++ functions are passed by
value, so that whatever happens inside the function it does not alter the value
written where the function is called. With a& used as shown the function should
be called with an updatable object (typically a variable) asits argument, and
side-effects are possible.

hex : Sending the predefined valuehex to an output stream directs it to display subse-
quent integers in hexadecimal. There are of course plenty ofother format-control
directives available in theiostream library.

Limited portability: The code shown performs arithmetic and bitwise operations on
the codes for characters read from a file. A result will be thatthe checksum
computed will be sensitive to the character code used on yourcomputer. The
code also requires that the typeunsigned long int should be capable of
handling values as big as0x7fffffff (ie in realistic terms 32 bits). In these
two respects at least the code is not guaranteed portable, although the use of
long int rather than justint improves its chances. Would the code behave
identically on machines with 32 and 64 bitunsigned long int s? If not
can you fix it?

33

// Utility to compute a checksum for a file. A C Norman, 1994

// Usage:
// checksum <filename>
// prints a checksum of the file contents

#include <iostream.h>
#include <fstream.h>

// This is my favourite hash function at present.
// It cycles a 31-bit shift register with maximum period.
void update_hash(unsigned long int &hash, int ch)
{ // WARNING this code expects long ints to be 32 bits

unsigned long int hashtemp = (hash << 7);
hash = ((hash >> 25) ˆ // remember ˆ is

(hashtemp >> 1) ˆ // exclusive OR
(hashtemp >> 4) ˆ
ch) & 0x7fffffff; // mask to 31 bits

}

int main(int argc, char * argv[])
{ // expect use to be "checksum filename", ie 2 words

if (argc != 2) // argc, argv give command-line args.
{ cerr << "This utility requires one argument" << endl;

return 1;
}
ifstream infile(argv[1], ios::in); // open input file
if (infile.fail()) // did it exist?
{ cerr << "Unable to open the file " << argv[1] << endl;

return 1;
}
unsigned long int hash = 1;
int ch;
while ((ch = infile.get()) != EOF)

update_hash(hash, ch); // compute checksum
cout << argv[1] << ": " << hex << hash << endl;
return 0;

}

// End of checksum.cc

Figure 5: A C++ program to checksum files.

34

Perhaps the main lesson from this example is than as you startto write real exam-
ples of C++ code there will be a lot of fine details of library calls and minor language
features that it will be necessary to come to grips with. Thislecture course and espe-
cially these notes will not even attempt to provide full coverage, but will instead try to
give enough ideas that you will be equipped to dive into reference material.

It also shows that some of the sorts of program that C++ is naturally used for
can become non-portable remarkable easily — in most programming tasks the issue
is one of striking a balance between writing concise and natural code and allowing
for improbable oddities in the machine on which the code is tobe run. For the last
five years it has been important but sometimes hard to ensure that code would run on
both 16 and 32-bit machines. For the next few years life will be yet harder in that the
legacy of 16-bit systems will remain with us, while the migration from 32 to 64-bits
for main-stream workstations will continue.

10 Pointers, Structures, Unions and Classes

So far the features of C++ discussed will only allow you to write rather simple pro-
grams, using arrays and a few pointers. the next set of language constructs to be
covered involve the creation of new user-defined data types.Since this course is con-
centrating on C++ and viewing C as (roughly) a subset and (certainly) a historical
predecessor, and given that courses on Modula 3 have alreadyintroduced the ideas of
objects, classes and inheritance, it seems reasonable to jump in at the deep end.

In C++ a classwill define a data type that has a number of component fields, and
a number of operations that may be performed upon the data. The components of a
class may either bepublic in which case any arbitrary piece of code can access them,
or private in which case they can only be used within functions that are themselves
members of the given class. One of the main reasons for introducing classes is so
that control can be exerted over the visibility of code and data: a class should only
make public components that give it a clean and easily documentable interface, and all
internal implementation details should be kept protected by making them private.

An example of a class that has been seen already is the typeifstream , which
has public membersfail , get and for the operator>> (and for a collection of other
things), but which can prevent the ordinary user from abusing its internal state by
making all that private.

Classes will often define a public member function that is to becalled when an
instance of the class is created, and can define another one that will be called (auto-
matically) to tidy up when an object is discarded.

My first example of a class will not be complete and may not be especially exciting,
but should show how things are expressed. It provides for thesupport of complex
numbers. But just to be awkward even though the interface thatit supports views
numbers in a Cartesian representationx + iy the values are stored in the structure in
polar form (reiθ). The declaration of a class can be kept separate from the definition

35

of the functions that form part of it, so here is the definition:

#include <math.h> // For sin(), cos().

class Complex
{
public:

Complex(double x = 1.0, double y = 0.0);
double RealPart();
double ImagPart();

private:
double r;
double theta;

};

The public function calledComplex has the same name as the class being defined,
and is thus marked out as being used when creating instances of the class. A further
new C++ feature that is shown here is the provision of initialised declarations in a
function header. This gives default values for the arguments. A function that has
default values specified in this way can be called with fewer than the full number
of arguments and the compiler will fill in the blanks. This canbe done for any C++
function at all, not just ones used to construct instances ofclass objects, but it is perhaps
particularly useful in this case.

TheRealPart andImagPart public member functions will just extract infor-
mation, while the private variablesr andtheta will store it. This example happens
to have all its public members functions and all its private ones data, but this is not
necessary and will in general not be the case: functions and data can each be declared
in either part of a class description.

Next the member functions need to be defined. I will also include a minimal main
program that creates a single complex number and then extracts its real and imaginary
parts. Syntax using:: is used to show when names being used are members of
some class. Within the body of a member function the compilerknows that names are
liable to refer to class members, and so it is not necessary towrite Complex::r and
Complex::theta in the following definitions, although it would not be incorrect
(but it would be ugly, so should be avoided unless there was some very special reason
for stressing that some particular reference was to a membervariable). The main
program illustrates two additional things. When a variableis declared and its type
is a class the class constructor will be called, and it may need arguments. These are
written as shown in the declaration. Member functions from aclass can generally only
be called if you have an object of the class type somewhere21, and the functions are
referred to by using a dot (“. ”) selector on that object. Note that this is the same use
of a dot that arose when theget member function of anifstream was used.

Complex::Complex(double x, double y)

21This is because the member functions will need to access datafrom the object concerned.

36

{
r = sqrt(x * x + y * y);

// The next line is inadequate if x <= 0.
theta = atan(y/x);

}

double Complex::RealPart()
{

return r * cos(theta);
}

double Complex::ImagPart()
{

return r * sin(theta);
}

int main()
{

#ifdef ONE_WAY // Show two valid alternatives here
Complex z(2.0, 1.0); // Create z as a complex

#else
Complex z; // use default args for constructor
z.Complex(2.0, 1.0); // now fill in true values

#endif
cout << z.RealPart() << " + "

<< z.ImagPart() << " * i" << endl;
return 0;

}

On important restricted case of classes is when the class defined contains only data
items (and not any member functions) and when all the data is public22. This case is
just the definition of a simple data structure, and can be achieved using the keyword
struct instead ofclass . Programs in C can only usestruct : class is one of
the ways in which C++ has extended the language. With C++ andclass the class-
name becomes usable as the name of a new type, egComplex in the example. With
C this is not so and the most convenient practise is to use a constructtypedef to give
a convenient new name for the type that is represented as astruct .

/ * This code is valid in C as well as C++ * /

typedef struct tree_tag
{ / * To be used for binary trees of integers * /

int value; / * value in node * /
struct tree_tag * left; / * pointer to sub-tree * /

22If any were private it would be pretty useless, since only member functions can refer to private
items.

37

struct tree_tag * right; / * pointer to sub-tree * /
} tree;

Here the word used afterstruct is astructure tag, and the new type can always
be referred to by using the wordstruct followed by this tag. Inside the definition
of the structure where it is necessary to declare pointers tothe newly defined structure
this notation is used. However thetypedef introduces a new type-name (in this case
just tree) that can be used in all subsequent declarations. If the wordunion is used
instead ofstruct all the members of the union overlap in memory, so it may be
possible to write data to the object via one path and read it out using another!

typedef union floating_cheat
{ double d;

char i[8];
} floating_cheat;

int one_byte_from(double v)
{ floating_cheat w;

w.d = v;
return w.i[3]; / * Wow! * /

}

As an aside,typedef has good uses quite separate from those associated with
structures, and can be used to provide new names for existingtypes, as in

#ifdef SIXTEEN_BIT
typedef long int int32;
#else
#ifdef SIXTY_FOUR_BIT
typedef short int int32;
#else
typedef int int32;
#endif
#endif

which might well be used in a header file for a program which needed to use an integral
data type that it could rely on being 32-bits wide. By arranging to predefine one of the
macros as necessary the typeint32 could refer to whichever built in data type was
most suitable.

Back to C++ classes! Once one class has been defined others can be createdas
derivatives. Derived classes carry forward the propertiesof their parent, but can add
new data fields and either add or alter the definitions of member functions. The header
to use when declaring a derived class looks something like:

class variant_on_Complex : public Complex
{ ...

38

where the “: ” is followed by a description of what is to be inherited. Constructor
functions are not inherited, so a derived class can always beexpected to define one,
but otherwise it only needs to define things that are new.

When you have a base class and a derived class any object that iscreated as a
member of the derived class can also be treated as belonging to the base class. Thus
it is perfectly possible (and indeed very common) to declarea variable whose type
indicates that it contains a pointer to an object in the base class and use it to point
at all sorts of derived objects. Normally if your code then performs operations on
the things that are pointed at in this way the functions called will be those associated
with the base class even if the actual object you are referring to is in some class that
attempted to replace everything. If, however, you declare afunction in the base class
to bevirtual then C++ takes extra care23 so that calls to that member dispatch on
the basis of the exact position of the object involved in the class hierarchy. In cases
where you will build data structures that contain pointers to many closely related sorts
of objects it can make very good sense to organise all the variants of your data as sub-
classes of some generic class, and define many of the functions in this parent class as
virtual.

As an example of how classes and class libraries can both helpmake what would
otherwise be lengthy and complicated code almost manageable, and also how it has a
big effect on how code is structured, see Figure 6 which is thecomplete C++ source
for a program that opens and displays a window under Microsoft Windows. The code
can be built and tested with the MFC libraries if you have Microsoft Visual C++, and
using the 32-bit edition of same the commands that compile the code are

cl -c mini.cpp
link -subsystem:windows -entry:WinMainCRTStartup \

mini.obj nafxcw.lib kernel32.lib gdi32.lib \
advapi32.lib shell32.lib comdlg32.lib

The development of code like this into complete and interesting applications is
covered in [1]. You are not expected to follow all the detailsof Figure WinMini now,
but should be able to appreciate that it is a fairly short bodyof code (and for many
window systems even minimal programs are often painfully long), and that it is based
around deriving new classes from existing library ones and over-riding some of the
definitions of member functions. In this case two classes areadjusted — one is the
basis for applications (ie programs), while the other supports windows on the screen.
To a reasonable approximation adding extra functionality to the code is “just” a matter
of over-riding more members of the two classes with application specific code, and
causing several windows to appear involves little more thandeclaring several variables
of typeCamWind!.

23Ie it imposes a little extra overhead on your code.

39

// A minimal program to use Microsoft Windows
// using the Microsoft Foundation Classes C++ library.
// This is essentially a standard demo pgm for MFC

#include <afxwin.h> // MFC header file

///

class CamWind : public CFrameWnd
{ // derive CamWind from MFC’c CFrameWnd
public:

CamWind(); // constructor function needed
};

CamWind::CamWind()
{ // when constructing a window call library

// function to do all the hard work
Create(NULL, "Demo");

}

///

class CamApp : public CWinApp
{ // derive CamApp from MFC’s CWinApp
public: // and override a critical member function

BOOL InitInstance();
};

BOOL CamApp::InitInstance()
{ // This is called when your code starts up

// It create and displays a window.
m_pMainWnd = new CamWind();
m_pMainWnd->ShowWindow(m_nCmdShow);
return TRUE;

}

///
// declaring a variable of type CamApp will cause
// its constructor function to be called, and this
// rather than "main" is used to start things off!
CamApp xxx;

//////////////////// END ////////////////////////

Figure 6: The start of a MS-Windows project40

11 When to use Classes

Perhaps I should first review some of the differences betweenC++ classes and the
struct s that ordinary C provides. With structures about all you aredoing is declaring
that several items will be collected together and treated asa single data object. The
struct definition is little more than a template for how the data should be laid out in
memory — although you ought not to rely on the C compiler actually places individual
members in a structure where you would have at first expected.C++ classes do a lot
more for you. They can have some of their members private and others public, so
giving controlled access to their internal state. As well ascontaining data they can
declare functions to work on that data and hence (via the access control arrangements)
provide a major way of organising code. New classes can be derived from existing
ones, so the complete set of classes in a program will normally fall into a number of
families. This can be a very great help when a number of related data types need to be
implemented. Finally the C++ class structure can fit in with operator overloading, so
at least some that user-defined operations on the class can beinvoked using symbols
such as+ and- .

One extreme use of C++ classes would correspond to when a C programmer might
have used aunion so that one field in a data structure could have held many different
sorts of item (use ofvoid * pointers could probably have achieved similar effects).
A base class could have been built without the relevant field,and a whole host of
derived classes created, one for each different type to be supported. There is a sense
in which this is systematic and clean, but sometimes it amounts to using a sledge-
hammer to crack a nut, and if then virtual functions are used to support operations in
all the derived classes both efficiency and clarity might suffer. I believe that for data
representation the best class hierarchies will be quite small ones.

A quite different style of using C++ classes will expect that when a major class
has been defined there will only ever be one variable of that type declared. In that case
the data members of the class might almost have the same status as ordinarystatic
variables, except that their visibility is controlled better, and the relationship between
public and private member functions is strongly remeniscent of the difference between
exported and non-exported functions in a language that allows one to organise code
into modules. This use of the C++ class structure to provide global control over code
and data visibility through an entire program is clearly good.

A further (perhaps more specialised) use for classes arisesbecause whenever an
object is to be discarded (including the common case where ithas been declared as a
local variable, but is now just going out of scope) a user-defined destructor function
can be called. In some cases it can be invaluable to be able to register a function that
will be called just before the current one exits, and classesprovide this ability.

Some programming tasks have been associated for a long time with the develop-
ment of object oriented programming and hence with the exploitation of class struc-
tured. Programming for windowed user interfaces and codingup certain sorts of sim-
ulation package are the most clear cut cases. If you work in one of these areas then

41

the class mechanisms in C++ need to be your first concern. In many other application
areas it is worth considering the introduction of a few code-centred classes as a way of
structuring your entire application into modules, but over-use of deeply nested derived
classes for small and simple data structures will prove an unnecessary distraction and
may obscure performance issues in your code.

Since this is only a short course on C++ the coverage of the class mechanism will
stop here. There should be some further example programs illustrating it available by
the time the lecture course is given, but these are not included in this document. If you
feel thoroughly happy with all aspects of C++ except the class structure, inheritance
and object oriented programming arrangements it may help you to check the library
or bookshops for texts intended to teach C++ to people who are already competent C
programmers.

12 Overloading, Templates

In a C++ world one could imagine wanting to have a function that wouldapply some
process to its argument more with a whole range of types of argument supported.
An obvious set of simple examples come from functions that take numeric arguments
— eg one that squares a value — where the regular type-discipline of strongly types
languages seems to get in the way. C++ provides four or five ways of coping with this
need! The fact that there are all these different mechanismsshould alert you to the fact
that each will have a different set of strengths and limitations.

The first way of relaxing type constraints can be useful for very small functions,
and is just to use a macro.

#define square(x) ((x) * (x))

The problem with macros is that they become ugly and inconvenient to use for
anything other than very short code sequences, and there canbe unexpected and un-
wanted effects if the actual arguments are expressions rather than just simple variables
or literals. Syntax and type checking with macros is weak, but they are available with
both C and C++.

The next scheme is C++ specific. In C++ it is valid to define two or more functions
with the same name, provided their arguments differ in type.Doing this is known as
overloadingthe name.

inline int square(int x) { return x * x; }
inline double square(int x) { return x * x; }

I used theinline keyword here only because the functions in this example are
very short so flagging them for in-line expansion will probably help efficiency. Over-
loading is amazingly convenient if used with taste. But it canlead to the need to write
multiple copies of essentially the same code, and if one function name is overloaded
with multiple meanings that are not closely enough related it can become confusing.

42

It has already been explained that member functions in classes (and especially vir-
tual functions) provide the means for one function name to have a meaning dependent
on the class of an object that is being worked with. This is an excellent arrangement
when it fits in with a class hierarchy that you already wanted,but wrapping both inte-
gers and doubles up in classes just so you could have a single namesquare for some
operation on them would be overkill.

The C and C++ type “void * ” denotes a pointer that can point to any sort of
thing, and use of these generic pointers can make it possibleto have a single function
that can process (at arm’s length) arbitrary sorts of data. The C library functionqsort
that sorts arrays of arbitrary items illustrates what can bedone. It comes uncomfortably
close to abandoning all hope of having the compiler do a comprehensive job of type-
checking your code. To a large extentvoid * should be avoided in C++ since it
defeats too much of the type checking.

Finally there aretemplates. These are a relatively new inclusion in C++ so the
support for them in compilers may not always be complete, butthey represent a balance
between the convenience of macros and the security of overloaded functions.

template <class Type>
Type square(Type x)
{ return x * x;
}

The example has the definition of a squaring function writtenjust once, with the
type of its argument and result lest as a parameter that is introduced by thetemplate
construct. When this definition has been introduced, C++ will generate a type-specific
version of the code suitable for every use of the function that it sees. Thus the effect at
run-time will be similar to the case where all the various type-specific versions of the
code where written by hand, but the source code is kept clean and tidy.

Lippman[5] gives a plausible example where a template function would be very
natural in use in a general purpose sorting algorithm which he then demonstrates in
use sorting vectors of double and then vectors of ints.

As well as template functions, C++ supports class definitions that are parame-
terised with regard to the types of component entities. It would be natural to use these
in the implementation of a class for lists or queues, in that it would allow C++ to keep
track of the types of items stored in the data structures while maintaining important
flexibility.

Overall the template mechanism represents a level above regular C++ code within
which types can be represented by type variables. You shouldlook back to the way
that ML supports polymorphism and type variables and compare with the relatively
awkward way that C++ provides a subset of the ML capabilities.

43

13 User-defined operators

Just as C++ allows the user to introduce multiple definitions associated with a single
function name, it makes it possible to have multiple meanings associated with opera-
tors such as+ and* . It does not allow the introduction of new spellings for operators,
or adjustment of the syntax associated with them. Thus the symbols available to the
user for use as new operators is24

+ - * / % ! & |
˜ ˆ , = < > <= >=

++ -- << >> == != && ||
+= -= /= %= ˆ= &= |= * =

<<= >>= [] () -> -> * new delete

It also only permits new meanings of operators to be defined when class types are
present. Note that very early on we saw the overloading of the<< and>> operators
to support write and read operations on members of the streamclasses. It can now be
explained that what happened there was not some very speciallanguage provision just
used by the library, but an example of a generally available option.

The operators+, - , * and& may be overloaded in either unary or binary form. But
again note that you may not redefine the meaning these operators have when applied
to numeric operands, only when they have at least one class object to work on. The
syntax used to redefine an operator is trivially simple — to overload+ say you just
define (in the ordinary way) a function with nameoperator+ .

The [] operator allows you to overload the idea of subscripting, and it will very
often be desirable that overloaded uses of subscript expressions can appear on the left
hand side of an assignment statement. This can be supported by declaringoperator[]
functions to return a reference type using the& type qualifier . Here is an ex-
ample for a rather limited and hence not very useful array class:

#include <iostream.h>

template <class T> // parameterised class
class Array
{
public:

T &operator[](int n)
{ return data[n];
}

private:
T data[10]; // hidden from user

};

int main()

24Note that a few of these have not been described in these notes.

44

{ Array<int> v; // an array of integers
Array<double> w; // an array of doubles
for (int i=0; i<10; i++)
{ v[i] = i; // calls overloaded []

w[i] = 1.0/(double)(i+1);
}
for (i=0; i<10; i++) // check results

cout << v[i] << " " << w[i] << endl;
return 0;

}

The example gives another use of templates to make the array class able to support
arrays of things or arbitrary type T, and shows that it is possible to include the defi-
nition of (short) member functions within the description of a class. The “&” in the
line definingoperator[] arranges that the operator passes back its result by refer-
ence. The code shown could be extended so that the “Array” class did something more
interesting, while preserving exactly the same interface.For instance it could use a
hash table rather than a simple vector to store the data, or dobound checking on array
accesses, or maintain statistics about which of its elements was used most frequently.

The () overloadable operator can be used to make objects in a class appear to be
callable as functions!

As with all aspects of C++ there are a few delicate areas surrounding the use of
overloaded operators — for instance unlike ordinary functions they may not have de-
fault arguments. But for the full details you are referred to textbooks and reference
manuals.

14 Exception Handling in C and C++

C supports recovery from exceptional conditions via a collection of library functions.
The functionsignal takes two arguments, one being used to indicate what condi-
tion should be trapped, and the other being a function that isto called if the given
condition arises. It will typically be possible to getsignal to set up user-defined
handlers for floating point exceptions, the use of bad memoryaddresses, the interrupt
provoked when a DOS or Unix user types “ˆC ” to interrupt a process, and various oth-
ers. In a few cases the handler function may be able to repair the damage and allow the
computation to continue, but there tend to be rather strict rules about just what library
functions may be called from a handler and how it may behave.

One thing that a handler set up usingsignal is generally entitled to do is to call a
function longjmp . This takes an argument that is of typejmp buf , exits from mul-
tiple levels of nested function calls until it reaches one that used the functionsetjmp
to fill in the jmp buf involved. In factlongjmp may be called from arbitrary C code
not just viasignal , and is very useful for unwinding the stack when some calculation
fails. A small example may help illustrate how the two function are used together.

45

#include <setjmp.h>
#include <stdio.h>

jmp_buf bbb;

void recurse(int n);
{

if (n == 0) longjmp(bbb, 1);
printf("%d\n", n);
recurse(n-1);

}

int main()
{ if (setjmp(bbb))

{ printf("longjmp caught\n");
return 0;

}
printf("setjmp returned 0 first time\n");
recurse(10);

}

The magic is that whenmain callssetjmp in the usual way it just returns zero
(ie false) and the main program can follow through with its calculation. When in due
courselongjmp is called it makessetjmp return (again!) but this time with a non-
zero result.

C++ introduces a new and rather more civilised way of achieving similar effects25.
Instead of usingsetjmp one writes the keywordtry followed by a block of com-
mands (enclosed in). This can be followed by a number ofcatch clauses that indicate
exactly which exceptions can be processed at this level. Corresponding tolongjmp
there is an operatorthrow . It can be given an argument of any type, and passes this
value out until acatch that is prepared to accept that type is found. It will sometimes
be useful to declare a new class just so that that class can be the type associated with
some particular exceptional condition.

class myerror
{ // class used just to report error
}

void recurse(int n)
{ if (n == 0) throw myerror();

cout << n << endl;
recurse(n-1);

}

25The exception handling parts of C++ are even newer and less stable than the template facility, sodo
not be too upset if the compiler you use does not support them yet. In particular the mid 1994 version
of g++ does not.

46

int main()
{ try // keyword to introduce protected block

{ cout << "starting ... ";
recurse();
cout << "finishing\n";

}
catch(myerror x) // definition of a "catch"

// function for type myerror
{ cout << "Error handler activated";
}
return 0;

}

15 Casts and other ways of Cheating

Most of what has been described of C++ so far will have given the impression that it
is a strongly typed language where (at least if everything iscarefully pre-declared in
header files) the compiler can fully check everything. This can be almost the case in
C++, but there are important loopholes available. Although most code will not make
heavy use of them, almost all large C++ programs will use them somewhere.

Any type description (eg either a simple predefined type namesuch asint or
a more complex that refers to functions, pointers or structures) can be enclosed in
parentheses26 and used as a prefix operator. This operator converts its operand to the
named type. In fact one of the examples already given contained a cast that converted
an integer into a double:

w[i] = 1.0/(double)(i+1);

In cases such as the conversions between integral and real numeric types casts
will cause a change of representation to occur. Casts betweenintegers of different
widths (eg betweenchar andunsigned long int) can result in zero- or sign-
extension or range reduction. If you assign a value to a variable of a different type
or call a function with an actual argument that differs in type from the required one
then C++ will sometimes insert a cast for you to convert the type. I will not document
the exact rules associated with this here, but rather recommend that you either make
things match types exactly or put in explicit casts of your own, thereby avoiding any
possibility of confusion27.

Casts applied to pointer types are much more delicate. There is a gap between what
can be guaranteed by a language standard as applicable on allpossible compilers and

26In C++ the parentheses are optional, while in C they are needed.
27One case that is so common and generally harmless that I will mention as not usually being worth

an explicit cast is assigning integer values into characterarrays (ie strings) where the integer variable is
known to hold a proper character value. This works “as expected”.

47

computers and what will “usually” happen on “typical” machines. About the most that
can be guaranteed about pointer casts is that any pointer to an object (but not a pointer
to a function) may be cast to the type “void * ”. The resulting generic pointer can
then be passed to a function or stored in avoid * variable. If subsequently cast back
to its original type before use nothing will be lost. The use for this apparently pointless
combination of casts is that it allows functions withvoid * arguments to accept
pointers to arbitrary sorts of objects, despite the usual rigours of the type checker. It
also makes it possible to have structures that have one field that contains a tag value,
and another a field of typevoid * that in fact contains a pointer the type of which is
dynamically recorded (by the user) in the tag field.

It is normally not very proper to cast between integral and pointer types, but C
defines that casting from the integer zero to a pointer type will give a NULL pointer.
Note that this doesnot necessarily mean that the machine-level representation ofNULL
is a bit-pattern of all zero bits, but it does mean (by virtue of the fact that C applies
helpful implicit casts in various places) that loops such as

typedef struct linked_list_of_integers
{ int value;

struct linked_list_of_integers * next;
} list;
int length(list * x)
{ int l;

for (l=0; x!=0; x=x->next) l++;
return l;

}

are valid, as well as the end-testx!=NULL or even just!x .
If you know enough details about the machine you are using andyou do not need to

write portable code it may be interesting to case achar * pointer tolong int *
and thus become able to manipulate memory four or perhaps even eight bytes at a time.
Pointer casts provide the C++ programmer with very direct control over how they can
access data. But note again that they will almost always limitcode portability.

Another way of cheating on types uses a variant on thestruct definition. If the
keywordunion is used instead ofstruct a new type is declared with a number of
components, but now these components all overlap in memory.The clean use for this
is where you need a field in a data structure that at different times contains objects
of different types. The more devious (and non-guaranteed) use is when you write
to one field and read back from another, thereby gaining direct access to something
that depends on machine-level representations of data. Thefollowing code uses this
idea to access the bit-patterns in memory associated with a floating point number. It
would be possible to extend it to unpack the sign, exponent and mantissa fields, and
such unpicking may be a critical part of the implementation of some of the low level
floating point library functions.

#include <stdio.h> / * Do this on in C * /
/ * The union "cheat" puns between a double

48

and an array of two integers * /
typedef struct cheat
{ double d; / * I expect 64 bits here * /

int i[2]; / * I hope int=32 bits * /
} cheat;

int main()
{ cheat x;

x.d = 1.0/7.0; / * some floating point value * /
printf("%x %x\n", / * look at bit-pattern * /

x.i[0], x.i[1]);
return 0;

}

Observe as before that “. ” is used to select out components from a structure — here
to select which variant in the union is to be used.

A final place where C and C++ abandon strict type-checking is to allow for func-
tions with variable numbers and types of argument. The example that has been used so
far in these notes is the C formatted output functionprintf . Look up<stdarg.h> ,
va arg and “... ” in a C manual for details of how to write functions of your own
that have similar capabilities, and observe that the types of arguments passed and re-
trieved are not subject to type checking. To illustrate this, consider the call

/ * The following line of code is not good! * /
printf("%x %x\n", 3.1415926);

which passes a double precision value but then tries to display it as a pair of integers
(in hex). Onsomecomputers the hex values displayed will be the representation of
the floating point number, while on others one may get just garbage — possibly values
that are not even consistent from one run of the program to thenext.

The techniques mentioned in this section can be critical in making some programs
easy to write or in making them run fast, but equally they can lead to opaque code with
unexpected portability problems. If you read the full ANSI Cstandard it appears to
have a number of unreasonable restrictions about what you can rely on, and demand
almost neurotic caution in code that is to qualify as strictly conforming to the standard
— but each of its strictures is based on knowledge of some awkward computer or
compiler where attempts to cheat have unexpected consequences. So by all means use
casts, but use them with care.

16 Writing Robust, Portable Code

Perhaps the first feature of good programming style will be that code is well docu-
mented and easy to read. That way the almost inevitable changes that will have to be
made to it will feel less painful. Figure 8 shows one approachto making C code read-

49

char * lie;
double time, me= !0XFACE,
not; int rested, get, out;
main(ly, die) char ly, ** die ;{

signed char lotte,

dear; (char)lotte--;
for(get= !me;; not){
1 - out & out ;lie;{
char lotte, my= dear,

** let= !!me * !not+ ++die;
(char *)(lie=

"The gloves are OFF this time, I detest you, snot\n\0sed GEEK !");
do {not= * lie++ & 0xF00L * !me;
#define love (char *)lie -
love 1s * !(not= atoi(let
[get -me?

(char)lotte-

(char)lotte: my- * love -

’I’ - * love - ’U’ -
’I’ - (long) - 4 - ’U’])- !!

(time =out= ’a’));} while(my - dear
&& ’I’-1l -get- ’a’); break;}}

(char) * lie++;

(char) * lie++, (char) * lie++; hell:0, (char) * lie;
get * out * (short)ly -0-’R’- get- ’a’ˆrested;
do {auto * eroticism,
that; puts(* (out

- ’c’

-(’P’-’S’) +die+ -2));}while(!"you’re at it");

for (* ((char *)&lotte)ˆ=
(char)lotte; (love ly) [(char)++lotte+
!!0xBABE];){ if (’I’ -lie[2 +(char)lotte]){ ’I’-1l *** die; }
else{ if (’I’ * get * out * (’I’-1l ** die[2])) * ((char *)&lotte)-=
’4’ - (’I’-1l); not; for(get=!

Figure 7: Continued overleaf. Code by Merlyn Leroy of DigiBoard.
50

get; !out; (char) * lie & 0xD0- !not) return!!
(char)lotte;}

(char)lotte;
do{ not * putchar(lie [out

* !not * !!me +(char)lotte]);
not; for(;!’a’;);}while(

love (char *)lie);{

register this; switch((char)lie
[(char)lotte] -1s * !out) {
char * les, get= 0xFF, my; case’ ’:

* ((char *)&lotte) += 15; !not +(char) * lie * ’s’;
this +1s+ not; default: 0xF +(char *)lie;}}}
get - !out;
if (not--)
goto hell;

exit((char)lotte);}

Figure 8: An example of readable C code?

able —- note the careful choice of names for functions and variables and the thoughtful
use of layout. This code also illustrates a further collection of C (and hence in general
C++ keywords and functions that you may wish to look up in the reference manuals.

Both [2] and [4] contain much good advice about C programming style and ex-
planations of various of the ways in which code can unexpectedly prove to be non-
portable. Rather than recite here all the particular points they make I will just catalogue
the ones that I consider most critical:

1. Design your program before you write it: Especially if youare going to make
extensive use of class hierarchies it is not a smart idea to start writing a program
by typing random fragments of code into an editor. Just how formal a design
phase you need will depend on the expected eventual size of the code to be
written.

2. Be disciplined: C and C++ place ultimate responsibility for almost everything
on the programmer. They make it possible to write clear and reliable code, but
they also make it possible to construct abominable muddles.As examples of
language design they have been guided by the desire to support the competent
programmer solving a serious problem, rather than the need to protect a novice
who only has to write a page or so of code.

3. Use the security features your compiler does have: Moderncompilers can gen-

51

erally be instructed to give you warning messages about constructs in your code
they find questionable. Enable this option, and pay attention to the warnings –
even if at first you find some of them look fussy they are probably there because
they mark potential hiding places for bugs. Write your code soyou get no warn-
ings. With old style C this sort of checking was done with a separate program
calledlint .

4. Declare things in header files: when they need to be global,or otherwise use
thestatic directive or C++ classes to keep both variables and data consistent
and as localised as possible. When designing classes avoid making more things
public than you need to.

5. Code in a defensive style: Avoid unnecessary application of puns and low cun-
ning. Help the person who next reads your code by putting in blocks of com-
ments that explain methods and global intent as well as find details. Put in occa-
sional checks for self-consistency, perhaps using theassert library operation.
Assume that your code will at some stage need to be ported to a very different
computer with a compiler that comes from a different vendor.

6. Know your language: Browse the most definitive reference manual you can find
for your language and its libraries so that you know exactly what it does, and
(even more important) so you know how and where you can look things up
when you need to.

7. Get somebody else to read your code: And listen if they say that they find it hard
to understand!

8. Avoid known danger areas and pitfalls: See Section 21.

9. Avoid premature optimisation: It is very nearly always much better to write a
program that is correct and then worry about speeding it up than it is to write a
program that is supposed to be fast and then try to remove the bugs. Furthermore
if you try to optimise your code early on you may waste effort on parts of the
code that are in fact unimportant, or obscure later opportunities for more radical
but better speed-ups.

Of course the above ideas are relevant to almost all languages. But with C and C++
they are particularly important since the languages are often used to implement quite
large and complicated packages, compilers are readily available on many different
computers, so people frequently try to port code, and thoughtless use of the languages
can easily lead to cryptic or fragile code.

52

17 Writing Fast Code

On of the main claims to fame for C (and hence C++) is that it can be used to write
code that goes fast. It is common to claim “As fast as hand-written machine-code”,
although in reality that will only be true in limited circumstances. What does help the
efficiency of C code is that most constructs in the language are really very low level
and correspond quite directly to things that a typical computer can do in one or two
instructions. This means that the programmer can usually keep track of just how much
real work is being called for by a fragment of code, and can express things so as to
minimise it. The most pervasive way in which this happens is probably through the
fact that C++ provides smooth and natural support for pointers and pointer arithmetic,
and makes it convenient to write code the uses them — and most computers have
internal registers that can hold pointers and manipulate them directly. In contrast,
most other languages make much heavier use of arrays, and subscripting into an array
is often (at the machine level) more expensive than just following a pointer. Many
computers (from Digital Equipment’s VAX through to Acorn’sARM) provide machine
code addressing that give direct support for the C idiom* x++ that accesses an item
and then steps the pointer on ready to grab the next.

Especially on modern “RISC” processors it is important to keepthe correct values
in the machine’s internal registers. When you declare a C variable28 that is to hold an
integer, floating point value or pointer you can qualify the declaration with the word
register . This suggests to the compiler that it keep the variable in a machine reg-
ister. Depending on your computer and compiler it may be thatmost of your variables
will be kept in registers anyway, or it may be that there are not really enough regis-
ters to go around so even variables declared asregister are kept in memory (on a
stack). But on occasions the careful use ofregister declarations can have a major
effect on code quality.

If you know enough about the computer you are working on it maybe possible
to implement many operations on blocks of characters by using word operations, thus
moving several bytes in each operation and making full use ofthe word-size of your
machine. This can have significant pay-off when you are implementing either a string
processing or a graphics library.

Use of the bitwise& and | operations together with shifts can allow the imple-
mentation of mildly clever algorithms. Figure 9 shows threeversions of functions
that count the number of bits that are set in an integer, supposing that integers are 32
bits long, and illustrates some of these points. Note that inversion3 the use of an
unsigned int argument ensures (on a 32-bit machine) thata>>24 is in the range
0 to 255 so a mask operation with0xff is avoided.

Generally if you want to produce the best and fastest possible code the steps are
first to produce a version of the code that works correctly allthe time, then to see if the
algorithm involved can be improved, and only at the end move on to local fine-tuning

28This will only apply to local declarations, not toextern or static ones.

53

int version1(register int a)
{ // naive method, use register vars

register int total=0;
for (register int i=0; i<32; i++)

if (a & (1 << i)) total++;
return total;

}

int version2(int a)
{ // (a & -a) = least sig bit of a

// if you have binary arithmetic
int total = 0;
while (a != 0)

a -= (a & -a), total++;
return total;

}

static unsigned char cc[256] =
{ 0, 1, 1, 2, 1, ... }; // initialised array

int version3(unsigned int a)
{ // make cc a table counting bits in a byte

return cc[a & 0xff] + cc[(a>>8) & 0xff] +
cc[(x >> 26) & 0xff) + cc[a>>24];

}

Figure 9: Counting the bits in a 32-bit word.

54

of the code. On many systems there will be profiling tools thatcan help you find out
which paths through your code are exercised most and hence deserve most careful
attention. Directing your compiler to display the assemblycode that it generates may
allow you to spot ways in which the code could be improved. Remarkably often it is
possible to juggle with your C or C++ source code until the compiler generates the
optimal code that you wanted. Note very well that ultimate optimisation and ultimate
portability are often not compatible, so at a minimum you should collect speed-critical
code in one localised part of your program, and preserve the original correct and clear
versions of the code (hidden in comments, maybe) together with the final highly tuned
version, ready for when you need to re-optimise for a different computer.

18 Internationalisation of Code

A small program written for use just by its author will use thecharacter set natural
for the computer on which it is developed, and will naturallydisplay all its messages
in a readable form. However it is increasingly the case that commercial code has to
work in an international market, where both character sets and the language in which
messages are displayed must be adaptable. One approach to the character set problem
is shown in Figure 10 which, if you run it, can be seen to be codeto print the value of
e, the base of natural logarithms. Two other (and perhaps moreproductive) approaches
are commonly used. The first addresses the character set problem. Just as C has ordi-
nary integers and long integers it can have ordinary characters and strings and “wide”
ones. The idea is that ordinary characters are used in circumstances where a simple
8-bit characters set is adequate, while wide characters (typically 16 bits each) can be
used top cope with the extended sets of symbols needed for (particularly) far eastern
markets. Wide character and string literals are written by prefixing the usual sort of
notation with “L” as in L"This is a wide string" . The issue of how inter-
esting characters might be written inside such a string is dependent on the compiler
used. There are standard library functions for extracting characters from wide strings,
copying them and generally working with them. With its Windows C++ compilers
Microsoft provide an option for strings to be expressed in their own choice of 16-bit
code (Unicode) and a few Windows data structures and functions require text to be
expressed in this extended format.

To deal with language insensitive messages it is good practise in large programs to
avoid writing messages as strings directly embedded in the code. If all text is separated
out and stored in tables then the code can refer to strings by quoting their index number
in the table, and language conversion only involves re-writing the module containing
the table and linking in a new version. It can even make sense to go one step further
and have the text of all messages stored in a data file that getsread in either at the
start of a run of your program or when it needs to display a message — then changing
language just involves installing a new data file and not any recompilation. These
arrangements which keep all text centrally and accessed viaretrieval tables or functions

55

char
_3141592654[3141

],__3141[3141];_314159[31415],_3141[31415];main(){r egister char *
_3_141, * _3_1415, * _3__1415; register int _314,_31415,__31415, * _31,

_3_14159,__3_1415; * _3141592654=__31415=2,_3141592654[0][_3141592654
-1]=1[__3141]=5;__3_1415=1;do{_3_14159=_314=0,__314 15++;for(_31415

=0;_31415<(3,14-4) * __31415;_31415++)_31415[_3141]=_314159[_31415]= -
1;_3141[* _314159=_3_14159]=_314;_3_141=_3141592654+__3_1415; _3_1415=
__3_1415 +__3141;for (_31415 = 3141-

__3_1415 ; _31415;_31415--
,_3_141 ++, _3_1415++){_314
+=_314<<2 ; _314<<=1;_314+=

* _3_1415;_31 =_314159+_314;
if(!(* _31+1)) * _31 =_314 /
__31415,_314 [_3141]=_314 %
__31415 ; * (_3__1415=_3_141

)+= * _3_1415 = * _31;while(*
_3__1415 >= 31415/3141) *
_3__1415+= - 10,(* --_3__1415

)++;_314=_314 [_3141]; if (!
_3_14159 && * _3_1415)_3_14159
=1,__3_1415 = 3141-_31415;}if(
_314+(__31415 >>1)>=__31415)
while (++ * _3_141==3141/314

) * _3_141--=0 ;}while(_3_14159
) ; { char * __3_14= "3.1415";
write((3,1), (-- * __3_14,__3_14
),(_3_14159 ++,++_3_14159))+

3.1415926; } for (_31415 = 1;
_31415<3141- 1;_31415++)write(

31415% 314-(3,14),_3141592654[
_31415] + "0123456789","314"
[3]+1)-_314; puts((* _3141592654=0

,_3141592654)) ;_314= * "3.141592";}

Figure 10: Code by Roemer Lievaart.

56

also make it fairly easy to arrange that the message text is kept in some compressed
form, and expanded on demand - for large programs the saving in space achieved
by keeping strings compressed far outweighs the bulk of the decompression code.
Keeping messages compressed also keeps them just a little more secure from prying
eyes.

Arranging those functions that print diagnostics so that parameterised messages
will make sense whichever language the message is to be displayed in is not something
that happens without thought, and a great many error messages need part of the user’s
input data (or something else) merged in with the text that isdisplayed. One possible
approach is (rather than having all messages in a string table) to use the pre-processor
to do the work as follows artificial example:

// this is part of a file "error-messages.h"
#ifdef ENGLISH
#define msg1 "Wrong colour used"
#define msg2(a, b) "Message %s with %d in it", a, b
#else
#define msg1 "Wrong color used"
#define msg2(a, b) "Case %d in context %s", b, a
#endif

// now for some of the code that uses these
#include "error-messages.h"
...
if (...) printf(msg1);
else if (...) printf(msg2("blah", 42));
...

Observe that even the order of the values to be included in messages can easily be
controlled in this form of parameterisation, and that it takes advantage of the fact that
the preprocessor does not have to expand things into syntactically complete forms —
for instancemsg2 expands to give a list of three items.

Finally an ANSI C library comes complete with some features to support code
for international markets. The place where a program is to beused is known as a
locale, and the library provides skeleton support for getting times, dates and amounts
of money displayed, and for controlling the alphabetic order used when comparing
strings that are in non-American character sets (eg ones that use codes to stand for
accented characters (ñ, ç) or things like the German ßor NordicÅ. Despite being part
of the ANSI standardsetlocale is generally not very well supported by most C and
C++ systems, and you may well do better to write and use your own code. But read
the relevant section of the ANSI document (and the accompanying rationale) if you
can find a copy to discover what they expected to count as standard layouts in a variety
of countries: it goes beyond the traditional muddle as to whether the date 1-2-95 is the
first of February or the second of January!

57

19 The ANSI Standard For C

The major feature of C which is not shared by all the languagesthat you come across
is that there is a formal international standard for it. Despite the fact that ML refers to
itself as “Standard ML” the dialect so labelled was decided upon by a medium sized
group of language enthusiasts. Modula-3 is defined by its implementation and a refer-
ence manual. The amount of manpower and effort that went intothe standarisation of
C was of a quite different order of magnitude, involving not just a central committee
of experts working over a period of around seven years, but also a consultation process
where comments and suggestions were send in by many many thousands of other in-
terested people. Following on from the issue of the official ANSI C standard various
commercial organisations have developed stringent test suites that National certifica-
tion bodies and others can use to check if a supposedly conforming implementation of
C does in fact meet the specification.

Without all of this it is effectively impossible for two independent implementations
of a computer language (any language, not just C) to agree in all the fine and murky
corners where they ought to, and it is also impossible for a language implementation
team or user to draw a proper line that separates differencesin behaviour that are
compiler bugs from those that are necessary consequences ofrunning on a different
computer or operating system.

The only proper way to find out in detail about the ANSI C standard is the defining
document[7] itself. The standards body obtains part of its funding by selling printed
copies of the documents that it produces, so this document should not be available
on-line anywhere. It also hardly counts as an ordinary book,so regular bookshops
tend not to have copies on their shelves. There ought to be a copy available from the
Computer Laboratory Library: if you want your own copy expectto have to order
it (possible through your bookshop) from the American National Standards Institute
(ANSI), 1430 Broadway, New York, NY 10018, USA (phone: 1-212-642-4900).

A major issue in preparing a standard for a language is ensuring that it is quite clear
what is defined and what is left to the discretion of the compiler-writer. Not leaving
any flexibility at all would be possible if the standardisation was done by selecting
one existing implementation running on one real computer system, and declaring that
to be the reference with all other versions expected to matchits behaviourexactly.
Quite apart from severe commercial offence that such an approach would cause, a
consequence would be that one particular release of the reference compiler would be
the standard — including all the bugs in it — and anybody wanting to meet the standard
exactly would need to discover and perpetuate those bugs. Itis said that when, in
Cambridge, the Titan computer was installed as a replacementfor the earlier EDSAC-
2, an Autocode29 compiler for Titan was prepared following this philosophy,and thus
carefully and deliberately (and dare one suggest in a spiritof mild fun) re-creating the
known bugs in the EDSAC compiler. That was in the mid 1960’s and I do not have

29The high level programming language in use then.

58

and good but more recent examples of the approach.
At a slightly more abstract level over-definition of a language can still be unduly

restrictive. Users of C generally expect competent optimisations from their compiler,
and drawing a good line between defining enough that code can be reliably ported and
leaving enough freedom (eg with regard to the order of evaluation of the separate parts
of a complicated expression) is difficult. There are also fundamental differences be-
tween various brands of computers that would all like to support standard C compilers.
As well as the obvious matter of 16 and 32 bit systems (and now 64-bit ones), some
computer like to lay out integers in memory with the least significant byte at the low-
est memory address, and some with the most significant byte atthe lowest address30.
Characters sets also vary. Most Unix systems agree on the ASCIIcharacter set, but
this is only really adequate for the representation of English31: even other European
languages require a variety of extra or accented letters so computers for use in such
places must support them. Thus a programming language that is for realistic interna-
tional use can not survive if defined to use just the 96 characters that standard ASCII
knows about.

From these and many more issues, ANSI C builds up to the idea that a standard
for a programming language should be viewed as a contract between the language
implementor and user. The implementormust support some language constructs, will
be given license to make definite decisions about other ones on a local basis, is not
required to give any guarantees at all in some further cases,but will be prohibited from
making some sorts of extension to the language that a compiler will accept. The user
on the other hand may choose to try to write a strictly conforming program that adheres
should work correctly on all possible conforming compilers. Or for better performance
a programmer may choose to rely on some of the implementationdefined aspects of
one particular compiler.

ANSI specify that some sorts of things that a programmer might write will have
“undefined” consequences. It is often very tempting to thinkof such cases by imagin-
ing how several different compiler strategies could lead towildly different behaviours,
and assume that “undefined” means an arbitrary choice from among those behaviours.
That isnot what is meant! If you submit a program that contains code withundefined
interpretation to a fully validated and utterly conformingANSI C compiler it would be
entitled to spot what you had done and generate in the place ofyour dubious code (or
indeed at any other place in your whole program that it saw fit)new and original code
that deleted all your files, send abusive e-mail to your manager, or dialled a phone hot-
line to order that a hit-squad come and rearrange your features and/or programming
style. The term “undefined” in the ANSI standard really is supposed to indicate that
all bets should be off about what might happen when a program is run!

Reading and understanding the full consequences (and the reasoning behind) the

30The distinction is usually referred to as the “byte sex” one,but it is harder to find agreed names to
characterise the two configurations. Following Gulliver, little-endian and big-endian are probably the
most common terms in use.

31And even then it has only been recently that such spellings as“æroplane” have gone out of fashion.

59

ANSI standard is a fascinating exercise in applied pedantry! The standards committee
needed to balance a desire to keep to the existing spirit of the C language, and preserve
the usefulness of as much existing code as possible. Equallythey needed to end up
with a definition that was acceptably unambiguous (the original edition of Kernighan
and Ritchie[3] is notable for gaps in its precision) and whichmade C into a better
and more modern language. Some of the issues they addressed are covered further in
Section 21.

20 Forthcoming Standardisation of C++

As mentioned before, the committee that is working towards aC++ standard has issued
its first review document. Rather than describe what is in that(it is much too long!) I
will try here to give an overview of what can be expected from the final standard:

Explore ambiguities: The existing C++ descriptions at least come close to leaving
the language ambiguous. A standard may choose either to givevery precise
rules to define which meaning should be ascribed to each program, or adjust the
language to make it a little less delicate. Those of you who have not been in-
volved in C or C++ implementation projects may not have a good feeling for how
delicate the languages are and how difficult it is to have a standard that leaves
flexibility for compiler writers to generate good code on allbrands of computer
while defining the exact behaviour that can be expected in allreasonable cases.

Define libraries: The iostream library used in example programs here is a very
minimal start towards what can be expected by way of library support defined
in a C++ standard. To preserve backwards compatibility it may be hoped that
the existing C library functions will remain available, butthen the exact rules
for mixing use of the Cprintf and C++ “<<” operations will need to be
documented. In the draft ANSI specification the section discussing the library is
itself book-sized[6] and will represent a significant leaning effort for users.

Firm up newer features: Exception handling in C++ is (at the time of writing) still
an area that has not stabilised, and there will be a great manyother areas of the
language where people will want to suggest small changes to the rules in order
that the language finally defined ends up as coherent and useful as possible. The
nature of any 700+ page document is that there will be inconsistencies between
statements made in different sections, and the process of detecting and resolving
them will be quite protracted.

Address C standard failures: In ANSI C provision was made to allow programmers
to write C code even if the keyboard they used was deficient (lacking various
punctuation characters such as[]{}\&ˆ| . This was done using things called
trigraphs, each starting with the string “??”. The arrangement seems ugly and

60

is not obviously popular — the C++ committee is suggesting better solutions to
this problem and to other areas where five or so years of experience with ANSI
C have revealed room for improvement.

21 A Few More Pitfalls and Traps

It has already been explained that compiling and running a program that has “unde-
fined” behaviour is permitted to have most curious effects. And furthermore those
effects might depend on the date or time of day that the program was run32. This sec-
tion lists a collection of tolerably common C (mostly) and C++ mistakes to give you
an idea of what to be on guard against.

21.1 Compiler Bugs

It would feel reasonable to expect that a very heavily used language like C would now
have compilers that were 100% reliable, and that the ANSI standard would be met in all
serious implementations. One would hope that C++ would only give trouble in areas
where the specification is still under review. If you developlarge C or C++ programs
and try to run them on a significant number of different architectures you will find
that the world is not so kind. Even when a single compiler implementation (gcc) is
available on many computers you will find that not all have thesame release installed,
and there can be target-specific compiler bugs. I have encountered C compiler or
library bugs that have caused me at least some frustration onPCs (at least 3 different
compilers), Macintosh, Sun, HP, SGI, Acorn and Apollo computers. You should not
get the impression that C will be worse than any other language in this respect (it is
probably better) or that compiler bugs are the major cause ofnon-working code, but
they are out there and they can hurt.

21.2 Sequence Points

Within one expression a C compiler may generally evaluate sub-expressions in what-
ever order it sees fit. At so calledsequence pointseverything must be brought back
into a stable condition: the main constructs that give rise to sequence points are the
semicolon that terminates a command, the comma that joins a succession of expres-
sions into a sequence (but not the comma that separates arguments in a function call)
and the&&and|| logical connectives. In the presence of side effects evaluation order
may matter. Consider wheref is some function of two arguments. The programmer
may have expected that the arguments passed will have been 1 and 2. But the ANSI
C standard says that the behaviour is undefined. To see why it may be reasonable

32If the undefinedness is a result of the program attempting to read from un-initialised memory or
from outside the space allocated to it it is even reasonable for the exact details of the behaviour to vary
from run to run.

61

to make such things undefined, imagine a computer wherea++ is implemented as
code that picks up the value ofa into a register, makes a copy into a second regis-
ter, increments one of the register (while keeping the otherfor use as the value of the
expression) and finally writes the incremented value back tomemory. Especially on
a high-performance RISC machine it could make sense to interleave the streams of
instructions that did that for the first and second argument,and after scheduling the
instructions to keep the CPU fully busy almost any arrangement could result, and it
will not even be clear thata will end up with the value 3. By making the meaning
of the code undefined the standard makes it legal for a compiler to generate whatever
code happens to come out of its optimiser, or to detect the oddity and generate code
that prints a warning and stops (or anything else the compiler writer likes the idea of).
Other problems arise with indirect addressing:

int a = 1;
int * b = &a; // take address of variable a
cout << (a + * b++); // a bit like (a + a++)?

21.3 Macro expansion woes

Consider the code

#define print(x) { cout << x; cout << x; }
if (something) print(x);
else ...

The important issue here is that there is a macro that is defined so as to expand
to a block of commands enclosed in braces — the fact that printing is involved is
unimportant. It then looks natural to use this macro in otherarbitrary contexts, however
there is a slight trap: it looks correct to write a semicolon after the use ofprint(x)
in the if statement above, but because the macro expands to{ . . .} that is in fact
incorrect. It is necessary to write one of

if (something) print(x)
else ...
if (something) { print(x); }
else ...

THis illustrates how much caution is sometimes needed with preprocessor macros:
it C++ inline functions are used instead the problem might not arise. However even
then all is not well, since even when a function is inline all the values it needs to access
must be passed as arguments, so there will remain places where macros are needed.
Some people suggest that the solution to this problem is to goto the trouble of writing
all macros that would expand to a block as

#define my_macro(a,b,c) \
do { / * start of block * / \

... \

... \
} while (0)

62

and then the curious looking use ofdo . . .while has no effect on execution behaviour
but leaves the syntax more secure!

21.4 Out of memory failures

In C chunks of memory are obtained by the use of themalloc function33. In C++
the corresponding facility is provided by thenew operator. If you use these a lot it can
become hard to remember that eventually you may run out of memory and the attempt
to allocate more will fail.malloc andnew do not provoke an immediate crash when
they are unable to satisfy a request — they just return aNULL pointer. If you fail
to check for this case and eventually you do run out of memory the effects may be
uncomfortable.

21.5 Memory allocation

If attempting to use aNULL pointer as if it were the address of the start of a useful
block of memory was a bad prospect, then the consequences of not getting uses of
delete properly matches with those ofnew can be much worse. Such errors can
sometimes confuse the internals of the freestore allocation package, and result in newly
allocated structures overlapping. And these new structures may not just be ones that
the user allocates directly — they could be control blocks orbuffer areas allocated by
the library for its own internal use. Running foul of this problem is almost enough
cause to give up C++ totally and move over to Lisp where storage allocation has been
properly thought out.

21.6 Other library function failures

As well as running out of memory, there are many other possible ways that library
functions may not work properly for you. In general the C tradition is that the function
just returns, possibly with some slightly unusual result, but that there will not be any
automatic generation of warning messages. The programmer has full responsibility for
checking that all goes well. A few nasty examples:sqrt(-1.0) does not generate
an exception, it will just hand back some silly value. If an output stream has been
directed to a file on a floppy disc (say) then if the user removesthe disc while the
program is running, or if the disc is damaged, or runs out of space, then simple output
operations can fail. The functions that support direct access (fseek) may not be sup-
ported on all sorts of file (eg on Unix/dev/null !). There may be system-imposed
limits on how many files you can access at one time. The list of possibilities is almost
endless, but in C and (so far) in C++ checking each individual library call for success
can be very tedious and ugly.

33Especially under Unix it can sometimes make sense to use a lower level and system-specific func-
tion sbrk , while if you are writing code for a Macintosh or for regular Windows 3.1 then you usually
need to take great care to fit in with the operating system’s choice of memory allocation calls.

63

21.7 Unsigned values

If you have, in your code, a mixture of short and long integersand signed and unsigned
variables, the compiler will apply rules to bring quantities to a proper common type
when an operation is to be performed. This can involve widening a short value to a
long one, and depending on whether it is signed or unsigned this either propagates the
sign bit or pads with zero bits. Usually what happens will be just what you expect,
and most operations (in particular+, - , * , &, | and<< are not sensitive to whether
their arguments are signed or unsigned. However the comparison operators< and so
on are. Ifx is an unsigned value then the boolean expression(x < 0) can never
be true. Beware cases where comparisons may involve values ofdifferent widths or
where some arguments may be signed and others unsigned, or read the standardvery
carefully so make sure you understand what will happen. Explicit castsas in

if ((unsigned long int)x < 0x8000LU) ...

can avoid any possible confusion.

21.8 Unexpected overflows

If you perform arithmetic in C in such a way that there could beoverflow then the
Standard declares that all bets are off. With almost all compilers arithmetic will in fact
be done using 16 or 32-bit 2’s complement and the overflow willbe silently ignored.
Sometimes this is very useful, but on others it is a source of bugs. My favourite nasty
in this regard are the harmless-looking shift in

#define bit_n(n) (1 << (n))
{ long int x = ...

if (x & bit_n(24)) ...

which is attempting to see if the bit0x01000000 is set in the variablex . On a 16-bit
computer despitex being a long integer the shift may be done in 16-bit arithmetic,
leading to a (probably silent) overflow and the a test that masks with zero. 1¡¡24 when
sizeof(int)==2. My preferred correction is to have a type ofmy own calledint32 ,
with a typedef to map it onto a suitable system integer type, and then define the
macro as

#define bit_n(n) (((int32)1) << (n))

21.9 Arithmetic Right Shifts

ANSI C permits an implementation to implement right shifts on signed values either
so that they replicate the sign bit, or so that they fill bit positions vacated by the shift
with zero. Thus right shifts on signed values need to be codedwith a degree of cau-
tion. While mentioning shifts, observe that (if overflow is indeed always ignored), the
following three are equivalent ifx is an integer:

64

2 * x;
x + x;
x << 1;

and occasionally the addition or shift may be faster than a multiply (but a good
compiler would make the transformation for you if it was really useful). For posi-
tive values on a binary machine(x/2) and(x>>1) are also equivalent, but shifting
negative values right will not in general halve them even if the shift is arithmetic.

21.10 Indirection through NULL pointers

A pointer variable will normally contain a proper pointer, but it is always valid to
storeNULL there. If the value isNULL then indirecting on it is a bad idea. With
some operating systems the attempt will be trapped promptly, while with others only
attempts to write to the bad address cause a fault, and reading just retrieves some stray
value. Yet cruder machines would trap neither reads or writes, and so the erroneous
program could possibly corrupt system memory!

21.11 Representation of NULL

Because on many implementations of C the valueNULL is stored as a zero bit-pattern
some programmers come to believe that this is necessarily so, and rely on it.NULL is
what you get when your compiler casts zero to a pointer type, and it may be different.
For instance one could imagine a computer where all pointerswere 48 bits long while
integers were various other widths, thenNULLwould be a 48-bit quantity and not quite
like any integer at all.

21.12 Local variables aftersetjmp

setjmp can be understood by imagining that when it is called it just dumps the ma-
chine’s registers in thejmp buf and returns.longjmp can then just reload all the
registers, which may have a side effect of resetting the stack and allowing it to return
from setjmp for a second time. Just how much state gets restored bylongjmp may
be slightly system dependent, and the standard is careful tospecify that the state of
local variables whose value has been altered between the original call tosetjmp and
the longjmp is not determinate. Beware!

21.13 Code and Data memories separate

It could be that a computer has quite separate address spacesfor code and data, in
which case an attempt to cast from a pointer to a function to get a pointer to data will
be pretty ineffective. Also code space may be read only (in some cases it may even
eventually map onto ROM), and some compilers may like to store literal constants

65

(especially string constants) in code space, while others will put them together with
other data. So although on some systems you may get away with updating the contents
of a string literal (yuk!) and by so doing save some space or time, do not count on
it. If the same text appears in several strings in a program some compilers may try to
save you space by storing the string just once, while others will naively store multiple
copies — with C you can easily write code that would behave differently depending
on the strategy used!

21.14 printf , scanf and long integers

Users of the C library functionsprintf andscanf should take some care to ensure
that the types of values passed match the format directives present in the format strings
— especially perhaps whenscanf is used to read a long integer.

21.15 Assuming 16 or 32-bit arithmetic

I was caught out when I first used a compiler that had support for 64-bit integers
by the fact that̃ 0x80000000 was not the same as0x7fffffff but could be
0xffffffff7fffffffL It is very easy to suppose that you know just what sort of
arithmetic you are relying on!

21.16 Comment nesting

/ * Here is the start of a comment, where due to clumsiness with the editor the intended
end of the comment, here it is:* ? has got slightly mangled. I had? where I meant
/ The effect is that the text you are reading now is begin swallowed up as part of the
comment, probably without any load message from the compiler. Things may recover
when I get to the start of the next comment — ah here it comes/ * Here is the start of
my next comment - and its end* / The text from here on is now not inside a comment,
and if I am unlucky the material inadvertently swallowed will not disrupt my syntax
and I will be none the wiser about its loss.

21.17 Scope ofstruct tags

A gross oddity in ANSI C that may get changed in C++ is that if the first time you see
a structure tag is in the header line of a function, as in

extern void f(struct xx * y);

then the structure tag is treated as having a scope that is just the body of the function
defined. Even if you writestruct xx elsewhere it will be viewed as a different tag.
In consequence is not possible to call the function giving itan argument of exactly
the correct type! To avoid this lunacy, declare all your structures (and classes) before
functions that use them.

66

21.18 Byte Ordering

Quite often one wants to write whole data structures out to a file, or copy them whole-
sale from one part of memory to another. The raw memory copying operations are not
sensitive to the order of the bytes that make up integers (or floating point values). A
case where this sort of issue really matters is if you are writing a compiler that ought to
generate exactly the same binary object files whatever brandon machine it happened
to be hosted upon.

21.19 Six-character mono-case names

As a matter of extreme caution, ANSI C suggests that names of external variables and
functions should be limited to six letters and that you so notassume that case can be
used to distinguish letters. It is perhaps reasonable to hope that you will never come
across an environment that makes this restriction come alive! One way to cope if
you ever do is to compile your whole program with a header file that maps the sensible
meaningful names that you will use into horrid short ones suitable for your backwards-
looking computer. Here is a slightly modified version of a small fragment of a header
file that I use for just that purpose:

#define alloc_dispose g01all
#define alloc_init g02all
#define alloc_noteaestoreuse g03all
#define alloc_reinit g04all
#define alloc_unmark g05all
#define builtin_init g06bui
#define cautious_mcrepofexpr g07cau
#define cautious_mcrepoftype g08cau
#define cc_err g09cc_
#define cc_err_l g10cc_

A The GNU Library General Public License
GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copie s
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General P ublic
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its u sers.

67

This license, the Library General Public License, applies t o some
specially designated Free Software Foundation software, a nd to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

When we speak of free software, we are referring to freedom, n ot
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and c harge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces o f it
in new free programs; and that you know you can do these things .

To protect your rights, we need to make restrictions that for bid
anyone to deny you these rights or to ask you to surrender the r ights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whethe r gratis
or for a fee, you must give the recipients all the rights that w e gave
you. You must make sure that they, too, receive or can get the s ource
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can reli nk them
with the library, after making changes to the library and rec ompiling
it. And you must show them these terms so they know their right s.

Our method of protecting your rights has two steps: (1) copyr ight
the library, and (2) offer you this license which gives you le gal
permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make cer tain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passe d on, we
want its recipients to know that what they have is not the orig inal
version, so that any problems introduced by others will not r eflect on
the original authors’ reputations.

Finally, any free program is threatened constantly by softw are
patents. We wish to avoid the danger that companies distribu ting free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To pre vent this,
we have made it clear that any patent must be licensed for ever yone’s
free use or not licensed at all.

Most GNU software, including some libraries, is covered by t he ordinary
GNU General Public License, which was designed for utility p rograms. This
license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary
one; be sure to read it in full, and don’t assume that anything in it is
the same as in the ordinary license.

The reason we have a separate public license for some librari es is that
they blur the distinction we usually make between modifying or adding to a
program and simply using it. Linking a program with a library , without
changing the library, is in some sense simply using the libra ry, and is
analogous to running a utility program or application progr am. However, in
a textual and legal sense, the linked executable is a combine d work, a
derivative of the original library, and the ordinary Genera l Public License
treats it as such.

Because of this blurred distinction, using the ordinary Gen eral
Public License for libraries did not effectively promote so ftware
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing bet ter.

68

However, unrestricted linking of non-free programs would d eprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended to
permit developers of non-free programs to use free librarie s, while
preserving your freedom as a user of such programs to change t he free
libraries that are incorporated in them. (We have not seen ho w to achieve
this as regards changes in header files, but we have achieved it as regards
changes in the actual functions of the Library.) The hope is t hat this
will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library" . The
former contains code derived from the library, while the lat ter only
works together with the library.

Note that it is possible for a library to be covered by the ordi nary
General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library wh ich
contains a notice placed by the copyright holder or other aut horized
party saying it may be distributed under the terms of this Lib rary
General Public License (also called "this License"). Each l icensee is
addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application pr ograms
(which use some of those functions and data) to form executab les.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based o n the
Library" means either the Library or any derivative work und er
copyright law: that is to say, a work containing the Library o r a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, t ranslation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work f or
making modifications to it. For a library, complete source c ode means
all the source code for all modules it contains, plus any asso ciated
interface definition files, plus the scripts used to contro l compilation
and installation of the library.

Activities other than copying, distribution and modificat ion are not
covered by this License; they are outside its scope. The act o f
running a program using the Library is not restricted, and ou tput from
such a program is covered only if its contents constitute a wo rk based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library ’s
complete source code as you receive it, in any medium, provid ed that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; k eep intact
all the notices that refer to this License and to the absence o f any
warranty; and distribute a copy of this License along with th e
Library.

You may charge a fee for the physical act of transferring a cop y,
and you may at your option offer warranty protection in excha nge for a
fee.

69

2. You may modify your copy or copies of the Library or any port ion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Sec tion 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notic es
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function o r a
table of data to be supplied by an application program that us es
the facility, other than as an argument passed when the facil ity
is invoked, then you must make a good faith effort to ensure th at,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever p art of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this functi on must
be optional: if the application does not supply it, the squar e
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the L ibrary,
and can be reasonably considered independent and separate w orks in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But whe n you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the te rms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of wh o wrote
it.

Thus, it is not the intent of this section to claim rights or co ntest
your rights to work written entirely by you; rather, the inte nt is to
exercise the right to control the distribution of derivativ e or
collective works based on the Library.

In addition, mere aggregation of another work not based on th e Library
with the Library (or with a work based on the Library) on a volu me of
a storage or distribution medium does not bring the other wor k under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Pu blic
License instead of this License to a given copy of the Library . To do
this, you must alter all the notices that refer to this Licens e, so
that they refer to the ordinary GNU General Public License, v ersion 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you c an specify
that version instead if you wish.) Do not make any other chang e in
these notices.

Once this change is made in a given copy, it is irreversible fo r
that copy, so the ordinary GNU General Public License applie s to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

70

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executab le form
under the terms of Sections 1 and 2 above provided that you acc ompany
it with the complete corresponding machine-readable sourc e code, which
must be distributed under the terms of Sections 1 and 2 above o n a
medium customarily used for software interchange.

If distribution of object code is made by offering access to c opy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are no t
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being com piled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, a nd
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Libr ary
creates an executable that is a derivative of the Library (be cause it
contains portions of the Library), rather than a "work that u ses the
library". The executable is therefore covered by this Licen se.
Section 6 states terms for distribution of such executables .

When a "work that uses the Library" uses material from a heade r file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work ca n be
linked without the Library, or if the work is itself a library . The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the ob ject
file is unrestricted, regardless of whether it is legally a d erivative
work. (Executables containing this object code plus portio ns of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Sec tion 6.
Any executables containing that work also fall under Sectio n 6,
whether or not they are linked directly with the Library itse lf.

6. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produc e a
work containing portions of the Library, and distribute tha t work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and rever se
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are cover ed by
this License. You must supply a copy of this License. If the wo rk
during execution displays copyright notices, you must incl ude the
copyright notice for the Library among them, as well as a refe rence
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including wha tever
changes were used in the work (which must be distributed unde r
Sections 1 and 2 above); and, if the work is an executable link ed
with the Library, with the complete machine-readable "work that

71

uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modif ied
executable containing the modified Library. (It is underst ood
that the user who changes the contents of definitions files i n the
Library will not necessarily be able to recompile the applic ation
to use the modified definitions.)

b) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by offering access to co py
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses th e
Library" must include any data and utility programs needed f or
reproducing the executable from it. However, as a special ex ception,
the source code distributed need not include anything that i s normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating sy stem on
which the executable runs, unless that component itself acc ompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not nor mally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that y ou
distribute.

7. You may place library facilities that are a work based on th e
Library side-by-side in a single library together with othe r library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the wor k based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fac t
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same wo rk.

8. You may not copy, modify, sublicense, link with, or distri bute
the Library except as expressly provided under this License . Any
attempt otherwise to copy, modify, sublicense, link with, o r
distribute the Library is void, and will automatically term inate your
rights under this License. However, parties who have receiv ed copies,
or rights, from you under this License will not have their lic enses
terminated so long as such parties remain in full compliance .

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to mo dify or
distribute the Library or its derivative works. These actio ns are
prohibited by law if you do not accept this License. Therefor e, by
modifying or distributing the Library (or any work based on t he
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or mo difying

72

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license f rom the
original licensor to copy, distribute, link with or modify t he Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights gran ted herein.
You are not responsible for enforcing compliance by third pa rties to
this License.

11. If, as a consequence of a court judgment or allegation of p atent
infringement or for any other reason (not limited to patent i ssues),
conditions are imposed on you (whether by court order, agree ment or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligation s under this
License and any other pertinent obligations, then as a conse quence you
may not distribute the Library at all. For example, if a paten t
license would not permit royalty-free redistribution of th e Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would b e to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceab le under any
particular circumstance, the balance of the section is inte nded to apply,
and the section as a whole is intended to apply in other circum stances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validit y of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have m ade
generous contributions to the wide range of software distri buted
through that system in reliance on consistent application o f that
system; it is up to the author/donor to decide if he or she is wi lling
to distribute software through any other system and a licens ee cannot
impose that choice.

This section is intended to make thoroughly clear what is bel ieved to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restrict ed in
certain countries either by patents or by copyrighted inter faces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excludi ng those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limit ation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to t ime.
Such new versions will be similar in spirit to the present ver sion,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If th e Library
specifies a version number of this License which applies to i t and
"any later version", you have the option of following the ter ms and
conditions either of that version or of any later version pub lished by
the Free Software Foundation. If the Library does not specif y a
license version number, you may choose any version ever publ ished by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible w ith these,
write to the author to ask for permission. For software which is

73

copyrighted by the Free Software Foundation, write to the Fr ee
Software Foundation; we sometimes make exceptions for this . Our
decision will be guided by the two goals of preserving the fre e status
of all derivatives of our free software and of promoting the s haring
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OFTHE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOUASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TOIN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAYMODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TOUSE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greate st
possible use to the public, we recommend making it free softw are that
everyone can redistribute and change. You can do so by permit ting
redistribution under these terms (or, alternatively, unde r the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the lib rary. It is
safest to attach them to the start of each source file to most e ffectively
convey the exclusion of warranty; and each file should have a t least the
"copyright" line and a pointer to where the full notice is fou nd.

<one line to give the library’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/o r
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; eithe r
version 2 of the License, or (at your option) any later versio n.

This library is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Pub lic
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 0213 9, USA.

Also add information on how to contact you by electronic and p aper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the libr ary, if

74

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by Jam es Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

B DOS GCC redistribution notice
This is the file "copying.dj". It does not apply to any source s
copyrighted by UCB Berkeley or the Free Software Foundation .

Copyright Information for sources and executables that are marked
Copyright (C) DJ Delorie

24 Kirsten Ave
Rochester NH 03867-2954

This document is Copyright (C) DJ Delorie and may be distribu ted
verbatim, but changing it is not allowed.

Source code copyright DJ Delorie is distributed under the te rms of the
GNU General Public Licence, with the following exceptions:

* Any existing copyright or authorship information in any giv en source
file must remain intact. If you modify a source file, a notice to that
effect must be added to the authorship information in the sou rce file.

* binaries provided in djgpp may be distributed without sourc es ONLY if
the recipient is given sufficient information to obtain a co py of djgpp
themselves. This primarily applies to go32.exe, emu387, st ub.exe, and
the graphics drivers.

* modified versions of the binaries provided in djgpp must be
distributed under the terms of the GPL.

* objects and libraries linked into an application may be dist ributed
without sources.

Changes to source code copyright BSD or FSF are copyright DJ D elorie, but
fall under the terms of the original copyright.

A copy of the file "COPYING" is included with this document. I f you did not
receive a copy of "COPYING", you may obtain one from whence th is document
was obtained, or by writing:

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

References

[1] Jim Conger.Microsoft Foundation Class Primer. Waite Group, 1993.

[2] Samuel Harbison and Guy Steele.C, a Reference Manual. Prentice Hall, 1987.

75

[3] Brian Kernighan and Dennis Ritchie.The C Programming Language. Prentice
Hall, 1 edition, 1978.

[4] Don Libes.Obfuscated C and Other Mysteries. Wiley, 1993.

[5] Stanley Lippman.C++ Primer. Addison Wesley, 2 edition, 1991.

[6] P. J. Plauger.The Standard C++ Library. Prentice Hall, 1994.

[7] X3J11.ANSI X3.159, ISO/IEC 9899:1990. American National Standards Institute,
International Standards Organisation, 1990.

76

