C and G+

A C Norman, Lent Term 1996

Part B, Part 11(G) and Diploma

extern int
errno
;char
grrr
;main(r,
argv, argc) int argc ,
r ; char *argv[];{int PC);
#define x int i, j,ccl[4];printf(* choo choo\n")
x if P ! i) | cc[! il
& P(>2 2 i : i) * argvfi++ +-i]
; for (i= 0;; i++ ;
_exit(argv[argc- 2 / ccll *argc]|-1<<4]) ;printf("%d",P("");}}
P (a) char a o a ; while(a > " B "
[* - by E ricM arsh all- *[); }

code by Eric Marshall, SDC

1 Introduction: Why These Languages?

These notes cover the languages C ard.Cln fact this means that there will be
coverage othreelanguages, which represent a historical development tatdken
place over about the last twenty years and which is stilliooiig. The most primitive
of these is best described as the “traditional” dialect ofdnstimes referred to by
the initials “"K&R” (which stand for Kernighan and Ritchie wheiginally designed
it). There is still a lot of code written in this dialect araljrso all proper Computer
Scientists need to be able to make sense of it. There are enencompilers that only
support it in use, but if at all possible these should be sbdnithe second language
will be known here as just plain C but if you need to stress Wiialect is involved or
make a big point that the K&R one is not what you mean, the fjoation ANSI-C can
be used. "ANSI” is the name of the formal standardisatiomauty responsible for
defining this version of the language. Their report[7] waklished in 1989, and these
days if you find a way in which a C compiler does not meet the ABl&icification
you should consider it to be brokerVarious vendors of C compilers put in language
and library extensions to their ANSI C compilers, and a fewhaf more interesting
of these will be mentioned. € is a more modern language but is broadly upwards
compatible with ANSI C and so (with luck!) existing C code daacompiled with
a C++ compiler and linked in with freshly written € code when new projects are
started. Of course in reality it is a bit harder than that. Agsent G-+ does not have a
format standard, although an ANSI committee is hard at woek@ring one. An effect
of that is that different €+ compilers will not all provide the same facilities, and even
when they do there may be subtle differences in the meanmgadtiribute to some
contorted fragments of code. These notes will give some plesrof constructions
that (at the time of writing) remain delicate.

Why, then, does it make sense to study this family of languageése following
reasons are some of the more important ones:

Management Says SoOne compelling reason for studying or using a programming
language is that the use of that particular language is Coynpaficy. In a
University environment this translates that there will Baraination questions
on it at the end of the year!

Legacy Code. Essentially all of the Unix Operating system is written in € vall be
the majority of the important commercial packages you cgnfbuuse on your
personal computer. Almost all existing computer companigishave signifi-
cant bodies of old code that has to be maintained, and a laog®gtion of this
“legacy code” that is not written in COBOL is written in C.

Library Linkage. If you write a new application that is to run under MicrosofinA/
dows, or the Unix-based X-windows system, or the desktoplocadly designed

10f course pretty well every compiler, like every other pagryou ever come across, will be broken
in various ways!

Acorn RISC-PC, or a Macintosh, ..., you need to interface togel@ody of
library code that helps run the graphical interface for ylowall the above cases
(and of course many others) there will be well developed C b+ @terfaces
to this library, and very often this will be thenly language that makes it easy
to make full use of the system. As well as user-interfacatils that force you
to use C you might come across data-base ones, or numeres(egthe NAG
library can be called either from Fortran or (yes you guesfed C).

Practical, Portable, Efficient Code. For a reasonable range of system-building tasks
C represents a plausible compromise between practicéyraad a Computer
Scientist’s ideal. The main dreadful features that K&R C treat made it con-
stitutionally insecure and dangerous have been very wdlesdes by the ANSI
dialect, and @+ tends to be even more careful about cross-checking thigs (a
though it introduces a whole new collection of delicaciegvery own). When
written with care and style C code can be ported to all the imashyou will ever
want t&, and again if used with caution it can be used to write codeishaer-
formance critical.

Employment Prospects.As already suggested, C and-€are associated with rea-
sonable scale real commercial projects, and thus with ngakioney. So even
if C is not the very latest and most wonderfully forward lamdiprogramming
language it may be a useful one to be able to claim familiavitia!

Embedded Applications. C and G-+ can reasonably be used to write code for ded-
icated controllers (eg to look after machine tools, netwatkrfaces, industrial
plant, car engines, ...) as well as being suited for use oargépurpose work-
stations. This opens up a large extra range of applications.

Closeness to the MachineWith C the statements used in the program language can
relate in a clear and direct manner to machine-code constridis tends to
reduce to opportunity for surprises by way of unexpectedlgt performance,
and makes it easier to write code that interacts directly \Wwardware. It also
means that C is a useful language to know when learning abeuddsign of
computer instruction sets, as the language user’s pergpeaotets that of the
hardware designer.

Fairly Simple Compiler. Following on from the fact that each class of C (or to a
slightly lesser extent €t+) statement maps neatly onto machine code of a wide
range of computers, the language is a good one to keep in niiad first study-
ing compiler construction. The extra complications thateni@ be handled with
some more elaborate languages can be considered later da,Qvprovides

2And unlike some other nominally more machine independemguages, you will find C compilers
available on all those machines.

plenty of scope for discussing compiler optimisations (#m&l limits to what
can be done automatically).

Availability of Cheap, Reliable Compilers. For most sorts of Unix workstation and
for a variety of personal computers, the Free Software Fatimas “g++” com-
piler will be available and has the stunning advantage aidgéiee! For IBM-
style personal computers there is a highly competitive etaik C and G+
compilers. Some of the smaller and cheaper of these look\zads to the days
when personal machines were uncomfortably small, and av@nious ways
limited or full of non-standard space-saving tricks, bu¢ thore modern and
professional versions are of stunningly high quality — mubetter than any
workstation software development tools | have ever seenalgecof the com-
petition, prices are almost reasonable.

Development Tools.No compiler (be it for C, @+ or any other language) stands
totally on its own: associated development tools and sulmedibraries are
needed. Because of its widespread use C has collected a guyel ohthese,
and Cr+ inherits most of them. In a typical University Unix enviroent these
tools will still be fairly primitive, but theEMACSditor can be configured to help
lay out C code in a systematic manner, and there are Unix li&el$prof” and
“pixie” (on some systems) that can help you collect inforimratabout which
parts of your code are most heavily used. Debuggers suchdas (gr “sdb”or
“adb”) may assist when your programs fail. Resource Contrckages can help
keep track of all the files in a large project.

On personal systems the development environments haverbesnmore care-
fully designed, and the debugging tools that | have seen @nddoft Windows,
the Macintosh and on Acorn machines are all streets ahedtkeafries made
available on most Unix systems. | would single out the debudigat comes
with Microsoft’s Visual G-+ (32-bit edition) running under Windows NT as be-
ing almost good enough to justify the rather large amountdisf space and
memory it needs!

Historical Interest. C was developed as a successoBPL (which was invented
by Martin Richards), and that in turn was at first intended toabanguage
that would be used to write the compiler for a langu&g¥. These roots carry
the historical thread from €+ and the present back to the mid 1960’s. By
looking at the ways languages, their compilers and the pragmwritten in them
have changed over that time-scale we can get some insighhaw Computer
Science (as well as Computer Application) has changed, ardype that will
help us when we try to peer forward and predict future devalams.

C and C++ are Fun. Some programming languages are very carefully designed to
ensure that only correct code will pass the compiler’s styuiThey emphasise
precision of expression in an utterly humourless and irtemsy. C and &+

3

are not like that. They expect the programmer to be compatahtareful, but
provide some scope for the inclusion of cunning tricks inegaghd even jokes.
To try to support this claim | am including a collection of sewhat curious
sample C programs with these notes. ..

The above collection of strengths embodied ##+0nay suggest that it is the per-
fect language for all imaginable uses. The fact that in Cadgieriwe do not teach it
as the first and only language presented to students sudlgastie department here
thinks otherwise. So here are a few possible causes folocaudiven though | have not
given as many disadvantages as | listed advantages, somenoshould be viewed as
pretty serious limitations:

C++ is not Standardised. Until there is a formal standard for+G (and until, several
years after that, the bulk of compilers have caught up wighstiandard), every
C++ compiler will support a slightly different language, ane thehaviour or
portability of code can not be assured. By falling back to (ANSthe benefits
of a standard language can be obtained, but at the cost n§ltdse new features
that G-+ provides.

C++ is complicated. A comittee of the relevant standards-issuing body is at veork
codifying CG++. During 1995 it issued its first major document for publiciesw
This will evolve into the official G+ standard, but the final form will probably
have changed in several quite significant ways. This firdt dfathe standard
is over 700 pages long, and that is dense description rdthargentle tutorial
explanation.

Incomplete compile-time checking.As compared to (for instance) Module-3, C and
C++ are insecure languages. In particular uses of casts and types (which
will be described in the lectures) make it possible to writdageously incorrect
code and have the compiler accept it quite placidly. Evennwised with care
C pointers can too easily escape and allow incorrect codertagt almost arbi-
trary fragments of code or data. Writing safety-critical ead C is probably a
really bad idea. Note that K&R C was an almost complete cajaom this front
— both ANSI C and @+ are much better, but still they are not the language of
choice for missile guidance systems programming, air¢fgftby-wire” con-
trol, nuclear power station monitoring software or some iceddpplications.

Cryptic Syntax. Real code has to be re-cycled, modified and maintained. Clear sy
tax makes it easier for somebody coming across a fragmeringftheglected
code to understand it. C can be cryptic in places, white¢ Gaises this to a high
art. In contrast, ADA had as a design goal that code writtehshould be easy
to read even if that made it more verbose and hence more gettiowrite in the
first place.

Reliance on Programmer Discipline. The “Spirit of C” is that the programmer knows

what to do and will take full responsibility for the code astien. The job of

a compiler is to convert this source code into equivalentmmaeccode that will
run fast on the relevant target hardware. This works acbgpteell with expe-
rienced, conservative, well-disciplined programmers watenot working under
over-severe time constraints. Or put another way, in gealibt of C code that
is written is ill thought out and shoddy, and the compilergiiiiie even to point
this out. In many cases this will lead to much higher whdle-tiycle costs than
would the initial use of a much more pedantic and fussy laggua

Lack of Modern Features. C lacks objects, and while%3 adds these, it does so in
a way that is more static and limited than some other objeehtwd languages
(notably the CLOS component of Common Lisp). Neither C not@rovides
language-defined facilities to support any form of parglelcessing or multi-
tasking. The standard libraries for the languages provigsieesvhat primitive
input and output control, and certainly no direct supportdersistent data or
database searches. Despite the illusion it likes to givenong management in
C++ is (following on from that in C) primitive (in particular it d&s not have a
Garbage Collector). People who want to do large-scale stgeaalculations
(the sort that involve thousands of millions of floating gaperations, where it
is sometimes important to save space or time by using singlggion floating
point arithmetic) find C and €+ seriously deficient. Various of these limitations
can be addressed by the provision of extra library functfon€ code to call,
but that again runs into portability and standardisatiabjams.

Rational alternatives to the C family of languages couldudel

Higher Level Languages. Either Modula-3 or ML could provide much better guaran-
tees of the correctness of programs. For example ML has Isszhin a number
of large-scale projects involving formal specification amdification of hard-
ware design, while Modula-3 is designed to encourage (ea®)rgood practise
in multi-programmer projects.

Other Pragmatic Programming Languages. If the task you need to solve creates
and discards data in a sufficiently wild way it may make seasesé a language
that provides automatic garbage collection. Equally ifryprogram needs ar-
bitrary precision arithmetic, maybe a language that suppbiat already will
be helpful: Lisp should be considered. For other applicaticeas Prolog (for
medium-sized database search, pattern matching and tzeinig) or Snobol
(transformations on strings of characters) may be bestdguome small tasks
may of course be most conveniently solved in BASIC

3Indeed Microsoft’s Visual Basic is clerarly the languageldice for lashing some sorts of one-off
Windows interfaces.

Databases and Spreadsheet®articularly on personal computers various packages
exist to provide reasonable programability in a framewoeli suited to various
tasks that commonly arise in an office environment. When aJjsity comes
to add up exam marks and sort candidates into rank order ftvegage to do that
should be created by adding rules to a database or spreagstogage rather
than by writing a complete program from scratch in C.

Packages.Increasingly it will be the case that tasks can be solved mgusbought-in
package that does what is needed: so no fresh programmimgded. Except
in artificial cases where the time spent writing a programasrecorded and
charged for this will often be the best way to go, even if thekage obtained
turns out to be slightly limited and awkward to use. Just heea/ou know how
to program in G+ there is no need to write your own screen editor — there are
more than enough ones out there already.

2 Course Content and Textbooks

This course starts with the assumption that those takingdetrstand about program-
ming in general (from the earlier courses that involve ML Muatlula-3), and that they
have taken the local Data Structures and Algorithms cowrsxamples based on that
can be used to illustrate aspects ef#Jprogramming. The position taken is that€
is the main language being described. ANSI C will be treaseifliawere just a subset
of C++, so most of the discussion of it will be in the form of passiiogas that indicate
where G-+ features are not available in it. The exception to this wallito Chapter 19
which pays particular attention to some of the fine print |} ANSI standard for C.

In a limited length course that is not accompanied by largewants of mandatory
practical work it will not be possible to show you every lastall of CG++ and turn
you all into expert programmers in it. The objective hereoisthow you enough of
the important aspects of the language that you can go awastartdvriting code, and
to give you enough understanding that you can find your wayratdhe textbooks.
| want to stress that in twelve lectures | can not possible yau into C++ wizards,
and so | will not try that. Instead | will introduce the lang@aand try to get across
some of the feeling and spirit associated with it. My hopehat by the end of the
course you would be able to implement smallish bodies of ¢edemplementations
of things from the Data Structures and Algorithms courseypled you had one of the
textbooks available for reference. The rest only comes letthof practical exposure
over a period of several year.

These lecture notes are intended to accompany the cou@oamo replace ei-
ther the lectures or the textbooks. Although the materigeoed here will broadly
match that in the lectures the detailed order of presemtatith certainly differ, as (for
instance) points get explained when they arise in an exapnplgram that you get
shown.

If you go into a large bookshop and find the section devotedi® yu will find
that there are a very large number of textbooks availablkn@ore will come out each
month. In the end the selection should depend on your owresiteand preferences,
and a judgement you may like to make on how much use+af gou will make after
this particular lecture course ends.

Very many textbooks on €+ start with the assumption that the reader is already
a seasoned programmer in plain C. Indeed it is often assuraed th old-fashioned
K&R C that is the starting point for a study of+@. Another whole shelf-full of
C++ books in the shops relate very specifically to various paldic(IBM pc) imple-
mentations of @+. These often spend many of their pages explaining how to wave
a mouse around and drive the relevant idiosyncratic dewsop toolkit, and how to
make write programs in the specific context of Microsoft Wing. Neither of these
approaches is really satisfactory for the course given.h&tdeast one other book |
considered recommending has been omitted from this listusex| consider the ty-
pography and layout grimly distracting and ugly. The boakggested here represent
perhaps plausible compromises: the ones on C rather tham&present more definite
recommendations since that section of the market is mobéesta

C++ Primer (2nd edition), Stanley Lippman, 1991, Addison Wesley.

This is at least at present my main recommendation. It castsjnde£E30, and
will serve as a reasonable reference manual as well as atkxtb learn G+
from.

The Standard C++ Library, Plauger, 1994.

This has only appeared on the bookshop shelves during tHédmanonths of
1994, but covers the current draft specification that withtunto ANSI’s formal
recipe for a G+ library. Do not expect all existing implementations of the
language to meet this description yet, and consider waditgher year to get
edition two or three of this book as the standard gets clasadoption. Despite
these quibbles, this book is something of a landmark, becthes other &+
books give decidedly light coverage of library issues.

C++ with Object Oriented Programming, Paul Wang, 1994, ITP.

One reason for me to include this on my list is that | know Paah@/— and | am
quite happy to direct royalties in his direction. He takes ¥iew that teaching
should start directly with €+ rather than going through C first, and his book is
a little more gentle than Lippman’s.

The Annotated C++ Reference Manual, Ellis and Stroustrup, 1990, Addison Wes-
ley.
For reference rather than as a gentle introduction, andehlesieggest that most
of you donot rush out and buy this. The time to buy definitive referenceemniat
relating to G-+ will be when the standardisation process is complete and the

7

language has stabilised. However, borrowing this fromitiraty for a few days
may be interesting. The same comment applies to pretty wgllother G-+
book with Stroustrup as author!

ANSI X3J16 working drafts, 1994-.

At various later stages in their development of a standardCfie+ the techni-
cal committees involved releases drafts for public commé&he first of these
has now been circulated. There are three reasons why | duggegou do not
search for it on the internet and download it: (a) at over 7&@§gs it would use up
your free printing allowance too fast, (b) since this is jin& first public-review
document the language+& will change in a number of significant ways be-
tween now and the final standard and (c) official standardsrdeats are dense
and detailed, and generalhot useful for learning languages. The information
included is also much too much to relate to a twelve lecturesm

ANSI X3.159, American National Standards Institute, 1989.

This is the official standard for C, subject to later statemamtclarification or

amendment. It is not readily available in bookshops, andbgioty only really

needed by those who are going to try to write their own C coenpibr set
themselves up as utter expert in all the dark corners of #relsrd. Find a copy
in a library (there should be one in the book-locker) and easpt for a few

minutes. The version published by ANSI has an accompany#gphale” that

explains the thinking behind some of the decisions made &gdmmittee, and
this is both readable and enlightening. Most recent repoete that a copy of
this document would set you ba€k80!

C, a Reference Manual, Harbison and Steele, 1987, Prentice Hall.

Probably the most sensible general purpose C book to havewrbpokshelf.
The main reason it does not now count as quite essentialtighiisacourse now
views C as a subsidiary language te+« However most @+ books give only
rather superficial coverage of the pre-processor and ther@ryi so until G-+
has been standardised and these aspects of it are well dotdiean explicitly
C++ context this will remain a very useful reference work to own.

The C Programming Language, Kernighan and Ritchie, Prentice Hall.

You might reasonably believe that the book by the originaéirors of a lan-
guage would be the best volume for you to have on your shelusd that it
would give the clearest and most definitive description eflinguage. In the
case of Snobol, Griswold’s original manual still probabdyats as a classic, but
for C there book by K&R is less precise, less complete andbetmced than
several alternatives. This applies both to their origir@& language definition

and to their updated book documenting ANSI C. | mention theklime to sug-
gest that for all ordinary student use it is not the correciad (and when | last
looked its cost per page seemed exorbitant too).

Obfuscated C and Other Mysteries, Don Libes, 1993, Wiley.

This costs too much at ovéh0, but gives some insight into the real problems of
writing portable and reliable C code: even when it does soilbayng examples

of the converse. Some of these examples are included in timéss, but with-
out much explanation — if you want the full story on them tuorDton Libes’
commentaries. | enjoy this book.

Microsoft Foundation Class Primer, Jim Conger, 1993, Waite Group.

Earlier | dismissed as irrelevant books that concentrategist one particular
brand of computer or version of#G compiler. With this book | make a (quali-
fied) exception. It isiot a book to teach you €+, but it does give a respectably
clear explanation of a large-scale application of the lagg viz the construc-
tion of programs that work under Microsoft Windows. | haverid its expla-
nations both clear and helpful — so if you find yourself invedvn a Windows
project sometime this may help you out.

Computer Related Risks, Peter G Neumann, 1995, Addison Wesley

3

This book is not directly about either C or€, but it is about the consequences
of failure in computer systems. Any time you write part of amportant body
of code you should read and re-read both this and Fred BrodkgHical Man
Month” to remind yourself that programming is not a cosefebstract activity
done just for fun. The Computer Related Risks book is the besatmn |
know that gives detailed citations of (numerous) cases @psygrammer error
or system-designer oversight led to death or major loss.dtmacabre mixture
of the horrifying and hilarious! Strongly recommended.

Practical Work with C and C ++

It is impossible to get a real feel for any programming larguavithout writing a
reasonable number of programs of your own. On the Cambridge systems this
may involve the use ofg++”, the GNU* compiler for G++. Equally, on Thor it may
be that the approved#3 compiler is one provided by Sun, call&C

4The acronym GNU recursively stands for “GNU is Not Unix”, ayali should read the interesting

accompanying copyright notice, which basically says tHasBU software can be copied — and that
nobody may do anything to prevent anybody else from freefyitg it. If you are concerned about
possible future commercial exploitation of any of your cg@el may like to make a special point of
reading the GNU Public Library License. It is reproduced apéndix A, and further limitations that

apply to DOSg++ executables are listed in Appendix B

To useg++ you should prepare a source file with a name suckaasple.cc ,
and then go

g++ sample.cc

After a suitable pause and if your program was syntacticailyect,g++° will leave
afilea.out with the compiled version of your code in it. Your code is tlzetivated
by saying just

a.out

If you want the executable version of your code called somgtimore interesting that
a.out justadd-o program _nametothe command line that invokegs+.

If you happen to have convenient access to a PC that has-a@mnpiler installed
on it there is probably extensive on-line documentationdip lyou get started. If the
compiler involved has an integrated development systensitould probably use that
to create your files, and then compiling and running prograitisbe a very minor
matter of pointing the mouse at some suitable button. But uf go take that route,
please note that new releases of most PC compilers are madgeat to 18 months
intervals, and since €+ has been a rapidly developing language it is almost certain
that old compilers will fail to support some of the poteritidhteresting featurés |
have used Zortech (now Symantec)+«and Microsoft’s Visual C (the 32-bit edition)
and been pleased with both. The Borland compilers are read#ifable and cheap,
and so are also worth considering. If you move on from justlieg the language to
working on large-scale projects there are other compilerthe market, and (which is
perhaps more important) a selection of tools and librahes may help you control
a project or prototype your user interfaces. You can alsaiolgt++ for DOS, and a
copy of that will be on the Computer Laboratory teaching fitespfrom which you can
take a copy. Note that different releases of this softwave déferent installation rules
and different collections of bugs — the version on the Compluédoratory filespace
is reasonably up to date and furthermore is the one that | heed when checking
some of the course examples on a PC. With DOS GCC the basic fecipempiling
and running a simple program will be involve ensuring thah @avironment variable
(DJGPB has been set up to point to one of the files from the distiioukit, and then
just

gcc sample.cc -lgpl -Im
go32 a.out

In this case the driver progragcc treats files whose name ends it “ as con-
taining ordinary C programs, and ones whose name erds™as being in G+. The
curious-lgpl -Im just links in some extra libraries — if you accidentally fetgo
request them you will probably see complaints about undefyenbols.

SUsecc orgcc if your program is in C rather than4G-.

5Templates and Exceptions are the current leading edgenav8DOS/Windows products the last
year or so has seen a major (and very welcome) move from 1te-ftl 32-bit implementations of
languages

10

Many other computers that you might gain access to will have Compilers
installed on them, but you should be aware first that the reqments on filenames you
use for your source code are not standardised, and thatGircés still a developing
language some implementations will be more bug-free ané myoto date than others.

To finish this section | should follow tradition and presetiirst example of code
from the C family. | will use the most primitive version of thenguage (ie K&R C),
and in accordance with long and honoured tradition the eptirpose of the program
in figure 1 will be to print the message “hello world!”. The g&m of this program that
| have selected to show here was written by Bruce Holloway teé Public Domain,
and is explained further in [4]. For the moment | will omit ataiéed explanation of
how the code works (after all it achieves a very simple resaltimaybe there will be
no problent), but it does illustrate a worthwhile range of C construttyou want to
try it out please compile using the commasw rather tharg++ so that you hand it to
a compiler that accepts old-style C.

There are a number of small example programs included irethetes, and it is
hoped that you will type in and try (and then modify) the smiatines of these, and
at least try to puzzle through some of what is going on in thgelaones. A selection
of machine-readable resources will be available on the Ctenjhaboratory teaching
file-space too.

4 Debugging

A first, and probably best suggestion about debugging C antl €dde is that you
should try very hard to arrange not to have to do any. All gdeseffort should go
into ensuring that code is absolutely correct. This is bseawild C code can all
too easily overwrite memory that contains code or is notieeléo the data structures
mentioned in the erroneous fragment of program. An effdtigsa significant number
of mistakes show up not as neat local failures but indirdotigause of the way they
lead to corruption that causes catastrophic failure inlated parts of your code.

A second reason to be especially cautious with C ard @ that the (cheap)
compilers that the department provides for your use areaquipped with powerful or
convenient debugging tools. For the purposes of this cyme should suppose that
if a program fails it just stops, without even guaranteemdrish sending all recent
output to the screen.

As a consequence, a proper policy when writing code is to wsgreewhat defen-
sive style, so that at well chosen places you apply consigteimecks, and at other well
chosen places you arrange to be able to make the progrant ogpits progress — so
that if it then fails the log of progress reports will allowwyto reconstruct what was go-
ing on in the run-up to the crash. Section 8 will explain how éxtra print statements

"Huh?
8Unless you have access to one of the more expensive PC cesnipiéeé comes with a elaborate
debugger that allows you to inspect the values of varialftes a program has crashed.

11

/= Program by Bruce Holloway, Digital Research */
#include "stdio.h"

#define e 3

#define g (ele)

#define h ((g+e)/2)

#define f (e-g-h)

#define j (e =*e-g)

#define k (j-h)

#define I(x) tab2[x]/h

#define m(n,a) ((n&(a))==(a))

long tabi[]={ 989L,5L,26L,0L,88319L,123L,0L,9367L };
int tab2[]={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 }

main(m1,s) char *S; {

int a,b,c,d,o[k],n=(int)s;

if(m1==1){ char b[2 * j+f-g]; main(l(h+e)+h+e,b); printf(b); }

else switch(m1-=h){

case f:
a=(b=(c=(d=g)<<g)<<g)<<g;
return(m(n,a/c)|m(n,b)|m(n,a|d)|m(n,c|d));

case h:
for(a=f;a<j;++a)

if(tabl[a]&&!(tabl[a]%((long)l(n))))return(a);

case @:
if(n<h)return(g);
if(n<j){n-=g;c="D";0[f]=h;o[g]=f;}
else{c="\r'-\b’;n-=j-g;o[f]=0[g]=g:}
if((b=n)>=e)for(b=g<<g;b<n;++b)o[b]=0[b-h]+o[b-g]+c
return(o[b-g]%n+k-h);

default:
if(m1-=e) main(mi-g+e+h,s+q); else * (s+g)=f;
for(*s=a=f;a<e;) * 5=(* s<<e)|main(h+a++,(char

Figure 1: A C program to print “hello world!”.

12

can be left in your source file even when your code is beliegdzktfinished, ready to
be re-activated when the next “last bug” surfaces and neelols tracked down.

5 Simple Data and Simple Operations

This section explains the most basic parts efC It will not be a complete explana-
tion of anything, but is intended to provide enough undeuditag that modest chunks
of code can be read and hence the more elaborate featuremthatlater can be ex-
plained. At this stage | will show how to write individual fations, but not include
enough information to turn them into complete or useful alsla programs.

The first feature of €+ to explain is how to write comments. This is in the natural
expectation that all the (serious) code you ever write waktah plenty of these. There
are in fact two ways of writing comments ir+@. The main rule is that everything
from “// " until the end of a line will be ignored. In new+#3- code you might well use
just this style. But (oh joy) C had a different convention (efhiC++ still honours),
whereby a comment starts with#” and ends with ¥/ ”. Missing out the %/ ” can
cause an arbitrarily large segment of your code to be disdardnd the comment
delimiters do not nest, so there is possible danger if yotevadme code and later
comment it out as here:

here is some code

[* Write a comment marker to start commenting code out
debugging code here, now not wanted
debug code / * with comment =*/
more debug code // unexpectedly (?) not commented out
end of unwanted debug code

*/ /[intended to match first ’/ *

Many programmers will lay block comments out in some stgif@rmat to help
keep code in a consistent style. Three useful layouts fobkhek of comments that
will precede each function definition or small block of detimms are:

[*
* Here is a block comment to explain what my code
* is supposed to do. Valid for C or C++.

*/

/ *kkkkkkhkkkkkkkkkkkhkkhkhkkkkhkkhkhkkhkkhhkkhkkhkkhkkkkkkhkkkhkkhkkkx *
* Nice layout for comment at start of major block? *
*kkkkkkkkhkkkhkkkhkkhkkhkhkkhkhkhhkhhkhhkhhhkkhhkhhkhhkiix * /

T 1

/[This style is ONLY valid in C++, not plain C. //

T nnnTn 1

13

C++ as a language design supposes that the programmer has gtodrid will
write code with care and thought. You may like to considergbssible pitfalls of the
following uses of 7 *” comments:

/* here is the start of a comment

[* here is continuation of it

/= the extra '/ =’ has no significance to C!

[* however if | try to put ’ * [

/* (oops) in my comment | may be in trouble * [

[*/ This is comment / */

this is not in comment, but another '/ *[
even within quote marks switches me back to
within comment / */ Maybe it is wonderful to
have the same string to start and end comments?
But what / =// *// =/ if you miss one out?

Now on to more active aspects of the language. The primitata types supported
are integers, floating point numbers, arrays and pointexsh Bf these come in several
variants. Variables may be declared using syntax such as:

int x, vy; /I simple integer variables
double z; /I double precision floating point
int m[10]; /l an array of integers

double pi = 3.14159; // initialised declaration

The variables so declared can be used in arithmetic expressvith the usual
operations applied to them, however the notation used fmpesisons (especially the
equality test) are worth making a special note of.

Unary -: Negate a value, as inx .

+, -, *, [: Ordinary arithmetic operations, which can be used on eititeger
or real values, as i(x+y) =*(p-1)

%: Used in integer contexts to compute a remainder.

" &, |, T Bitwise negation, AND, OR and exclusive OR operations (oe-int
gers).

<<, >>: Left and right shifts of the bit patters in an integer.

<, <=, >, >=, ==, I= Comparison operators. Note especially that the test
for equality is written as=, which is not the convention used by other program-
ming languages! In €+ zero is used to represefalse and non-zero values
(with 1 as the standard case) standingtfae.

14

=: A single= sign is used to indicate assignment. So note a8 sets the variable
tt a to zero, whilea==0 tests to see if it is already zero.

+=, =, .. Any binary operator can be combined witho allow assignments
such asa += 2; which adds two t@, orb &= 1; which masks with 1.
++,--: The use oft+ and-- is discussed later on.

I, &&, | These operators are used to operator on truth values, asiposite

tests such ag>b) && !(p<q) . Note thatin the fornrA && Bif A evalu-
ates to false (ie zero) thdhis not evaluated at all, and similarly & || B if
Alis true (nonzero) theB is not evaluated.

* &, >, 7 The use of and& as unary operators> as an infix operator and
of ? will be discussed later.

The meanings described above apply when the operatorsroeacare used in asso-
ciation with integer or floating point values: ink& the same operators can be re-used
for totally different purposes when user-defined data tygesntroduced.

Floating point values occur in two flavours, and variabletheftwo sorts are de-
clared using the worddoat anddouble . The first of these is for single-precision
floating point, the second for double. There are not Maagsons to use single pre-
cision arithmetic, and there are some curious pitfalls, sl you have finished this
course and read one of the textbooks carefully please ugelonble .

Integers are much more complicated, in thatt(provides many different integer
data types. These are:

char signed char unsigned char
short int unsigned short int
int unsigned int
long int unsigned long int

enumeration types

The language allows an implementation to choose the exactgiwn used by each
of these. The intent is thahar holds a character, and it will generally be an 8-bit
data type, ie one bytént is expected to be the integral data type that is most natural
for the computer on which you are working. On most currentkstations this will
be a 32-bit (4-byte) type, but with some compilers on smatiachines it will be 16-
bit, while on some newer larger workstations it is 64-bggort may be the same
asint or it may provide less bits, andng may be the same ast or it may
be longer! Usually (of if thesigned qualifier is used) integer are taken to have a
range that includes both positive and negative numbers: tgpieal computer (with

9There are two important reasons why you might need to usdesprgcision floating point. You
may need to work with data files or structures whose formatready been defined and where that
format includes single precision floats, or you may heeey large arrays of floating point data where
saving space by storing just single precision values ig.vita

15

2’s complemerif arithmetic) wherehar is 8-bits this would mean (for instance) that
a variable of typesigned char could hold values in the range -128 to +127. The
qualifierunsigned changes this interpretation and indicates that valueslgHhma
interpreted as positive numbers, andusssigned char would cover than range 0
to 255. Note that if you are attempting to write C or€code that will port effortlessly
across a wide range of machines you need to avoid making miaskimptions about
the exact widths of these integral types.

Integer constants can usually be written in the obvious w&ayn 0, 123, 999999
and so on. The compiler will give the constant that has beéttenrone of the types
int ,unsigned int ,long int orunsigned long int depending on how
large it is, and almost always this will cause things to behiére way you want them
to. In a few cases it is desirable (or even essential) to erthait a numeric constant
has a known type. Appendingto a number forces the compiler to treat it as unsigned,
while suffixesS or L indicate short or long values. ThO& stands for a zero of type
unsigned int

Octal and hexadecimidlconstants can also be written. Any integer written with
a leading zero will be interpreted as being in octal (tB887 is a bit-pattern with 8
low-order bits set, and so (on a 2's complement machineesgmts the value 255).
Hexadecimal constants are introduced(yy and use the lettera to f to stand for
digits with weight 10 to 15. For examplexff is again 255 (probably), and on a
32-bit machineDx80000000 is the most significant bit in aimt .

Enumeration types will be discussed later on.

What about characters? It has been explained that the $ygesd char and
unsigned char are signed and unsigned integral ones capable to holdinfgbae
acter”. The typehar (without eithersigned orunsigned qualifier) will be iden-
tical to one or other of these, but the choice of which is Igftathe compiler writer,
who is expected to choose whichever will be faster or mosirabn the computer
involved. Again this is a region where care can be called fbermvwriting portable
code. Character constants are written in single quote maska,A’ . Such constants
stand for some numeric code that will be used to represersjbafied character. The
language makes no guarantees about the encoding usedhabaeharacter constant
will yield a number small enough to fit in@har . In particular it is not guaranteed
that’0’ ...’9" will be consecutive codes, even though on most implememtsiti
they will be. Within character constants the characteris very special: it causes
the character following it to be grabbed and used to allowsphexification of various
characters that might otherwise be hard to exgfess

10C++ does not insist that the computer it runs on uses 2’s compiearéhmetic, but the meaning
of bitwise operations, shifts and hexadecimal constantdavgive trouble otherwise.

1Base 16.

12This is not quite a complete list of the possibilities

16

\n = Newline character
\t' = (Horizontal) tab character
\b’ = Backspace
\V = A backslash\)
\” = A single quote mark
\" = A double quote mark
\nnn’ = nnn must be up to three octal digits, and this

is the character with that code. The most sen-
sible use for this is just0’ to stand for the
character code zero.

For almost all purposes you should think of character contstas being of typet
rather tharchar , and when you declare variables to hold character valueslyould
useint variables. This may seem strange at first!

To a first approximation, strings in#3 are just arrays of characters, and string
constants can be written ny enclosing the required text iboquotes:

"Here is a sample string ending in a newline\n"

Now | can introduce the feature that perhaps gives C and f@ieir most essential
flavour: pointers. IfT stands for some type, and can be used to declare variakdes, th
T * can be used to declare variables that can contain pointetgeots of typel. The
unary* operator follows a pointer and retrieves the value pointed t

Consider the following:

char *s = "test string”; // s points at start of string

int cO0 = *s; /[makes cO ==t

s =s + 1, /I increment pointer
/I Note that C++ permits declarations to be written after
/I regular executable statements, while C would not, thus
/I (for this reason alone) this sample code is valid C++

/I but not valid C. cf C++ allows "for (int i=0; ...)"
int cl = =*s; Il cl == "¢
int c3 = *(s+3); /[c3 =='¢
int c4 = s[4]; Il c4 =="1

The statements shown are intended to indicate that aritbrmetpointers can be
used to step along a vector, and the last line to suggesthbatdat array reference
syntaxs[4] is really nothing more than short-hand fofs+4) .

Itis very common to want to access in turn each item in a veatat G-+ provides
especially convenient notations to support this. The syxter means return the value
of the variablex but after this value has been evaluated, incremer@ombined with
the* operator this can be used-&as++ which follows the pointex and then moves
X on to point to the next item to be processed. By analogy follows the pointer
y then decrementg thus supporting backwards scans of data. Sometimes itfgluse
to perform the increment or decrement operation beforegdtiia indirection, and in

17

such cases the+ or -- is just written before the variable name. A useful idiom this
provides is that of atack For a stack of characters, growing upwards and with the
stack pointer pointing directly at the most recent charguished, | could write

char stack_area[100]; // make space for the stack
char =*sp = stack area; /I points to start of array

*++sp = <value>; /I push value onto stack

*++sp = <value>; /I push another value

/I Note | have not implemented any overflow check here.

int resl = * SP--; /I pop off a value

int res2 = xsp; /I access top value, but leave it
sp--; /I pop stack as separate operation

The++ and-- operations do not have to be used in association with ades essl
indirection, they work on any integral data types as wellmpainters.

The unary operataf can be used to take the address of a variable or other item.

When arithmetic is done on pointerst€ applies rules that try to be helpful —
adding one to a pointer increases the address referencelaebsize of the object
pointed at. The unit of addressing is supposed to be the ssithe gize of @har . In
the examples given above the pointers were athar s. If you have a pointep into
an array of integers thentp is still equivalent to the statemept = p+1; butthings
will be arranges to that p moves on to point at the next inte@era 32-bit machine
if you looked at the bit patterns involved this might appéetp has had 4 added not
1! Similarly the expressiop[i] will still mean just the same as(p+i) , but on a
32-bit system it will compile into code that looks a little neoas if you had written
*(p+4 =i) where the multiplication by 4 is to allow for the size of eanteger. Peo-
ple who are being silly can exploit the rule tledb] means just the same a&+b)
by deducing that in turn that can be re-written<gdb+a) and hencé[a] . This can
lead to odd-looking code lik8[*'magic”] that should normally be avoided.

The macroNULL that is defined in various of the standard headers repreaents
value that will never arise as a “proper” pointer and can kEue mark the ends of
linked lists etc.

Conditional statements in#3- are written as

if (expression)
statementl
else
statement2

where the parentheses around the expression to be testedsmmtial. Theslse
clause is optional.
Iteration is expressed either as

while (expression)
statement

18

or as

for (initialiser; end-condition; step-on)
statement

where it seems easiest to explain the three components retder of dor loop
by giving an example:

char *s = "Some String";

char buffer[100];

for (int i=0; *sl=0 && i<100; i++)
buffer[i] = * S++;

This example code copies the string pointed asbgto the arraybuffer , stop-
ping either when a zero “character” is found (this is howt@arks the end of a string)
or when 100 characters have been copied. Note that#itds possible to declare the
int variablei as shown, while in plain C it would be necessary to dedlabefore
thefor loop.

Within the body of a loop construtireak can be used to exit from the loop, and
continue to go on at once to the next iteration.

C++ naturally has gyoto statement, and labels are set by following their names
with a colon. See Figure 2 for a program that illustrates hovsome circumstances,
the careful use ofjoto statements can enhance the legibility of C code.

The other interesting control structure featured iGs calledswitch , and in
one statement it can dispatch to a large number of placestse) which on the basis
of the value of some integer. In straight-forward use thdéasynsed is illustrated by

char *m;

int i = some_random_function();
switch (i)

{

default: m = "Unknown Number"; break;
case 2. m = "The only even prime"; break;
case 10: m = "What | get when | count my fingers"; break;
case 1729:
m = "smallest sum of 2 cubes in 2 different ways";
break;
case 'Am = "character code for 'A’ on this computer";
break;
case 0: m = "don't be silly"; break;

}

The switch construct finds many uses for dispatching on the basis of@nteode
values (eg in an emulator for some real computer one mighit svatch on the
opcode field from the next instruction to be simulated) orabger values.

C++ function definitions are written as in the following example

19

/= Program by Spencer Hines, Online Computer Systems */
#include <stdio.h>

#include <malloc.h>

main(togo,toogq)

int togo;

char =*toog[];

{char *ogto, tgoo[80];FILE *ogot; int oogt=0, ootg, otog=79,
ottg=1;if (togo== ottg) goto gogo; goto goog; ggot:

if (fgets(tgoo, otog, ogot)) goto gtgo; goto gott;
gtot: exit(); ogtg: ++oogt; goto ogoo; togg: if (ootg > 0)
goto oggt; goto ggot; ogog: if (l'ogot) goto gogo;
goto ggto; gtto: printf("%d goto \'s\n", oogt); goto

gtot; oggt: if (Imemcmp(ogto, "goto", 4)) goto otgg;
goto gooo; gogo: exit(ottg); tggo: ootg= strlen(tgoo);
goto tgog; oogo: --ootg; goto togg; QooO: ++ogto; goto
00go; gott: fclose(ogot); goto gtto; otgg: ogto= ogto +3;
goto ogtg; tgog: ootg-=4;goto togg; gtgo: ogto= tgoo;
goto tggo; ogoo: ootg-=3;goto gooo; goog: ogot= fopen(
toog[ottg], "r; goto 0gog; ggto: ogto= tgoo; goto
ggot;}

Figure 2: A C program to illustrate the use @dto .

20

int fib(int n)
{

if (n < 2) return 1;

else return fib(n-1) + fib(n-2);
}

where the header line defines the type of both arguments aol fiem the function,
andreturn is used to exit from the function with a result. As a specialeca func-
tion can be defined to return the typeid , which indicates that no value at all will
be returned. In the definitions of such functiaeturn is used without a follow-
ing expression. In old K&R C the above example would have tevh#en slightly
differently:

int fib(n)

int n;
{

if (n < 2) return 1;

else return fib(n-1) + fib(n-2);
}

with the type of the argument specified below the header &fttger than as part of it.
This old style needs to be recognised so that you can make séegisting code, but
should not be used when new code is being written.

It should be observed thatt@ assignments and function calls can be used as state-
ments, terminated by a semicolon. A null statement can besrbgdvriting a semi-
colon after nothing at all. Collections of small statemneras be grouped by wrap-
ping them up in a pair of brace§ 61 ; s2 ; s3 }). Similarly if an expression
rather than a statement is wanted, several expression®aamibined so that they get
evaluated one after the other (and only the last value preggby concatenating them
with a comma (;) as connective. For instaneet+x might alternatively have been
expressed ax+=1, *X).

6 Library Functions that Everybody Needs

C++ can be used as a language for programming raw hardware wreepaitpose of
the code is to activate various input and output hardward/Olfports happen to be
memory mapped (as is the case with some styles of microogethe usual €+
operators can make it possible to use them. For instance ¢BNPC there may
be video memory at addresses around 0xc0000, so with atdeast compiler and
configuration of a machine cotfesuch as

for (char *p = 0xc0000; p<0xcl000; p++) xp = “xp;

13The use of integer constants with pointer variables as st is pretty dubious, and at a min-
imum a proper piece of €+ code will need to contain extra decorations (cabagdt3 to reassure the
compiler that the programmer really intended that.

21

might have some effect on what was displayed.

More normally all input and output for €+ will be done by calling library func-
tions and using and types, operators and variables definggstam-provided header
files. To use these facilities it is necessary to know whicsteay files declare the
functions you want to use. The facilities listed in this sg@trepresent a tiny selection
of some of the ones most needed while getting started: bravisetbook to find out
what else is available.

For C the ANSI standard provides a clear definition of a coréuattions that
can be relied upon. For# the situation is much less stable. At present it seems
reasonable to expect that the ANSI C functions will always\alable, and that €+
adds a new set of capabilities knowniastream . But as the @+ standardisation
process continues things are very likely to change.

All real C++ systems will provide a significant collection of extra librdunctions
that can be called. Under Unix, for instance, there will Heolthe Unix system
calls, and probably the entire interface to X-Windows. OniBN PC there will
be functions that give access to low-level MSDOS featurks all of the Microsoft
Windows interface. Similarly on other systems. This cowmise/s such extra libraries
as to a large extent outside its scope, but seriotts @sers will eventually need to
come to terms with at least one (and probably several) of them

For C++ simple input and output can be arranged usingitistream library.
This provides pre-declared variableim andcout that are used to refer to the de-
fault input and output streams (often connected to the kayband screen of your
computer), and operations that can be performed on thesdbles to cause text to be
read or printed. Really simple functionality is supportedthy use of operators<
and>>!*applied tocin andcout . The following program illustrates this — together
with a few other new features of+3.

#include <iostream.h>

int main() /I not really long enough to need comments?
{ int a, b;

cout << "Please type in two numbers\n";

cin >> a; // read in integer a, then b.

cin >> b;

cout << "The sum is " << (atb) << endl;

return O; // exit back to Unix or DOS or whatever

}

The line startingfinclude directs G-+ to process the standard header file named
there. Without that header file the variabt&#s andcout and all operations on them
would be undefined.

The program defines a function callethin . A convention with G+ is that a
program is started by calling a function with that name, sergwomplete program

1Recall that on integer types these called for shifts leftr@giat of bit-patterns.

22

is expected to definmain . Themain function returns an integer code that may be
available to the command-line decoder that launched thgramo. A value of zero
usually indicated succe’Ss The uses of> and<< are influenced not only by the
presence otin or cout as one operand, but by the type of the other operand, so
for instance printing uses a reasonable default format itdgers printed in decimal
and strings displayed in the obvious way. The printing thedpfined objecéndl
causes a newline to appear. The usaget << endl s slightly different from
cout << "\n" in that in addition to putting out a newline character it ®scany
pending output to appear on the user’s screen or in the rdlewdput file. This effect
becomes important if the printing was to collect a record batwvent on prior to a
collapse — if"\n" were used in place cendl output can remain buffered and may
be lost when the code fails.

The example also shows that uses<effor output can be chained together. The
reason this is possible is that the expression

cout << a << b << ¢;
will parse as
((cout << a) << b) << ¢;

and it is arranged thgdtout << x) justreturnscout after printingx.
On occasions it is more useful to read and print things oneacher at a time. The
iostream way of achieving this is illustrated in:

#include <iostream.h>

int main()
{ char ¢
while (cin.get(c))
cout.put(c);
return O;

}

where the ¥ ” operator applied tein andcout selects an associated operation, and
get and tt put are single-character input and output functians.get returns a
true value until it reaches the end of the input stream.

If instead of having a variable that is directly of a classetymu have one that
contains a pointer to an object then the selecter“should be used instead of *. In
generab->b is equivalent tq *a).b .

As one might expect there are extra facilities for settipgiirand output into octal
or hexadecimal modes, controlling the widths of values gssed and directing data to
places other than the standard streams — but the facilisiesilthus far are sufficient
for now so far as €+ is concerned!

155eeEXIT _SUCCESSINdEXIT _FAILURE in your C manual.

23

Until C++ has totally displaced € it is necessary to know at least the bare bones
of C-style input-output too. This centres around a packagevknasstdio and
the standard streams are knowrstdin andstdout . Character-at-a-time input is
done usinggetchar() which normally returns a character, but which hands back
the special valuEOF’ at end of file. Correspondingfyutchar is a function of one
argument that sends one charactesttiout

#include <stdio.h>

int main()
{ int c; /I use integer variable here so that
/[it can hold the non-character EOF
/[when needed.
while ((c = getchar()) != EOF)
putchar(c);
return O;

}

More elaborate printing is done usipgintf , which has as its first argument a
format string This is printed, except where it contai#’characters. These cause one
of the subsequent argumentspiantf to be printed in some specified format. The
latter “d” causerintf to print a (decimal) integer and* a string: there are very
many other options.

#include <stdio.h>

int main()

{ int a = 100;
char *s = "string";
printf("An integer %d and a string %s\n", i, S);
return O;

}

With both C and @+ schemes there are full sets of facilities to open and close
files and control format, and to do transfers on blocks of atters as well as single
character¥. There will also be schemes that allow variants on the usaling and
printing operations to work on arrays of characters held @mory rather than on text
kept in files or accessed directly from the keyboard.

It is not going to be a good idea to try to mix C and-style input and output in
the same program!

18perhaps it never will.

YEOFoften has the value -1, but it is defined in the standard heamtyou should nor rely on its
exact value.

18At least on some systems it can imeich more efficient to read and write large files in blocks of
several thousand characters at a time

24

As well as supporting input and output, standard libraredk lafter memory allo-
cation and string manipulation. Memory allocation is arothrea where €+ differs
from C. The G-+ code

{ int vector[10];
for (int i=0; i<10; i++) vector[i] = i

}

declares a vector of length 10, initialises it and presusnabks it within the block
(delimited by{}) shown. With this form the vector only exists for as long asiryo
program is executing code within the block, and the size efaitay must be a con-
stant. These limitations can be relaxed but at a cost (thé@neymemory may not be
available) by allocating the vector dynamically. The operaew allocates memory,
andfree can be used to release it. Inappropriate uskesd can be the source of
amazingly obscure and hard-to-track bugs.

int n; /I size of array

cin >> n; /l read in size as variable value
int xvector = new int[n]; /[Try to allocate...
if (vector == 0) goto failure; // ... Oh Dear?

for (int i=0; i<n; i++) vector[i] = i;
delete vector; // when vector is finished with

In C instead of using operatongw andfree there are library functionsalloc
andfree that serve the same purpose.
Typical string operations available in ts&ing library are:

strcpy(char *dest, char *src): Copies characters from the source string
to the destination.

strcmp(char *a, char =*b): returns an integer that is negative, zero or posi-
tive depending on whether strimgcomes before, is equal to or comes afien
lexical order.

strlen(char *S): Returns the length of the given string. Note that a string such
as"abcd"” has length 4, but in memory it will be stored with an extra lattés
end — this byte contains zero and is used to mark the end otrihg.s

Spot the odd behaviour of
strlen("A string\Owith a zero character in it")

which returns 8, treating the string as ending at@e character.
After #include <ctype.h> a range of character classification functions be-
come availableisalpha , islower , isupper , isdigit andisspace detect

25

letters, lower and upper case letters, digits and whiteespaupper andtolower
force the case of letters.

This sampling of library facilities should at least give arsto your programming,
but checking reference manuals to find complete lists oftfans and options will
eventually be necessary.

7 Header Files and Separate Compilation

Although G++ is a perfectly good language for writing small programs,aih ¢and

very often has been) used for very substantial projects.sd hall involve keeping

source code in a collection of files rather than in just one &ited compiling each of
these files separately. The natural problem that ariseatigtlensuring that code in all
the separate source files is kept consistent: for instarateftha function is defined in
one file then calls to it from another pass it the correct nurabe types of argument.
Languages such as Modula-3 have rigidly designed in meshmnfor solving this

problem, while in C and €+ more is left up to the programmer.

The main method used to keep things in step is the ubeader files These will
be generally be files that contain just declarations thatipthe types of variables
and functions. They can also contain the definitions of dedined data types or pretty
well anything else. The €t directive#include (which should be written at the start
of a line) in a main program file causes the compiler to scaméaeler file there, thus
bringing the declarations into effect. It is then able tofaomthat both definitions and
uses of functions and variables are compatible with theadatbns. Note of course
thatlocal variables should not be mentioned in header files — it is jnssalefined at
the top level in your file that can even possibly be visiblerfranother file.

#include statements may name one of the system-provided headenfilestb
ing the header identification in angle brackets, as in thengkas shown so far, or can
specify an arbitrary user-provided file by writing its namelbuble quotes.

Declarations of variables in€ for inclusion in header files look very much like
the ones we have seen already, save that initialisatiotgeofdriables are not permit-
ted. Declarations of functions look just like the headee lirom the function defini-
tion, but terminated with a semicolon. In each case you shostally put the word
extern in front of the declaration. This keyword tellst€ that the value being de-
clared will be referenced from several different files sodbepiler must ensure that
its name is made globally available in compiled (object)sfilé&igure 3° shows alll
the files you might want for a somewhat minimal multi-file @cj. It is worth setting
up your code in this way while your files are still small, sotthg the time they get
large you are thoroughly used to the mechanisms involvedieddall the things that
you define in one file and use in another are declared in hedeletlie G-+ compiler
will have no early warning if your usage is inconsistent. Bill siany C++ systems

19Note that the multiple blanks shown in tMakefile are tab characters: Unix is fussy about this.

26

————— File proj.h -----
/[Sample header file
extern long int count; // declare variable
extern long int ack(long int m, long int n);

----- File projl.cc -----
#include "proj.h"

long int ack(long int m, long int n)
{ /I well known function to waste time!

count++; /I count number of times called
if (m == 0) return n+1;
else if (n == 0) return ack(m-1, 1);
else return ack(m-1, ack(m, n-1));
}
----- File proj2.cc -----
#include <iostream.h> // standard header
#include "proj.h" /I private header
long int count = O; /I define variable
int main()
{
cout << ack(4,2) << endl;
return O;
}
----- File Makefile -----

Small Unix "Makefile" for 2-source-file program

proj: projl.0 proj2.o0
g++ -0 proj projl.o proj2.0

projl.o: projl.c proj.h
g++ -c projl.c

proj2.o: proj2.c proj.h
g++ -c proj2.c

end of Makefile

Figure 3: A G-+ program in several files.

27

(unlike C) provide a measure of protectf®rthat can result in an “undefined func-
tion” error message when you try try to link together the obfées from inconsistent
sources. This is typically achieved by arranging that whem gefine a function such
asack in Figure 3 the name €t uses internally for the function includes the name
ack thatyou used, but adds extra characters that encode infomaoout the number
and type of arguments expected. This process is known asg‘'naangling”. So if you
see diagnostics that refer to long long names that are baitt the names you used
plus a load of gibberish that is probably what is happening.

There are extra complications here if you want to mix C aré €Code (the usual
reason you need to do this is when there is some existingyilofaC code to be linked
to). If the declarations in the header file are written sintplgy all refer to functions
compiled using the €+ conventions. An extra annotation

extern "C" {
extern void somefunction(int argl, char *arg2);

}

is needed to direct a£3 compiler to expect or generate object code using convesntion
compatible with C. With C linkage you should not expect as goamks-file type-
checking as you getin regular-& mode, and funtion names should not be overloaded.
Good C and @+ compilers should provide an option that will print a warning
message if you define anything that has not been declardadredrhis idea of such
a warning is that you discipline yourself to keep declaraiqust in header files and
definitions in source files, and the compiler message caw glha to check that every-
thing that could possibly need to be in the header file is ihtfare.
C++ does nothing to prevent you from putting function definisar indeed ab-
solutely anything into header files. It works as if before tenpiler started looking
at your program in any detail it scanned it and textually aeptl each line starting
with #include with the contents of the named file. In very nearly all circtanses
you shouldonly put declarations in header files anelver use#include to pullin
chunks of random source code.

8 Basic Features of the Pre-Processor

The#include facility was described as having the effect of transforntimguser’s
source code before the compiler proper got to look at it. @itk there are a number
of other operations that are implemented as if they are axaarrangements of the
source done very early in the compilation process. In eadpi@pilers these transfor-
mations were even performed by a separate program, knowreas pre-processor.
Nowadays the pre-processor is usually implemented as p#redull compiler, but
its behaviour is still kept somewhat separate. Preprocebssertives live on lines of
their own, and start with th& character. Apart fror#tinclude the most important

2OReferred to as “type-safe linkage.

28

ones relate to conditional compilation. This is a faciliat makes it possible to have
one source file where some of the details in it depend on (s&yfomputer it will
be run on. The €+ compiler for each different computer will establish, foe then-
efit of the pre-processor, some predefined symbol that canltedested so that the
desired fragment of code can be included. For instaypge under MSDOS defines
(at pre-processor time) a flag calledMSDOS, so if you want code that produces a
customised banner you might write your source file as

#include <iostream.h>
int main()

{
cout <<
#ifdef _ MSDOS__
"The compiler though \"MSDOS\"\n";
#else
"Possibly not MSDOS?\n";
#endif
return O;

}

and only one of the strings will be passed to f#eoperator and printed. Observe that
C++ conditional compilation is a transformation that is utgarhaware of the bound-
aries between €+ statements and other syntax rules, because it is done atesimp
adjustment to the text in the file.

Apart from symbols that are pre-defined by the+Ccompiler that you use it is
possible to parameterise your code on that basis of othdv@gnand then cause them
to be defined (or not) by giving command-line options to thenpiber. For example
if the above example was stored in a filkm-I-DOS.cc” on Unix it could still
compiled using the command

g++ -D__DOS__ Am-I-DOS.cc

and the-D on the command line causes the specified symbol to becomedefime
use | make of this capability is with a file compression wtilihave. The source code is
in one file, and contains both the code for the compressianaad the decompression
(which | want to end up as separate programs). The two algositshare quite a
lot of code, and | usé&tifdef EXTRACT ...#else ...#endif to separate those
(smaller) chunks of code that make the whole program inteeeid compressor or an
extractor. The entry in thBlakefile | use with this file contains essentially the two
lines:

g++ compression.cc -0 squash
g++ -DEXTRACT compression.cc -0 unsquash

which uses the same master source file but builds two quiteci€xecutables.
The remaining pre-processor features | will describeraueh less important in
C++ than they were in plain C. However | have not yet described tar the G-+

29

constructions that render them (almost) obsolete. So wivdt dlo here is document
whet the pre-processor can do, then indicate how the addifisimple extra keywords
to ways of using @+ that you already know can achieve similar effects in whattso
a safer way.

The symbols tested withifdef are referred to amacros and except after the
word #ifdef any use of them will get expanded to some replacement texe Th
symbols__MSDOS and EXTRACTseen so far did not have useful values to expect
to — all that was of interest was whether they could be comedi¢o be “defined”.
However a pre-processor directive narwel@fine makes it possible to set up macros
that do have useful expansions. These macros can eithemipéesivords (that can
expand into arbitrary text), or can take arguments. Hersame examples

#define MAXIMUM_LINE_LENGTH 128 /[A parameter
char line_bufferfMAXIMUM_LINE_LENGTH]; // use it.

#define FIRST_CHAR line_buffer[0]
#define LAST_CHAR line_bufferMAXIMUM_LINE_LENGTH-1]

#define number_is_even_(n) \
(((n) % 2) == 0) /I macros may extend over several
/I lines by use of a trailing "\".

It is often considered sensible to use some clear lexicalasdion so that anybody
reading your code can tell when a name you use is actually aom&s+ does not
enforce this (of course!). The convention used in the exangdb spell simple macros
in upper case, and to have ‘as the final character of those macros that accept argu-
ments. The use of macros can very greatly clarify progragesfer instance Figure 4
which may help you with your Morse Code. Most sensible largedgams will use
macros (probably defined in header files) to establish ugeitdmeters such as the
size of buffers that are to be allocated, and to introducerosawith parameters that
provide clean abstract access to data structures. Conk@lerdrits of

#define RADIX_FOR_NUMERIC_INPUT 10

#define RADIX_FOR_NUMERIC_OUTPUT 10

#define ASCII_CODE_FOR_LINEFEED 10

#define NUMBER_OF_COMMANDMENTS 10

char *commandmentiNUMBER_OF COMMANDMENTS];

and the way that it could lead to code that would be much e&sigraintain than a
corresponding version that just had the literal ted@* scattered through it.

In C++ macros arenuch less important than they are in C. This is because most
of the benefits of a simple macro can be achieved by puttingvtird const in an
initialised declaration, and in most cases macros withragis can be replaced by
ordinary Ct+ functions that have been decorated withitilse directive:

const double VAT rate = (17.5/100.0);

30

/+* Program by Jim Hague, University of Kent, Canterbury */

#define DIT (

#define DAH)

#define __ DAH ++

#define DITDAH *

#define DAHDIT for

#define DIT_DAH malloc

#define DAH_DIT gets

#define _DAHDIT char

_DAHDIT _DAH_[=
"ETIANMSURWDKGOHVFaLaPJBXCYZQb54a3d2f16g7c8a90I?e’b .s;i,d:"

:main DIT DAH{_DAHDIT

DITDAH _DIT,DITDAH DAH_,DITDAH DIT_,
DITDAH _DIT_,DITDAH DIT_DAH DIT
DAH,DITDAH DAH_DIT DIT DAH;DAHDIT

DIT _DIT=DIT_DAH DIT 81 DAH,DIT_= DIT

_ DAH;_DIT==DAH_DIT DIT _DIT DAH;_ DIT

DIT\WDAH DAH DAHDIT DIT DAH_= DIT;DITDAH
DAH_;_ DIT DIT DITDAH

DIT? DAH DIT DITDAH DIT_ DAH:?’DAH, DIT
DIT' "DAH,DAH_ __ DAH DAH DAHDIT DIT

DITDAH DIT_=2, DIT_= DAH_; DITDAH _DIT_&&DIT
DITDAH _DIT_!=DIT DITDAH DAH_>='a’? DITDAH
DAH_&223:DITDAH DAH_ DAH DAH; DIT

DITDAH DIT_. DAH _ DAH, DIT_ _ DAH DAH

DITDAH DIT += DIT DITDAH _DIT >='a’? DITDAH _DIT_-'a":0
DAH;} DAH DIT DIT_ DAH{ __DIT DIT
DIT_>3?_DAH DIT DIT_>>1 DAH:\O'DAH;return
DIT_&1?-75} _DIT DIT DIT_ DAH _DAHDIT
DIT_{DIT void DAH write DIT 1,&DIT_,1 DAH;}

Figure 4: Use oftdefine to improve code style.

31

inline int abs(int x)

{
}

Theconst decoration tells the compiler that the value set up mustmeve will
never change, while thaline annotation advises the compiler that it may well be
worth merging the body of the given function into any placeevéhthe function is
called from, thereby avoiding any function-call overhedd.general for G+ code
these ways of expressing things are much preferred oversthefunacros, since they
ensure that the syntactic structure of code is preservethaydllow C++ to keep do
better type-checking and error reporting than do macrosy Hiso avoid some of the
funny things than can occur with macros and side-effectdaacketing, as in

if (x < 0) return -1; else return x;

#define square(x) (x *X)

int x = 1;

cout << square(x++) << endl; /[(x++ *X++) SO X gets
/[incremented twice!

cout << square(x+x) << endl; /[(X+x *X+X) which is

/I NOT (x+x) squared!

For cases whenaline functions do not provide enough generality (for instance
thesquare macro above could have been tried on either real or integemaents,
while a regular @+ function could not have coped with both cases all at oncagthe
are things called “templates”, which will be mentioned taie.

A reasonable person would expect that a formal definition @rdplete under-
standing of the pre-processor would not raise any big prebléJnexpectedly it does,
especially with regard to the treatment of macros that edpanther macros and pairs
of adjacent symbols that expand to text that seems to meaetsmg special. These
notes will not discuss what happens in such cases — they pust that people who
want to make truly elaborate use of the pre-processor or mead to play tricks with
it need to read the standards documents very carefully cthdee

/I The following examples are intended to raise
/I doubts in your mind about just how the preprocessor

/I will work.

#define startcomment / * some comment text

#define endcomment * [

#define divide_operator /

a = b /divide_operator divide_operator * ??? endcomment;

#define mytest(x) (x == 0 || mytest(x))

if (mytest(0)) cout << "zero"; // valid ??

#define int #define

int x = 3; // wow, what does this now mean, if anything?

32

9 A more-or-less sensible example

Figure 5 gives a first fairly realistic application oft€. It computes checksums of
files which might be useful if you want to verify that a file haseln transferred safely
from one machine to another — checksum at either end and geenumbers match.

It introduces a few &+ features that have not been mentioned before but which, in
context, should not cause great difficulty:

Arguments for main ;. argc will give a count of how many words were written on
the command-line when the program was called,angel is an array of strings,
with each string being one of these wora@sgv[0] will be the first item on
the line, ie the name of the program being run. Hearggy[1] is the first word
after that.

ifstream : The line starting ifstream " is the declaration of a variables called
infile of typeifstream . This type is defined in the standare-€header
files, and when a variable of that types is declared some axganents can be
given (as shown). The effect is thafile ends up as a €+ stream (support-
ing the same operations as das) attached to the given file.

infile.fail() . This just checks that the file that was wanted could indeed be
opened successfully.

cerr : Very similar tocout , cerr is (by convention) used as a place to send error
messages.

Use of& in function header: Normally arguments to €+ functions are passed by
value, so that whatever happens inside the function it doéslter the value
written where the function is called. With&aused as shown the function should
be called with an updatable object (typically a variablejtasargument, and
side-effects are possible.

hex: Sending the predefined valbhex to an output stream directs it to display subse-
guentintegers in hexadecimal. There are of course plerdthef format-control
directives available in thestream library.

Limited portability: The code shown performs arithmetic and bitwise operations o
the codes for characters read from a file. A result will be thatchecksum
computed will be sensitive to the character code used on gounputer. The
code also requires that the typasigned long int should be capable of
handling values as big &x7fffffff (ie in realistic terms 32 bits). In these
two respects at least the code is not guaranteed portatieugh the use of
long int rather than jusint improves its chances. Would the code behave
identically on machines with 32 and 64 hihsigned long int s? If not
can you fix it?

33

/I Utility to compute a checksum for a file. A C Norman, 1994

/[Usage:
1 checksum <filename>
/[prints a checksum of the file contents

#include <iostream.h>
#include <fstream.h>

/I This is my favourite hash function at present.
/I It cycles a 31-bit shift register with maximum period.
void update_hash(unsigned long int &hash, int ch)
{ I WARNING this code expects long ints to be 32 bits
unsigned long int hashtemp = (hash << 7);
hash = ((hash >> 25) ~ /I remember ~ is
(hashtemp >> 1) © /I exclusive OR
(hashtemp >> 4) ~©
ch) & Ox7fffffff; // mask to 31 bits

}

int main(int argc, char *argvl])
{ Il expect use to be "checksum filename", ie 2 words
if (argc !'= 2) /[argc, argv give command-line args.
{ cerr << "This utility requires one argument" << endl;

return 1;
}
ifstream infile(argv[1], ios:in); // open input file
if (infile.fail()) /I did it exist?
{ cerr << "Unable to open the file " << argv[l] << endl;
return 1;
}
unsigned long int hash = 1;
int ch;
while ((ch = infile.get()) !'= EOF)
update_hash(hash, ch); /[compute checksum
cout << argv[l] << ™ " << hex << hash << end];
return O;

}

/I End of checksum.cc

Figure 5. A C++ program to checksum files.

34

Perhaps the main lesson from this example is than as youastarite real exam-
ples of G-+ code there will be a lot of fine details of library calls and oritanguage
features that it will be necessary to come to grips with. Téisure course and espe-
cially these notes will not even attempt to provide full cage, but will instead try to
give enough ideas that you will be equipped to dive into ezfee material.

It also shows that some of the sorts of program that @ naturally used for
can become non-portable remarkable easily — in most pragiagitasks the issue
is one of striking a balance between writing concise andralttode and allowing
for improbable oddities in the machine on which the code ibgaun. For the last
five years it has been important but sometimes hard to ensatreade would run on
both 16 and 32-bit machines. For the next few years life vallylt harder in that the
legacy of 16-bit systems will remain with us, while the migpa from 32 to 64-bits
for main-stream workstations will continue.

10 Pointers, Structures, Unions and Classes

So far the features of €& discussed will only allow you to write rather simple pro-
grams, using arrays and a few pointers. the next set of lgygyuanstructs to be
covered involve the creation of new user-defined data typawe this course is con-
centrating on @+ and viewing C as (roughly) a subset and (certainly) a histbri
predecessor, and given that courses on Modula 3 have alr#aoguced the ideas of
objects, classes and inheritance, it seems reasonabl@poijuat the deep end.

In C++ aclasswill define a data type that has a number of component fields$, an
a number of operations that may be performed upon the data.c@imponents of a
class may either bpublicin which case any arbitrary piece of code can access them,
or private in which case they can only be used within functions that heeselves
members of the given class. One of the main reasons for utiog classes is so
that control can be exerted over the visibility of code anthda class should only
make public components that give it a clean and easily dontabée interface, and all
internal implementation details should be kept protectechbking them private.

An example of a class that has been seen already is thafsggam , which
has public memberfgil , get and for the operatos> (and for a collection of other
things), but which can prevent the ordinary user from algisis internal state by
making all that private.

Classes will often define a public member function that is tacéked when an
instance of the class is created, and can define another ahwithbe called (auto-
matically) to tidy up when an object is discarded.

My first example of a class will not be complete and may not Ipeeislly exciting,
but should show how things are expressed. It provides foistipport of complex
numbers. But just to be awkward even though the interfaceittgtpports views
numbers in a Cartesian representation iy the values are stored in the structure in
polar form ¢e™). The declaration of a class can be kept separate from theitoefi

35

of the functions that form part of it, so here is the definition

#include <math.h> // For sin(), cos().

class Complex

{
public:
Complex(double x = 1.0, double y = 0.0);
double RealPart();
double ImagPart();
private:
double r;
double theta;
2

The public function calle€omplex has the same name as the class being defined,
and is thus marked out as being used when creating instahtes dass. A further
new Ct+ feature that is shown here is the provision of initialisedldeations in a
function header. This gives default values for the argusiet function that has
default values specified in this way can be called with fevimantthe full number
of arguments and the compiler will fill in the blanks. This dadone for any €+
function at all, not just ones used to construct instancekst objects, but itis perhaps
particularly useful in this case.

TheRealPart andimagPart public member functions will just extract infor-
mation, while the private variablesandtheta will store it. This example happens
to have all its public members functions and all its private® data, but this is not
necessary and will in general not be the case: functions atada&n each be declared
in either part of a class description.

Next the member functions need to be defined. | will also idela minimal main
program that creates a single complex number and then &xitsiceal and imaginary
parts. Syntax using is used to show when names being used are members of
some class. Within the body of a member function the comgitemws that names are
liable to refer to class members, and so it is not necessawite Complex::r and
Complex::theta in the following definitions, although it would not be incect
(but it would be ugly, so should be avoided unless there wasesary special reason
for stressing that some particular reference was to a mewndrable). The main
program illustrates two additional things. When a variableleclared and its type
is a class the class constructor will be called, and it maylrs@guments. These are
written as shown in the declaration. Member functions froctaas can generally only
be called if you have an object of the class type somewheaad the functions are
referred to by using a dot (") selector on that object. Note that this is the same use
of a dot that arose when tlget member function of aifstream was used.

Complex::Complex(double x, double y)

21This is because the member functions will need to accesdratethe object concerned.

36

{
r=sgrt(x *x + yxy);

/I The next line is inadequate if x <= 0.
theta = atan(y/x);

}
double Complex::RealPart()
{

return r *cos(theta);
}
double Complex::ImagPart()
{

return r =*sin(theta);
}
int main()
{

#ifdef ONE_WAY /[Show two valid alternatives here
Complex z(2.0, 1.0); // Create z as a complex

#else
Complex z; // use default args for constructor
z.Complex(2.0, 1.0); // now fill in true values
#endif
cout << z.RealPart() << " + "
<< z.ImagPart() << " *|" << endl;
return O;
}

On important restricted case of classes is when the classeedefontains only data
items (and not any member functions) and when all the datab$gd®. This case is
just the definition of a simple data structure, and can beeaeli using the keyword
struct instead ofclass . Programs in C can only ustruct : class is one of
the ways in which @+ has extended the language. With€andclass the class-
name becomes usable as the name of a new typ&patplex in the example. With
C this is not so and the most convenient practise is to usesroattypedef to give
a convenient new name for the type that is representecdtia &

/* This code is valid in C as well as C++ * [

typedef struct tree_tag

{ / * To be used for binary trees of integers */
int value; / * value in node */
struct tree_tag xleft; / =+ pointer to sub-tree */

22)f any were private it would be pretty useless, since only menfunctions can refer to private
items.

37

struct tree_tag xright; / * pointer to sub-tree * [
} tree;

Here the word used aftstruct is astructure tag and the new type can always
be referred to by using the wosdruct followed by this tag. Inside the definition
of the structure where it is necessary to declare pointetsstoewly defined structure
this notation is used. However thgedef introduces a new type-name (in this case
justtree) that can be used in all subsequent declarations. If the woieh is used
instead ofstruct all the members of the union overlap in memory, so it may be
possible to write data to the object via one path and read mising another!

typedef union floating_cheat
{ double d;

char i[8];
} floating_cheat;

int one_byte from(double V)
{ floating_cheat w;
w.d = v;
return w.i[3]; / * Wow! */

}

As an asidetypedef has good uses quite separate from those associated with
structures, and can be used to provide new names for extgpeg, as in

#ifdef SIXTEEN_BIT
typedef long int int32;
#else

#ifdef SIXTY_FOUR_BIT
typedef short int int32;
#else

typedef int int32;

#endif

#endif

which might well be used in a header file for a program whictdeedo use an integral
data type that it could rely on being 32-bits wide. By arraggmpredefine one of the
macros as necessary the typg82 could refer to whichever built in data type was
most suitable.

Back to G-+ classes! Once one class has been defined others can be @gated
derivatives. Derived classes carry forward the propedfdaseir parent, but can add
new data fields and either add or alter the definitions of mefuimetions. The header
to use when declaring a derived class looks something like:

class variant_on_Complex : public Complex

{

38

(TR 1}

where the ¢” is followed by a description of what is to be inherited. Caouostor
functions are not inherited, so a derived class can alwaysxpected to define one,
but otherwise it only needs to define things that are new.

When you have a base class and a derived class any object ttraaied as a
member of the derived class can also be treated as belorgihg base class. Thus
it is perfectly possible (and indeed very common) to dectarariable whose type
indicates that it contains a pointer to an object in the bdasscand use it to point
at all sorts of derived objects. Normally if your code themfpens operations on
the things that are pointed at in this way the functions dahgl be those associated
with the base class even if the actual object you are refgtaris in some class that
attempted to replace everything. If, however, you decldrenation in the base class
to bevirtual then Gr+ takes extra café so that calls to that member dispatch on
the basis of the exact position of the object involved in tles< hierarchy. In cases
where you will build data structures that contain pointersxany closely related sorts
of objects it can make very good sense to organise all thamasrof your data as sub-
classes of some generic class, and define many of the fuadtidhis parent class as
virtual.

As an example of how classes and class libraries can bothnegfe what would
otherwise be lengthy and complicated code almost manageatd also how it has a
big effect on how code is structured, see Figure 6 which ictmplete G+ source
for a program that opens and displays a window under Mictd&oidows. The code
can be built and tested with the MFC libraries if you have Mswoft Visual G-+, and
using the 32-bit edition of same the commands that compdetde are

cl -c mini.cpp

link -subsystem:windows -entry:WinMainCRTStartup \
mini.obj nafxcw.lib kernel32.lib gdi32.lib \
advapi32.lib shell32.lib comdlg32.lib

The development of code like this into complete and int@rgsapplications is
covered in [1]. You are not expected to follow all the detail$-igure WinMini now,
but should be able to appreciate that it is a fairly short bofigode (and for many
window systems even minimal programs are often painfulhg)oand that it is based
around deriving new classes from existing library ones aret-ading some of the
definitions of member functions. In this case two classesadpested — one is the
basis for applications (ie programs), while the other sugp@indows on the screen.
To a reasonable approximation adding extra functionadityhé code is “just” a matter
of over-riding more members of the two classes with appbeoaspecific code, and
causing several windows to appear involves little more theolaring several variables
of typeCamWwind.

Z3e it imposes a little extra overhead on your code.

39

/I A minimal program to use Microsoft Windows
/I using the Microsoft Foundation Classes C++ library.
/I This is essentially a standard demo pgm for MFC

#include <afxwin.h> /I MFC header file
M|

class CamWind : public CFrameWnd
{ /I derive CamWind from MFC’'c CFrameWnd
public:

Camwind(); // constructor function needed

|3

Camwind::Camwind()

{ /I when constructing a window call library
/I function to do all the hard work
Create(NULL, "Demo");

}

T T

class CamApp : public CWinApp

{ Il derive CamApp from MFC’'s CWinApp

public: // and override a critical member function
BOOL Initinstance();

h

BOOL CamApp::Initinstance()

{ /I This is called when your code starts up
/I It create and displays a window.
m_pMainWnd = new CamWind();
m_pMainWnd->ShowWindow(m_nCmdShow);
return TRUE;

}

T T

/I declaring a variable of type CamApp will cause
/I its constructor function to be called, and this
/I rather than "main" is used to start things off!
CamApp xxx;

e S N s

Figure 6: The start 40a MS-Windows project

11 When to use Classes

Perhaps | should first review some of the differences betvizen classes and the
struct s that ordinary C provides. With structures about all youdaiag is declaring
that several items will be collected together and treated sisgle data object. The
struct definition is little more than a template for how the data dtidne laid out in
memory — although you ought not to rely on the C compiler dbtyaces individual
members in a structure where you would have at first expe@ed.classes do a lot
more for you. They can have some of their members private #mero public, so
giving controlled access to their internal state. As welkcastaining data they can
declare functions to work on that data and hence (via thesaa@trol arrangements)
provide a major way of organising code. New classes can beediefrom existing
ones, so the complete set of classes in a program will noyrfallinto a number of
families. This can be a very great help when a number of i@ldéta types need to be
implemented. Finally the €t class structure can fit in with operator overloading, so
at least some that user-defined operations on the class aandked using symbols
such as+ and- .

One extreme use of€3 classes would correspond to when a C programmer might
have used anion so that one field in a data structure could have held manyrdiite
sorts of item (use ofoid * pointers could probably have achieved similar effects).
A base class could have been built without the relevant fighdi a whole host of
derived classes created, one for each different type to jpeosted. There is a sense
in which this is systematic and clean, but sometimes it anstmusing a sledge-
hammer to crack a nut, and if then virtual functions are usexipport operations in
all the derived classes both efficiency and clarity mightesufl believe that for data
representation the best class hierarchies will be quitdl emes.

A quite different style of using €+ classes will expect that when a major class
has been defined there will only ever be one variable of the teclared. In that case
the data members of the class might almost have the same atatudinarystatic
variables, except that their visibility is controlled legttand the relationship between
public and private member functions is strongly remenisoéthe difference between
exported and non-exported functions in a language thatvaltme to organise code
into modules. This use of thet@ class structure to provide global control over code
and data visibility through an entire program is clearly goo

A further (perhaps more specialised) use for classes dnsesuse whenever an
object is to be discarded (including the common case whérasitbeen declared as a
local variable, but is now just going out of scope) a userrgefidestructor function
can be called. In some cases it can be invaluable to be abégister a function that
will be called just before the current one exits, and clapsegide this ability.

Some programming tasks have been associated for a long titinehs develop-
ment of object oriented programming and hence with the égtion of class struc-
tured. Programming for windowed user interfaces and codpgertain sorts of sim-
ulation package are the most clear cut cases. If you work enadrthese areas then

41

the class mechanisms inHE need to be your first concern. In many other application
areas it is worth considering the introduction of a few codatred classes as a way of
structuring your entire application into modules, but euse of deeply nested derived
classes for small and simple data structures will prove arecessary distraction and
may obscure performance issues in your code.

Since this is only a short course or€the coverage of the class mechanism will
stop here. There should be some further example programssréting it available by
the time the lecture course is given, but these are not iedudthis document. If you
feel thoroughly happy with all aspects of€ except the class structure, inheritance
and object oriented programming arrangements it may helptgaheck the library
or bookshops for texts intended to teach+Qo people who are already competent C
programmers.

12 Overloading, Templates

In a CG++ world one could imagine wanting to have a function that wapgly some
process to its argument more with a whole range of types airaegt supported.
An obvious set of simple examples come from functions thie teumeric arguments
— eg one that squares a value — where the regular type-drseipf strongly types
languages seems to get in the way-+(Qrovides four or five ways of coping with this
need! The fact that there are all these different mecharssimgld alert you to the fact
that each will have a different set of strengths and linotagi

The first way of relaxing type constraints can be useful fawy\snall functions,
and is just to use a macro.

#define square(x) ((X) * (X))

The problem with macros is that they become ugly and incaewro use for
anything other than very short code sequences, and thereecanexpected and un-
wanted effects if the actual arguments are expressionsrréitan just simple variables
or literals. Syntax and type checking with macros is weak{lwey are available with
both C and G+.

The next scheme is€ specific. In G-+ itis valid to define two or more functions
with the same name, provided their arguments differ in typeing this is known as
overloadingthe name.

inline int square(int x) { return x *X; }
inline double square(int x) { return x *X; }

| used theinline keyword here only because the functions in this example are
very short so flagging them for in-line expansion will prolyahelp efficiency. Over-
loading is amazingly convenient if used with taste. But it zad to the need to write
multiple copies of essentially the same code, and if onetfomamame is overloaded
with multiple meanings that are not closely enough relatedm become confusing.

42

It has already been explained that member functions ineta@nd especially vir-
tual functions) provide the means for one function name telzameaning dependent
on the class of an object that is being worked with. This is>aekent arrangement
when it fits in with a class hierarchy that you already wanked wrapping both inte-
gers and doubles up in classes just so you could have a siaglesguare for some
operation on them would be overkill.

The C and G+ type “void =" denotes a pointer that can point to any sort of
thing, and use of these generic pointers can make it podsilblave a single function
that can process (at arm’s length) arbitrary sorts of date.(library functiorgsort
that sorts arrays of arbitrary items illustrates what caddree. It comes uncomfortably
close to abandoning all hope of having the compiler do a cehmsive job of type-
checking your code. To a large exterdid * should be @oided in G-+ since it
defeats too much of the type checking.

Finally there ardemplates These are a relatively new inclusion ir+€ so the
support for them in compilers may not always be completetimyt represent a balance
between the convenience of macros and the security of aaetbfunctions.

template <class Type>
Type square(Type X)
{ return x *X;

}

The example has the definition of a squaring function wrijtest once, with the
type of its argument and result lest as a parameter tharadinced by théemplate
construct. When this definition has been introduceth @ill generate a type-specific
version of the code suitable for every use of the functionitisees. Thus the effect at
run-time will be similar to the case where all the variouseigpecific versions of the
code where written by hand, but the source code is kept clectidy.

Lippman[5] gives a plausible example where a template fanowould be very
natural in use in a general purpose sorting algorithm whigtthen demonstrates in
use sorting vectors of double and then vectors of ints.

As well as template functions, 3 supports class definitions that are parame-
terised with regard to the types of component entities. lilkde natural to use these
in the implementation of a class for lists or queues, in thabuld allow C++ to keep
track of the types of items stored in the data structuresemmihintaining important
flexibility.

Overall the template mechanism represents a level abouaregt+ code within
which types can be represented by type variables. You sHoakdback to the way
that ML supports polymorphism and type variables and compath the relatively
awkward way that €+ provides a subset of the ML capabilities.

43

13 User-defined operators

Just as @+ allows the user to introduce multiple definitions assodatéh a single
function name, it makes it possible to have multiple measmgsociated with opera-
tors such as and+* . It does not allow the introduction of new spellings for agters,
or adjustment of the syntax associated with them. Thus th#els available to the
user for use as new operator&'is

+ - * / % ! & |

~ - , = < > <= >=
++ - << >> == I= && I
+= -= /= %= "= &= |: * =
<<= >>= [] () -> -> % new | delete

It also only permits new meanings of operators to be definednwdlass types are
present. Note that very early on we saw the overloading okthend>> operators
to support write and read operations on members of the steésses. It can now be
explained that what happened there was not some very speewgaiage provision just
used by the library, but an example of a generally availapten.

The operators, - , * and& may be overloaded in either unary or binary form. But
again note that you may not redefine the meaning these opetetee when applied
to numeric operands, only when they have at least one clgestdb work on. The
syntax used to redefine an operator is trivially simple — tertmad+ say you just
define (in the ordinary way) a function with naroperator+

The[] operator allows you to overload the idea of subscriptingl, iamvill very
often be desirable that overloaded uses of subscript esipresscan appear on the left
hand side of an assignment statement. This can be suppgrtiedlaringoperator(]
functions to return a reference type using &etype qualifier . Here is an ex-
ample for a rather limited and hence not very useful arrayscla

#include <iostream.h>

template <class T> // parameterised class
class Array
{
public:
T &operator[](int n)
{ return data[n];
}
private:

T data[10]; /I hidden from user

h

int main()

24Note that a few of these have not been described in these notes

44

{ Array<int> v; /l an array of integers
Array<double> w; // an array of doubles
for (int i=0; i<10; i++)

{ V] =1i /I calls overloaded []
w[i] = 1.0/(double)(i+1);

}

for (i=0; i<10; i++) /I check results
cout << Vv[i] << " " << W[i] << endl;

return O;

The example gives another use of templates to make the dass/able to support
arrays of things or arbitrary type T, and shows that it is fmdedo include the defi-
nition of (short) member functions within the descriptiohaoclass. The &’ in the
line definingoperatorf(] arranges that the operator passes back its result by refer-
ence. The code shown could be extended so that the “Arrags da something more
interesting, while preserving exactly the same interfa€er instance it could use a
hash table rather than a simple vector to store the data, bowalod checking on array
accesses, or maintain statistics about which of its elesngas used most frequently.

The() overloadable operator can be used to make objects in a gassuato be
callable as functions!

As with all aspects of €+ there are a few delicate areas surrounding the use of
overloaded operators — for instance unlike ordinary fuordithey may not have de-
fault arguments. But for the full details you are referredextihooks and reference
manuals.

14 Exception Handling in C and C++

C supports recovery from exceptional conditions via a ctitbe of library functions.
The functionsignal takes two arguments, one being used to indicate what condi-
tion should be trapped, and the other being a function thad =alled if the given
condition arises. It will typically be possible to geignal to set up user-defined
handlers for floating point exceptions, the use of bad meraddresses, the interrupt
provoked when a DOS or Unix user typ€€™ to interrupt a process, and various oth-
ers. In a few cases the handler function may be able to régaddamage and allow the
computation to continue, but there tend to be rather stulesrabout just what library
functions may be called from a handler and how it may behave.

One thing that a handler set up ussignal is generally entitled to do is to call a
functionlongjmp . This takes an argument that is of tyjpgp _buf , exits from mul-
tiple levels of nested function calls until it reaches oreg thsed the functiosetjmp
to fill in the jmp _buf involved. In faciongjmp may be called from arbitrary C code
not justviasignal , and is very useful for unwinding the stack when some calmria
fails. A small example may help illustrate how the two funatare used together.

45

#include <setjmp.h>
#include <stdio.h>

jmp_buf bbb;

void recurse(int n);

{
if (n == 0) longjmp(bbb, 1);
printf("%d\n", n);
recurse(n-1);

}

int main()

{ if (setjimp(bbb))
{ printf("longjmp caught\n™);
return O;
}
printf("setimp returned 0O first time\n");
recurse(10);

}

The magic is that whemain callssetjmp in the usual way it just returns zero
(ie false) and the main program can follow through with itgkation. When in due
courselongjmp is called it makesetjmp return (again!) but this time with a non-
zero result.

C++ introduces a new and rather more civilised way of achievimijar effect®.
Instead of usingetjmp one writes the keywortty followed by a block of com-
mands (enclosed in). This can be followed by a numberatth clauses that indicate
exactly which exceptions can be processed at this level.e§ponding tdongjmp
there is an operatahrow . It can be given an argument of any type, and passes this
value out until acatch that is prepared to accept that type is found. It will somesm
be useful to declare a new class just so that that class cdreligde associated with
some particular exceptional condition.

class myerror
{ /I class used just to report error

}

void recurse(int n)

{ if (n == 0) throw myerror();
cout << n << endl;
recurse(n-1);

}

25The exception handling parts of«€ are even newer and less stable than the template facilido so
not be too upset if the compiler you use does not support thetmly particular the mid 1994 version
of g++ does not.

46

int main()
{ try /I keyword to introduce protected block
{ cout << "starting ... ";
recurse();
cout << "finishing\n";
}
catch(myerror x) // definition of a "catch"
/[function for type myerror
{ cout << "Error handler activated";

}

return O;

15 Casts and other ways of Cheating

Most of what has been described of€so far will have given the impression that it
is a strongly typed language where (at least if everythincarefully pre-declared in
header files) the compiler can fully check everything. Tlas be almost the case in
C++, but there are important loopholes available. Althoughtneogle will not make
heavy use of them, almost all large-€ programs will use them somewhere.

Any type description (eg either a simple predefined type naowh asnt or
a more complex that refers to functions, pointers or stmesfucan be enclosed in
parenthesé&8 and used as a prefix operator. This operator converts iteogeo the
named type. In fact one of the examples already given cardaarcast that converted
an integer into a double:

w[i] = 1.0/(double)(i+1);

In cases such as the conversions between integral and remricutypes casts
will cause a change of representation to occur. Casts betimésgers of different
widths (eg betweerhar andunsigned long int) can result in zero- or sign-
extension or range reduction. If you assign a value to a bigriaf a different type
or call a function with an actual argument that differs inayfjpom the required one
then Cr+ will sometimes insert a cast for you to convert the type. | wilt document
the exact rules associated with this here, but rather re@drthat you either make
things match types exactly or put in explicit casts of younopthereby avoiding any
possibility of confusiof’.

Casts applied to pointer types are much more delicate. Teargap between what
can be guaranteed by a language standard as applicablepmssilble compilers and

26In C++ the parentheses are optional, while in C they are needed.

2’0ne case that is so common and generally harmless that | wiltion as not usually being worth
an explicit cast is assigning integer values into charaatetys (ie strings) where the integer variable is
known to hold a proper character value. This works “as exquBct

a7

computers and what will “usually” happen on “typical” macés. About the most that
can be guaranteed about pointer casts is that any pointardbject (but not a pointer
to a function) may be cast to the typedid *”. The resulting generic pointer can
then be passed to a function or stored woa * variable. If subsequently cast back
to its original type before use nothing will be lost. The usethis apparently pointless
combination of casts is that it allows functions witbid * arguments to accept
pointers to arbitrary sorts of objects, despite the usig@luiis of the type checker. It
also makes it possible to have structures that have one fiatccontains a tag value,
and another a field of typeoid * that in fact contains a pointer the type of which is
dynamically recorded (by the user) in the tag field.

It is normally not very proper to cast between integral anahteo types, but C
defines that casting from the integer zero to a pointer typlegivie a NULL pointer.
Note that this doesot necessarily mean that the machine-level representatidtbf
is a bit-pattern of all zero bits, but it does mean (by virtdiehe fact that C applies
helpful implicit casts in various places) that loops such as

typedef struct linked_list_of integers
{ int value;

struct linked_list_of_integers * next;
} list;
int length(list * X)
{ intI

for (I=0; x!=0; x=x->next) |++;

return I;

}

are valid, as well as the end-testNULL or even justx .

If you know enough details about the machine you are usingandio not need to
write portable code it may be interesting to casghar * pointer tolong int =
and thus become able to manipulate memory four or perhapsegykt bytes at a time.
Pointer casts provide thet@ programmer with very direct control over how they can
access data. But note again that they will almost always tote portability.

Another way of cheating on types uses a variant orsthéct definition. If the
keywordunion is used instead dftruct a new type is declared with a number of
components, but now these components all overlap in meribwey.clean use for this
is where you need a field in a data structure that at differiemd contains objects
of different types. The more devious (and non-guarantesed)isi when you write
to one field and read back from another, thereby gaining tdaecess to something
that depends on machine-level representations of datafollbeiing code uses this
idea to access the bit-patterns in memory associated withatirfy point number. It
would be possible to extend it to unpack the sign, exponedinaantissa fields, and
such unpicking may be a critical part of the implementatibsame of the low level
floating point library functions.

#include <stdio.h> / * Do this on in C =/
/* The union "cheat" puns between a double

48

and an array of two integers *
typedef struct cheat

{ double d; / = | expect 64 bits here * [
int i[2]; / * | hope int=32 bits */
} cheat;
int main()
{ cheat x;
x.d = 1.0/7.0; / * some floating point value * [
printf("%x %x\n", / * |ook at bit-pattern */
x.i[0], x.i[1]);
return O;
}

Observe as before that ® is used to select out components from a structure — here
to select which variant in the union is to be used.

A final place where C and-€+ abandon strict type-checking is to allow for func-
tions with variable numbers and types of argument. The el@thpt has been used so
far in these notes is the C formatted output funcpontf . Look up<stdarg.h>
va_arg and “.. ” ina C manual for details of how to write functions of your own
that have similar capabilities, and observe that the typesguments passed and re-
trieved are not subject to type checking. To illustrate, tbamsider the call

[+ The following line of code is not good! */
printf("%x %x\n", 3.1415926);

which passes a double precision value but then tries toadisis a pair of integers
(in hex). Onsomecomputers the hex values displayed will be the representai
the floating point number, while on others one may get just@ge — possibly values
that are not even consistent from one run of the program taeke

The techniques mentioned in this section can be criticalaking some programs
easy to write or in making them run fast, but equally they eaullto opaque code with
unexpected portability problems. If you read the full ANSkndard it appears to
have a number of unreasonable restrictions about what ywouety on, and demand
almost neurotic caution in code that is to qualify as styicbnforming to the standard
— but each of its strictures is based on knowledge of some ankwomputer or
compiler where attempts to cheat have unexpected conseegiedo by all means use
casts, but use them with care.

16 Writing Robust, Portable Code

Perhaps the first feature of good programming style will keg ttode is well docu-
mented and easy to read. That way the almost inevitable elsahgt will have to be
made to it will feel less painful. Figure 8 shows one appraaanaking C code read-

49

char xlie;
double time, me= !0XFACE,
not; int rested, get, out;
main(ly, die) char ly, * die {
signed char lotte,

dear; (char)lotte--;
for(get= !'me;; not){
1 - out & out ;lief
char lotte, my= dear,
** let= llme x lnot+ ++die;
(char =)(lie=
"The gloves are OFF this time, | detest you, snot\n\Osed GEEK
do {not= =*lie++ & OxFOOL =* !me;
#define love (char *)lie -
love 1s =*I(not= atoi(let
[get -me?
(char)lotte-

(char)lotte: my- *love -

- xlove - U -
T - (ong) -4 -'U -1

(time =out= 'a’);} while(my - dear
&& 'I'-1l -get- '&); break:}}
(char) xlie++;

(char) =*lie++, (char) *lie++; hell:0, (char) *lie;
get =*out » (short)ly -0-'R’- get- 'a’rested;
do {auto =*eroticism,
that; puts(*(out

- 'c

-(P’-’'S’) +die+ -2));}while(!"you're at it");

for (*((char =)&lotte)™=
(chan)lotte; (love ly) [(char)++lotte+
IHOXBABE]){ if (I' -lie[2 +(char)lotte]){ 'I-1l ok
else{ if (I * get =xoutx (-1l + die[2 1) * ((char
4 - (I'-1D); not; for(get=!

x die; }
*)&lotte)-=

Figure 7: Continued overleaf. Coode by Merlyn Leroy of DigiBaard
5

get; 'out; (char) *lie & OxDO- !not) return!!
(char)lotte;}
(chan)lotte;
do{ not * putchar(lie [out
*lnot * !lme +(char)lotte]);
not; for(;''a’;);}while(
love (char *)lie){

register this; switch((char)lie

[(char)lotte] -1s *lout) {

char *les, get= OxFF, my; case’ ’

((char =)&Iotte) += 15; Inot +(char) *lie *’s’;
this +1s+ not; default: OxF +(char *)lie;}}}

get - lout;

if (not--)

goto hell;

exit((char)lotte);}

Figure 8: An example of readable C code?

able —- note the careful choice of names for functions anles and the thoughtful
use of layout. This code also illustrates a further coltacttf C (and hence in general
C++ keywords and functions that you may wish to look up in theneiee manuals.

Both [2] and [4] contain much good advice about C programmigtesand ex-
planations of various of the ways in which code can unexpigcterove to be non-
portable. Rather than recite here all the particular polrgg make | will just catalogue
the ones that | consider most critical:

1. Design your program before you write it: Especially if yate going to make
extensive use of class hierarchies it is not a smart ideatbwtiting a program
by typing random fragments of code into an editor. Just hawné&b a design
phase you need will depend on the expected eventual sizeecfdtie to be
written.

2. Be disciplined: C and €+ place ultimate responsibility for almost everything
on the programmer. They make it possible to write clear ahdble code, but
they also make it possible to construct abominable muddéesexamples of
language design they have been guided by the desire to supparompetent
programmer solving a serious problem, rather than the reeptbtect a novice
who only has to write a page or so of code.

3. Use the security features your compiler does have: Modemmpilers can gen-

51

erally be instructed to give you warning messages abouteats in your code
they find questionable. Enable this option, and pay attertbahe warnings —
even if at first you find some of them look fussy they are prop#iere because
they mark potential hiding places for bugs. Write your codgaonget no warn-
ings. With old style C this sort of checking was done with assafe program
calledlint

4. Declare things in header files: when they need to be glavadtherwise use
thestatic directive or G-+ classes to keep both variables and data consistent
and as localised as possible. When designing classes avkidgmaore things
public than you need to.

5. Code in a defensive style: Avoid unnecessary applicatigquns and low cun-
ning. Help the person who next reads your code by putting ks of com-
ments that explain methods and global intent as well as fitalldePut in occa-
sional checks for self-consistency, perhaps usingfisert library operation.
Assume that your code will at some stage need to be ported ¢oyadfferent
computer with a compiler that comes from a different vendor.

6. Know your language: Browse the most definitive referenceuakyou can find
for your language and its libraries so that you know exacthawit does, and
(even more important) so you know how and where you can looigshup
when you need to.

7. Get somebody else to read your code: And listen if theylsaythey find it hard
to understand!

8. Avoid known danger areas and pitfalls: See Section 21.

9. Avoid premature optimisation: It is very nearly alwaysahibetter to write a
program that is correct and then worry about speeding it ap this to write a
program that is supposed to be fast and then try to removautie Burthermore
if you try to optimise your code early on you may waste effartparts of the
code that are in fact unimportant, or obscure later opparésfor more radical
but better speed-ups.

Of course the above ideas are relevant to almost all langu#gg with C and @+
they are particularly important since the languages aenafsed to implement quite
large and complicated packages, compilers are readilyaéaion many different
computers, so people frequently try to port code, and thibegghuse of the languages
can easily lead to cryptic or fragile code.

52

17 Writing Fast Code

On of the main claims to fame for C (and hence+(is that it can be used to write
code that goes fast. It is common to claim “As fast as handtewimachine-code”,
although in reality that will only be true in limited circunasces. What does help the
efficiency of C code is that most constructs in the languageaeally very low level
and correspond quite directly to things that a typical corapaan do in one or two
instructions. This means that the programmer can usuadly kack of just how much
real work is being called for by a fragment of code, and camresgthings so as to
minimise it. The most pervasive way in which this happensrabably through the
fact that G-+ provides smooth and natural support for pointers and poartdhmetic,
and makes it convenient to write code the uses them — and roogputers have
internal registers that can hold pointers and manipulagentidirectly. In contrast,
most other languages make much heavier use of arrays, asdrigiing into an array
is often (at the machine level) more expensive than jusbfollg a pointer. Many
computers (from Digital Equipment’s VAX through to Acor8&RM) provide machine
code addressing that give direct support for the C idiom+ that accesses an item
and then steps the pointer on ready to grab the next.

Especially on modern “RISC” processors it is important to kimepcorrect values
in the machine’s internal registers. When you declare a Qb that is to hold an
integer, floating point value or pointer you can qualify trexldration with the word
register . This suggests to the compiler that it keep the variable iraalime reg-
ister. Depending on your computer and compiler it may bertat of your variables
will be kept in registers anyway, or it may be that there areraally enough regis-
ters to go around so even variables declaregegster are kept in memory (on a
stack). But on occasions the careful useagister declarations can have a major
effect on code quality.

If you know enough about the computer you are working on it fbaypossible
to implement many operations on blocks of characters bygusord operations, thus
moving several bytes in each operation and making full usbeivord-size of your
machine. This can have significant pay-off when you are implating either a string
processing or a graphics library.

Use of the bitwise& and| operations together with shifts can allow the imple-
mentation of mildly clever algorithms. Figure 9 shows thuegesions of functions
that count the number of bits that are set in an integer, sipgdhat integers are 32
bits long, and illustrates some of these points. Note thaeision3 the use of an
unsigned int argument ensures (on a 32-bit machine) drat24 is in the range
0 to 255 so a mask operation wikxff is avoided.

Generally if you want to produce the best and fastest passiidle the steps are
first to produce a version of the code that works correctlynaltime, then to see if the
algorithm involved can be improved, and only at the end mavéndocal fine-tuning

28This will only apply to local declarations, not &xtern or static ~ ones.

53

int versionl(register int a)
{ /I naive method, use register vars
register int total=0;
for (register int i=0; i<32; i++)
if (@ & (1 << i)) total++;
return total;

}

int version2(int a)
{ Il (a & -a) = least sig bit of a
/[if you have binary arithmetic
int total = O;
while (a !'= 0)
a -= (a & -a), total++;
return total;

}

static unsigned char cc[256] =
{0, 1,1 2 1, ...}y [/l initialised array

int version3(unsigned int a)
{ I/ make cc a table counting bits in a byte
return ccla & Oxff] + cc[(a>>8) & Oxff] +
cc[(x >> 26) & Oxff) + ccl[a>>24];

Figure 9: Counting the bits in a 32-bit word.

54

of the code. On many systems there will be profiling tools taat help you find out
which paths through your code are exercised most and herssgvdemost careful
attention. Directing your compiler to display the assentduayge that it generates may
allow you to spot ways in which the code could be improved. R&aidy often it is
possible to juggle with your C or €+ source code until the compiler generates the
optimal code that you wanted. Note very well that ultimatérosation and ultimate
portability are often not compatible, so at a minimum youudti@ollect speed-critical
code in one localised part of your program, and preserverigaal correct and clear
versions of the code (hidden in comments, maybe) togetttartiag final highly tuned
version, ready for when you need to re-optimise for a difiecomputer.

18 Internationalisation of Code

A small program written for use just by its author will use ttfearacter set natural
for the computer on which it is developed, and will naturaligplay all its messages
in a readable form. However it is increasingly the case tbatroercial code has to
work in an international market, where both character sedstlae language in which
messages are displayed must be adaptable. One approaelctatiacter set problem
is shown in Figure 10 which, if you run it, can be seen to be ¢og®int the value of
e, the base of natural logarithms. Two other (and perhaps proguctive) approaches
are commonly used. The first addresses the character sé¢mrobust as C has ordi-
nary integers and long integers it can have ordinary charsieind strings and “wide”
ones. The idea is that ordinary characters are used in cétauntes where a simple
8-bit characters set is adequate, while wide charactepscélly 16 bits each) can be
used top cope with the extended sets of symbols needed fiic(parly) far eastern
markets. Wide character and string literals are written t&fixing the usual sort of
notation with ‘L” as inL"This is a wide string" . The issue of how inter-
esting characters might be written inside such a string peddent on the compiler
used. There are standard library functions for extracthayacters from wide strings,
copying them and generally working with them. With its WimagoC++ compilers
Microsoft provide an option for strings to be expressed #irtbwn choice of 16-bit
code (Unicode) and a few Windows data structures and fumgtiequire text to be
expressed in this extended format.

To deal with language insensitive messages it is good geaittilarge programs to
avoid writing messages as strings directly embedded indde.df all text is separated
out and stored in tables then the code can refer to stringadityng their index number
in the table, and language conversion only involves rekwgithe module containing
the table and linking in a new version. It can even make semge bne step further
and have the text of all messages stored in a data file tharegdsin either at the
start of a run of your program or when it needs to display a agss— then changing
language just involves installing a new data file and not agpompilation. These
arrangements which keep all text centrally and accessedtviaval tables or functions

55

].__3141[3141];_314159[31415],_3141[31415];main(){r
_3 141, _3_1415,

* 3 1415; register int _314, 31415, 31415,

char
_3141592654[3141
egister char =
*_31,

3 14159, 3_1415;

-1]=1[_3141]=5; 3 1415=1;do{ 3 14159= 314=0, 314

=0;_31415<(3,14-4)

*_3141592654=_ 31415=2, 3141592654[0][3141592654
15++;for(_31415
*__31415;_31415++)_31415[3141]= 314159[31415]= -

1; 3141 *_314159= 3_14159]= 314; 3_141= 3141592654+ 3 1415;

3 1415=

31415 +_3141;for (31415 = 3141-
_ 31415 31415; 31415--
3141 ++, 3 1415++){ 314
+=_314<<2 ; _314<<=1; 314+=
* 3 1415; 31 = 314159+ 314;
if((*_31+1)) *+ 31 =314/
_ 31415, 314 [3141]= 314 %
_ 31415 ; * (3 1415= 3 141
y+= * 3 1415 = +_31;while(*
31415 >= 31415/3141) *
3 1415+= - 10,(*--_3_ 1415
)++;_314= 314 [3141]; if (!
3 14159 && * 3 1415) 3 14159
=1, 3 1415 = 3141-_31415;}if(
_314+(__31415 >>1)>= 31415)
while (++ * 3 141==3141/314
)*_3_141--=0 ;Jwhile(_3_14159
) ; { char * _ 3 14= "3.1415"%
write((3,1), (-- * 314, 314
),(03_14159 ++,++_3 14159))+
3.1415926; } for (_31415 = 1;
_31415<3141- 1;_31415++)write(
31415% 314-(3,14), 3141592654[
31415]+ "0123456789","314"
[3]+1)-_314; puts((*_3141592654=0
,_3141592654)) . 314= %"3.141592"}

Figure 10: Code by Roemer Lievaart.

56

also make it fairly easy to arrange that the message texipisikesome compressed
form, and expanded on demand - for large programs the sawmisgpace achieved
by keeping strings compressed far outweighs the bulk of #ohpression code.
Keeping messages compressed also keeps them just a litteeseoure from prying
eyes.

Arranging those functions that print diagnostics so thatpeeterised messages
will make sense whichever language the message is to bayéspin is not something
that happens without thought, and a great many error messagel part of the user’s
input data (or something else) merged in with the text thdtsplayed. One possible
approach is (rather than having all messages in a string)teiblse the pre-processor
to do the work as follows artificial example:

/I this is part of a file "error-messages.h"

#ifdef ENGLISH

#define msgl "Wrong colour used"

#define msg2(a, b) "Message %s with %d in it", a, b
#else

#define msgl "Wrong color used"

#define msg2(a, b) "Case %d in context %s", b, a
#endif

/I now for some of the code that uses these
#include "error-messages.h"

|f (...) printf(msgl);
else if (...) printf(msg2("blah", 42));

Observe that even the order of the values to be included isages can easily be
controlled in this form of parameterisation, and that itesladvantage of the fact that
the preprocessor does not have to expand things into sigaytomplete forms —
for instancemsg2 expands to give a list of three items.

Finally an ANSI C library comes complete with some featur@support code
for international markets. The place where a program is todex is known as a
locale and the library provides skeleton support for getting spaates and amounts
of money displayed, and for controlling the alphabetic ongged when comparing
strings that are in non-American character sets (eg oné¢sutigacodes to stand for
accented characters,(¢) or things like the German 3or Nordic Despite being part
of the ANSI standardetlocale is generally not very well supported by most C and
C++ systems, and you may well do better to write and use your owle.cBut read
the relevant section of the ANSI document (and the acconmipgmationale) if you
can find a copy to discover what they expected to count asatdhalyouts in a variety
of countries: it goes beyond the traditional muddle as totiwrethe date 1-2-95 is the
first of February or the second of January!

57

19 The ANSI Standard For C

The major feature of C which is not shared by all the langudggisyou come across
is that there is a formal international standard for it. Diesfne fact that ML refers to
itself as “Standard ML’ the dialect so labelled was decidpdruby a medium sized
group of language enthusiasts. Modula-3 is defined by itéamentation and a refer-
ence manual. The amount of manpower and effort that wentletstandarisation of
C was of a quite different order of magnitude, involving nadtja central committee
of experts working over a period of around seven years, Botatonsultation process
where comments and suggestions were send in by many marsatiasiof other in-
terested people. Following on from the issue of the officiblSA C standard various
commercial organisations have developed stringent tétstssiinat National certifica-
tion bodies and others can use to check if a supposedly eanfgrimplementation of
C does in fact meet the specification.

Without all of this it is effectively impossible for two ingendent implementations
of a computer language (any language, not just C) to agre¢ iheafine and murky
corners where they ought to, and it is also impossible fonguage implementation
team or user to draw a proper line that separates differeincbehaviour that are
compiler bugs from those that are necessary consequencasrong on a different
computer or operating system.

The only proper way to find out in detail about the ANSI C staddathe defining
document[7] itself. The standards body obtains part ofuiteling by selling printed
copies of the documents that it produces, so this documentidimot be available
on-line anywhere. It also hardly counts as an ordinary bsokregular bookshops
tend not to have copies on their shelves. There ought to beyaaailable from the
Computer Laboratory Library: if you want your own copy expaztave to order
it (possible through your bookshop) from the American NagioStandards Institute
(ANSI), 1430 Broadway, New York, NY 10018, USA (phone: 1-2842-4900).

A major issue in preparing a standard for a language is engthat it is quite clear
what is defined and what is left to the discretion of the coarpiriter. Not leaving
any flexibility at all would be possible if the standardisativas done by selecting
one existing implementation running on one real computstesy, and declaring that
to be the reference with all other versions expected to miggchehaviourexactly.
Quite apart from severe commercial offence that such anoagprwould cause, a
consequence would be that one particular release of theerefe compiler would be
the standard — including all the bugs in it — and anybody wagto meet the standard
exactly would need to discover and perpetuate those bugs. sHid that when, in
Cambridge, the Titan computer was installed as a replacefmetite earlier EDSAC-
2, an Autocod® compiler for Titan was prepared following this philosopagd thus
carefully and deliberately (and dare one suggest in a ggintild fun) re-creating the
known bugs in the EDSAC compiler. That was in the mid 19609 kdo not have

29The high level programming language in use then.

58

and good but more recent examples of the approach.

At a slightly more abstract level over-definition of a langaacan still be unduly
restrictive. Users of C generally expect competent opatross from their compiler,
and drawing a good line between defining enough that codeeagliably ported and
leaving enough freedom (eg with regard to the order of ev@in®f the separate parts
of a complicated expression) is difficult. There are alsadmental differences be-
tween various brands of computers that would all like to supgtandard C compilers.
As well as the obvious matter of 16 and 32 bit systems (and nbwitones), some
computer like to lay out integers in memory with the leash#igant byte at the low-
est memory address, and some with the most significant byke dbwest addres$
Characters sets also vary. Most Unix systems agree on the AB@&iacter set, but
this is only really adequate for the representation of Etéfli even other European
languages require a variety of extra or accented letter®sguters for use in such
places must support them. Thus a programming languagestfat iealistic interna-
tional use can not survive if defined to use just the 96 chara¢hat standard ASCII
knows about.

From these and many more issues, ANSI C builds up to the iddaatbtandard
for a programming language should be viewed as a contrasteleet the language
implementor and user. The implemenioust support some language constructs, will
be given license to make definite decisions about other oneslocal basis, is not
required to give any guarantees at all in some further casesyill be prohibited from
making some sorts of extension to the language that a comylleaccept. The user
on the other hand may choose to try to write a strictly confoghyprogram that adheres
should work correctly on all possible conforming compildeds for better performance
a programmer may choose to rely on some of the implementdefined aspects of
one particular compiler.

ANSI specify that some sorts of things that a programmer tigite will have
“undefined” consequences. It is often very tempting to tlwhguch cases by imagin-
ing how several different compiler strategies could leaditdly different behaviours,
and assume that “undefined” means an arbitrary choice froamgrthose behaviours.
That isnot what is meant! If you submit a program that contains code wittiefined
interpretation to a fully validated and utterly conformiaAtySI C compiler it would be
entitled to spot what you had done and generate in the plageurfdubious code (or
indeed at any other place in your whole program that it samé&ty and original code
that deleted all your files, send abusive e-mail to your manay dialled a phone hot-
line to order that a hit-squad come and rearrange your fest@nd/or programming
style. The term “undefined” in the ANSI standard really issoged to indicate that
all bets should be off about what might happen when a progranmis ru

Reading and understanding the full consequences (and theniag behind) the

30The distinction is usually referred to as the “byte sex” dmé,it is harder to find agreed names to
characterise the two configurations. Following Gullivét]d-endian and big-endian are probably the
most common terms in use.

31And even then it has only been recently that such spellingasplane” have gone out of fashion.

59

ANSI standard is a fascinating exercise in applied pedaitng standards committee
needed to balance a desire to keep to the existing spiriea@ttanguage, and preserve
the usefulness of as much existing code as possible. Edgih@§yneeded to end up
with a definition that was acceptably unambiguous (the pailgedition of Kernighan
and Ritchie[3] is notable for gaps in its precision) and whicade C into a better
and more modern language. Some of the issues they addresssalared further in
Section 21.

20 Forthcoming Standardisation of C++

As mentioned before, the committee that is working towar@s-astandard has issued
its first review document. Rather than describe what is in(ih& much too long!) |
will try here to give an overview of what can be expected fritw final standard:

Explore ambiguities: The existing G+ descriptions at least come close to leaving
the language ambiguous. A standard may choose either tovgiyeprecise
rules to define which meaning should be ascribed to eachgmgr adjust the
language to make it a little less delicate. Those of you whe ot been in-
volved in C or G-+ implementation projects may not have a good feeling for how
delicate the languages are and how difficult it is to have adstad that leaves
flexibility for compiler writers to generate good code onlathnds of computer
while defining the exact behaviour that can be expected ierationable cases.

Define libraries: Theiostream library used in example programs here is a very
minimal start towards what can be expected by way of libraypsrt defined
in a C++ standard. To preserve backwards compatibility it may bestdpat
the existing C library functions will remain available, then the exact rules
for mixing use of the Qorintf and G-+ “<<” operations will need to be
documented. In the draft ANSI specification the sectionudistg the library is
itself book-sized[6] and will represent a significant leaneffort for users.

Firm up newer features: Exception handling in €+ is (at the time of writing) still
an area that has not stabilised, and there will be a great wothey areas of the
language where people will want to suggest small changdeetautes in order
that the language finally defined ends up as coherent and asgfossible. The
nature of any 700+ page document is that there will be inst&iscies between
statements made in different sections, and the processegdtaey and resolving
them will be quite protracted.

Address C standard failures: In ANSI C provision was made to allow programmers
to write C code even if the keyboard they used was deficienkifig various
punctuation characters such [§{3\&”| . This was done using things called
trigraphs, each starting with the strin@?”. The arrangement seems ugly and

60

is not obviously popular — the€- committee is suggesting better solutions to
this problem and to other areas where five or so years of eqperiwith ANSI
C have revealed room for improvement.

21 A Few More Pitfalls and Traps

It has already been explained that compiling and runningogrnam that has “unde-
fined” behaviour is permitted to have most curious effectsid Aurthermore those
effects might depend on the date or time of day that the progvas ruf?. This sec-

tion lists a collection of tolerably common C (mostly) ané+mistakes to give you
an idea of what to be on guard against.

21.1 Compiler Bugs

It would feel reasonable to expect that a very heavily useguage like C would now
have compilers that were 100% reliable, and that the AN ®dsted would be metin all
serious implementations. One would hope that-Qvould only give trouble in areas
where the specification is still under review. If you develagge C or G-+ programs
and try to run them on a significant number of different aesttitires you will find
that the world is not so kind. Even when a single compiler enpéntation gcc) is
available on many computers you will find that not all havegame release installed,
and there can be target-specific compiler bugs. | have ete@thC compiler or
library bugs that have caused me at least some frustratiG?Csn(at least 3 different
compilers), Macintosh, Sun, HP, SGI, Acorn and Apollo cotepst You should not
get the impression that C will be worse than any other languadhis respect (it is
probably better) or that compiler bugs are the major caus@ofworking code, but
they are out there and they can hurt.

21.2 Sequence Points

Within one expression a C compiler may generally evalualteesgpressions in what-
ever order it sees fit. At so calleskquence pointsverything must be brought back
into a stable condition: the main constructs that give risegquence points are the
semicolon that terminates a command, the comma that joins@ession of expres-
sions into a sequence (but not the comma that separateseamggim a function call)
and the&&and|| logical connectives. In the presence of side effects etialuarder
may matter. Consider whefeis some function of two arguments. The programmer
may have expected that the arguments passed will have bewh 2 &ut the ANSI

C standard says that the behaviour is undefined. To see whgyitbh®a reasonable

32)f the undefinedness is a result of the program attemptingad from un-initialised memory or
from outside the space allocated to it it is even reasonablthé exact details of the behaviour to vary
from run to run.

61

to make such things undefined, imagine a computer whete is implemented as
code that picks up the value afinto a register, makes a copy into a second regis-
ter, increments one of the register (while keeping the ditreuse as the value of the
expression) and finally writes the incremented value baagkémory. Especially on
a high-performance RISC machine it could make sense to éatexlthe streams of
instructions that did that for the first and second argumamd, after scheduling the
instructions to keep the CPU fully busy almost any arrangéroeuld result, and it
will not even be clear thaa will end up with the value 3. By making the meaning
of the code undefined the standard makes it legal for a contpilgenerate whatever
code happens to come out of its optimiser, or to detect théyddd generate code
that prints a warning and stops (or anything else the comytliger likes the idea of).
Other problems arise with indirect addressing:

int a = 1;
int *b = &a; /I take address of variable a
cout << (a + *b++); // a bit like (a + a++)?

21.3 Macro expansion woes

Consider the code

#define print(x) { cout << x; cout << Xx; }
if (something) print(x);
else ...

The important issue here is that there is a macro that is defoeas to expand
to a block of commands enclosed in braces — the fact thatipgins involved is
unimportant. It then looks natural to use this macro in o#tnbitrary contexts, however
there is a slight trap: it looks correct to write a semicol@terathe use oprint(x)
in theif statement above, but because the macro expanfls to} that is in fact
incorrect. It is necessary to write one of

if (something) print(x)
else ...

if (something) { print(x); }
else ...

THis illustrates how much caution is sometimes needed wihiocessor macros:
it C++ inline functions are used instead the problem might noearidowever even
then all is not well, since even when a function is inline ladl values it needs to access
must be passed as arguments, so there will remain place® wiaaros are needed.
Some people suggest that the solution to this problem is to fwe trouble of writing
all macros that would expand to a block as

#define my_macro(a,b,c) \
do { [/ = start of block *[0\

} while (0)

62

and then the curious looking usedd . ..while has no effect on execution behaviour
but leaves the syntax more secure!

21.4 Out of memory failures

In C chunks of memory are obtained by the use ofrttaloc function®. In C++
the corresponding facility is provided by thew operator. If you use these a lot it can
become hard to remember that eventually you may run out ofengeand the attempt
to allocate more will failmalloc andnew do not provoke an immediate crash when
they are unable to satisfy a request — they just retuNiUd L pointer. If you fail

to check for this case and eventually you do run out of memioeyetffects may be
uncomfortable.

21.5 Memory allocation

If attempting to use &AULL pointer as if it were the address of the start of a useful
block of memory was a bad prospect, then the consequences getting uses of
delete properly matches with those ofew can be much worse. Such errors can
sometimes confuse the internals of the freestore allatatickage, and result in newly
allocated structures overlapping. And these new strustonay not just be ones that
the user allocates directly — they could be control blockbudfer areas allocated by
the library for its own internal use. Running foul of this plen is almost enough
cause to give up €t totally and move over to Lisp where storage allocation hanbe
properly thought out.

21.6 Other library function failures

As well as running out of memory, there are many other possiays that library
functions may not work properly for you. In general the C itiad is that the function
just returns, possibly with some slightly unusual resultt, that there will not be any
automatic generation of warning messages. The programasdul responsibility for
checking that all goes well. A few nasty examplegrt(-1.0) does not generate
an exception, it will just hand back some silly value. If artpau stream has been
directed to a file on a floppy disc (say) then if the user remakiesdisc while the
program is running, or if the disc is damaged, or runs out atepthen simple output
operations can fail. The functions that support direct ssgeeek) may not be sup-
ported on all sorts of file (eg on Uniklev/null !). There may be system-imposed
limits on how many files you can access at one time. The lisbeibilities is almost
endless, but in C and (so far) inH€ checking each individual library call for success
can be very tedious and ugly.

33Especially under Unix it can sometimes make sense to usee lewel and system-specific func-
tion sbrk , while if you are writing code for a Macintosh or for regulainfows 3.1 then you usually
need to take great care to fit in with the operating systentscehof memory allocation calls.

63

21.7 Unsigned values

If you have, in your code, a mixture of short and long integerd signed and unsigned
variables, the compiler will apply rules to bring quansti&® a proper common type
when an operation is to be performed. This can involve widgrmi short value to a
long one, and depending on whether it is signed or unsignseitmer propagates the
sign bit or pads with zero bits. Usually what happens will bst jwhat you expect,
and most operations (in particular - , *, & | and<< are not sensitive to whether
their arguments are signed or unsigned. However the cosgradperators:. and so
on are. Ifx is an unsigned value then the boolean expreséior 0) can never
be true. Beware cases where comparisons may involve valuifferent widths or
where some arguments may be signed and others unsignedgdatheestandardery
carefully so make sure you understand what will happen. Explicit cests

if ((unsigned long int)x < 0x8000LU) ...

can avoid any possible confusion.

21.8 Unexpected overflows

If you perform arithmetic in C in such a way that there coulddverflow then the
Standard declares that all bets are off. With almost all aargoarithmetic will in fact
be done using 16 or 32-bit 2’'s complement and the overflowlvelkilently ignored.
Sometimes this is very useful, but on others it is a sourcaigébMy favourite nasty
in this regard are the harmless-looking shift in

#define bit_n(n) (1 << (n))
{ long int x = ...
if (x & bit_n(24)) ...

which is attempting to see if the 01000000 is set in the variablg. On a 16-bit
computer despite being a long integer the shift may be done in 16-bit arithmeti
leading to a (probably silent) overflow and the a test thatkeasth zero. 1jj24 when
sizeof(int)==2. My preferred correction is to have a typarf own calledint32
with atypedef to map it onto a suitable system integer type, and then ddfime t
macro as

#define bit_n(n) (((int32)1) << (n))

21.9 Arithmetic Right Shifts

ANSI C permits an implementation to implement right shiftssigned values either
so that they replicate the sign bit, or so that they fill bitiposs vacated by the shift
with zero. Thus right shifts on signed values need to be codd#da degree of cau-
tion. While mentioning shifts, observe that (if overflow isleed always ignored), the
following three are equivalent ¥ is an integer:

64

2 * X;
X + X;
X << 1;

and occasionally the addition or shift may be faster than &iphy (but a good
compiler would make the transformation for you if it was tealseful). For posi-
tive values on a binary machirfg/2) and(x>>1) are also equivalent, but shifting
negative values right will not in general halve them evehéf $hift is arithmetic.

21.10 Indirection through NULL pointers

A pointer variable will normally contain a proper pointeytht is always valid to
storeNULL there. If the value iNULL then indirecting on it is a bad idea. With
some operating systems the attempt will be trapped promptife with others only
attempts to write to the bad address cause a fault, and geaditretrieves some stray
value. Yet cruder machines would trap neither reads or syraed so the erroneous
program could possibly corrupt system memory!

21.11 Representation of NULL

Because on many implementations of C the vl L is stored as a zero bit-pattern
some programmers come to believe that this is necessarignsiorely on it.NULL s
what you get when your compiler casts zero to a pointer type jtamay be different.
For instance one could imagine a computer where all poimters 48 bits long while
integers were various other widths, tHebLL would be a 48-bit quantity and not quite
like any integer at all.

21.12 Local variables aftersetjmp

setimp can be understood by imagining that when it is called it jushds the ma-
chine’s registers in thgnp _buf and returns.longjmp can then just reload all the
registers, which may have a side effect of resetting thekstad allowing it to return
from setjimp for a second time. Just how much state gets restoréoigymp may
be slightly system dependent, and the standard is carefpdoify that the state of
local variables whose value has been altered between tjiearcall tosetimp and
thelongjmp is not determinate. Beware!

21.13 Code and Data memories separate

It could be that a computer has quite separate address sjmacesle and data, in
which case an attempt to cast from a pointer to a function tagminter to data will

be pretty ineffective. Also code space may be read only (lmesoases it may even
eventually map onto ROM), and some compilers may like toestiberal constants

65

(especially string constants) in code space, while othéfput them together with

other data. So although on some systems you may get away pdtting the contents
of a string literal (yuk!) and by so doing save some spacerme tido not count on
it. If the same text appears in several strings in a programescompilers may try to
save you space by storing the string just once, while othérsavely store multiple

copies — with C you can easily write code that would behaviedihtly depending
on the strategy used!

21.14 printf ,scanf and long integers

Users of the C library functiongrintf andscanf should take some care to ensure
that the types of values passed match the format directresept in the format strings
— especially perhaps whestanf is used to read a long integer.

21.15 Assuming 16 or 32-bit arithmetic

| was caught out when | first used a compiler that had supporé4ebit integers
by the fact that0x80000000 was not the same a3 7fffffff but could be
OXFFFFFFf 7 fifffffL It is very easy to suppose that you know just what sort of
arithmetic you are relying on!

21.16 Comment nesting

/ = Here is the start of a comment, where due to clumsiness wataditor the intended
end of the comment, here it i$:? has got slightly mangled. | ha® where | meant

| The effect is that the text you are reading now is begin swedtbup as part of the
comment, probably without any load message from the comfilengs may recover
when | get to the start of the next comment — ah here it comellere is the start of
my next comment - and its end The text from here on is now not inside a comment,
and if I am unlucky the material inadvertently swallowedlwibt disrupt my syntax
and I will be none the wiser about its loss.

21.17 Scope oftruct tags

A gross oddity in ANSI C that may get changed im-€is that if the first time you see
a structure tag is in the header line of a function, as in

extern void f(struct xx *y),

then the structure tag is treated as having a scope that ihpibody of the function
defined. Even if you writstruct xx elsewhere it will be viewed as a different tag.
In consequence is not possible to call the function givingnitargument of exactly
the correct type! To avoid this lunacy, declare all your cinees (and classes) before
functions that use them.

66

21.18 Byte Ordering

Quite often one wants to write whole data structures out teadr copy them whole-

sale from one part of memory to another. The raw memory cgpyperations are not
sensitive to the order of the bytes that make up integersdatifig point values). A

case where this sort of issue really matters is if you aramngeé compiler that ought to
generate exactly the same binary object files whatever byandachine it happened
to be hosted upon.

21.19 Six-character mono-case names

As a matter of extreme caution, ANSI C suggests that namesg®efreal variables and
functions should be limited to six letters and that you soasstume that case can be
used to distinguish letters. It is perhaps reasonable te kimgt you will never come
across an environment that makes this restriction come!al®ne way to cope if
you ever do is to compile your whole program with a headerHiét maps the sensible
meaningful names that you will use into horrid short onetasle for your backwards-
looking computer. Here is a slightly modified version of a Britagment of a header
file that | use for just that purpose:

#define alloc_dispose gO1lall
#define alloc_init gO02all
#define alloc_noteaestoreuse gO03all
#define alloc_reinit gO4all
#define alloc_unmark gO5all
#define builtin_init g06bui

#define cautious_mcrepofexpr g07cau
#define cautious_mcrepoftype g08cau
#define cc_err g09cc_
#define cc_err_| g10cc_

A The GNU Library General Public License

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copie s
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General P ublic
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its u sers.

67

This license, the Library General Public License, applies t 0 some
specially designated Free Software Foundation software, a nd to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

When we speak of free software, we are referring to freedom, n ot
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and c harge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces o fit

in new free programs; and that you know you can do these things

To protect your rights, we need to make restrictions that for bid
anyone to deny you these rights or to ask you to surrender the r ights.
These restrictions translate to certain responsibilities for you if

you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whethe r gratis
or for a fee, you must give the recipients all the rights that w e gave
you. You must make sure that they, too, receive or can get the s ource
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can reli nk them
with the library, after making changes to the library and rec ompiling
it And you must show them these terms so they know their right S.

Our method of protecting your rights has two steps: (1) copyr ight
the library, and (2) offer you this license which gives you le gal

permission to copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make cer tain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passe d on, we
want its recipients to know that what they have is not the orig inal
version, so that any problems introduced by others will not r eflect on

the original authors’ reputations.

Finally, any free program is threatened constantly by softw are
patents. We wish to avoid the danger that companies distribu ting free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To pre vent this,
we have made it clear that any patent must be licensed for ever yone's

free use or not licensed at all.

Most GNU software, including some libraries, is covered by t he ordinary
GNU General Public License, which was designed for utility p rograms. This
license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary
one; be sure to read it in full, and don't assume that anything in it is

the same as in the ordinary license.

The reason we have a separate public license for some librari es is that
they blur the distinction we usually make between modifying or adding to a
program and simply using it. Linking a program with a library , without
changing the library, is in some sense simply using the libra ry, and is
analogous to running a utility program or application progr am. However, in
a textual and legal sense, the linked executable is a combine d work, a
derivative of the original library, and the ordinary Genera | Public License

treats it as such.

Because of this blurred distinction, using the ordinary Gen eral
Public License for libraries did not effectively promote so ftware
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing bet ter.

68

However, unrestricted linking of non-free programs would d eprive the

users of those programs of all benefit from the free status of the

libraries themselves. This Library General Public License is intended to
permit developers of non-free programs to use free librarie s, while
preserving your freedom as a user of such programs to change t he free
libraries that are incorporated in them. (We have not seen ho w to achieve
this as regards changes in header files, but we have achieved it as regards
changes in the actual functions of the Library.) The hope is t hat this

will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library” . The
former contains code derived from the library, while the lat ter only

works together with the library.

Note that it is possible for a library to be covered by the ordi nary
General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIRTTON

0. This License Agreement applies to any software library wh ich
contains a notice placed by the copyright holder or other aut horized
party saying it may be distributed under the terms of this Lib rary
General Public License (also called "this License"). Each | icensee is

addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application pr ograms
(which use some of those functions and data) to form executab les.

The "Library”, below, refers to any such software library or work
which has been distributed under these terms. A "work based o n the
Library" means either the Library or any derivative work und er
copyright law: that is to say, a work containing the Library o ra
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, t ranslation is

included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work f or
making modifications to it. For a library, complete source ¢ ode means
all the source code for all modules it contains, plus any asso ciated
interface definition files, plus the scripts used to contro | compilation

and installation of the library.

Activities other than copying, distribution and modificat ion are not
covered by this License; they are outside its scope. The act o f
running a program using the Library is not restricted, and ou tput from
such a program is covered only if its contents constitute a wo rk based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library 's
complete source code as you receive it, in any medium, provid ed that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; k eep intact
all the notices that refer to this License and to the absence o f any
warranty; and distribute a copy of this License along with th e
Library.

You may charge a fee for the physical act of transferring a cop Y,
and you may at your option offer warranty protection in excha nge for a
fee.

69

2. You may modify your copy or copies of the Library or any port ion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Sec tion 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notic es
stating that you changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function o ra
table of data to be supplied by an application program that us es
the facility, other than as an argument passed when the facil ity

is invoked, then you must make a good faith effort to ensure th at,
in the event an application does not supply such function or

table, the facility still operates, and performs whatever p art of

its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the

application. Therefore, Subsection 2d requires that any

application-supplied function or table used by this functi on must
be optional: if the application does not supply it, the squar e
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the L ibrary,
and can be reasonably considered independent and separate w orks in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But whe n you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the te rms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of wh 0 wrote
it.

Thus, it is not the intent of this section to claim rights or co ntest
your rights to work written entirely by you; rather, the inte nt is to
exercise the right to control the distribution of derivativ e or

collective works based on the Library.

In addition, mere aggregation of another work not based on th e Library
with the Library (or with a work based on the Library) on a volu me of
a storage or distribution medium does not bring the other wor k under

the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Pu blic
License instead of this License to a given copy of the Library . To do
this, you must alter all the notices that refer to this Licens e, so
that they refer to the ordinary GNU General Public License, v ersion 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you c an specify
that version instead if you wish.) Do not make any other chang e in

these notices.

Once this change is made in a given copy, it is irreversible fo r
that copy, so the ordinary GNU General Public License applie s to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

70

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executab
under the terms of Sections 1 and 2 above provided that you acc
it with the complete corresponding machine-readable sourc
must be distributed under the terms of Sections 1 and 2 above o
medium customarily used for software interchange.

If distribution of object code is made by offering access to ¢
from a designated place, then offering equivalent access to
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are no
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being com
linked with it, is called a "work that uses the Library". Such
work, in isolation, is not a derivative work of the Library, a
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Libr
creates an executable that is a derivative of the Library (be
contains portions of the Library), rather than a "work that u
library". The executable is therefore covered by this Licen
Section 6 states terms for distribution of such executables

When a "work that uses the Library" uses material from a heade
that is part of the Library, the object code for the work may be
derivative work of the Library even though the source code is
Whether this is true is especially significant if the work ca
linked without the Library, or if the work is itself a library
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small
functions (ten lines or less in length), then the use of the ob
file is unrestricted, regardless of whether it is legally a d
work. (Executables containing this object code plus portio
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Sec
Any executables containing that work also fall under Sectio
whether or not they are linked directly with the Library itse

6. As an exception to the Sections above, you may also compile
link a "work that uses the Library" with the Library to produc
work containing portions of the Library, and distribute tha
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and rever
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that
Library is used in it and that the Library and its use are cover
this License. You must supply a copy of this License. If the wo
during execution displays copyright notices, you must incl
copyright notice for the Library among them, as well as a refe
directing the user to the copy of this License. Also, you must
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including wha
changes were used in the work (which must be distributed unde
Sections 1 and 2 above); and, if the work is an executable link
with the Library, with the complete machine-readable "work

71

le form
ompany

e code, which

n a

opy
copy the

t

piled or
a
nd

ary

cause it

ses the
se.

r file

not.
n be
The

inline
ject
erivative
ns of the

or
e a
t work

se

the
ed by
rk
ude the
rence
do one

tever

ed
that

uses the Library", as object code and/or source code, so that

user can modify the Library and then relink to produce a modif

executable containing the modified Library. (It is underst
that the user who changes the contents of definitions files i
Library will not necessarily be able to recompile the applic
to use the modified definitions.)

b) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by offering access to co
from a designated place, offer equivalent access to copy the
specified materials from the same place.

d) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses th
Library" must include any data and utility programs needed f
reproducing the executable from it. However, as a special ex
the source code distributed need not include anything that i
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating sy
which the executable runs, unless that component itself acc
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not nor
accompany the operating system. Such a contradiction means
use both them and the Library together in an executable that y
distribute.

7. You may place library facilities that are a work based on th
Library side-by-side in a single library together with othe
facilities not covered by this License, and distribute such
library, provided that the separate distribution of the wor
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fac
that part of it is a work based on the Library, and explaining

where to find the accompanying uncombined form of the same wo

8. You may not copy, modify, sublicense, link with, or distri
the Library except as expressly provided under this License
attempt otherwise to copy, modify, sublicense, link with, o
distribute the Library is void, and will automatically term
rights under this License. However, parties who have receiv
or rights, from you under this License will not have their lic
terminated so long as such parties remain in full compliance

9. You are not required to accept this License, since you have
signed it. However, nothing else grants you permission to mo
distribute the Library or its derivative works. These actio
prohibited by law if you do not accept this License. Therefor
modifying or distributing the Library (or any work based on t
Library), you indicate your acceptance of this License to do
all its terms and conditions for copying, distributing or mo

72

the
ied
ood
n the
ation

py
above

e
or

ception,
s normally

stem on

ompanies

mally
you cannot
ou

e
r library
a combined
k based on

t
rk.

bute
Any
r
inate your
ed copies,
enses

not
dify or
ns are
e, by
he
so, and
difying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based
Library), the recipient automatically receives a license f
original licensor to copy, distribute, link with or modify t
subject to these terms and conditions. You may not impose any
restrictions on the recipients’ exercise of the rights gran
You are not responsible for enforcing compliance by third pa
this License.

11. If, as a consequence of a court judgment or allegation of p

infringement or for any other reason (not limited to patent i
conditions are imposed on you (whether by court order, agree
otherwise) that contradict the conditions of this License,

excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligation
License and any other pertinent obligations, then as a conse
may not distribute the Library at all. For example, if a paten
license would not permit royalty-free redistribution of th

all those who receive copies directly or indirectly through

the only way you could satisfy both it and this License would b
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceab
particular circumstance, the balance of the section is inte
and the section as a whole is intended to apply in other circum

It is not the purpose of this section to induce you to infringe
patents or other property right claims or to contest validit

such claims; this section has the sole purpose of protecting
integrity of the free software distribution system which is
implemented by public license practices. Many people have m
generous contributions to the wide range of software distri
through that system in reliance on consistent application o
system; it is up to the author/donor to decide if he or she is wi
to distribute software through any other system and a licens
impose that choice.

This section is intended to make thoroughly clear what is bel
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restrict
certain countries either by patents or by copyrighted inter
original copyright holder who places the Library under this
an explicit geographical distribution limitation excludi
so that distribution is permitted only in or among countries
excluded. In such case, this License incorporates the limit
written in the body of this License.

13. The Free Software Foundation may publish revised and/or
versions of the Library General Public License from time to t
Such new versions will be similar in spirit to the present ver
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If th
specifies a version number of this License which applies to i
"any later version", you have the option of following the ter
conditions either of that version or of any later version pub
the Free Software Foundation. If the Library does not specif
license version number, you may choose any version ever publ
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other

programs whose distribution conditions are incompatible w
write to the author to ask for permission. For software which

73

on the
rom the
he Library
further
ted herein.
rties to

atent
ssues),
ment or

they do not

s under this
quence you
t
e Library by
you, then
e to

le under any
nded to apply,
stances.

any
y of any
the

ade
buted
f that
lling
ee cannot

ieved to

ed in
faces, the
License may add

ng those countries,

not thus
ation as if

new
ime.
sion,

e Library
t and
ms and
lished by
y a
ished by

free
ith these,
is

copyrighted by the Free Software Foundation, write to the Fr ee

Software Foundation; we sometimes make exceptions for this . Our
decision will be guided by the two goals of preserving the fre e status
of all derivatives of our free software and of promoting the s haring

and reuse of software generally.
NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE ISON
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APFBIEALAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HRSLBERD/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTKF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARILAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCETHE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOABSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREEDIN'O
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHOMERAEWY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIAB TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRDE3ARR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWAREENEIF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSBIOF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greate st
possible use to the public, we recommend making it free softw are that
everyone can redistribute and change. You can do so by permit ting
redistribution under these terms (or, alternatively, unde r the terms of the

ordinary General Public License).

To apply these terms, attach the following notices to the lib rary. It is
safest to attach them to the start of each source file to most e ffectively
convey the exclusion of warranty; and each file should have a t least the
"copyright” line and a pointer to where the full notice is fou nd.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/o r
modify it under the terms of the GNU Library General Public

License as published by the Free Software Foundation; eithe r
version 2 of the License, or (at your option) any later versio n.

This library is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See th GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Pub lic

License along with this library; if not, write to the Free

Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 0213 9, USA.
Also add information on how to contact you by electronic and p aper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the libr ary, if

74

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by Jam es Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

B DOS GCC redistribution notice

This is the file "copying.dj". It does not apply to any source S
copyrighted by UCB Berkeley or the Free Software Foundation

Copyright Information for sources and executables that are marked
Copyright (C) DJ Delorie

24 Kirsten Ave

Rochester NH 03867-2954

This document is Copyright (C) DJ Delorie and may be distribu ted
verbatim, but changing it is not allowed.

Source code copyright DJ Delorie is distributed under the te rms of the
GNU General Public Licence, with the following exceptions:

* Any existing copyright or authorship information in any giv en source

file must remain intact. If you modify a source file, a notice to that
effect must be added to the authorship information in the sou rce file.

* binaries provided in djgpp may be distributed without sourc es ONLY if
the recipient is given sufficient information to obtain a co py of djgpp
themselves. This primarily applies to go32.exe, emu387, st ub.exe, and

the graphics drivers.

* modified versions of the binaries provided in djgpp must be
distributed under the terms of the GPL.

* objects and libraries linked into an application may be dist ributed
without sources.

Changes to source code copyright BSD or FSF are copyright DJ D elorie, but

fall under the terms of the original copyright.

A copy of the file "COPYING" is included with this document. | f you did not
receive a copy of "COPYING", you may obtain one from whence th is document

was obtained, or by writing:
Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

References

[1] Jim Conger.Microsoft Foundation Class PrimeiVaite Group, 1993.

[2] Samuel Harbison and Guy Steele, a Reference ManuaPrentice Hall, 1987.

75

[3] Brian Kernighan and Dennis RitchieThe C Programming LanguagePrentice
Hall, 1 edition, 1978.

[4] Don Libes.Obfuscated C and Other Mysteried/iley, 1993.
[5] Stanley LippmanC++ Primer. Addison Wesley, 2 edition, 1991.
[6] P.J. PlaugerThe Standard C++ Library Prentice Hall, 1994.

[7] X3J11.ANSI X3.159, ISO/IEC 9899:1998merican National Standards Institute,
International Standards Organisation, 1990.

76

