Data Structures and Algorithms

A C Norman. Michaelmas 1994

1 Introduction

If you look at computer systems from a very long way away yoghhbe led to
study the effect they have on societies and organisatiorigw their cost or per-
formance has improved over the last fifty-odd years. On therdtand if you look
at them very closely (say using an electron microscope)rtezasting questions
will probably relate to the way in which electric potenti@gange themselves
near junctions between different regimes in very slightipure silicon, and how
that relates to the construction of very fast elementaryches. Each view can be
both very broadly applicable and can be seen as essentigrtpar understand-
ing of computers. The difference is in the level afstraction being applied.
Intermediate abstraction levels allow us to focus on otkpeeats of our subject.
This course corresponds precisely to one such layer.

Below it (more detailed) comes a concern with programminglage syntax
and the pragmatic problems of writing and debugging codes Thurse is not
concerned about any particular language, or about prognagnsetyle or what
brand of computer is being used.

Above it (taking a broader view) will be issues that arise whdl programs
to solve complete problems are to be written. At this higleel one has to
worry about reading in data and displaying results, abolidatng input data,
debugging programs and estimating how much it might costetoagparticular
program written.

“Data structures and Algorithms” is a title for the systeimand coherent
parts of computer science that are sandwiched betweerkl kt ways of solving
nice neat well-defined problems — generally problems corezemwith finding
some particular piece of information buried in a quantityaf data, or of re-
structuring bulk data to make some future operations on reraonvenient. Quite
often the “data structure” and the “algorithm” bits of an mledesign are very
well entwined so it is hard to say which motivated the other.

It might seem that the study of simple problems and the ptasen of half-
page textbook-style fragments of code that solve them wmadée this first a
simple course and ultimately a boring one. Two extra demandswo observa-
tions make this a false prediction. The demands are

Efficiency: This course is driven by the idea that if you can analyse alenob
well enough you ought to be able to find the very best way ofisglit.
That usually means the most efficient procedure or reprasentpossible.
Note that this is the best solution not just from among alldhes that we

can thing of at present, but the best from among all solutilbasthere ever
could be, including ones that might be extremely elaboratédifticult to
program or are not yet invented.

Correctness: A way of solving a problem will (generally) only be acceptezié
if we can demonstrate thatatwaysworks. This of course includes proving
that the efficiency of the method is as claimed.

It turns out that for many problems, even simple-looking Syribere are a
remarkably large number of candidate solutions. And oftggnschanges in the
assumptions made can render different methods attraétiveffective computer
scientist needs to have a good awareness of the range obilibssi that can
arise, and a feel for when it will be worth checking text-bsdk see if there
is a good standard solution to apply. Now with a range of fbsssolutions
available the problems of correctness and efficiency réxtéy— the analysis of
the behaviour of a fragment of code can be technically chgiiey, and proving
that some proposed scheme really can not be improved on astatways really
hard. Several of the techniques covered in this course dieate in the sense
that sloppy explanations of them will miss important deta@ind sloppy coding
of them will lead to code with subtle bugs. Beware!

Almost all of the data structures and the algorithms that gb them pre-
sented here are of real practical value, and in a great masgsaaprogrammer
who failed to use them would be at risk of inventing dramadltyoaorse solutions
to the problems addressed. Or, of course in rare cases,diadiaw and yet better
solution — but not recognising the importance of what hatlipeen achieved!

A final feature of this course is that a fair proportion of tdeas it presents
are really ingenious. Often in retrospect they are not thatalt to understand or
justify, but one might very reasonably be left with a stroagling of “l wish | had
thought of that” and an admiration for the cunning and insajtthe originator.

2 Course content and textbooks

Even a cursory inspection of standard texts related to thisse should be daunt-
ing. There are some incredibly long books full of amazingadeand there can
be pages of mathematical analysis and justification for eumple-looking pro-
grams. This is in the nature of the subject. An enormous amisknown and
proper, precise explanations of it can get quite techni€aitunately this lecture

course does not have time to cover everything, so it will bié boound a col-
lection of sample problems or case studies. The majorithe$e will be ones
that are covered well in all the textbooks, and which are ehdsr their practical
importance as well as their intrinsic intellectual contdftom year to year some
of the other topics will change, and this includes the polssibhat lectures will
cover material not explicitly mentioned in these notes.

A range of textbooks will be listed here, and the differenoks suggested
all have quite different styles, even though they genemdisee on what topics to
cover. It will make very good sense to take the time to reat@ecof several of
them in a library before spending a lot of money on any — déferbooks will
appeal to different readers. All the books mentioned araegitde candidates for
the long-term reference shelf that any computer scientitkeep: they are not
the sort of text that one studies just for one course or exaniten forgets.

Cormen, Leiserson and Rivest, “Introduction to Algorithms”. A heavy-
weight book at 1028 pages long, and naturally covers a fitthee material
at slightly greater depth than the other texts listed hergcludes careful
mathematical treatment of the algorithms that is discysses would be a
natural candidate for a reference shelf. Despite its butk@mecision this
book is written in a fairly friendly and non-daunting stylmd so against
all the expectations raised by its length it is my first-clea@gaggestion. The
paperback edition is even acceptably cheap.

Sedgewick, “Algorithms” (various editions) is a respectable and less daunting
book. As well as a general version, Sedgewick’s book comemiiants
which give sample implementations of the algorithms thalisctusses in
various concrete programming languages, notably therevisrsion that
uses Modula-3 and another that usestCl suspect that you would prob-
ably do as well to get the version not tied to any particulaglaage, and
invest in books specifically concerned with Modula-3 ar+af you want
to learn how to use those languages. But it is up to you!

Aho, Hopcroft and Ullman, “Data Structures and Algorithms” Another
good book by well-established authors. Select this or Seitfeon the
basis of your personal response to the authors’ style.

Knuth, “The Art of Computer Programming, vols 1-3”. When you look at the
date of publication of this series, and then observe thassiill in print, you
will understand that it is a classic. Even though the predent is now

3

outdated (eg. many procedures are described by giving gmogyfor them
written in a specially invented imaginary assembly languealled MIX),

and despite advances that have been made since the latestsettiis is still

a major resource. Many algorithms are documented in the édexercises
at the end of chapters, so that the reader must either fohomugh to the
original author’s description of what they did, or follow Kih's hints and
re-create the algorithms anew. The whole of volume 3 (notspedally
slender tome) is devoted just to sorting and searching, giwisg some
insight into how much rich detail can be mined from such appty simple
problems.

Manber, “Introduction to Algorithms” is strong on motivation, case studies and
exercises.

Your attention is also drawn tGraham, Knuth and Patashnik “Concrete
Mathematics” provides a lot of very useful background and could well beeagr
help for those who want to polish up their understanding efrttathematical tools
used in this course. Itis also an entertaining book for thvase are already com-
fortable with these techniques, and is generally recomeeiad a “good thing”.
It may be especially useful to those on the Diploma course hdne had less
opportunity to lead up to this course through ones on Disdvithematics.

3 Related lecture courses

This course assumes some knowledge (but not very detailedl&dge) of pro-
gramming in a traditional “procedural” language of the styf C, Pascal, Modula
2 or Modula 3. Examples given may be written in syntax strpmgminiscent of
one of these, but little concern will be given (in lecturesromarking examina-
tion scripts) to syntactic details. Fragments of prograthhbya explained in words
rather than in any special programming language when tieisisé¢o be best for
clarity.

1B students will be able to look back on the 1A Discrete Mathtes course,
and should therefore be in a position to understand (andeh&énecessary repro-
duce in examination) the analysis of recurrence formulaedive the computing
time of some methods, while Diploma and Part 2(G) studerdalditake these as
results just quoted in this course.

Finite automata and regular expressions arise in somerpati&tiching algo-
rithms. These are the subject of a course that makes a speaslof the capabil-

4

ities of those operations that can be performed strictlydifusually VERY small
amounts of) memory. This in turn leads into the course eatitiComputation
Theory” that explores (among other things) just how well vae talk about the
limits of computability without needing to describe exgotthat programming
language or brand of computer is involved. A course on dlgons (as does one
on computation theory) assumes that computers will havewahmemory and
can run for as long as is needed to solve a problem. The latese@n “Com-
plexity Theory” tightens up on this, trying to establish asd of problems that can
be solved in “reasonable” amounts of time.

4 What is in these notes

The first thing to make clear is that these notes are not in ayyarsubstitute for
having your own copy of one of the recommended textbooks. ttismparticular
course the standard texts are sufficiently good and suftigieheap that there is
no point in trying to duplicate them.

Instead these notes will provide skeleton coverage of themahused in the
course, and of some that although not used this year may heletnext. They
may be useful places to jot references to the page numbédre main texts where
full explanations of various points are given, and can hefly@nvorganising revi-
sion.

These notes are not a substitute for attending lecturesyandpand reading
the textbooks. In places the notes contain little more to@ictheadings, while
even when they appear to document a complete algorithm tlagygioss over
important details.

The lectures will not slavishly follow these notes, and fgamination pur-
poses it can be supposed that questions will be set on whaeves lectured
directly or was very obviously associated with the mateaglectured, so that all
diligent students will have found it while doing the readwigextbooks properly
associated with taking a seriously technical course liledhe.

For the purpose of guessing what examination question nagpear, two
suggestion can be provided. The first involves checking papers for ques-
tions relating to this course as given by the current andipuedecturers — there
will be plenty of sample questions available and even thdbgltourse changes
slightly from year to yeamost past questions will still be representative of what
will be asked this year. A broad survey of past papers willskimat from time
to time successful old questions have been recycled: whaeetiahthis practice

will continue? The second way of spotting questions is tpéas these notes
and imagine that the course organisers have set one quéstiexdery 5 cm of

printed notes (I believe that the density of notes meanghiea¢ is about enough
material covered to make this plausible). Then each yean fre large pool of

guestions a suitable number could be selected using oneegishudo-random
number generators discussed later.

5 Fundamentals

An algorithmis a systematic process for solving some problem. This eouit
take the word ‘systematic’ fairly seriously. It will meanaththe problem being
solved will have to be specified quite precisely, and thadvteefny algorithm can
be considered complete it will have to be provided with a ptbat it works and
an analysis of its performance. In a great many cases alleofnipenuity and
complication in algorithms is aimed at making them fast gatucing the amount
of memory that they use) so a justification that the intendefopmance will be
attained is very important.

5.1 Costs and scaling

How should we measure costs? The problems considered icdbise are all
ones where it is reasonable to have a single program thatwedkpt input data
and eventually deliver a result. We look at the way costs vatly the data. For
a collection of problem instances we can assess solutiotvganways — either
by looking at the cost in the worst case or by taking an average over all
the separate instances that we have. Which is more useful? hWheasier to
analyse?

In most cases there are “large” and “small” problems, andesamat naturally
the large ones are costlier to solve. The next thing to loak ladw the cost grows
with problem size. In this lecture course size will be meadunformally by
whatever parameter seems natural in the class of problemg lmoked at. For
instance when we have a collectionrohumbers to put into ascending order the
numbem will be taken as the problem size. For any combination of rdligin (A)

IAs | write these notes | increasingly feel that random sedeatf questions in this way would
be the best way of ensuring that over a number of years akt pathe course were given proper
examination coverage and all students were treated ag &sithlind luck can ever be said to treat
anybody.

and computer systent{ to run the algorithm on, the cdstf solving a particular
instance P) of a problem might be some functigitA, C, P). This will nottend

to be a nice tidy function! If one then takes the greatestevaliuthe functionf
as P ranges over all problems of sizeone gets what might be a slightly simpler
function f'(A, C,n) which now depends just on the size of the problem and not
on which particular instance is being looked at.

5.2 Big-© notation

The above is still much too ugly to work with, and the depemgeon the details
of the computer used adds quite unreasonable complicafioaway out of this
is first to adopt a generic idea of what a computer is, and nmea&sists in abstract
“program steps” rather than in real seconds, and then teagrignore constant
factors in the cost-estimation formula. As a further siriigdition we agree that
all small problems can be solved pretty rapidly anyway, anthe main thing that
matters will be how costs grow as problems do.

To cope with this we need a notation that indicates that a tddthe detail
is being abandoned. The one used is cabedotation (there is a closely related
one called “O notation” (pronounced as big-Oh)). If we sast th functiong(n)
is ©(h(n)) what we mean is that there is a constasuch that for all sufficiently
largen we haveg(n) andh(n) within a factor ofk of each other.

If we did some very elaborate analysis and found that thetexest of solving
some problem was a messy formula such@as — 11n2log(n) 4 1051 log?(n) +
77631 then we could just write the cost &n?*) which is obviously much easier
to cope with, and in most cases is as useful as the full formula

Sometimes is is not necessary to specify a lower bound onasieof some
procedure — just an upper bound will do. In that case the iotat(n) =
O(h(n)) would be used, and that that we can find a constant k such thsuifiio>
ciently largen we haveg(n) < kh(n).

Note that the use of an sign with these notations is really a little odd, but the
notation has now become standard.

The use ob and related notations seem to confuse many students, sargere
some examples:

1. 2% = O(z?)

2. 23 isnot O(z?)

2Time in seconds, perhaps

3. x° can probably be computed in tini 1) (if we suppose that our computer
can multiply two numbers in unit time).

4. n! can be computed i@ (n) arithmatic operations, but has value bigger than
O(n*) for any fixedk.

5. A numbern can be represented by a string@flog n) digits.

Please note the distinction between the value of a functidrttee amount of time
it may take to compute it.

5.3 Growth Rates

Suppose a computer is capable of performing 1000000 “dpesitper second.
Make yourself a table showing how long a calculation woulgtan such a ma-
chine if a problem of size: takes each ofog(n), n, nlog(n), n?, n® and2”
operations. Consider = 1,10, 100, 1000 and 1000000. You will see that the
there can be real practical implications associated witer@int growth rates. For
sufficiently largen any constant multipliers in the cost formula get swamped: fo
instance ifn > 25 then2™ > 1000000n — the apparently large scale factor of
1000000 has proved less important that the difference betweenrliaed expo-
nential growth. For this reason is feels reasonable to sgpwat an algorithm
with costO(n?) will out-perform one with cos®(n?) even if the® notation con-
ceals a quite large constant factor weighing againséthe’) procedure’.

5.4 Data Structures

Typical programming languages such as Modula (2 or 3) or @igeoprimitive
data types such as integers, reals, boolean values angsstilimey allow these
to be organised into arrays, where the arrays generally $tatieally determined
size. It is also common to provide for record data types, wtmar instance of
the type contains a number of components, or possibly psinbeother data. C
in particular allows the user to work with a fairly low-levielea of a pointer to a
piece of data.
In this course a “Data Structure” will be implemented in terohthese language-

level constructs, but will always be thought of in assooiativith a collection of

30f course there are some practical cases where we never tublerps large enough to make
this argument valid, but it is remarkable how often thistlig sloppy argument works well in the
real world.

operations that can be performed with it and a number of stersty conditions
which must always hold. One example of this will be the suet'Sorted Vec-
tor” which might be thought of as just a normal array of nunstart subject to the
extra constraint that the numbers must be in ascending.dr@@ing such a data
structure may make some operations (for instance findintatgest, smallest and
median numbers present) easier, but setting up and pregehe constraint (in
that case ensuring that the numbers are sorted) may invaie w

Frequently the construction of an algorithm involves thsigie of data struc-
tures that provide natural and efficient support for the nmagbrtant steps used
in the algorithm, and this data structure then calls fortfertcode design for the
implementation of other necessary but less frequentlyoperd operations.

5.5 Abstract Data Types

When designing Data Structures and Algorithms it is desgradblavoid making
decisions based on the accident of how you first sketch out@emf code. All
design should be motivated by the explicit needs of the eptdin. The idea of
an Abstract Data Type (ADT) is to support this (the idea isagally considered
good for program maintainablity as well, but that is no greacern for this
particular course). The specification of an ADT is a list & tperations that may
be performed on it, together with the identities that theisa This specification
doesnotshow how to implement anything in terms of any simpler dapesy The
user of an ADT is expected to view this specification as thepieta description
of how the data type and its associated functions will bekaveo other way of
interrogating or modifying data is available, and the resgao any circumstances
not covered explicitly in the specification is deemed undfin

To help make this clearer, here is a specification for an AbstData Type
called STACK:

make_empty_stack(): manufactures an empty stack.
is_.empty_stack(s): sis a stack. Returns TRUE if and only if it is empty.

push(z, s): zis an integers is a stack. Returns a non-empty stack which can be
used withtop andpop. is_empty_stack(push(z, s)) = FALSE.

top(s): sis anon-empty stack; returns an integep(push(z, s)) = z.

pop(s): s is a non-empty stack; returns a stapkp(push(z, s)) = s.4

The idea here is that the definition of an ADT is forced to ctilldl the essen-
tial details and assumptions about how a structure mustedbat the expecta-
tions about common patterns of use and performance regaitsnare generally
kept separate). It is then possible to look for different svay mechanising the
ADT in terms of lower level data structures. Observe thathie $TACK type
defined above there is no description of what happens if attssrto compute
top(make_empty_stack()). This is therefore undefined, and an implementation
would be entitled to danything in such a case — maybe some semi-meaningful
value would get returned, maybe an error would get repontgehaps the com-
puter would crash its operating system and delete all yoes.fif an ADT wants
exceptional cases to be detected and reported this musebeieg just as clearly
as it specifies all other behaviour.

The ADT for a stack given above does not make allowance fgptisé opera-
tion to fail, although on any real computer with finite memamnust be possible
to do enough successive pushes to exhaust some resourcelinfitation of a
practical realisation of an ADT is not deemed a failure to lenpent the ADT
properly: an algorithms course does not really admit to thetence of resource
limits!

There can be various different implementations of the STA@Kadype, but
two are especially simple and commonly used. The first reptsshe stack as
a combination of an array and a counter. Thesh operation writes a value into
the array and increments the counter, wiptg does the converse. In this case
the push andpop operations work by modifying stacks in place, so after use of
push(s) the originals is no longer available. The second representation of stacks
is as linked lists, where pushing an item just adds an exitaacéhe front of a
list, and popping removes it.

Examples given later in this course should illustrate thakimg an ADT out
of even quite simple sets of operations can sometimes freérom enough pre-
conceptions to allow the invention of amazingly varied edtions of implemen-
tations.

4There are real technical problems associated with #Hesfgn here, but since this is a course
on data structures not an ADTs it will be glossed over. Onélero relates to whether is in
fact still valid afterpush(z, s) has happened. Another relates to the idea that equalityatan d
structures should only relate to their observable behadod should not concern itself with any
user-invisible internal state.

10

5.6 Models of Memory

Through most of this course there will be a tacit assumptinat the computers
used to run algorithms will always have enough memory, aatttiis memory can
be arranged in a single address space so that one can havkignans memory
addresses or pointers. Put another way, one can set up a ammgy of integers
that is as large as you ever need.

There are of course practical ways in which this idealisatiay fall down.
Some archaic hardware designs may impose quite small lonitee size of any
one array, and even current machines tend to have but finibei@isof memory,
and thus upper bounds on the size of data structure that daanoied.

A more subtle issue is that a truly unlimited memory will naetégers (or
pointers) of unlimited size to address it. If integer ari#tia on a computer works
in a 32-bit representation (as is at present very commonm) tthe largest integer
value that can be represented is certainly less ##aand so one can not sensibly
talk about arrays with more elements than that. This linpresents only a few
gigabytes of memory: a large quantity for personal machimegbe but a problem
for large scientific calculations on supercomputers now,@me for workstations
quite soon. The resolution is that the width of integer supsaddress calcula-
tion has to increase as the size of a computer or problem doesso to solve
a hypothetical problem that needed an array of $i#&" all subscript arithmetic
would have to be done using 100 decimal digit precision wagki

It is normal in the analysis of algorithms to ignore thesebpgms and assume
that element of an arrag[i] can be accessed in unit time however large the
array is. The associated assummption is that integer agtibroperations needed
to compute array subscripts can also all be done at unit ddgs makes good
practical sense since the assumption holds pretty wellftuall problems that
any particular machine has room enough to solve.

5.7 Models of Arithmetic

The normal model for computer arithmetic used here will k= #ach arithmetic
operation takes unit time, irrespective of the values ofrtbmbers being com-
bined and regardless of whether fixed or floating point nusiaes involved. The
nice way that notation can swallow up constant factors in timing estirmagn-
erally justifies this. Again there is a theoretical probldrattcan safely be ignored
in almost all cases — an the specification of an algorithm (pAbstract Data
Type) there may be some integers, and in the idealised ceswithimply that

11

the procedures described apply to arbitrarily large imt®géncluding ones with
values that will be many orders of magnitude larger tharvaatomputer arith-
metic will support directly. In the fairly rare cases whehéstmight arise cost
analysis will need to make explicit provision for the extrarwinvolved in doing

multiple-precision arithmetic, and then timing estimatésgenerally depend not
only on the number of values involved in a problem but on thealoer of digits

(or bits) needed to specify each value.

5.8 Worst, Average and Amortised costs

Usually the simplest way of analysing an algorithms is to fimelworst case per-
formance. It may help to imagine that somebody else is piogdke algorithm,
and you have been challenged to find the very nastiest ddteahde fed to it to
make it perform really badly. In doing so you are quite eatitto invent data that
looks very unusual or odd, provided it comes within the stagange of applica-
bility of the algorithm. For many algorithms the “worst cageapproached often
enough that this form of analysis is useful for realists al$ agepessimists!

Average case analysis ought by rights to be of more intecestdst people
(worst case costs may be really important to the designesysiéms that have
real-time constraints, especially if there are safety iogpions in failure). But
before useful average cost analysis can be performed oms me@odel for the
probabilities of all possible inputs. If in some particubgsplication the distri-
bution of inputs is significantly skewed that could invatel@analysis based on
uniform probabilities. For worst case analysis it is onlgessary to study one
limiting case; for average analysis the time taken for ewase of an algorithm
must be accounted for and this makes the mathematics a th@sually).

Amortised analysis is applicable in cases where a datatsteisupports a
number of operations and these will be performed in sequeQcite often the
cost of any particular operation will depend on the histdrwbat has been done
before, and sometimes a plausible overall design makes opesations cheap
at the cost of occasional expensive internal re-organisaif the data. Amor-
tised analysis treats the cost of this re-organisation @gadint responsibility of
all the operations previously performed on the data strecamd provide a firm
basis for determining if it was worth-while. Again it is tyailly more technically
demanding than just single-operation worst-case analysis

A good example of where amortised analysis is helpful is ggebcollec-
tion (see later) where it allows the cost of a single largeeesjpve storage re-
organisation to be attributed to each of the elementargation transactions that

12

made it necessary. Note that (even more than is the casedi@ge/cost analysis)
amortised analysis is not appropriate for use where rgad-tionstraints apply.

6 Simple Data Structures

This section introduces some simple and fundamental dp&styVariants of all
of these will be used repeatedly in later sections as thes lbasimore elaborate
structures.

6.1 Machine data types: arrays, records and pointers

It first makes sense to agree that boolean values, charastgers and real
numbers will exist in any useful computer environment. Il wenerally be as-
sumed that integer arithmetic never overflows and the flggbimint arithmetic
can be done as fast as integer work and that rounding errongtdexist. There
are enough hard problems to worry about without having te fgz to the exact
limitations on arithmetic that real hardware tends to ingdoBhe so called “pro-
cedural” programming languages provide for vectors oryarad these primitive
types, where an integer index can be used to select out outiaybar element of
the array, with the access taking unit time. For the momastahly necessary to
consider one-dimensional arrays.

It will also be supposed that one can declare record data typel that some
mechanism is provided for allocating new instances of xand (where appro-
priate) getting rid of unwanted orfesThe introduction of record types naturally
introduces the use of pointers. Note that languages like klige these facility
but not (in the core language) arrays, so sometimes it wilvbeh being aware
when the fast indexing of arrays is essential for the propgiementation of an
algorithm. Another issue made visible by ML is that of upddtey: in ML the
special constructaef is needed to make a cell that can have its contents changed.
Again it can be worthwhile to observe when algorithms are ingakessential use
of update-in-place operations and when that is only an ental part of some
particular encoding.

This course will not concern itself much about type secuigspite the im-
portance of that discipline in keeping whole programs selisistent), provided
that the proof of an algorithm guarantees that all operatp@rformed on data are
proper.

SWays of arranging this are discussed later

13

6.2 “LIST” as an abstract type

The type LIST will be defined by specifying the operations thawust support.

The version defined here will allow for the possibility ofdeecting links in the

list. A really full and proper definition of the ADT would neé¢d say something
rather careful about when parts of lists are really the sasudhat altering one
alters the other) and when they are similar in structure ®iindt. Such issues
will be ducked for now. Also type-checking issues about jtpes of items stored
in lists will be skipped over here, although most examples first illustrate the
use of lists will use lists of integers.

make_empty_list(): manufactures an empty list.

is_.empty_list(s): sis alist. Returns TRUE if and only ifis empty.
cons(x, s): x is anything,s is a list.is_empty_list(conqz, s)) = FALSE.
first(s): sis anon-empty list; returns somethirfgst(congz, s)) =«
rest(s): sis anon-empty list; returns a listest(congz, s)) = s.

setrest(s, s'): s ands’ are both lists, withs non-empty. After this caltest(s) =
s', regardless of whatst(s) was before.

You may note that the LIST type is very similar to the STACK typentioned
earlier. In some applications it might be useful to have aaveiron the LIST
data type that supportedsgtfirst operation to update list contents (as well as
chaining) in place, or agualtest to see if two non-empty lists were manufactured
by the same call to theonsoperator. Applications of lists that do not nesst rest
may be able to use different implementations of lists.

6.3 Lists implemented using arrays and using records

A simple and natural implementation of lists is in terms oéaard structure. In
C one might write

typedef struct Non_Enpty_ Li st

{ int first; [+ Just do lists of integers here */
struct List *rest; /* Pointer to rest =*/

} Non_Enpty_ List;

typedef Non_Enpty List =*List;

14

where all lists are represented as pointers. In C it woulodpg natural to use the
special NULL pointer to stand for an empty list. | have notwh@ode to allocate
and access lists here.

In ML the analogous declaration would be

datatype list = enpty |
non_enpty of int » ref |ist;
fun make_enpty list() = enpty;
fun cons(x, s) = non_enpty(x, ref s);
fun first(non_enpty(x, _)) = X;
fun rest(non_empty(_, s)) =1!s;

where there is a little extra complication to allow for thespibility of updating
the rest of a list.

A rather different view, and one more closely related to mathine archi-
tectures, will store lists in an array. The items in the amaybe similar to the
C Non_Enpt y_Li st record structure shows above, but thest field will just
contain an integer. An empty list will be represented by thie® zero, while any
non-zero integer will be treated as the index into the arragre the two compo-
nents of a non-empty list can be found. Note that there is ed f&r parts of a list
to live in the array in any especially neat order — sever#s kksin be interleaved
in the array without that being visible to users of the ADT.

Controlling the allocation of array items in applicationgiswas this is the
subject of a later section.

If it can be arranged that the data used to represent the fiidstesst compo-
nents of a non-empty list are the same size (for instance inaht be held as
32-bit values) the array might be just an array of storagésiofithat size. Now
if a list somehow gets allocated in this array so that suceestems in it are
in consecutive array locations it seems that about half tin@ge space is being
wasted with the est pointers. There have been implementations of lists that try
to avoid that by storing a non-empty list as a first elementiéasl) plus a boolean
flag (which takes one bit) with that flag indicating if the né&m stored in the
array is a pointer to the rest of the list (as usual) or is it fself the rest of the
list (corresponding to the list elements having been laidheatly in consecutive
storage units).

The variations on representing lists are described hete lbetause lists are
important and widely-used data structures, and becausagtructive to see how
even a simple-looking structure may have a number of difteraplementations
with different space/time/convenience trade-offs.

15

The links in lists make it easy to splice items out from the aifedof lists or
add new ones. Scanning forwards down a list is easy. Listagemne natural
implementation of stacks, and are the data structure ofcehioi many places
where flexible representation of variable amounts of dateaisted.

6.4 Double-linked Lists

A feature of lists is that from one item you can progress alth@glist in one
direction very easily, but once you have taken gt of a list there is no way of
returning (unless of course you independently rememberenwine original head
of your list was). To make it possible to traverse a list intbdirections one could
define a new type called DLL (for Double Linked List) contaigioperators

LHS _end: a marker used to signal the left end of a DLL.
RHS_end: a marker used to signal the right end of a DLL.
rest(s): sis DLL other than RHSnd, returns a DLL.

previous(s): s is a DLL other than LHSnd; returns a DLL. Provided the rest
and previous functions are applicable the equations mesi(us(s)) = s
and previous(rest(s)) = s hold.

Manufacturing a DLL (and updating the pointers in it) is blig more delicate
than working with ordinary uni-directional lists. It is moally necessary to go
through an intermediate internal stage where the conditidrbeing a true DLL
are violated in the process of filling in both forward and baakds pointers.

6.5 Stack and queue abstract types

The STACK ADT was given earlier as an example. Note that tha itemoved
by thepop operation was the most recent one addegibgh. A QUEUE® is in
most respects similar to a stack, but the rules are changbdstihe item accessed
by top and removed byop will be the oldest one inserted lpush [one would
re-name these operations on a queue from those on a stadleta tieis]. Even if
finding a neat way of expressing this in a mathematical detson of the QUEUE
ADT may be a challenge the idea is not. Looking at their ADTggasts that

6sometimes referred to a FIFO: First In First Out.

16

stacks and queues will have very similar interfaces. It imetimes possible to
take an algorithm that uses one of them and obtain an integesiriant by using
the other.

6.6 Vectors and Matrices

The Computer Science notion of a vector is of something thgpas two oper-
ations: the first takes an integer index and returns a valte.s€cond operation
takes an index and a new value and updates the vector. Whenoa igecreated
its size will be given and only index values inside that ppeesfied range will be
valid. Furthermore it will only be legal to read a value aftdras been set — i.e.
a freshly created vector will not have any automatically i initial contents.
Even something this simple can have several different ptessealisations.

At this stage in the course | will just think about implemeugtivectors as as
blocks of memory where the index value is added to the basessidf the vector
to get the address of the cell wanted. Note that vectors afranp objects can
be handled by multiplying the index value by the size of thgects to get the
physical offset of an item in the array.

There are two simple ways of representing two-dimensioaadl (ndeed ar-
bitrary multi-dimensional) arrays. The first takes the vihat ann by m array
IS just a vector withm items, where each item is a vector of length The other
representation starts with a vector of lengthvhich has as its elements the ad-
dresses of the starts of a collection of vectors of lengthOne of these needs a
multiplication (bym) for every access, the other has a memory access. Although
there will only be a constant factor between these costsiatdiv level it may
(just about) matter, but which works better may also depenthe exact nature
of the hardware involved.

There is scope for wondering about whether a matrix shouitdred by rows
or by columns (for large arrays and particular applicatiins may have a big
effect on the behaviour of virtual memory systems), and hpeci&l cases such
as boolean arrays, symmetric arrays and sparse arraysidbotgpresented.

6.7 Graphs

If a graph has vertices then it can be represented by an “adjacency matrix”
which is a boolean matrix with entry;, ; true only if the the graph contains an
edge running from vertexto vertex;. If the edges carry data (for instance the
graph might represent an electrical network with the edgésgresistors joining

17

various points in it) then the matrix might have integer edats (say) instead of
boolean ones, with some special value reserved to meanriko li

An alternative representation would represent each védayexn integer, and
have a vector such that elemeérin the vector holds the head of a list of all the
vertices connected directly to edges radiating from vertex

The two representations clearly contain the same infoonabut they do not
make it equally easily available. For a graph with only a felges attached to
each vertex the list-based version may be more compactt aedainly makes it
easy to find a vertex’s neighbours, while the matrix form givestant responses to
gueries about whether a random pair of vertices are joinedl(@specially when
there are very many edges, and if the bit-array is storedguhttk make full use
of machine words) can be more compact.

7 ldeas for Algorithm Design

Before presenting collections of specific algorithms thitisa presents a num-
ber of ways of understanding algorithm design. None of tla@seguaranteed to
succeed, and none are really formal recipes that can beedpplit they can still
all be recognised among the methods documented later irothee:

7.1 Recognise a variant on a known problem

This obviously makes sense! But there can be real inventsgeimeseeing how a
known solution to one problem can be used to solve the eadignticky part of
another. See the Graham Scan method for finding a convexsah dlustration
of this.

7.2 Reduction to a simpler problem

Reducing a problem to a smaller one tends to go hand in handimdtictive
proofs of the correctness of an algorithm. Almost all thenepkes of recursive
functions you have ever seen are illustrations of this aggro In terms of plan-
ning an algorithm it amounts to the insight that it is not resesy to invent a
scheme that solves a whole problem all in one step — just sooeegs that is
guaranteed to make non-trivial progress.

18

7.3 Divide and Conquer

This is one of the most important ways in which algorithmsenbgen developed.
It suggests that a problem can sometimes be solved in theps: st

1. divide: If the particular instance of the problem that is presensedery
small then solve it by brute force. Otherwise divide the jprobinto two
(rarely more) parts, usually all of the sub-componentsdpeie same size.

2. conquer. Use recursion to solve the smaller problems.

3. combine Create a solution to the final problem by using informatiamir
the solution of the smaller problems.

In the most common and useful cases both the dividing and icongstages
will have linear cost in terms of the problem size — certamhe expects them to
be much easier tasks to perform than the original problenmeddo be. Merge-
sort will provide a classical illustration of this approach

7.4 Estimation of costs via recurrence formulae

Consider particularly the case of divide and conquer. Supfite for a problem
of sizen the division and combining steps invol¢¥n) basic operatiorfs Sup-
pose furthermore that the division stage splits an origimablem of sizen into
two sub-problems each of sizg'2. Then the cost for the whole solution process
is bounded byf(n), a function that satisfies

F(n) = 2£(n/2) + kn

wherek is a constant > 0) that relates to the real cost of the division and
combination steps. This recurrence can be solved tg@et= O(n log(n)).

More elaborate divide and conquer algorithms may lead teeemnore than
two sub-problems to solve, or sub-problems that are nothaktthe size of the
original, or division/combination costs that are not linean. There are only a
few cases important enough to include in these notes. Thaditise recurrence
that corresponds to algorithms that at linear cost (cohstBproportionality k)
can reduce a problem to one smaller by a fixed fagtor

9(n) = g(an) + kn

I useO here rather tha® because | do not mind much if the costs are less than linear.

19

wherea < 1 and agairk > 0. This has the solution(n) = ©(n). If a is close to

1 the constant of proportionality hidden by tBenotation may be quite high and

the method might be correspondingly less attractive thayhhtiave been hoped.
A slight variation on the above is

g(n) = pg(n/q) + kn

with p andq integers. This arises when a problem of sizean be split intg
sub-problems each of size/q. If p = ¢ the solution grows like: log(n), while
for p > ¢ the growth function is:” with 3 = log(p)/ log(q).

A different variant on the same general pattern is

gn) =glan)+k,a <1,k >0

where now dixedamount of work reduces the size of the problem by a fagtor
This leads to a growth functidiog(n).

7.5 Dynamic Programming

Sometimes it makes sense to work up towards the solution tokdgm by build-
ing up a table of solutions to smaller versions of the problémr reasons best
described as “historical” this process is known as dynamigm@mming. It has
applications in various tasks related to combinatoriatdea— perhaps the sim-
plest example is the computation of Binomial Coefficients bijdig up Pascal’s
triangle row by row until the desired coefficient can be refidioectly.

7.6 Greedy Algorithms

Many algorithms involve some sort of optimisation. The idgdgreed” is to
start by performing whatever operation contributes as nasamny single step can
towards the final goal. The next step will then be the best ttappcan be taken
from the new position and so on. See the procedures notedoatior finding
minimal spanning sub-trees as examples of how greed candegubd results.

7.7 Back-tracking

If the algorithm you need involves a search it may be that tsacking is what is
needed. This splits the conceptual design of the searcleguoe into two parts —
the first just ploughs ahead and investigate what it thinkisdsnost sensible path

20

to explore. This first part will occasionally reach a dead,eamt this is where
the second, the backtracking, part comes in. It has kepa éfiormation around
about when the first part made choices, and it unwinds alutaions back to
the most recent choice point then resumes the search dovthesrgath. The
language Prolog makes an institution of this way of desigiode. The method
is of great use in many graph-related problems.

7.8 Hill Climbing

Hill Climbing is again for optimisation problems. It first reiges that you find

(somehow) some form of feasible (but presumably not opdimalution to your

problem. Then it looks for ways in which small changes can béerto this so-
lution to improve it. A succession of these small improvetaenight lead even-
tually to the required optimum. Of course proposing a wayrtd §uch improve-
ments does not of itself guarantee that a global optimum eviélr be reached:
as always the algorithm you design is not complete until yaxetproved that it
always ends up getting exactly the result you need.

7.9 Look for wasted work in a simple method

It can be productive to start by designing a simple algoritbreolve a problem,
and then analyse it to the extent that the critically cos#istpof it can be identi-
fied. It may then be clear that even if the algorithm is notroptiit is good enough
for your needs, or it may be possible to invent techniquesakglicitly attack its
weaknesses. Shellsort can be viewed this way, as can tlogaiaborate ways
of ensuring that binary trees are kept well balanced.

7.10 Seek a formal mathematical lower bound

The process of establishing a proof that some task must taleast a certain
amount of time can sometimes lead to insight into how an dlguarattaining the
bound might be constructed. A properly proved lower bound also prevent
wasted time seeking improvement where none is possible.

21

8 The TABLE Data Type

This section is going to concentrate on finding informatibatthas been stored
in some data structure. The cost of establishing the daiatate to begin with
will be thought of as a secondary concern. As well as beingmapt in its own
right, this is a lead-in to a later section which extends aarieg the collection of
operations to be performed on sets of saved values.

8.1 Operations that must be supported

For the purposes of this description we will have just onéet@bthe entire uni-

verse, so all the table operations implicitly refer to thiseo Of course a more
general model would allow the user to create new tables atidate which ones
were to be used in subsequent operations, so if you want yountagine the

changes needed for that.

clear_table(): After this the contents of the table are considered undefined

set(key, value): This stores a value in the table. At this stage the types th k
and values have is considered irrelevant.

get(key): If for some key value k an earlier use of set(k, v) has beeropekd
(and no subsequent set(K) followed it) then this retrieves the stored value
V.

Observe that this simple version of a table does not providayaof asking if
some key isin use, and it does not mention anything abouttimdar of items that
can be stored in a table. Particular implementations wilf c@ncern themselves
with both these issues.

8.2 Performance of a simple array

Probably the most important special case of a table is whekeis are known to
be drawn from the set of integers in the rarige., n for some modest. In that
case the table can be modelled directly by a simple vectar bathsetandget
operations have unit cost. If the key values come from sorerahteger range
(saya, ..., b) then subtracting from key values gives a suitable index for use with
a vector.

22

If the number of keys that are actually used is much smalian the range
(b— a) that they lie in this vector representation becomes inefiian space, even
though its time performance is good.

8.3 Sparse Tables — linked list representation

For sparse tables one could try holding the data in a listrgveach item in the
list could be a record storing a key-value pair. The get fimmatan just scan along
the list searching for the key that is wanted; if one is nonbit behaves in an
undefined way. But now there are several options for the setibm The first
natural one just sticks a new key-value pair on the front efligt, assured that get
will be coded so as to retrieve the first value that it finds. $&eond one would
scan the list, and if a key was already present it would upiti@eassociated value
in place. If the required key was not present it would havedmtded (at the
start or the end of the list?). If duplicate keys are avoidet&pin which items in
the list are kept will not affect the correctness of the dggeef and so it would be
legal (if not always useful) to make arbitrary permutatiofghe list each time it
was touched.

If one assumes that the keys passegktare randomly selected and uniformly
distributed over the complete set of keys used, the link&ddipresentation calls
for a scan down an average of half the length of the list Fovénsion that always
adds a new key-value pair at the head of the list this coseas®s without limit
as values are changed. The other version has to scan thdéstperforminget
operations as well ages.

8.4 Binary search in sorted array

To try to get rid of some of the overhead of the linked list eggmtation, keep the
idea of storing a table as a bunch of key-value pairs but navth@se in an array
rather than a linked list. Now suppose that the keys used rags that support
an ordering, and sort the array on that basis. Of course tlwvearise questions
about how to do the sorting and what happens when a new keyrniganed for
the first time — but here we concentrate on the data retriemdlqd the process.
Instead of a linear search as was needed with lists, we carpraive the middle
element of the array, and by comparing the key there with tigevee are seeking
can isolate the information we need in one or the other hathefarray. If the
comparison has unit cost the time needed for a completeupak-a table withn

23

elements will satisfy
f(n) = f(n/2) +6(Q1)

and the solution to this shows us that the complete seardbecdone ird (log(n)).

8.5 Binary Trees

Another representation of a table that also provideg:) costs is got by building
a binary tree, where the tree structure relates very dyréotthe sequences of
comparisons that could be done during binary search in ay.aff a tree ofn
items can be built up with the median key from the whole datansiés root, and
each branch similarly well balanced, the greatest deptheofree will be around
log(n) [Proof?]. Having a linked representation makes it fairlgyeto adjust the
structure of a tree when new items need to be added, butsletafiat will be left
until later. Note that in such a tree all items in the left std®e come before the
root in sorting order, and all those in the right sub-tree eatfter.

8.6 Hash Tables

Even if the keys used do have an order relationship assdordth them it may
be worthwhile looking for a way of building a table withouting it. Binary
search made locating things in a table easier by imposingyagaod coherent
structure — hashing places its bet the other way, on chaosish function(k)
maps a key onto an integer in the range IMdor some/N, and for a good hash
function this mapping will appear to have hardly any patté&tow if we have an
array of sizeV we can try to store a key-value pair with kit locationi (k) in
the array. Two variants arise. We can arrange that the mtatn the array hold
little linear lists that collect all keys that has to thatgparar value. A good hash
function will distribute keys fairly evenly over the arrag with luck this will lead
to lists with average length/N is n keys are in use.

The second way of using hashing is to use the hash vdlkgas just a first
preference for where to store the given key in the array. Qingda new key if
that location is empty then well and good — it can be used. @itise a succes-
sion of other probes are made of the hash table accordingrte sade until either
the key is found already present or an empty slot for it isteda The simplest
(but not the best) method of collision resolution is to trg&sessive array locations
on from the place of the first probe, wrapping round at the dridevarray.

24

The worst case cost of using a hash table can be dreadfulng@ance given
some particular hash function a malicious user could sékeys so that they all
hashed to the same value. But on average things do pretty Wvise number of
items stored is much smaller than the size of the hash taltedswing and re-
trieving data should have constant (i3¥.1)) cost. Now what about some analysis
of expected costs for tables that have a realistic load?

9 Free Storage Management

One of the options given above as a model for memory and bakicstructures on
a machine allowed for records, with some mechanism for afing new instances
of them. In the language ML such allocation happens withietuser having to
think about it; in C the library functiomal | oc would probably be used, while
C++ and the Modula family of languages will involve use of a keydvoew.

If there is really no worry at all about the availability of mery then alloca-
tion is very easy — each request for a new record can justipositat the next
available memory address. Challenges thus only arise wheisthot feasible,
i.e. when records have limited life-time and it is necessarge-cycle the space
consumed by ones that have become defunct.

Two issues have a big impact on the difficulty of storage mansnt. The
firstis whether or not the system gets a clear direct indioatinen each previously-
allocated record dies. The other is whether the records aigedll the same size
or are mixed. For one-sized records with known life-timeis itasy to make a
linked list of all the record-frames that are available ®use, to add items to this
“free-list” when records die and to take them from it agairewmew memory is
needed. The next two sections discuss the allocation aogcterg of mixed-size
blocks, then there is a consideration of ways of discovenhgn data structures
are not in use even in cases where no direct notification efskaticture death is
available.

9.1 First Fit and Best Fit

Organise all allocation within a single array of fixed sizart® of this array will be
in use as records, others will be free. Assume for now thatamekeep adequate
track of this. The “first fit” method of storage allocation pesds to a request
for n units of memory by using part of the lowest block of at leasinits that
is marked free in the array. “Best Fit” takes space from thellsistairee block

25

with size at least:. After a period of use of either of these schemes the pool of
memory can become fragmented, and it is easy to get in a staeevihere is
plenty of unused space, but no single block is big enoughtisfgahe current
request.

Questions: How should the information about free spaceearptiol be kept?
When a block of memory is released how expensive is the praxfaeggsdating
the free-store map? If adjacent blocks are freed how candbeibined space be
fully re-used? What are the costs of searching for the firsest fits? Are there
patters of use where first fit does better with respect to feagation than best
fit, and vice versa? What pattern of request-sizes and requestld lead to the
worst possible fragmentation for each scheme, and how lthdt®

9.2 Buddy Systems

The main message from a study of first and best fit is that fragaien can be a
real worry. Buddy systems address this by imposing conssramboth the sizes
of blocks of memory that will be allocated and on the offsetghiw the array
where various size blocks will be fitted. This will carry a spacost (rounding
up the original request size to one of the approved sizesudaly system works
by considering the initial pool of memory as a single big Bloevhen a request
comes for a small amount of memory and a block that is justitiie size is not
available then an existing bigger block is fractured in tvmr the exponential
buddy system that will be two equal sub-blocks, and evengtiwvorks neatly in
powers of 2. The pay-off arises when store is to be freed uportie block has
been split and later on both halves are freed then the blatkeae-constituted.
This is a relatively cheap way of consolidating free blocks.

Fibonacci buddy systems make the size of blocks membersdfithonacci
sequence. This gives less padding waste than the expdnesrsaon, but makes
re-combining blocks slightly more tricky.

9.3 Mark and Sweep

The first-fit and buddy systems reveal that the major issustfoage allocation
is not when records are created but when they are discardbdseTschemes
processed each destruction as it happened. What if one waiita large number
of records can be processed at once? The resulting strat&gpwn as “garbage
collection”. Initial allocation proceeds in some simpleyweathout taking any ac-
count of memory that has been released. Eventually the fixegheol of memory

26

used will all be used up. Garbage collection involves sdpayalata that is still
active from that which is not, and consolidating the freecepato usable form.

The first idea here is to have a way of associating a mark bit @gich unit
of memory. By tracing through links in data structures it dddae possible to
identify and mark all records that are still in use. Then atriy definition the
blocks of memory that are not marked are not in use, and cae-bgcted. A
linear sweep can both identify these blocks and link themanfree-list (or what-
ever) and re-set the marks on active data ready for the megt fThere are lots of
practical issues to be faced in implementing this sort afghi

Each garbage collection has a cost that is probably prapattito the heap
sizé€, and the time between successive garbage collections ®utional to the
amount of space free in the heap. Thus for heaps that are ighitlylused the
long-term cost of garbage collection can be viewed as a antisbst burden on
each allocation of space, albeit with the realisation of thaden clumped to-
gether in big chunks. For almost-full heaps garbage catlectan have very high
overheads indeed, and a practical system should reporte ‘f&ill” failure some-
what before memory is completely choked to avoid this.

9.4 Stop and Copy

Mark and Sweep can still not prevent fragmentation. Howéwagine now that
when garbage collection becomes necessary you can (forratshe) borrow
a large block of extra memory. The “mark” stage of a simplebgge collector
visits all live data. It is typically easy to alter that to golve data into the new
temporary block of memory. Now the main trick is that all pgens and cross
references in data structures have to be updated to refecteth location. But
supposing that can be done, at the end of copying all liveltgdoeen relocated to
a compact block at the start of the new memory space. The altesgan now be
handed back to the operating system to re-pay the memony-toed computing
can resume in the new space. Important point: the cost ofiegy related to the
amount of live data copied, and not to to the size of the hedpaa amount of
dead data, so this method is especially suited to large heidpis which only a
small proportion of the data is alive (a condition that alsskes garbage collection
infrequent). Especially with virtual memory computer g€mss the “borrowing”

8Without giving a more precise explanation of algorithms eath structures involved this has
to be arather woolly statement. There are also so callecEfgdional” garbage collection methods
that try to relate costs to the amount of data changed simcprivious garbage collection, rather
than to the size of the whole heap

27

of extra store may be easy — and good copying algorithms cange to make
almost linear (good locality) reference to the new space.

9.5 Ephemeral Garbage Collection

This topic will be discussed briefly, but not covered in dethiis observed with
garbage collection schemes that the probability of stobdmeks surviving is very
skewed — data either dies young or lives (almost) for evenbé&ge collecting
data that is almost certainly almost all still alive seemsteful. Hence the idea
of an “ephemeral” garbage collector that first allocates dat@ short-term pool.
Such structure that survives the first garbage collectigrates down a level to a
pool that the garbage collector does not inspect so oftahsaron. The bulk of
stable data will migrate to a static region, while most ggebeollection effort is
expended on volatile data. A very occasional utterly futbgae collection might
purge junk from even the most stable data, but would only Bedcéor when (for
instance) a copy of the software or data was to be preparetidivibution.

10 Sorting

This is a big set-piece topic: any course on algorithms isiddo discuss a num-
ber of sorting methods. The volume 3 of Knuth is dedicatedottirsy and the

closely related subject of searching, so don't think it isvealt or simple topic!

However much is said in this lecture course there is a grealt mere that is

known.

10.1 Minimum cost of sorting

If I have n items in an array, and | need to end up with them in ascendideror
there are two low-level operations that | can expect to usteénprocess. The
first takes two items and compares them to see which shoulé éiosh To start
with this course will concentrate on sorting algorithms vehtheonly informa-
tion about where items should end up will be that deduced biimgagpairwise
comparisons. The second critical operation is that of eeging data in the array,
and it will prove convenient to express that in terms of “inteanges” which swap
the contents of two nominated array locations.

28

In extreme cases either comparisons or interchdngey be hugely expen-
sive, leading to the need to design methods that optimiseegedless of other
costs. Itis useful to have a limit on how good a sorting mettaald possibly be
measured in terms of these two operations.

Assertion: If there are items in an array the®(n) exchanges suffice to put
the items in order. In the worst ca®gn) exchanges are needed. Proof: identify
the smallest item present, then if it is not already in thétrigjlace one exchange
moves it to the start of the array. A second exchange movegetktesmallest item
to place, and so on. After at worst— 1 exchanges the items are all in order. The
bound isn — 1 notn because at the very last stage the biggest item has to be in
its right place without need for a swap, but that level of desaunimportant to
© notation. Conversely consider the case where the originahgement of the
data is such that the item that will need to end up at positisrstored at position
i+ 1 (with the natural wrap-around at the end of the array). Savegy item is in
the wrong position | must perform exchanges that touch eastiipn in the array,
and that certainly means | need2 exchanges, which is good enough to establish
the ©(n) growth rate. Tighter analysis should show that a full- 1 exchanges
are in fact needed in the worst case.

Assertion: Sorting by pairwise comparison, assuming tthpbasible arrange-
ments of the data are equally likely as input, necessargyscat leas® (n log(n))
comparisons. Proof: there ang¢ permutations of: items, and in sorting we in
effect identify one of these. To discriminate between thahyncases we need at
least[log,(n!)] binary tests. Stirling’s formula tells us that is roughly»”, and
hence thatog(n!) is aboutn log(n). Note that this analysis is applicable to any
sorting method that uses any form of binary choice to or@éeng, that it provides
a lower bound on costs but does not guarantee that it candireeatt and that it
is talking about worst case costs and average costs wheassligte input orders
are equally probable.

10.2 Stability of sorting methods

Often data to be sorted consists of records containing adey that the ordering
is based upon plus some additional data that is just carr@dhd in the rearrang-
ing process. In some applications one can have keys thatdshewonsidered
equal, and then a simple specification of sorting might ndicisite what order the

90ften if interchanges seem costly it can be useful to sorctovef pointers to objects rather
than a vector of the objects themselves — exchanges in tigpairray will be cheap.

29

corresponding records should end up in in the output listali®” sorting de-
mands that in such cases the order of items in the input iepred in the output.
Some otherwise desirable sorting algorithms are not staiolé this can weigh
against them. If the records to be sorted are extended toamokktra field that
stores their original position, and if the ordering pretiécased while sorting is
extended to use comparisons on this field to break ties thearkatary sorting
method will rearrange the data in a stable way. This cleadygases overheads a
little.

10.3 Simple sorting

We saw earlier that an array with items in it could be sorted by performing
n — 1 exchanges. This provides the basis for what is perhapsiti@est sorting
algorithm — at each step it finds the smallest item in the ramgipart of the
array and swaps it to its collect position. This has as a $giwighm the prob-
lem of identifying the smallest item in an array. The subkpem is easily solved
by scanning linearly through the array comparing each ssbee item with the
smallest one found earlier. If there areitems to scan then the minimum finding
clearly costsn — 1 comparisons. The whole insertion sort process does this on
sub-arrays of sizes,n — 1,...,1. Calculating the total number of comparisons
involved requires summing an arithmetic progression:rédiger order terms and
constants have been discarded we find that the total c6%ti%). This very sim-
ple method has the advantage (in terms of how easy it is tys&jihat the num-
ber of comparisons performed does not depend at all on thi&l imiganisation of
the data.

Now suppose that data movement is very cheap, but compar@@nvery
expensive. Suppose that part way through the sorting psdbesdfirstt items in
our array are neatly in ascending order, and now it is timetwsicer itemk + 1.

A binary search in the initial part of the array can identifhave the new item
should go, and this search can be donglim, (k)] comparison¥. Then some
number of exchange operations (at mbsput the item in place. The complete
sorting process performs this processifdrom 1 ton, and hence the total number
of comparisons performed will be

[log(1)] + [log(2)] + ...[log(n — 1)]

10From now on | will not bother to specify what base my logarithose — after all it only
makes a constant-factor difference.

30

which is bounded byog((n — 1)!) + n. This effectively attains the lower bound
for general sorting by comparisons that we set up earlier. r&uember that is
has high (typically quadratic) data movement costs).

One final simple sort method is worth mentioning. Sinking $oa perhaps
a combination of the worst features of the above two schemé®en the firstc
items of the array have been sorted the next is inserted ae ftdg letting it sink
to its rightful place: it is compared against itémand if less a swap moved it
down. If such a swap is necessary it is compared againsiqosit- 1, and so on.
This clearly has worst case co$§¥$n?) in both comparisons and data movement.
It does however compensate a little: if the data was orifyiredteady in the right
order then sinking sort does no data movement at all and @m@g-dcomparisons,
and is optimal. Sinking sort is the method of practical ckaitien most items in
the input data are expected to be close to the place that dexyto end up.

10.4 Shell's Sort

Shell’s Sort is an elaboration on sinking sort that lookstatnorst aspects and
tries to do something about them. The idea is to precede bythamg that will
get items to roughly the correct position, in the hope thatsinking sort will then
have linear cost. The way that Shellsort does this is to ddlaatimn of sorting
operations on subsets of the original array i$ some integer then a stridesort
will sort s subsets of the array — the first of these will be the one witmel&s at
positionsl, s+ 1,2s+ 1,3s + 1, ..., the next will use position8, s +2,2s + 2, ...
and so on. Such sub-sorts can be performed for a sequenckie$ wis starting
large and gradually shrinking so that the last pass is aesfrisort (which is just an
ordinary sinking sort). Now the interesting questions anetlier the extra sorting
passes pay their way, what sequences of stride values sheulded, and what
will the overall costs of the method amount to?

It turns out that there are definitely some bad sequencesidést and that a
simple way of getting a fairly good sequence is to use the drietvends..13,4, 1
wheres,_; = 3s,+ 1. For this sequence it has been shown that Shell’s sort’s cost
grow at worst as!->, but the exact behaviour of the cost function is not known,
and is probably distinctly better than that. This must be ointhe smallest and
most practically useful algorithms that you will come acr@ghere analysis has
got really stuck — for instance the sequence of strides gamave is known not
to be the best possible, but nobody knows what the best segun

Although Shell's Sort does not meet tign log(n)) target for the cost of
sorting, it is easy to program and its practical speed ororesse size problems

31

is fully acceptable.

10.5 Quicksort

The idea behind Quicksort is quite easy to explain, and whepegsly imple-
mented and with non-malicious input data the method caly fide up to its
name. However Quicksort is somewhat temperamental. Itnsrkable easy
to write a program based on the Quicksort idea that is wrongaimous subtle
cases (eg. if all the items in the input list are identicalyd although in almost
all cases Quicksort turns in a time proportionahttog(n) (with a quite small
constant of proportionality) for worst case input data it b& as slow as?. Itis
strongly recommended that you study the description of K¥aid in one of the
textbooks and that you look carefully at the way in which code be written to
avoid degenerate cases leading to accesses off the enays atc.

The idea behind Quicksort is to select some value from thayaand use
that as a “pivot”. A selection procedure partitions the eslso that the lower
portion of the array holds values less than the pivot and gipeupart holds only
larger values. This selection can be achieved by scannifrgin the two ends
of the array, exchanging values as necessary. Faot alement array it takes
aboutn comparisons and data exchanges to partition the arrayk&aricis then
called recursively to deal with the low and high parts of thégand the result is
obviously that the entire array ends up perfectly sorted.

Consider first the ideal case, where each selection managegdittthe array
into two equal parts. Then the total cost of Quicksort sasssf(n) = 2f(n/2) +
kn, and hence grows aslog(n). But in the worst case the array might be split
very unevenly — perhaps at each step only one item would erldsggthan the
selected pivot. In that case the recursion (nbiw) = f(n — 1) + kn) will go
aroundn deep, and the total costs will grow to be proportionabto

One way of estimating the average cost of Quicksort is to gsgphat the
pivot could equally probably have been any one of the itentiserdata. It is even
reasonable to use a random number generator to select tnariiem for use as
a pivot to ensure this! Then it is easy to set up a recurrenteuia that will be
satisfied by the average cost:

c(n) = izj:(c(z — 1) +c(n—1i)+kn

where the sum adds up the expected costs correspondinghie éiqually proba-
ble) ways in which the partitioning might happen. This isléyjequation to solve,

32

and after a modest amount of playing with it it can be esthblighat the average
cost for Quicksort i (nlog(n)).

Quicksort provides a sharp illustration of what can be a l@mbwhen se-
lecting an algorithm to incorporate in an application. Altigh its average per-
formance (for random data) is good it does have a quite wsfigtdry (albeit un-
common) worst case. It should therefore not be used in agipgits where the
worst-case costs could have safety implications. The mecebout whether to
use Quicksort for average good speed of a slightly slowegbatanteead log(n)
method can be a delicate one.

10.6 Heap Sort

Despite its good average behaviour there are circumstavitere one might want
a sorting method that is guaranteed to run in timeg(n) whatever the input. De-
spite the fact that such a guarantee may cost some modesagecin the constant
of proportionality.

Heapsort is such a method, and is described here not onlygedas a rea-
sonable sorting scheme, but because the data structuesitealed a heap, a use
of this term quite unrelated to the use of the tern “heap” @efstorage manage-
ment) has many other applications.

Consider an array that has values stored in it subject to thetigont that the
value at positiork is greater than (or equal to) those at positidhsind2k + 11,
The data in such an array is referred to as a heap. The root tieip is the item
at location 1, and it is clearly the largest value in the heap.

Heapsort consists of two phases. The first takes an arrayiftbitrarily
ordered data and rearranges it so that the data forms a heaazidgly this can
be done in linear time. The second stage takes the top itamtfie heap (which
as we saw was the largest value present) and swaps it to taghgdsition in the
array, which is where that value needs to be in the final saugolt. 1t then has to
rearrange the remaining data to be a heap with one fewer atenfRepeating this
step will leave the full set of data in order in the array. Ehelp reconstruction
step has a cost proportional to the logarithm of the amoundttd left, and thus
the total cost of heapsort ends up boundea byg(n).

Further details of both parts of heapsort can be found ingkbooks and will
be given in lectures.

Hsupposing that those two locations are still within the toisuof the array

33

10.7 Binary Merge in memory

Quicksort and Heapsort both work in-place, i.e. they do eethany large amounts
of space beyond the array in which the data restdel this constraint can be
relaxed than a fast and simple alternative is available énfthm of Mergesort.
Observe that given a pair of arrays each of length that have already been
sorted, merging the data into a single sorted list is easytm éGroundn steps.
The resulting sorted array has to be separate from the twia ones.

This observation leads naturally to the familigm) = 2f(n/2) + kn recur-
rence for costs, and this time there are no special casesitiesd Thus Mergesort
guarantees a cost aflog(n), is simple and has low time overheads, all at the cost
of needing the extra space to keep partially merged results.

10.8 Radix sorting

To radix-sort from the most significant end, look at the maghificant digit in
the sort key, and distribute that data based on just that.rRetoisort each clump,
and the concatenation of the sorted sub-lists is fully soareay. One might see
this as a bit like Quicksort but distributing n ways instedgust into two at the
selection step, and preselecting pivot values to use.

To sort from the bottom end, first sort your data taking intocamt just the
last digit of the key. As will be seen later this can be dondnedr time using
a distribution sort. Now use a stable sort method to sort emtxt digit of the
key up, and so on until all digits of the key have been handldds method was
popular with punched cards, but is less widely used today!

10.9 Order statistics (eg. median finding)

The median of a collection of values is the one such that ay mems are smaller
than that value as are larger. In practise when we look fasrdfgns to find a
median it us productive to generalise to find the item thaksaat positionk in
the data. For a total of items the median corresponds to taking the special case
k = n/2. Clearlyk = n andk = n correspond to looking for minimum and
maximum values.

One obvious way of solving this problem is to sort that datahentthe item
with rankk is trivial to read off. But that costs log(n) for the sorting.

2There is scope for a lengthy discussion of the amount of steekled by Quicksort here.

34

Two variants on Quicksort are available that solve the goblOne has linear
costin the average case, but has a quadratic worst-casé oftirly simple. The
other is more elaborate to code and has a much higher con$famiportionality,
but guarantees linear cost. In cases where guaranteedmarfoe is essential the
second method may have to be used.

The simpler scheme selects a pivot and partitions as forkait. Now sup-
pose that the partition splits the array into two parts, thet fiaving sizep, and
imagine that we are looking for the item with rahkn the whole array. 1% < p
then we just continue be looking for the rahktem in the lower partition. Oth-
erwise we look for the item with rank — p in the upper. The cost recurrence for
this method (assuming, unreasonably, that each seled¢tiga divides out values
neatly into two even sets) i§n) = f(n/2) + kn, and the solution to this exhibits
linear growth.

The more elaborate method works hard to ensure that the yseat will not
fall too close to either end of the array. It starts by clunggime values into groups
each of size 5. It selects the median value from each of thigigesiets. It then
calls itself recursively to find the median of the5 values it just picked out. This
is then the element it uses as a pivot. The magic here is tagtivot chosen will
haven /10 medians lower than it, and each of those will have two morellsma
values in their sets. So there must Be/10 values lower than the pivot, and
equally3n /10 larger. This limits the extent to which things are out of k. In
the worst case after one reduction step we will be left withabfem7/10 of the
size of the original. The total cost now satisfies

f(n) =An/5+ f(n/5) + f(7n/10) + Bn

whereA is the (constant) cost of finding the median of a set of sizen8,/n is
the cost of the selection process. Becauge+ 7n/10 < n the solution to this
recurrence grows just linearly with

10.10 Faster sorting

If the condition that sorting must be based on pair-wise canispns is dropped
it may sometimes be possible to do better thdang(n). Two particular cases are
common enough to be of at least occasional importance. Téteidiwvhen the
values to be sorted are integers that line in a known rangerenthis range is
smaller than the number of values to be processed. Thensatgshere will be
duplicates in the list. If no data is involved at all beyond thtegers, one can set

35

up an array whose size is determined by the range of intelgarsan appear (not
be the amount of data to be sorted) and initialise it to zefwe fbr each item in
the input datayw say, the value at positiom in the array is incremented. At the
end the array contains information about how many instanteach value were
present in the input, and it is easy to create a sorted ougiuwvith the correct
values in it. The costs are obviously linear. If additionatalbeyond the keys is
present (as will usually happen) then once the counts haaredwmlected a second
scan through the input data can use the counts to indicateewhtne output array
data should be moved to. This does not compromise the oVieksdr cost.

Another case is when the input data is guaranteed to be omyfatistributed
over some known range (for instance it might be real numiretisa range).0 to
1.0). Then a numeric calculation on the key can predict with@aable accuracy
where a value must be placed in the output. If the output asrigated somewhat
like a hash table, and this prediction is used to insert itenils then apart from
some local effects of clustering that data has been sorted.

10.11 Parallel processing sorting networks

This is another topic that will just be mentioned here, buitiwlyets full coverage
in some of the textbooks. Suppose you want to sort data usirdpare rather
than software (this could be relevant in building some higifgomance graphics
engine, and it could also be relevant in routing devices dones networks). Sup-
pose further that the values to be sorted appear on a bundeed, and that a
primitive element available to you has two such wires ast®amd transfers its
two inputs to output wires either directly or swapped, dejeg on their relative
values. How many of these elements are needed to sort theatodat wires?
How should they be connected? How many of the elements dobssegal flow
through, and thus how much delay is involved in the sortiragpss?

11 Storage on external media

For the next few sections the cost model used for memory adsexdjusted to

take account of reality. It will be assumed that we still haveeasonable sized
conventional main memory on our computer and that accesstst have unit

cost. But it will be supposed that the bulk of the data to be legthdoes not fit

into main memory and so resides on tape or disc, and that édsgssary to pay
attention to the access costs that this implies.

36

11.1 Cost assumptions for tapes and discs

When Knuth'’s series of books were written magnetic tapes édrthe mainstay
of large-scale computer storage. Since then discs haverteetarger, cheaper
and more reliable, and tape-like devices are really onlyl dgearchival storage.
Thus the discussions here will ignore the large and entenabut archaic body
of knowledge about how best to sort data using two, threewrtape drives that
can or can not read and write data backwards as well as fosward

The main assumption to be made about external storage wilhdeit is
slow — so slow that using it well becomes almost the only ingarissue for
an algorithm. The next characteristic will be that sequérdaccess and read-
ing/writing fairly large blocks of data at once will be thedbavay to maximise
data transfer. Seeking from one place on a disc to anothkbevdeemed expen-
sive.

There will probably be an underlying expectation in thiscdssion that the
amount of data to be handled is roughly between 10 Mbytes @izbytes. Much
less data than that does not justify thinking about extgsr@dessing, while much
larger amounts may raise additional problems (and may leagilble, at least this
year).

11.2 B-trees

With data structures kept on disc it is sensible to make tliteofidata fairly large
- perhaps some size related to the natural unit that yourudiss (a sector or track
size). Minimising the total number of separate disc accessébe more impor-
tant than getting the ultimately best packing density. €hare of course limits,
and use of over-the-top data blocks will use up too much fasthmemory and
cause too much unwanted data to be transferred betweenrgiso@n memory
along with each necessary bit.

B-trees are a good general-purpose disc data structuredéaesiarts by gen-
eralising the idea of a sorted binary tree to a tree with a kiggly branching factor.
The expected implementation is that each node will be a dastklzontaining al-
ternate pointers to sub-trees and key values. This will teri&fine the maximum
branching factor that can be supported in terms of the nadisa block size and
the amount of memory needed for each key. When new items aeglaold B-tree
it will often be possible to add the item within an existingdk without overflow.
Any block that becomes full can be split into two, and the Emgference to it
from its parent block expands to the two references to thehadfrempty blocks.

37

For B-trees of reasonable branching factor any reasonalde@rof data can be
kept in a quite shallow tree — although the theoretical costcoess grows with
the logarithm of the number of data items stored in practeans it is constant.

The algorithms for adding new data into a B-tree arrange beatree is guar-
anteed to remain balanced (unlike the situation with thepkast sorts of trees),
and this means that the cost of accessing data in such a mdeecguaranteed
to remain low even in the worst case. The ideas behind keepitrges bal-
anced are a generalisation of those used for 2-3-4-treaisg(th discussed later in
these notes) but note that the implementation details majgmficantly differ-
ent, firstly because the B-tree will have such a large bragdaictor and secondly
all operations will need to be performed with a view to thd that the most costly
step is reading a disc block (2-3-4-trees are used as in-myetiaba structures so
you could memory program steps rather than disc accesseseavatating and
optimising an implemantation).

11.3 Dynamic Hashing (Larsen)

This is a really neat way in which quite modest in-store inddgmrmation can
make it possible to retrieve any item in just one disc acc8&at by viewing all
available disc blocks as buckets in a hash table. Take theéokieg located, and
compute a hash function of it — in an ideal world this could Bedito indicate
which disc block should be read. Of course several items oalpgbly be stored
in each disc block, so a certain number of hash clashes willhraiter at all.
Provided no disc block ever becomes full this satisfies oal gb single disc-
transfer access.

Further ingenuity is needed to cope with full disc blocks levsitill avoiding
extra disc accesses. The idea applied is to use a smallria-stble that will
indicate if the data is in fact stored in the disc block firsligated. To achieve
this instead of computing just one hash function on the kag itecessary to
compute two. The second one is referred to as a signatureaebrdisc block we
record in-store the value of the largest signature of any itethat block. Now
a comparison of our signature with the value stored in thbetallows us to tell
(without going to the disc) if the required data is presentitsriirst choice disc
block.

If not then we go back to the key and use a second choice paasbiffunctions
to produce a new potential location and signature, and againn-store table
indicates if the data is stored there. By having a sequencadf functions that
will eventually propose every possible disc block this s@rsearching should

38

eventually terminate. Note that if the data involved is nottioe disc at all we
find that out when we read the disc block that it would be on vétre present.
Unless the disc is almost full it will probably only take a féash calculations
and in-store checks to locate data, and remember that a keay deal of in-store
calculation can be justified to save even one disc access.

As has been seen, recovering data stored this way is quiye ¥4sat about
adding new records? Well, one can start by following throtghsteps that locate
and read the disc block that the new data would seem to livelfoie data is
already stored there it can be updated. If it is not there loitdisc block has
free space then the new record can be added (and that mayeréuati the main
signature table be updated if the new data has a larger signdtan any one
previously used on that block). Otherwise the block overflowhe item in it
with largest signature (which may be the new record, or mayee that was
there already) is moved to an in-store buffer, the signataske entry is reduced
correspondingly and the block is written back to disc. Tleatve some record
to be re-inserted elsewhere in the table, and of course gimatsire table shows
that it can not live in the block that has just been inspecid® insertion process
continues by looking to see where the next available chaicstbring that record
would be.

Once again for lightly loaded discs insertion is not lialdde especially ex-
pensive, but as the system gets close to being full a singkgtion could cause
major rearrangements. Note however that most large daalteve very many
instances of read or update-in-place operations than of tha add new items.
For instance CD-ROM technology provides a case where regticennumber of
(slow) read operations can be vital, but where the cost dftorg the initial data
structures that go on the disc is almost irrelevant.

11.4 External Sorting

There are three major observations here. The first is thatlimake very good
sense to do as much sorting as possible internally (using fgwourite in-store
method), so a major part of any external sorting methodliddito be breaking the
data up into store-sized chunks and sorting each of thosesd@¢ond point is that
variants on merge-sort fit in very well with the sequentiaess patterns that work
well with disc drives. The final point is that with truly largenounts of data it will
almost certainly be the case that the raw data has well kntatistscal properties
(including the possibility that it is known that it is almastorder already, being
just a modified of previous data that had itself been sorteliega and these

39

should be exploited fully.

12 Variants on the SET Data Type

There are very many places in the design of larger algorithhese it is necessary
to have ways of keeping sets of objects. In different cadésrent operations will
be important, and finding ways if which various sub-sets eftbssible operations
can be best optimised leads to the discussion of a large @rggemetimes quite
elaborate representations and procedures. It would béypmssfill a whole long
lecture course with a discussion of the options, but heregosie of the more
important (and more interesting) will be covered.

12.1 Operations that might be supported

In the following S stands for a sef; is a key andr is an item present in the set. It
is supposed that each item contains a key, and that the keystally ordered. In
cases where some of the operations (for instanagimum andminimum) are
not used these conditions might be relaxed.

makeempty set(), isemptyset(S): basic primitives for creating and testing for
empty sets.

chooseany(S): if S is non-empty this should return an arbitrary item frén
insert(S, x): Modify the setS so as to add a new item

search@, k): Discover if an item with key is present in the set, and if so return
it. If not return that fact.

delete(, x): = is an item present in the st ChangeS to remover from it.
minimum(S): return the item fron®' that has the smallest key.
maximum(): return the item fron® that has the largest key.

successoH, z): x isin S. Find the item inS that has the next larger key than
the key ofz. If x was the largest item in the heap indicate that fact.

predecessof], x): as for successor, but finds the next smaller key.

40

union(S, S"): combine the two setS and S’ to form a single set combining all
their elements. The origind and S’ may be destroyed by this operation.

12.2 Tree Balancing

Forinsert, searchanddeleteit is very reasonable to use binary trees. Each node
will contain an item and references to two sub-trees, onalfarems lower than
the stored one and one for all that are higher. Searching sucke is simple.
The maximum and minimum values in the tree can be found ingbénodes
discovered by following all left or right pointers (respgety) from the root.

To insert in a tree one searches to find where the item ought tnd then
insert there. Deleting a leaf node is easy. To delete a rainféels harder, and
there will be various options available. One will be to exulpathe contents of the
non-leaf cell with either the largest item in its left suletiea the smallest item in its
right subtree. Then the item for deletion is in a leaf posiaod can be disposed of
without further trouble, meanwhile the newly moved up obgatisfies the order
requirements that keep the tree structure valid.

If trees are created by inserting items in random order treajally end up
pretty well balanced, and all operations on them have cagigstional to their
depth, which will belog(n). A worst case is when a tree is made by inserting
items in ascending order, and then the tree degenerateslistolt would be nice
to be able to re-organise things to prevent that from hamgern fact there are
several methods that work, and the trade-offs between te&terto the amount
of space and time that will be consumed by the mechanism #gpkthings
balanced. The next section describes one of the more semsitvipromises.

12.3 2-3-4 Trees

Binary trees had one key and two pointers in each node. Thedezivthe tree
are indicated by null pointers. 2-3-4 trees generalisetthédlow nodes to contain
more keys and pointers. Specifically they also allow 3-nadeish have 2 keys
and 3 pointers, and 4-nodes with 3 keys and 4 pointers. Asnedhlar binary
trees the pointers are all to sub-trees which only contayrvie&ies limited by the
keys in the parent node.

Searching a 2-3-4 tree is almost as easy as searching a biearyAny con-
cern about extra work within each node should be balanceddetlisation that
with a larger branching factor 2-3-4 trees will generallydballower than pure
binary trees.

41

Inserting into a 2-3-4 node also turns out to be fairly eany &hat is even
better is that it turns out that a simple insertion procegsraatically leads to
balanced trees. Search down through the tree looking forevtie new item
must be added. If the place where it must be added is a 2-noal@-arode then
it can be stuck in without further ado, converting that nawla 8-node or 4-node.
If the insertion was going to be into a 4-node something hdsetdone to make
space for it. The operation needed is to decompose the 4intwla pair of 2-
nodes before attempting the insertion — this then meansthieaparent of the
original 4-node will gain an extra child. To ensure that ¢hefll be room for this
we apply some foresight. While searching down the tree to fihdresto make
an insertion if we ever come across a 4-node we split it imatet)i, thus by the
time we go down and look at its offspring and have our finalritige to perform
we can be certain that there are no 4-nodes in the tree betiveeoot and where
we are. If the root node gets to be a 4-node it can be split hmeet2-nodes, and
this is the only circumstance when the height of the treeciases.

The key to understanding why 2-3-4 trees remain balancduiseicognition
that splitting a node (other than the root) does not altelahgth of any path from
the root to a leaf of a tree. Splitting the root increases ¢émgth of all paths by
1. Thus at all times all paths through the tree from root toad leve the same
length. The tree has a branching factor of at least 2 at eaeh bnd so all items
in a tree withn items in will be at worstog(n) down from the root.

| will not discuss deletions from trees here, although orme lyave mastered
the details of insertion it should not seem (too) hard.

It might be felt wasteful and inconvenient to have trees wlitee different
sorts of nodes, or ones with enough space to be 4-nodes whgmwih often
want to be smaller. A way out of this concern is to represeBiftrees in terms
of binary trees that are provided with one extra bit per notlee idea is that a
“red” binary node is used as a way of storing extra pointetslevblack” nodes
stand for the regular 2-3-4 nodes. The resulting trees aekias red-black trees.
Just as 2-3-4 trees have the same numbeay) of nodes from root to each leaf,
red-black trees always haveblack nodes on any path, and can have from B to
red nodes as well. Thus the depth of the new tree is at worsetthiat of a 2-3-4
tree. Insertions and node splitting in red-black trees past to follow the rules
that were set up for 2-3-4 trees.

Searching a red-black tree involves exactly the same sgepsaching a nor-
mal binary tree, but the balanced properties of the redkidi@e guarantee loga-
rithmic cost. The work involved in inserting into a red-ltacee is quite small
too. The programming ought to be straightforward, but if yguit you will prob-

42

ably feel that there seem to be uncomfortably many casesaiowdth, and that
it is tedious having to cope with both each case and its mimage. But with a
clear head it is still fundamentally OK.

12.4 Priority Queues and Heaps

If we concentrate on the operatiomsert, minimum anddelete subject to the
extra condition that the only item we ever delete will be the qst identified as
the minimum one in our set, then the data structure we haveoiwik as a priority
queue.

A good representation for a priority queue is a heap (as impblad), where
the minimum item is instantly available and the other openstcan be performed
in logarithmic time.

Re-arranging a heap to allow for an insertion or deletion mething | do not
intend to document in these notes, but will cover in lectuies well described
in the textbooks.

12.5 More elaborate representations

So called “Binomial Heaps” and “Fibonacci Heaps” have asrth&in charac-
teristic that they provide efficient support for tbaion operation. If this is not
needed then ordinary heaps should probably be used instédtaining the best
available computing times for various other algorithms mely on the perfor-
mance of datastructures as elaborate as these, so it istanpat least to know
that they exist and where full details are documented. Thbgeu who find all

the material in this course both fun and easy should looketinesthods up in a
textbook and try to produce a good implementation!

13 Pseudo-random numbers

This is a topic where the obvious best reference is Knuthuwel 1). If you

look there you will find an extended discussion of the phipdsoal problem of
having a sequence that is in fact totally deterministic bait tyou treat as if it
was unpredictable and random. You will also find perhaps tbetrnmportant
point of all stressed: a good pseudo-random number gemeasatot just some
complicated piece of code that generates a sequence okvdlaeyou can not
predict anything about. On the contrary it is probably aeatimple piece of

43

code where itis possible to predict a very great deal abewdttitistical properties
of the sequence of numbers that it returns.

13.1 Generation of sequences

In many cases the programming language that you use will saithea standard
library function that generates “random” numbers. In thetgaometimes even
the recent past) various such widely distributed genesdiave been very poor.
Experts and specialists have known this, but ordinary usa&ve not. If you can
use a random number source provided by a well respectedymurethigh qual-
ity numerical or system functions then you should probalsg that rather than
attempting to manufacture your own. But even so it is deseratsht computer
scientists should understand how good random number gerecan be made.

A very simple class of generators defines a sequendy the rulea; ; =
(Aa; + B) mod C where A, B andC' are very carefully selected integer con-
stants. From an implementation point of view many peopleld/ogally like to
haveC = 23 and thereby use some artefact of their computer’s aritlumeti
perform themodC operation. Achieving the same calculation efficiently bot n
relying on low-level machine trickery is not especially yashe selection of the
multiplier A is critical for the success of one of these congruential gaoes —
and a proper discussion of suitable values belongs eitharlamg section in a
textbook or in a numerical analysis course. Note that theeestate of a typical
linear congruential generator is captured in the curread s@lue, which for effi-
cient implementation is liable to be 32 bits long. A few yeag® this would have
been felt a big enough seed for most reasonable uses. Wily'soldster com-
puters it is perhaps marginal. Beware also that with lineagogential generators
the high order bits of the numbers computed are much moreltraf than the
low order ones (typically the lowest bit will just altern&el, O, 1, 0, 1, ...).

There are various ways that have been proposed for comimergutput from
several congruential generators to produce random segsiéimat are better than
any of the individual generators alone. These too are nosaéneof thing for
amateurs to try to invent!

A simple-to-program method that is very fast and appearave a reputation
for passing the most important statistical tests involvescarrence of the form

A = Ak—p + Ag—¢

for offsetsb andc. The arithmetic on the right hand side needs to be done modulo
some even number (again perhap¥?). The value$ = 31,c¢ = 55 are known

44

to work well, and give a very long periétiThere are two potential worries about
this sort of method. The first is that the state of the geneiata full ¢ words,
S0 setting or resetting the sequence involves touchindnalldata. Secondly al-
though additive congruential generators have been extdpdested and appear
to behave well, many details of their behaviour are not ustded — our theo-
retical understanding of the multiplicative methods argrthmitations is much
better.

13.2 Probabilistic algorithms

This section is provided to get across the point that randombers may form
an essential part of some algorithms. This can at first seewontradiction to the
description of an algorithm as a systematic procedure witlp &nalysed behav-
iour. The worry is resolved by accepting a proper statisdoalysis of behaviour
as valid.

We have already seen one example of a random numbers in afitlaigo
(although at the time it was not stressed) where it was stggelsat Quicksort
could select a (pseudo-) random item for use as a pivot. Thderthe cost of the
whole sorting process insensitive to the input data, anthgescase cost analysis
just had to average over the explicit randomness fed intt p@ection. Of course
that still does not correct Quicksort’s bad worst-case-€estjust makes the worst
case depend on the luck of the (pseudo-)random numbers ta#imeon the input
data.

Probably the best known example of an algorithm which usedamness in
a more essential way is the Miller-Rabin test to see if a nungyerime. This test
is easy to code (except that to make it meaningful you woudtirie set it up to
work with multiple-precision arithmetic, since testinglorary machine-precision
integers to see if they are prime is too easy a task to giveisontiethod). Its
justification relies upon more mathematics than | want tduitke in this course.
But the overview is that it works by selecting a sequence oflean numbers.
Each of these is used in turn to test the target number — if driiase tests
indicate that the target isot prime then this is certainly true. But the test used is
such that if the input number was in fact composite then easdpendent random
test had a chance of at ledst2 of detecting that. So aftertests that all fail to
detect any factors there is only2a® chance that we are in error if we report the

Bprovided at least one of the initial values is odd the leagtificant bits of theu;, form a
bit-sequence that has a cycle of length at®5at

45

number to be prime. One might then select a value efich that the chances
of undetected hardware failure exceed the chances of therstiodd randomness
causing trouble!

14 Data Compression

File storage on distribution discs and archive tapes géperses compression to
fit more data on limited size media. Picture data (for instakoedak’s Photo CD

scheme) can benefit greatly from being compressed. Datia raér links (eg. fax

transmissions over the phone lines and various computesttgputer protocols)
can be effectively speeded up if the data is sent in compildssm. This course

will give a sketch of three of the most basic and generallyfuisgpproaches to
compression. Note that compression will only be possiltledfraw data involved
is in some way redundant, and the foundation of good comioress an under-

standing of the statistical properties of the data you anivg with.

14.1 Huffman

In an ordinary document stored on a computer every charactepiece of text
is represented by an eight-bit byte. This is wasteful bezaome characters (*’
and ‘e’, for instance) occur much more frequently than ath&r’ and #’ for
instance). Huffman coding arranges that commonly used eigrdre encoded
into short bit sequences, and of course this means thatdession symbols have
to be assigned long sequences.

The compression should be thought of as operating on absynaabols, with
letters of the alphabet just a particular example. Supgusehe relative frequen-
cies of all symbols are known in advantehen one tabulates them all. The two
least common symbols are identified, and merged to formle titto-leaf tree.
This tree is left in the table and given as its frequency thm stithe frequencies
of the two symbols that it replaces. Again the two table estwith smallest fre-
guencies are identified and combined (this feels like the &foapplication that
calls out for a priority queue). At the end the whole tabld Wive been reduced
to a single entry, which is now a tree with the original synsbas its leaves. Un-
common symbols will appear deep in the tree, common one&high Huffman
coding uses this tree to code and decode texts. To encodemkastring of bits

Ythis may either be because the input text is from some sounosevcharacteristics are well
known, or because a pre-pass over the data has collectectfreginformation.

46

is generated corresponding to the combination of leftfragtections that must be
made in the tree to reach that symbol. Decoding is just theezse — received
bits are used as navigation information in the tree, and veheaf is reached that
symbol is emitted and processing starts again at the topedfde.

A full discussion of this should involve commentary on justahthe code
table set up process should be implemented, how the encodgig be changed
dynamically as a message with varying characteristicsng sed analysis and
proofs of how good the compression can be expected to be.

14.2 Arithmetic Coding

One problem for Huffman coding is that each symbol encodesanvhole num-
ber of bits. As a result one can waste on average more tharalmiffor each
symbol sent. Arithmetic coding addresses this problentaitsby declaring that
the whole message top be sent will be encoded as a number iartge0.0 to
1.0. It then inspects the first character to be sent. Based upqurotsabilities of
different characters appearing it will have split the aitange into a collection of
sub-ranges each having a width proportional to the proityaloit that particular
character arising. Processing a character reduces tfe raitge(0.0, 1.0) to one
of these smaller sub-rangds, b) say. Now this range is divided into bits which
have widths proportional to the probabilities of the nexaretters that might
arise, and one of these gets selected. As can be seen thegymésdadefines a
nest of little intervals. One should (to start with) imagthe entire input message
being processed to narrow things down to some very tinyvaten the range).0
to 1.0. Now just enough bits of the binary representation of thisibar get sent
to allow the decoder to identify unambiguously what the inpessage was.

Of course one wants the conversion to binary to interleatle gharacter en-
coding, and it is essential that quite limited precisionhamietic be adequate for
both coding and decoding. The full details involved in maiktinis all work are of
course a little delicate!

Note that arithmetic coding could easily allow one to ha¥iedent predictions
of symbol probabilities in different parts of a message. iRstance after a ‘q’
one could make it odds-on that the next character would beMdadelling such
conditional probabilities is at least as important in dadenpression as the bit-
twiddling final encoding.

47

143 LZ

This method, which has become very popular lately, is basetth® observation
that in many types of data it is common for strings to be regmbaFor instance
in a program the names of a user’s variables will tend to appely often, as
will language keywords (and things such as repeated spades)dea behind LZ
(Lempel-Zif) is to send messages using a greatly extengdthbkt (maybe up to
16 bit characters) and to allocate all the extra codes timptovides to stand for
strings that have appeared earlier in the text.

It suffices to allocate a new code to each pair of tokens thiapggeinto the
compressed file. This is because after a while these tokdhthamselves stand
for increasingly long strings of characters, so single outmits can correspond
to arbitrary length strings. At the start of a file while onljeav extra tokens have
been introduced one uses (say) 9-bit output charactergasiog the width used
as more pairs have been seen.

Because the first time any particular pair of characters isl utsgets sent
directly (the single-character replacement is used onubissquent occasiofts
a decoder naturally sees enough information to build its cggies of the coding
tables without needing any extra information.

If at any stage the coding tables become too big the entirgpoeseion process
can be restarted using initially empty ones.

15 Algorithms on graphs

The general heading “graphs” covers a number of useful vamnis. Perhaps the
simplest case is that of a general directed graph — this hasaf sertices, and
a set of ordered pairs of vertices that are taken to standliieoted) edges. Note
that it is common to demand that the ordered pairs of veracesll distinct, and
this rules out having parallel edges. In some cases it maykssuseful either
to assume that for each vertexhat the edgév, v) is present, or to demand that
no edges joining any vertex to itself can appear. If in a gy edg€v;, v;)
that appears is accompanied by an edge joining the sameesehtiit in the other
sense, i.e(vy, v1), then the graph is said to hmdirected and the edges are then
though of as unordered pairs of vertices. A chain of edgegimph form goath,
and if each pair of vertices in the entire graph have a pakingithem then the

15A special case arises when the second occurrence appeagsliatety, which | will skip over
in these abbreviated notes

48

graph isconnectedA non-trivial path from a vertex back to itself is calle@dycle
Graphs without cycles have special importance, and thesalahionDAG stands
for Directed Acyclic Graph. An undirected graph without legin it is atree If
the vertices of a graph can be split into two sets, A and B sal/each edge of the
graph has one end in A and the other in B then the graph is sdid hgartite.
The definition of a graph can be extended to allow values toskeaated with
each edge — these will often be called weights or distancespl can be used
to represent a great many things, from road networks totezgise in optimis-
ing compilers to databases to timetable constraints. Therithms using them
discussed here are only the tip of an important iceberg.

15.1 Depth-first and breadth-first searching

Many problems involving graphs are solved by systematicgdlarching. Even
when the underlying structure is a graph the structure ofieckecan be regarded
as a tree. The two main strategies for inspecting a tree gté-diest and breadth-
first. Depth-first search corresponds to the most naturalrsee procedure for
walking over the tree. A feature is that (from any particulade) the whole of
one sub-tree is investigated before the other is lookedadt. at

The recursion in depth-first search could naturally be imgleted using a
stack. If that stack is replaced by a queue but the rest ofdte s unaltered you
get a version of breadth-first search where all nodes at antisk from the root
get inspected before any at depth- 1 are visited. Breadth-first search can often
avoid getting lost in fruitless scanning of deep parts ofttbe, but the queue that
it uses often requires much more memory than depth-firstssastack.

15.2 Minimum Spanning Subtree

Given a connected undirected graph witledges where the edges have all been
labelled with “lengths”, the problem of finding a minimum gjpéng tree is that
of finding the shortest sub-graph that links all verticesisThust necessarily be
a tree. For suppose it were not, then it would contain a cyR&moving any one
edge from the cycle would leave the graph strictly smallérsiill connecting all
the vertices.

One algorithm that finds minimal spanning subtrees involyesving a sub-
graph by adding (at each step) that edge of the full grapi{@h@iins a new vertex
onto the sub-graph we have already and (b) is the shortestweitlythat property.

49

The main questions about this are first how do we prove thatriksvcorrectly,
and second how do we implement it efficiently.

15.3 Single Source shortest paths

This starts with a (directed) graph with the edges labelléth vengths. Two
vertices are identified, and the challenge is to find the skbrbute through the
graph from one to the other. An amazing fact is that for spgraphs the best
ways of solving this known may do as much work as a proceduartestts out to
find distances from the sourcedt the other points in the entire graph. One of the
things that this illustrates is that our intuition on grapblgems may mis-direct if
we think in terms of particular applications (for instangstances in a road atlas
in this case) but then try to make statements about arbityayhs.

The approved algorithm for solving this problem is a form oédxth-first
search from the source, visiting other vertices in orderhef $hortest distance
from the source to each of them. This can be implemented asprgrity queue
to control the order in which vertices are considered. Whemue course, the
selected destination vertex is reached the algorithm agm sthe challenge of
finding the very best possible implemementation of the gtieestructures re-
quired here turns out to be harder than one might hope!

If all edges in the graph have the same length the priorityugueanagement
for this procedure collapses into something rather easier.

15.4 Connectedness

For this problem | will start by thinking of my graph as if it ispresented by an
adjacency matrix. If the bits in this matrix afe; ;} then | want to consider the
interpretation of the graph with matrix elements defined by

bir =a;rV \/ai,j N aj
J

where A andV indicateand and or operations. A moment or two of thought
reveals that the new matrix shows edges wherever thereng afllength one or
two in the original graph.

Repeating this operation would allow us to get all paths dftlemip to4, 8, 16, ...
and eventually all possible paths. But we can in fact do beiitkera program that
is very closely related:

50

for k =1 to n do
for i =1 to n do
for j =1to n do

ali,jl =a[i,j] | (a[i,k] & a[k,j]);

is very much like the variant on matrix multiplication givabove, but solves the
whole problem in one pass. Can you see why, and explain itigear

15.5 All Points shortest paths

Try taking the above discussion of connectedness analydiseaworking it with
max and min operations instead of booleamd andor. See how this can be
used to fill in the shortest distances between all pairs aitpoMhat value must
be used in matrix elements corresponding to pairs of grapiices not directly
joined by an edge?

15.6 Bipartite Graphs and matchings

A matching in a bipartite graph is a collection of edges sunzt each vertex of
the graph is included in at most one of the selected edges.xdnmamatching is
then obviously as large a subset of the edges that has tlpenyas is possible.
Why might one want to find a matching? Well bipartite graphsmiatchings can
be used to represent many resource allocation problems.

Weighted matching problems are where bipartite graphs Havedges la-
belled with values, and it is necessary to find the matchig mhaximises the
sum of weights on the edges selected.

Simple direct search through all possible combinationsdgfes would pro-
vide a direct way of finding maximal matchings, but would haests growing
exponentially with the number of edges in the graph — evesiiall graphs it is
not a feasible attack.

A way of solving the (unweighted) matching problem uses faagting paths”,
a term you can look up in AHU or CLR.

16 Algorithms on strings

This topic is characterised by the fact that the basic dat&tsire involved is al-
most vanishingly simple — just a few strings. Note howevet tome “string”

51

problems may use sequences of items that are not just sifmataaters: search-
ing, matching and re-writing can still be useful operatiarstever the elements
of the “strings” are. For instance in hardware simulatioar¢hmay be need for
operations that work with strings of bits. The main probletdr@ssed will one

that treats one string as a pattern to be searched for andexr{btpically rather

longer) as a text to scan. The result of searching will eiieea flag to indicate

that the text does not contain a substring identical to tl&epg or a pointer to the
first match. For this very simple form of matching note thatplattern is a simple
fixed string: there are no clever options or wildcards. Thikkie a simple search
that might be done in a text editor.

16.1 Simple String Matching

If the pattern is: characters long and the textislong, then the simplest possible
search algorithm would test for a match at positions 1, 2.. 3n.turn, stopping
on a match or at the end of the text. In the worst case testing foatch at any
particular position may involve checking allcharacters of the pattern (the mis-
match could occur on the last character). If no match is faarttie entire text
there will have been tests at — n places, so the total cost might bex (m —

n) = ©(mn). This worst case could be attained if the pattern was somgthie
aaaa. . . aaab and the textwas just along stria@a. . . aaa, butin very many
applications the practical cost grows at a rate morertke n, basically because
most mis-matches occur can be detected after looking ateoféw characters.

16.2 Precomputation on the pattern

Knuth-Morris-Pratt: Start matching your pattern agaimst start of the text. If
you find a match then very good — exit! But if not, and if you havatchedk
out of yourn characters then you know exactly what the firstharacters of the
text are. Thus when you come to start a match at the next positieffect you
have already inspected the fitst- 1 places, and you should know if they match.
If they do then you just need to continue from there on. Otwou can try a
further-up match. In the most extreme case of mis-matches affailure in the
first match at positiom you can move the place that you try the next match on by
n places. Now then: how can that insight be turned into a pralcilgorithm?
Boyer-Moore: The simple matching algorithm started chegkire first char-
acter of the pattern against the first character of the textw Bonsider making
the first test be theth character of each. If these characters agree then go back

52

to positionn — 1, n — 2 and so on. If a mis-match is found then the characters
seen in the text can indicate where the next possible alighofepattern against
text could be. In the best case of mis-matches it will only beassary to inspect
everynth character of the text. Once again these notes just pravidee to an
idea, and leave the details (and the analysis of costs) thdeks and lectures.
Rabin-Karp: Some of the problem with string matching is tlesting if the
pattern matches at some point has possible edgte length of the pattern). It
would be nice if we could find a constant cost test that was si@m®reliable. The
Rabin-Karp idea involves computing a hash function of thégpat and organising
things in such a way that it is easy to compute the same hastidaron eactn
character segment of the text. If the hashes match there ighaphobability
that the strings will, so it is worth following through withfall blow by blow
comparison. With a good hash function there will almost n&esfalse matches
leading to unnecessary work, and the total cost of the sewstche proportional
tom+n. Itis still possible (but very very unlikely) for this prosgto deliver false
matches at almost all positions and cost as much as a nanghsgauld have.

16.3 Knuth-Bendix completion of a set of re-write rules

This subsection describes a problem and notes that it hasit#osg but the full
details are considered outside the scope of this course.id&ores collection of
string re-write rules, each rule taking the form of a pair @eél strings, one a
pattern and the other a (shorter) replacement string. Anitgdbe processed using
these rules by searching in it for one of the strings on theslde of a rewrite. If
a match is found the string found is replaced in the text byotiefrom the right
hand side of the relevant rewrite. This process is contirw@d no matching
strings remain in the text.

In some cases it could be that several patterns apply toxheoteone pattern
could match in several different places. Which re-write isfqgrened first might
alter the entire course of the rest of the processing. Foesats of rewrite rules it
is possible to show that even though selecting differentites/has a local effect
on the reduction process in the end it does not matter — wiveritireg terminates
the final text will be independent of any earlier choices made

The first challenge this raises is that of finding an algoritbrtest if a collec-
tion of rewrites has this desirable property (confluendglrhs out to be possible
to do even better, and take sets of reduction rules thatcftalitbehaved and de-
rive from them rule-sets thatlwaysyield the shortest result that could have been
obtained using the original rules. The outline of how to de threasonably easy

53

to give, but the proofs that the procedure terminates artdiibaxpanded rewrite
set behaves as desired is rather harder!

17 Geometric Algorithms

A major feature of geometric algorithms is that one ofterisfé¢lee need to sort
items, but sorting in terms af co-ordinates does not help with a problem’s struc-
ture in they direction and vice versa: in general there often seems nmobv
way of organising the data. The topics included here aregusampling that
show off some of the techniques that can be applied and pr@dache basic tools
to build upon. Many more geometric algorithms are preseirtdde computer
graphics courses. Large scale computer aided design andahstic rendering
of elaborate scenes will call for plenty of carefully degdrdata structures and
algorithms.

17.1 Use of lines to partition a plane

Representation of a line by an equation. Does it matter what &f the equation
is used? Testing if a point is on a line. Deciding which sida dihe a point is,

and the distance from a point to a line. Interpretation ofescnd vector products
in 2 and 3 dimensions.

17.2 Do two line-segments cross?

The two end-points of line segmedmimust be on opposite side of the lihgand
vice versa. Special and degenerate cases: end of one linghs other, collinear
but overlapping lines, totally coincident lines. Crude plipy to provide cheap
detection of certainly separate segments.

17.3 Is a pointinside a polygon

Represent a polygon by a list of vertices in order. What does@mto be “inside”
a star polygon (eg. a pentagram)? Even-odd rule. Speciascsénding number
rule. Testing a single point to see if it is inside a polygonmsarking all interior
points of a figure.

54

17.4 Convex Hull of a set of points

What is the convex hull of a collection of points in the plane@té\that sensible
ways of finding one may depend on whether we expect most ofrihmal points

to be on or strictly inside the convex hull. Input and outpatadstructures to be
used. The package-wrapping method, andiftsvorst case. The Graham Scan.
Initial removal of interior points as an heuristic to spelithgs up.

17.5 Closest pair of points

Given a rectangular region of the plane, and a collectionoaftp that lie within
this region, how can you find the pair of points that are close®ne another?
Suppose there arepoints to begin with, what cost can you expect to pay?

Try the “divide and conquer” approach. First,rifis 3 or less just compute
the roughlyn?/2 pair-wise lengths between points and find the closest twotpoi
by brute-force. Otherwise find a vertical line that partisathe points into two
almost equal sets, one to its left and one to its right. Appbursion to solve each
of these sub-problems. Suppose that the closest pair ofspimand in the two
recursive calls were a distanéeapart, then either that pair will be the globally
closest pair or the true best pair straddles the dividing,. lim the latter case the
best pair must lie within a vertical strip of wid##, so it is just necessary to scan
points in this strip. Itis already known that points that ane the same side of the
original dividing line are at least apart, and this fact makes it possible to speed
up scanning the strip. With careful support of the data stines needed internally
(which includes keeping lists of the points sorted by bot#ndy co-ordinate) the
running time of the strip-scanning can be made linean,invhich leads to the
recurrence

f(n) =2f(n/2) + kn

for the overall costf(n) of this algorithm, and this is enough to show that the
problem can be solved ia(n log(n)). Note (as always) that the sketch given here
explains the some of the ideas of the algorithm, but not allithportant details,
which you can check out in textbooks or (maybe) lectures!

18 Conclusion

One of the things that is not revealed very directly by thesesis just how
much detail will appear in the lectures when each topic ioed. The various

55

textbooks recommended range from informal hand-waving iitite more detail

than these notes up to heavy pages of formal proof and peafurenanalysis.
In general you will have to attend the lectufeso discover just what level of
coverage is given, and this will tend to vary slightly fromay¢o year.

The algorithms that are discussed here (and indeed mang ohtks that have
got squeezed out for lack of time) occur quite frequentlyeial mpplications, and
they can often arise as computational hot-spots where sjuigl amounts of code
limit the speed of a whole large program. Many applicaticasfor slight varia-
tions of adjustments of standard algorithms, and in othsesshe selection of a
method to be used should depend on insight into patternseatas will arise in
the program that is being designed.

A recent issue in this field involves the possibility of sonhgoaithms being
covered (certainly in the USA, and less clearly in Europephtents. In some
cases the correct response to such a situation is to takerséidrom the patent
owners, in other cases even a claim to a patent may cause yeantao invent
your very own new and different algorithm to solve your peshblin a royalty-free
way.

®Highly reccomended anyway!

56

