
Advanced Algorithms

A C Norman, Michaelmas Term 1995

Part II

1 Introduction

The Part IB course on Data Structures and Algorithms describes a wide range of
practically valuable methods, many of which represent the fruits of a great deal
of clever and ingenious design. But in general it concentrates on success stories,
where a simple and obvious problem has a solution that appears to solve it com-
pletely, and that solution (while often unexpected or cunning) is fairly compact
and comprehensible in retrospect. Part of the idea behind this Part II course is to
show that the earlier course did not even do justice to the tipof the iceberg, and
that the amount of work that has been done on algorithms and the amount yet to
be completed is enormous. It also looks again at various procedures introduced
elsewhere in the Tripos and asks the difficult question “Yes,but can you do yet
better?” or “What are the detailed implications of the minor sub-tasks that were
taken for granted in the big outline?”. In several cases these lead to new and elab-
orate data structures, or forms of analysis that is harder than would have a place
in a Part IB course.

This course is for Part II, and is new for 1995. There are various consequences
of these two facts:

• I will not feel obliged to give the course at a level whereevery student can
follow (and thus enjoy) it. In Part II students can choose from among a
wide range of options and it is proper that some of these will not be at all
suitable for all the class. I will, of course, feel embarrassed if I take such an
aggressive stance in the course that the audience drops to single figures.

• These lecture notes will be less complete than ones I have tended to prepare
for earlier years in the Tripos. Thus inspection of the textbooks will be
called for.

• As with any new course there may be some teething problems: I have de-
signed the syllabus to make it is safe as I reasonably could, but until I have
given it once it is hard to know exactly how much time I will need to allo-
cate to each topic. If I cover less (or indeed more!) than the “yellow book”
and these printed notes suggest then I will adjust the examination questions
accordingly.

• Supervisors may feel exposed if they offer to assist with this course. In fact
I do not think I will be saying anything that ought to be a real problem in
that respect, but a clinic at the end of the Term (Thursday 30th November,
probably at 4pm, but further details will be circulated later) will provide op-
portunity for students (or indeed supervisors) to cross-question me or seek
clarification.

1

• Part IB courses are given and attended as a matter of duty, while PartII
ones are for enjoyment (on both sides). I think that the material I have
assembled is utterly amazing and entertaining as well as being the sort of
stuff that every well-educated Computer Scientist ought to know. Some
is even directly applicable. It also shows that practically-motivated areas
within the subject can be complicated and hard almost without limit.

• I will duck lots of formal proofs and fine details, taking the view that text-
books cover them much better than a lecturer can.

The course is structured in four two-lecture sections. It might be rational for
students to assume that I will prepare one examination question on each section,
discard the one that looks least well formed, and use the bestrandom number
source I have to choose which of the others I set. Potentiallyit would be possible
to attend the course in modules, skipping one that felt especially unattractive. The
topics to be considered are:

Binomial and Fibonacci Heaps: these grow out of a desire to solve the single-
source shortest path problem (eg using Dijkstra’s algorithm) on sparse graphs
as fast as possible. Maybe the surprise is that Dijkstra’s algorithm as docu-
mented at a IB level fails to think harder about this—but there again when
you see how messy Fibonacci Heaps are you will understand!

Kolmogorov Complexity: Usually evaluations of the information content or com-
plexity of things will be asymptotic, and arbitrary finite odd-cases will be
quietly ignored. This part of the course provides some basisfor consider-
ing a finite string such as “ababababababab” to be less complex than one
like “abbbaabaaabaaaa”. This involves looking at various ideas about data
compression, Turing machines, probabilities and information theory. Note
very well that I will only give a simple introduction to a large and difficult
subject area.

Probabilistic Algorithms: The relationship between true randomness and computer-
generated pseudo-random numbers. The extent to which a truly random “or-
acle” might be a help in algorithm design, including a discussion of the fact
that there are several different ways of producing precise models of what
“successful random computation” might mean. One of the mostimportant
areas where probabilistic algorithms are commonplace: integer primality
checking and factorisation. While I intend to duck most technical issues
this borders on including a bit of computational number theory.

More Garbage Collection: The background challenge here willbe to take a pro-
cedure which is easily implemented as one that takes place inlarge disrup-
tive chunks and to derive schemes that support (near-) real-time processing.

2

I may discuss both “emphemeral” garbage collection and the issues behind
true parallel garbage collection where one processor continuously allocates
and uses memory while another rushes along in the backgroundtidying up.

2 Binomial and Fibonacci Heaps

I will start with a review of Dijkstra’s algorithm for the single-source shortest path
problem. This is because it (at least on sparse graphs) helpsto justify some of what
follows. Suppose one has a directed graph with (positive integer) weights on the
edges, and an initial special vertexv0 called the “source”. Then the algorithm will
discover the length of the shortest path fromv0 to each of the other vertices in the
graph. As a matter of convenience a special value∞ is used to indicate that there
is no path from the source to some particular vertex. Pedantscan note that I only
want finite values as weights on the edges, and that I do not want any arithmetic
overflow in processing these distances to generate anythingthat can be confused
with the formal∞ that is used to label unreachable vertices. I will suppose that
the graph hasV vertices andE edges, and that it is represented in such a way that
finding the edges that meet at a given node is cheap.

The algorithm uses a setQ that contains the collection of vertices not yet
processed. This can start off consisting of all the verticesin the entire graph.v0

will be marked with the value0, while all other vertices start off labelled with∞.
The algorithm proceeds by iterating two steps untilQ is empty:

1. Identify and remove the vertex with smallest label fromQ. This will of
course bev0 on the first occasion. This step decreases the size ofQ by one,
and so the step is executed exactlyV times. Call the extracted vertexu.

2. For each edge coming out ofu and running to a vertexv, check if the label
on u plus the weight on (u,v) is less than the current label recorded withv.
If so reset the label onv to the new smaller value. Since the graph being
worked on is a directed one it is easy to see that that step at worst updates
weights onE occasions, since each vertex will take on the roleu just once
and at that stage all the edges coming out of it will be processed.

The overall cost thus involvesV operations that identify the smallest item in
a set and remove it, andE cases where a value in the set is decreased (note that
values are only decreased, never increased). For a sparse graph it is productive to
view Q as a priority queue. As will shortly be explained if this is implemented as
an ordinary heap (as in heap-sort) each of the two operationshas cost proportional
to log(|Q|), and sinceQ contains a subset of the vertices this is roughlylog(V).
Overall the cost can be expected to grow like(E + V) log(V).

3

This is fairly reasonable in many cases, and ordinary heaps are easy enough
to implement (and I will review them and their properties in amoment). How-
ever some graphs will be fairly sparse (soE � V 2) but not sparse to excess (eg
E � V). In such cases a priority queue based method is still betterthan cruder
linear searching, but theE log(V) term in the cost function dominates. I will
be showing how to avoid this, to give a complete algorithm with costs propor-
tional toE + V log(V). To give fair warning, the overheads involved will make
this method unattractive in most if not all real applications, but that should not
dampen enthusiasm for its aesthetic appeal or theoretical importance.

2.1 Ordinary Heaps

First, a review of (ordinary) heaps. A heap will be a binary tree with values stored
in each node, such that the smallest value in the entire tree is in the top node,
and each sub-tree also satisfies the heap property. I will generally want a heap
to be a pretty well balanced binary tree, so that if it hasn items in it its depth is
aroundlog(n)1. The Part IB course explained how heaps could be represented by
storing the values in a simple vector and using address arithmetic to give implicit
pointers up and down the heap. Thus a value stored at offsetk in the array might
have child nodes at location2k + 1 and2k + 2. For the purposes of this course I
will back off from such cunning, and think of heaps as made outof collections of
separate nodes with explicit pointers linking them all. It will be necessary to have
pointers both from parent to child nodes and back from a childto its parent. The
issue of allocating space for the nodes is something I will ignore. The overhead
of leaving space for all the explicit pointers and the pain ofupdating them all in
step will also be something swept under the carpet by saying that any local update
operation will have costO(1) and so is within a constant factor of the cost of any
cleverer scheme.

With heaps as considered here it is useful to list the operations that can be
performed, and remind ourselves of the associated costs. Ineach casen stands for
the number of items in the tree:

1Of course all my logarithms here are base 2.

4

make-empty-heap O(1)
identify-smallest O(1)
insert-new-item O(log(n))
remove-smallest O(log(n))
decrease-key O(log(n))
delete-arbitrary O(log(n))
heapify O(n)
union O(n)
search-for O(n)

I need to elaborate a little on the expensive items at the end of my list. The
union operation is to take two heaps (of total sizen) and make a new single heap
out of their nodes. It can be done in the time indicated by flattening the two heaps
into a single unordered list of lengthn and then heapifying it. Thesearch-for
operation starts with a heap and a key, and scans the heap to find an entry in it
that matches the required key. Balanced binary search trees can do this in time
O(log(n)) but heaps are no better than linear lists in this respect. Thedecrease-
key entry is for the operation needed in Dijkstra’s algorithm where the priority of
a node gets decreased and the heap condition is then restored.

2.2 Binomial Heaps

As a step towards my ultimate goal (Fibonacci heaps) I will describe Binomial
Heaps which have the property that the cost of theunion operation drops to
O(log(n)), but to partly compensate the cost of identifying the smallest item in the
heap jumps toO(log(n)). Fortunately this latter is usually not a problem, since
after identifying the smallest item in a heap most applications remove it (with
log(n) cost anyway).

I lead into Binomial Heaps through Binomial Trees. The BinomialTreeBk

will have2k nodes and depth exactlyk. This sounds rather similar to the situation
with regular binary trees! But a Binomial Tree is not binary—inparticular the top
node ofBk will have k children. These children will themselves be structured as
Binomial Trees, and listed from left to right will beBk−1, Bk−2, . . .B0. If course
B0 is just a node with no children at all. Although the fact does not worry me too
much at present the number of nodes at depthi in such a tree iskCi, a Binomial
Coefficient. Count the total nodes inBk and it is(Bk−1 + . . . B0) + 1 (the+1 on
the end is for the parent node that holds it all together. It isthen easy to see that
this is compatible with the tree containing2k nodes. It is also useful to observe
how one makesBk+1 out of Bk. The larger tree is just obtained by extending the
smaller one by adding a second copy of it on the front of the list of sub-trees. This
gives another way of setting that the size ofBk+1 is just twice that ofBk.

5

Now for Binomial Heaps. Start by demanding that the values stored in a Bi-
nomial Tree satisfy the heap property, ie that the smallest value in any sub-tree is
in the root of that tree. Thus the smallest value in the whole tree is right at the top.
Now a Binomial Heap is a list of Binomial Trees, heap ordered andwhere no two
of the trees are the same size. I think that perhaps an easier way to understand this
is to take a complete Binomial Tree and ignore the top node (so that the children
of that node now form a set of binomial sub-trees), and to allow some of those
subtrees to be omitted. In some other sorts of trees one arranges that if the num-
ber of items to be stored is not a power of two then it is leaf nodes that are left out
to get the numbers correct. Here we omit top-level branches.

I should observe that given any particular sizen there is a single way of struc-
turing a Binomial Heap of sizen. This is because each of the trees it is made up
out of has a size that is a power of 2, so we can just select whichtrees should be
included by looking at the binary representation of the number n. Since I have
ordered my lists so that larger sub-trees come first the “bits” in this binary repre-
sentation will be stored with the highest power of 2 to the left.

Now a small observation for which cautious readers will wantto write out a
proper justification. A Binomial Heap containingn entries will have height about
log(n), and this remains so even if the representation used uses linked lists to chain
together the children of a node and traversals along such a chain are counted as
contributing to “depth”. This is part of why the largest sub-tree was stored first (to
the left, and at the head of the list of children). This important fact will be what
ensures that operations on the heaps is efficient. It should also be clear that the
top-level list of binomial-sub-trees is of length bounded by log(n).

I can now consider the implementation of all the heap operations:

make-empty-heap: Easy! Clearly stillO(1).

identify-smallest: It is now necessary to scan the top-level list of trees. Each is
individually heap-ordered so has its smallest item at its top. So to find the
smallest item in the whole tree costsO(log(n)), the length of the top-level
list.

union: Most other operations are implemented using a union operation, so that
is what I will describe next. Consider two Binomial Heaps as if they were
binary numbers with the sub-trees within them standing for the individual
bits. The algorithms required will then be just the usual onefor addition,
taking care with carry operations and arranging that the digits in the answer
are built out of the trees in the inputs. It will be necessary to ensure that trees
remain heap-ordered throughout the process. I happen to have specified my
version of Binomial Heaps with the most significant bit storedfirst, which
is a minor inconvenience here, but easy to program around. Following on

6

from hardware courses I observe that all I need to do is define ahalf-adder.
I can make a full-adder out of two half-adders and go on from there. A
half-adder takes in two “bits” and generates a sum and a carry. To make
this convenient to code I will now insist that each node in a Binomial Tree
is labelled to show its height. The height is then just an indication of the
bit-number that it stands for. The only interesting case in implementing a
half-adder is when both input bits are present, so they must be combined
to produce a carry bit. If the bits are Binomial trees with structureBi the
carry that is generated needs to have structureBi+1. However, as explained
earlier, this can be achieved by just putting one tree at the head of the list
of children for the other. This is clearly aO(1) operation. A simple check
on the top values in each tree shows which one should be on top and which
below to preserve heap ordering within the new tree. Thus thecode to
implement a half-adder will run (easily) inO(1) time. And since there are
log(n) digits to process the entire union operation can be achievedin time
O(log(n)). I think this is clever!

insert-new-item: Create a one-node Binomial Heap (easy) and form the union
between it and the original one.

remove-smallest: The smallest node in the entire heap is at the top of one sub-
tree. First remove that subtree. Finding it and splicing it out of the top-level
list costsO(log(n)). Now look at the removed tree. Discard its root node
(the one that was to be removed anyway) and what is left is a Binomial Heap
(it happens to have all the possible sub-trees that it could). Form the union
of this with the main heap, thereby putting back the items that were taken
out along with the smallest element. Looks a bit messy, but the cost is still
O(log(n)).

decrease-key: This only involves adjusting values within one of the constituent
binomial trees, and is just about the same as the operation needed to restore
heap-ness when a value in an ordinary heap is reduced, so it still costs the
same.

delete-arbitrary: Reduce the value in the arbitrary node to−∞, thereby making
it the smallest item in the whole heap, and then remove it.

The effect of all the above is to tame the cost of forming the union of two heaps
(eg two priority queues). This is not what is wanted for the Dijkstra shortest-path
algorithm, but can be very useful in other circumstances andthe explanation helps
prepare the way for the next topic.

7

2.3 Fibonacci Heaps

These are yet more complicated to implement than Binomial Heaps, but will end
up with all the heap operations that do not involve deletion havingO(1) cost. To
be specific, the costs are

make-empty-heap O(1)
identify-smallest O(1)
insert-new-item O(1)
decrease-key O(1)
union O(1)
remove-smallest O(log(n))
delete-arbitrary O(log(n))

This seems stunningly good, and will be of great benefit to many algorithms
where heap updates are much more common than heap deletion (as if the case
with Dijkstra’s algorithm on most reasonably sparse graphs, say ones whereE =
V log(V)). There are two caveats that I have to make here. The first is that the
times quoted for ordinary and Binomial Heaps were worst case ones, while the
ones given here areamortised costs. This is still worst case analysis in some
very real sense, and does not depend on the data being processed, but it bounds
the average time per operation over a long series of operations. Thus it allows an
implementation to queue up work so that most operations onlyinvolve the very
cheap step of adding a request to a queue, but then occasionally one step will trig-
ger major calculation that rearranges data structures to incorporate the batch of
changes. An algorithm has amortised costO(1) if the average time per individual
use of it over a worst case sequence of calls is bounded. Algorithms where the
only good computing time bound is an amortised one may not be suitable for use
in systems with a real-time response requirement, even though they may guarantee
excellent long term average performance.

A Fibonacci Heap is a collection of trees. For Binomial Heaps all the nodes
were linked by one-way lists. In the Fibonacci case two-way lists will be used for
all links, which makes stepping forwards and backwards easyas well as allowing
for the splicing in of extra items. So the top level of a Fibonacci Heap is a double-
linked circular list of nodes. Each node contains a pointer to one of its children,
and the other children form a double-linked circular list threaded through this
primary child. A node will contain a field that records how many children it has,
and a flag bit which is used to help the system know when and how it needs to
re-structure its heaps to keep them from getting too straggly.

The heap as a whole has a pointer to the place in its top-level circular list
where the subtree with the smallest top-node lives.

I am going to omit proofs that Fibonacci Heaps have the amortised costs in-
dicated for them, and will rely on the fact (which I will not prove) that all the

8

operations on them that I perform leave them in a state where no node has more
thanlog(n) children (where there aren nodes in the whole heap).

Suppose that the only operations performed on our heaps are

1. make-empty-heap

2. insert-new-item

3. identify-smallest

4. union

5. remove-smallest

then the Fibonacci Heap will be structured just like a corresponding Binomial
Heap except that the order of the trees at the top level can be arbitrary (and indeed
there can be several trees of a given size present, but only atthe top level) and
the order of the subtrees that make up parts of the constituent Binomial Heaps is
also arbitrary. This is why you have learned about Binomial Heaps first. Clearly
leaving the order of all the sub-trees unconstrained saves some time building the
lists but makes other operations harder. The idea behind Fibonacci Heaps is to
strike a good balance—trees are left in a mess for as long as iscompatible with
the final clean-up remaining sufficiently cheap.

Making an empty heap is easy and clearly has unit cost. To add anew item
a new fragment is created and spliced into the top-level circular list. If the new
item has a smaller key than the previous smallest item then the relevant pointer is
changed. After a long sequence of inserts the heap would end up as a long thin
chain. Nodes inserted in this way have their flag bit set tofalse. Inserting a new
item in this way also clearly has unit cost. The minimum item in the tree is always
directly identified, so accessing this also has unit cost.

To form the union of two Fibonacci heaps the two top-level chains are just
linked together, and the minimum pointer of the combined heap becomes one of
the minima in the two original heaps. This again tends to leadto long straggly
lists, but as an individual operation it remains cheap.

That leave the remove-smallest operation, which is where all the mess arises.
It is necessary to consolidate the heap as a whole to improve the extent to which
it is balanced. After a long sequence of insert operations the first call to remove-
smallest may appear fairly expensive but it will then clean things up so that sub-
sequent calls are cheaper.

The first thing that is done is that each child of the smallest node is moved up
to be a tree in the top-level cycle. Then the smallest node itself can be removed
easily enough. The cost of this involves a small operation oneach child of the
smallest item in the heap. I asserted earlier that the largest fan-out that could arise

9

would belog(n) so this is still reasonable. The structure is now still a Fibonacci
Heap, but at this stage it the top-level subtrees will be consolidated so that at the
end of the deletion operation no two subtrees will be the samesize.

To ensure that all subtrees end up the same size we use a working array of
length log(n), and start it off with all elements NULL. Then each item in the
original heap is considered in turn. Each tree is marked withits height (if I had
not mentioned that before I do so now, it is clearly not a difficult thing to arrange),
and all heights are less thanlog(n). So we try to post each sub-tree into one slot in
the working vector. If when we find that the vector element concerned is already
full we have just found two trees whose sizes match. In that case the two trees
can be combined (almost as for Binomial Trees) into a single one of double the
size (and hence height just one greater) and this can be inserted into the next array
element up. Almost the only thing that one has to take care of is to ensure that
whenever two subtrees are merged the one with the smaller root ends up on top.
At the end of a scan of all the sub-trees we end up with the working array holding
a collection of trees. The algorithm terminates by collecting these and forming a
circular two-way list out of them, with the one of them that has the smallest key
specially identified, and this is then the reconstructed Fibonacci Heap.

If this is done just after a large number of items have been added to the tree
one at a time the cost will ben steps to consider each individual node, plusn/2
to handle the first stage of “carry” operation, plusn/4 times for a second-stage
carry and so on—all in all the number of individual steps is proportional to justn.
But in the spirit of amortised analysis we can view this apparently linear cost as
being shared between then operations used to build the heap up to now, and thus
as contributingO(1) to each such heap-building step. After the heap has been
consolidated it will consist of trees all of different sizes, so there will be at most
log(n) such trees and subsequent remove-smallest operations willeach have costs
limited to this amount.

Note that it was important to have a bound on the largest size tree we would
have in the whole heap so that the working array could be set up, and necessary
(for efficiency) that the array end up having size logarithmic in the total number
of items stored.

To delete an arbitrary node from a Fibonacci Heap we can first decrease its
value to−∞ and then perform the remove-smallest operation, so all I need to
worry about now is the process of restoring the structure of aFibonacci Heap
after a value stored therein has been decreased. However this is messy! After it
has been done the Fibonacci Heap is no longer quite a set of (unordered) Binomial
Trees. First observe that if the node being altered is the root of its tree, or if the
new value is still larger than the value stored in its parent node, nothing very
complicated needs doing. The only problem is when the new keyis smaller than
that in a node higher up than the node being altered. In this case we lop the

10

changed node (with all its children) out of the place in the tree where it originally
sat and put it in at the top level as a new tree. As such this is clearly very easy to
do. The potential problem with it is that it deletes a child from an arbitrary place
within some other tree, and can thus leave that tree with lessfan-out than was
desirable, in particular eventually leaving that tree muchtoo straggly. The depth
of the tree could reduced overall by taking all the nodes on a chain upwards from
the changed node and moving them all up to the top level. But doing this all at
once would mean that the cost of changing a key was much greater thanO(1). As
a compromise it is again useful to observe that1 + 1/2 + 1/4 + 1/8 + . . . = 2
and so arrange that successive bits of this rearrangement are done at frequencies
that roughly reflect the above geometric progression. This is where the flag bit
mentioned before comes in. We arrange to set the flag bit whenever a node loses a
child (through this restructuring step). The flag is re-set whenever node is moved
up to top-level. With this flag in place we can detect thesecond occasion when a
node loses a child, and let that cause the node to be relocatedto the top level in
the heap. The effect is rather as if the chain of flag bits leading up from a leaf in a
tree towards the root can act as a binary counter—on average the number of carry
operations (ie reorganisations) will be small even if occasionally a lot happen all
at once. The overall result will be that each decrease-key will performO(1) steps
of moving a node to the top level, and so ends p with costO(1).

Note that a sequence of decrease-key operations can lead to bits of tree that are
in fact just linear lists. So now that the sub-trees involvedare not arranged as if
they were Binomial Heaps I ought to go back and re-think my heapconsolidation
algorithm. What is in fact done is to use the degree (ie number of children) of a
node as the basis for the merge operations to be done. If a nodehas lost some
children it will be treated as if it were a smaller tree, but nothing very untoward
happens as a result. The main clever bit of analysis is to showthat even after a tree
has been subject to an arbitrary collection of decrease-keyand consolidation steps
the greatest number of children that any node can end up with is proportional to
log(n). A proof is worked through in Cormen et al[1], as are proper justifications
that all the operations involved have the (amortised) computing times claimed
here. But in each case I think the full details are too long and messy to be included
in this course or its notes.

Fibonacci Heaps are so called because a bound on the sizes of bits of the trees
turns out to be a Fibonacci number.

2.4 Consequences

The ability to do decrease-key inO(1) time can be a great help in many algorithms
of potential practical use. As well as shortest paths it has direct application to min-
imum spanning trees, bipartite matching and other problems. The only thing that

11

can really be said against Fibonacci Heaps is that the overhead of keeping all the
doubly-linked circular lists and up and down pointers, and flag bits and degree
counts up to date can look quite painful, and so in many real cases accepting the
extralog(n) factor that a simple heap would suffer is in fact sensible. The chal-
lenge that that leaves you with is to design a new and better data structure having
the compactness and absolute speed of ordinary heaps and thesuperb asymptotic
performance of Fibonacci ones.

3 An Introduction to Kolmogorov Complexity

Overall Kolmogorov Complexity is a subject area that has onlystarted to become
widely known quite recently, and which is full of seriously delicate traps and pit-
falls. It allows one to discuss the “complexity” of finite objects, or to consider
whether individual events are “random”. Using it it would bepossible to make
a precise form of the statement that you would be amazed if theNational Lot-
tery turned up the set of numbers{1,2,3,4,5,6} rather than some more scrambled
looking bunch. What is better, it would potentially allow youto design a rather
complicated bet you could make which would result in you winning if the lot-
tery numbers were fixed (in any way!), and lose if they were fair and random—an
admirable bet for those of a paranoid disposition. I am goingto produce an intro-
duction to the techniques of the subject, and illustrate it by showing how it allows
a Computer Scientist, using obviously Computer Science linesof argument, to
prove something that you would normally think you needed a number theorist to
sort out. To be specific I will prove a lower bound on the density of prime num-
bers, showing that primes are in fact quite common. The result I will end up with
will not be as precise as the ones that the Mathematicians have (in fact by quite a
long way), but the way in which I conduct the proof is not goingto have to call
upon any difficult number theory techniques or results, instead it will rely on an
understanding of Turing Machines and data compression algorithms! I selected
this example for inclusion in the course because it gives a neat illustration of the
fact that Computer Science analysis techniques are different from but sometimes
as elegant and powerful as Pure Mathematics ones—and if I canmake a successful
application of Kolmogorov Complexity to this problem I mightcome to believe it
will have many other uses.

3.1 Perfect Data Compression

To start off with I should consider data compression. I will consider all data
as consisting of strings of bits, so the size of some data is just the number of
bits used. Well actually it turns out that even that simple-sounding statement is

12

probably dodgy, and in places I will need to think again! When you take out
your pen and write down a string of bits you will concentrate on the fact that
each bit is either a ‘0’ or a ‘1’. But when you stop writing you will leave a gap
on the paper that shows where the bit-string ends. This gap isitself not a bit
and previously when looking at measurements of data we probably only worried
about the genuine direct data. But implicitly there will be a “data length”, and
the information conveyed by that must not be ignored. An extreme case in point
would be if the valid binary strings used were to be restricted to “1”, “11”, “111”,
“1111”, and so on, counting in unary. Then all the real information content is
contained in the (implicitly recorded) length. Some stylesof data will manage to
encode length or termination information as part of the honest data, and this will
generally be considered good. Two common examples spring tomind: individual
characters coded using a Huffman Code are self-terminating,and text files under
MSDOS may be represented as a string of bytes, with the end of file marked by
the special “character” control-Z2. In the C language strings are terminated by an
explicit zero character and so are the bit-pattern representation of them (including
the final zero) is self-terminating.

Now for data compression. I will define a data compression scheme as a pair
of mappings between bit-strings. I will generally be interested in compression
that starts with bit-strings where the length is implicit. Thus thecompression
procedure must be able to accept any of the2n distinct bit-strings of lengthn and
it turns it onto some other string, which ideally would have length less thann, at
least a lot of the time. Thedecompression process will only ever be fed bit-strings
that have been generated by the compression process and is entitled to misbehave
in an arbitrary fashion if given a string that was not createdin that way. But if
given the compressed version of some data it must always reconstruct exactly the
original data string, including knowledge of its length. Despite the fact that the
mapping process is calledcompression it is probable that some input strings will
grow when “compressed”. Observe

1. No compression algorithm can cause every input string to get mapped onto
a strictly shorter compressed form;

2. If a compression scheme has the property that all input strings are either
shortened or stay the same length (so at least none get strictly worse) then
none actually end up shorter;

3. You can’t even have a compression scheme that manages to reduce the size
of half of all possible input strings.

2this explanation about the file structure is of course not totally true, but it will suffice for now

13

These results follow by counting how many bit-patterns of lengthn are available
and observing that there have to be enough distinct compressed patterns to allow
distinction between all possible inputs.

As an aside I might indicate what this tells us about compression utilities such
as “zip”. The very high compression seen when such utilitiesare used on typical
files indicates that the patterns of data in such files is very special in some way.
The fact that zip never seems to cause any file to grow is only nearly true—it can
spot files where its data compression techniques would not make good headway
and store the raw uncompressed data with a short prefix that can tell the decom-
pression process just to copy what follows. Thus it can arrange that in its worst
case the compressed file is only a few bytes longer than the original, while in
cases that are very sparse in the space of all possible input bit-patterns but which
happen to be remarkably common in human-generated files it can achieve com-
pression ratios of (often) 3:1. This is not in conflict with mymore theoretical
argument.

Refinements of the counting argument allow one to show that only a really tiny
proportion of input strings can be compressed to a significant extent. In particular
at best half could save one bit, or a quarter could save two bits, or an eight could
save three bits. Strings that can be compressed to half theiroriginal length are
stunningly rare.

Now I should consider the concept of an optimal compression procedure—one
that will take any string and produce the very best possible compressed version
subject to the constraint that there must be a single associated decompression
algorithm. At first sight it seems very improbable that a universally optimal com-
pression procedure can exist, since it seems probable that compression techniques
should depend on the class of strings to be handled. There is asmall bit of sleight
of hand that gets around this! Imagine we haven different compression methods,
calledC1 . . .Cn and each works best in different circumstances. We can make a
composite method by trying each ofC1 to Cn and compressing with the one that
works best. The resulting output string then has a prefix oflog(n) bits stuck on
the front as a signature of which scheme was used. Across any very large set of
strings the constant number of bits that this introduces is unimportant and can be
ignored. So with this in mind we agree that one compression process can only be
considered better than another if not only does it compress some strings to strictly
shorter lengths, but if there is no constant bound to the amount by which it does
better than the method it is being compared against.

With this way of comparing compression methods it turns out that there is a
universally best method (or to be more precise, a whole family of mutually equiv-
alent “best” methods). This method is (also amazingly) veryeasy to describe. A
stringS gets compressed to the shortest program that will print the bits of S and
then stop.

14

The Computation Theory Course shows, in effect, that any worthwhile pro-
gramming language can be used to simulate any other, and onlya finite sized
program is needed for the simulator. To be specific it suggests that Turing ma-
chines might form a sensible concrete way of expressing the programs we need
here, and it demonstrates that the description of any particular Turing Machine can
be reduced to a numeric code and hence a string of bits. Thus when I feel pedantic
I will say that the best compressed form of any string is the shortest string of bits
that represents a number, which in turn describes a Turing Machine, such that that
Turing Machine would, if started with an empty tape, ends up writing the original
bit pattern to the tape and halting. Please note that until the machine halts it will
not be possible to be certain that it has finished generating output.

The universal nature of Turing Machines then shows that any computable de-
compression strategy can be implemented this way with only afixed-length bur-
den. This burden is the encoding (as a Turing Machine description) of the de-
compression strategy, which is then simulated. So this scheme really does deliver
as good compression (to within a constant additive amount) of any compression
scheme possible. There is a slight difficulty, in that identifying the shortest Tur-
ing Machine is a hard problem. Well actually it is undecidable. But it is certain
that a shortest machine does always exist, and I will therefore ignore the slight
embarrassment of having the halting problem intervene between me and a neat
implementation of all this!

3.2 Complexity Measures via Compression

I now define the Kolmogorov Complexity of a string as the lengthof the ideally
compressed version of it. This value will be well defined to within an additive
constant. Observe with some surprise that the complexity ifthe infinite string that
starts

27182818284590452353602874713526624977572470936999595. . .

is finite (in case you do not recognise it this is supposed to bethe digits ofe, and a
very definitely finite program can be persuaded to print the digits one after another
without end. The same would be true for the digits of

√

(2) or π). However very
nearly all strings will have Kolmogorov complexity just equal to their length3.
This last fact turns out to be the key that makes this complexity measure useful.
All sorts of jolly results can be demonstrated by relying either on the fact that
in-compressible strings exist, or the stronger assertion that almost all strings are
incompressible. I will demonstrate this on the “density of primes” problem.

3Length, that is, when viewed as a bit string.

15

3.3 The density of Prime Numbers

The proof I will produce here starts by imagining that primesare rather rare, and
works by demonstrating that if that were so it would give us anopportunity to rep-
resent a numbern in fewer thanlog(n) bits. Kolmogorov complexity tells us that
good compression is very uncommon, and we deduce that the density of primes
must be sufficient to make the compression process that I propose worthless. I
should flag this section of the notes with a slight warning, tothe effect that I will
not be filling in all the formal details. The very heavy and expensive Handbook
of Computer Science[5] or an even more specialised book specifically on Kol-
mogorov Complexity (cited in the Handbook, but I am not going to reference it
directly here!) will fill things in with full precision for people who need that.

Suppose now that thenth prime isp(n). I am going to think ofp(n) as an
increasing function ofn and will want to place a bound on how rapidly it can
increase. Next consider an arbitrary incompressible integer k. Here calling it
“incompressible” means that the ordinary bit-string that denotes it using binary
notation (of lengthlog2(k)) is about the shortest possible way of describing it.
Remember that almost all bit-strings (and hence integers) are incompressible so
I have not limited myself in a severe way. I now consider an alternative way of
describing the numberk. Split it into its prime factors, and identify the largest of
these. Call thatp(i). Call the co-factorq, so thatq = k/p(i). Now try to represent
k as the ordered pair(i, q). The reason this is worth trying is that if primes are
very rare thenp(i) will be a much larger number thani, and so usingi to stand for
it will save us a lot of bits.

Observe that (if I ignore the issues of rounding to integer values) thatlog(k) =
log(p(i)) + log(q). That is nothing more than the usual rule about how to use log-
arithms to multiply things together. At first sight it may seem that I can represent
the pair(i, q) in log(i) + log(q) bits by just writing down the bits fori then the
ones forq. However this is where the discussion about encoding the lengths of
strings cuts in. If I just write down the bits fori and then the bits forq I have no
way to tell where one ends and the next starts. To cope with that I will start off
my compressed string with a number representinglog(i), the number of bits I use
to representi, so that I can tell. Thus in some sense I will be using a representa-
tion based on(log(i), i, q), and the separation point betweeni andq is now well
specified. But oh dear, the boundary between where I specifylog(i) and where I
starti itself is now murky. Let’s play the same game yet again, and try writing
the script as(log log(i), log(i), i, q). And at this stage cop out and observe that the
first number, which is now liable to be pretty small, can be written in binary but
by using two characters per bit we can include an explicit termination mark in it.
To illustrate this last point I will show how the number 5 can be represented in a
self-terminating way. In natural binary one would have 101,but to make things

16

self terminating I will interleave extra digits 100011 where the marker1 first ap-
pears to indicate that the end of the number has been reached.I will now try this
out as a potentially compressed representation of my original number. I end up
with 2 log log log(i) + log log(i) + log(i) + log(q) bits. And because even though
this seemed like an interesting compression process Kolmogorov complexity tells
us it can not work, we know that this bit-length is at least as long as the length of
our original number, ielog(k), which we saw earlier was justlog(p(i) + log(q).
To cope with the additive constant by way of slack in the complexity analysis, I
will stick in a stray constantV , and end up with an inequality:

2 log log log(i) + log log(i) + log(i) + log(q) + V > log(p(i)) + log(q)

and this very easily rearranges to give

log(p(i)) < log(i) + log log(i) + 2 log log log(i) + V

Unwinding the logarithms, and lettinglog(A) = V , this gives

p(i) < Ai log(i) log log(i)2

At present this result only applied whenp(i) is the largest prime factor of an
incompressible number. But since there are an infinite numberof primes there are
lots of numbers available whose largest factor is itself quite large, an in particular
(though I will not fight to prove it formally here) enough thatone can be certain
that some of them are incompressible.

It is more common to consider the number of primes less than some integer
k. This count is usually calledπ(k) and what has been shown here is equiva-
lent to showing thatπ(k) is close to being bounded by something proportional
to k/ log(k). You should note that mathematicians manage to do better, and can
show that for largek, π(i) is rather close tok/ log(k). In this case the logarithm
has to be a “natural” one to basee. This is better than my result firstly because it
turns the inequality into (which provides just an upper bound) into something that
gives both upper and lower bounds. They also get rid of thelog log(i)2 term, and
show that the constantA can be taken to have the value 1. A suitably gentle and
maybe old fashioned book that does all this the mathematicians’ way is Hardy &
Wright[3], which is certainly not required reading for this Part II course.

I use this example to introduce Kolmogorov complexity because I think the
proof is short and elegant, and it is pleasing to see computerscience nibbling
away at the corners of mathematicians’ territory. However the idea of proving a
lower bound on something by showing that beating the bound would allow you
to compress some strings rather well has many applications,and it is one of the
best and most general approaches to proving lower bounds on the costs of solving

17

problems. The handbook[5] applies this to show that a (one tape) Turing machine
must take at leastkn2 steps to accept a palindrome of lengthn [k is some unknown
constant], that addingn integers together must take time at least proportional to
log(n) on a certain (quite general) class of parallel computers, and that the re-
sources needed (time and space) for multiplying boolean matrices together must
in general grow at least as fast askn3 for n by n matrices.

3.4 Consequences again

At first sight the idea of optimal compression is an entertaining one but slightly
silly, because finding optimally compressed versions of particular strings is un-
decidable. However that does not in any way prevent it from giving a powerful
and unexpectedly practical way of proving computing bounds. It is important to
understand that even though identifying the best compressed form of a string is
undecidable, the best compressed form is well defined and unambiguous.

More elaborate versions of the same idea consider compression and decom-
pression subject to resource bounds, or the compression of one string supposing
that another one is already known to be available.

The use in connection with finite “random” sequences starts by defining a
string to be random if it is not compressible. In this sense one would view an
outcome from the National Lottery that was “31, 4, 15, 9, 26, 5” as dubious be-
cause the pattern of digits can be described too neatly by reference to the constant
π. A string quite that short might (just) be accepted as an accident, but if the
next week followed on with results based on the next few digits of π I think one
would be entitled to be seriously concerned. By putting Kolmogorov complexity
in the context of probability it is possible to design bets, that are in effect of the
form “I bet that the string of numbers you give me can be compressed really well”
where the average outcome is well balanced if the numbers selected are indeed
truly random, but which would deliver big returns if the person selecting the num-
bers cheated inany way that amounted to having some mechanisable, computable
function causing diversion from true randomness.

4 Probabilistic Algorithms

Having used a number theory problem to illustrate Kolmogorov Complexity, I will
use another to motivate a consideration of probabilistic algorithms. To be specific
I will look at the problems of identifying prime numbers and of finding the actual
factors of numbers that are known to be composite. These tasks have had a much
increased visibility to computer scientists since the introduction of certain Public
Key encryption methods which rely for their security on the fact (well at present

18

it seems to be a fact!) that it is possible to find large primes and multiply them
together fairly fast, but finding the factors of a large number is usually very hard.
Right at the start of this discussion I should make it clear that such encryption
and authentication applications will be working with numbers that have say 200
(decimal) digits. Ordinary 32-bit “machine” integers havesuch a limited range
that brute force can handle them with hardly any need for fancy algorithms! Most
of what is discussed here can be found in Cormen et al[1]. An alternative presen-
tation covering much the same ground is in Knuth[4] volume 2.At least last year
there was a Mathematics Part III course on Computational Number Theory, given
by R G E Pinch, and when I last looked his lecture notes were available via his
home page, which itself was reachable via the Pure Mathematics Department’s
web page. Those seriously interested in proofs or in an understanding of just
where the current practical limits to our ability to factorise are could read more
there. Obviously the Computer Science Part II course on Security will elaborate
on why the issues I discuss here are important ones.

4.1 Naive Algorithms and their costs

Given a numberN it is very easy to look for factors by trying trial division by2,
3, 4, 5, . . . until either a factor is found or until it becomes clear thatN is prime.
A more idealised version of this method would just try dividing by primes, but
to achieve that a list of primes would be needed and for largeN that becomes
infeasible. It can however be both sensible and convenient to avoid an attempt to
divide by a number that is even or a multiple of 3 or 5. IfN is composite then
it will have a factor that is no larger than

√
N , so at worst the number of trial

divisions needed grows as
√

N . But the size that we use to measureN will be
the number of digits used to display it, and measured in termsof this trial division
is a procedure with exponential costs (however fast the division process itself is).
To get a feeling for this observe that trial division can find factors of any 32-bit
number quite rapidly (less than 64K trials are needed), but for 20 (decimal) digit
numbers one would be close to the limiting capabilities of the fastest computers.
This method is both a test for primality and a way of finding factors. It will
be at its slowest when investigating a prime. The next section reveals that (at
least probabilistically) identifying primes can be donemuch faster, and there are
distinctly better factorisation methods available too.

4.2 The Miller-Rabin Test for primality

A treatment of primality checking that was going to contain proper proofs of the
validity of algorithms would normally work through two or three checking algo-
rithms before getting around to the Miller-Rabin test. Theseearlier methods have

19

the defect that certain numbers can fool them to the extent that they can not de-
tect that those particular numbers are composite however hard they try (the tern
“Carmichael Numbers” creeps in here). The process at the heart of the Miller-
Rabin is better behaved. Forany prime input it will always report back that the
input is indeed probably prime, while forany non-prime input it will have at least
a 3 in 4 chance of being able to detect that fact, and hence at worst a 25% chance
of indicating that the number may be prime. A critical issue for computer science
in this is the interpretation of those probabilities. In this case the test works on not
just the input numberN but on a “random” valuea. The 25% bound on the prob-
ability of mis-reporting a composite number as “possibly” prime is not dependent
on the value ofN and only relates to the range of possiblea values that can be
selected. Thus if a true random process is used to select a value fora it will be a
genuine probability on the outcome.

The process is amazingly simple. Start with an odd numberN , and select a
randoma in the range from 1 ton − 1, with all those possible values ofa equally
likely to be picked. What it does is to form the valueaN−1 mod N . This power
can be computed by a process that spends most of its effort repeatedly squaring
values starting witha. BecauseN is odd the exponentN − 1 will be even and the
last few steps of computingaN−1 will all be just squarings. The test reports that
N is composite if either

1. aN−1 mod N 6= 1

2. or somewhere along the sequence of intermediate results thereis a step
where two consecutive values areb andb2 such thatb 6= 1 andb 6= −1 but
b2 = 1 where all arithmetic is being performed moduloN .

The code to raise a number to a power using repeated squaring4 is easy to code,
and adding the tests both at the end an on intermediate valuesis pretty trivial.

The final part of the complete Miller-Rabin algorithm is to apply the above
“strong” test several times for different independent random values ofa. Then in
N is composite each test has an independent 3 in 4 chance5 of spotting that fact.
After (say) 30 trials the probability that something that still seems to be prime is
in fact composite will then be bounded by2−60. Many people will believe that the
probability of an undetected error in the program, or undetected hardware failure
in the computer running it, or undetected transcription errors in the result, or some

4. . . arranging that ifN − 1 = 2
k
v for some odd numberv the calculation first works outav

however it wants and then squares the resultk times.
5Several write-ups of the method indicate that it has at leasta 50% chance here. The reason

they say that is that that is a remark that is tolerably easy toprove. The 75% bound quoted here
needs more mathematics to justify it, but is both true and (for some numbersN at least) a sharp
bound

20

other general foul up will be much greater than this, so the fact that the result is
not quite guaranteed is something of a frivolity. Those who feel more neurotic
could run 60 trials and thereby reduce the chance of error to2−120, or whatever.
But observe that the mathematical theory that justifies combining the multiple
tests depends on the random choices for values ofa being properly random and
all independent, and arranging that on a computer will be hard. A lengthy section
in Knuth[4] discusses the issue of real and pseudo-random numbers. And the way
in which plausible computer processes for generating random-looking sequences
can end up failing to do that. Time has moved on and the particular concrete
recipes for competent random number generation that Knuth suggests are now no
longer state-of-the-art, but his general warnings and overview discussions remain
valid.

Fairly simple computing-cost analysis of the Miller-Rabin algorithm shows
that if we are prepared to be content with a probabilistic test for primality it gives
us one that uses an amount of timeO(s log3(N)) wheres is the number of random
trials to be used. This is pretty good, and when combined withwhat we know
about the density of prime numbers means that it is acceptably cheap to find really
quite huge primes.

Note carefully that the Miller-Rabin test can certify in an absolute way that a
number is composite (though it then does not actually exhibit the factors), but it
is constitutionally incapable of giving an absolute proof that a number is prime.
Such absolute certainty calls for quite different algorithms, which often call for
the complete factorisation ofN − 1. See Knuth or Number Theory books for
more information!

4.3 Pollard Rho

If we have discovered that a large number is composite then finding its factors can
still be very hard. But an unsettling issue is that we can not easily rely on it being
hard, because at least in some cases a factorisation will just drop out trivially6. As
a prelude to any high technology factorisation process it isprudent and normal
to use trial division to detect any factors that are less thansome predefined limit,
typically a few million.

A simple-to-code and tolerably competent procedure that will often find fac-
tors using aroundN1/4 arithmetic steps, while ordinary trial division needed up to
N1/2 again uses random numbers. This time there is not going to be any guaran-
tee of either success or of a particular running time bound, but the method works
well enough in practise to be worth reporting. The code sketched below should be
imagined to be running on a computer where integers can be several hundred dig-

6Consider the special case where the input value happens to bea power of 2!

21

its long. It starts with a random initial value formx and forms a pseudo-random
sequence using the crude recurrencexn+1 = x2

n − 1. Every so often we record
a value ofx in y, where “every so often” follows the sequence 2, 4, 8, 16, . . . as
indicated by the calculations involvingk. The procedure exits if a gcd calculation
manages to exhibit a non-trivial factor ofN .

int pollard_rho(int N)
{

int i = 1, k = 2;
int x = random_number(0, N-1);
int y = x, d;
for (;;)
{ x = (x*x - 1) % N;

d = gcd(y-x, N);
if (d!=1 && d!=N) return d;
if (++i == k) y = x, k = 2*k;

}
}

The procedure works (when it does, which is quite often) because if the se-
quence of values generated forx behaves randomly it is expected that anx-value
will be revisited after around

√
N steps. This just comes from looking at simple

probabilities—if
√

N independent random values are chosen fromN possibili-
ties it starts to be probable that two of them will be the same.But here once a
value ofx repeats the subsequent behaviour will be cyclic. IfN is composite, say
N = PQ then the cycle will often have one length moduloP and another modulo
Q, and this allows the gcd calculation to find one ofP or Q. As coded above I
return as soon as I spot one factor ofN . Some people would continue running the
loop in the hope of uncovering more factors from the same run.

There are collections of other approaches to integer factorisation, and for many
of them the key parts of the algorithms are almost as simple toexpress as the rho
method, but the theory and proofs that justify them are difficult. Probably the most
interesting ones involve running many tolerably modest test calculations each of
which can potentially deliver a small chunk of evidence about the factor structure
of N , in such a way that when enough evidence has been collected a single large
but manageable calculation can combine the partial resultsand reveal a complete
factorisation. Using such an idea the biggest factorisations achieved to date have
used several hundred MIPS-years of CPU cycles in all (using many computers
linked by a crude e-mail communications web) and have cracked numbers with
up to around 150-160 digits. Because costs grow exponentially with the number
of digits in the input numberN this means that factorising 200-digit numbers is
still not on.

22

4.4 Theories about Probabilistic Methods

With the above prime number related algorithms any guarantees about perfor-
mance or outcome depend on having a reliable source of true random numbers.
If any algorithmically defined sequence of numbers was used instead that would
be at least an outside chance that some especially carefullychosen number would
relate so specifically to that algorithm that it would then systematically defy fac-
torisation. This at least suggests that there might be a general value in studying
the properties of Turing Machines that have been extended toprovide some sort
of source of true randomness.

The way that research in this area has progressed is through the definition
and study of a number of complexity classes, similar in theirvarious ways to
the classes P and NP7. With randomness it turns out that there are quite a few
plausible ways of defining associated complexity classes. Iwill describe a few
here but neither prove relationships between them nor give definitive examples
that illuminate the capabilities of each.

4.4.1 The class R

Without serious pain we can take any non-deterministic Turing machine that is
about to solve a problem for us and adjust it so that all its calculations are finite
and then so that all its calculations have the same length (wecan pad any short
paths with extra waste computation to achieve the balance).We can also arrange
that every place where the NDTM has to make a choice that choice is purely
binary, so each state will have either one or two successors.Beyond that it is
possible to arrange that each possible calculation that themachine can make will
have the same number of choice points on it. Why do all this? Mainly so that the
possible behaviours of the machine are in a regular enough pattern that we can
talk about randomness and probability with less pain. Note that since the costs
associated with an ordinary NDTM are taken to be worst case ones, padding all
computations up to this does not alter the overall pattern ofwhat they can do.

With this understanding, the class R is the set of all problems that can be
solved with an NDTM such that either there are no accepting computations or at
least half of all computations are accepting. Because the style of NDTM being
used is balanced it is possible to take each non-deterministic choice at random
and the 50% ration of accepting computations turns into a 50%chance of eventual

7P relates to a fully deterministic Turing Machine and NP to one that has access to a truly
inspired Oracle, and the classes include those problems that can always be solved efficiently by
machines of the types considered. Of course a precise statement of what is meant by “solved”
and “efficient” would require more than a footnote here, but was provided in last year’s course on
Complexity

23

success. Observe that the errors that this sort of machine can make are one-sided,
in that the only thing it can do wrong is to fail to exhibit a solution to a calculation
that in fact has one. It can never report a solution to a problem that does not have
one! That one sidedness means it is sometimes useful to use the class co-R, where
it will be the “yes” answers that can be wrong with probability up to 1/2 and the
“no” answers that are totally reliable. The class R is the onethat arose with the
Miller-Rabin test for “is this number composite”. Note however that this example
neither serves to show that R is strictly larger than P, nor that the compositeness-
test problem really needs randomness8.

4.4.2 The class ZPP

This is the intersection of R and co-R. An alternative characterisation is that it cor-
responds to randomised calculations which always terminate, but which can they
yield one of three outcomes, “yes”, “no” and “don’t know”, where the probability
of the last arising is less than 1/2.

4.4.3 Probabilistic Turing Machines

Consider machines where all calculations are the same lengthand contain the
same number of choice points, and where all computations endreporting “yes” or
“no”. Now this is interpreted as a probabilistic TM if we say that the machine as
a whole answers “yes” if more than half of the paths through itend on a “yes, and
correspondingly. PP is the class of problems solvable in polynomial time using
one of these. Note that PP is much less nice than R since it doesnot tell us what the
probability of error will be, and the “more than half paths” that give the correct
answer may really be “only very slightly more than half”. Thus in general re-
running a calculation can not be guaranteed to increase the probability of success
very fast. To get around this we can define BPP as the set of problems such that
we can have a chance of at least 2/3 (not 1/2) of getting the correct answer from a
single run.

4.4.4 Game playing and Stochastic Turing Machines

Ordinary NDTM calculations are uncomfortably asymmetric.A computation suc-
ceeds if it can find any path through the machine. But it is also natural to want
to consider cases whereall paths through the machine lead to success (this ob-
servation is at the root of why it is usually the case that proving a solution exists

8Enthusiasts (?) may like to know that if the Extended RiemannHypothesis holds then it is in
P. But we computer scientists do not even know what the Extended Riemann Hypothesis is!

24

is in NP while proving one does not isn’t). Game-playing strategies for two-
player games provide a useful model for something a little more symmetric but
still well constrained. To win, player A needs to find some single winning next
move, while before conceding defeat player B needs to becomeconvinced that all
possible responses to that killer move hopeless. In Artificial Intelligence lectures
you probably find out about theα–β heuristic for coping with just this. Alternat-
ing Turing Machines are ones where the meaning of “success” in a calculation
is expressed in terms of the knowledge needed by players in such a two-person
game. Stochastic Turing Machines combine this idea with random responses, and
so consider the problem of winning a game against an opponentwhose moves are
made utterly at random. As with probabilistic machines it becomes useful to con-
sider the class of problems (now games!) where from any initial configuration the
first (non-random) player has a chance of either more than 2/3or less than 1/3 of
winning. The class of problems that can be solved this way is called AM, where
the initials are for Arthur-Merlin, and it turns out to be related to the analysis of
interactive proof verification!

4.5 Consequences yet again

Just talking through the complexity classes I have mentioned here could take a
whole (long) lecture course. There are two major reasons forlooking at them.
Firstly they can often allow one to derive unexpected links between different al-
gorithms for solving real practical problems, and help withcost analysis of those
methods. The other important issue is that developing a richset of different com-
plexity classes (P, NP, NP-complete, co-NP, R, co-R, ZPP, PP, BPP, AM and in
fact I have only scratched the surface here) can help focus our attention on the
hierarchy that these problems give us, and on problems that are on the borderlines
between them. It shows that even if we cheerfully accept thatwe think that P is not
the same as NP that there can remain a large number of challenging and practical
issues of the same style that still deserve serious attention.

5 Real-time Garbage Collection

This topic is included in an attempt to make the course as a whole well balanced.
The various clever Heap data structures are traditional (ifslightly elaborate) data
structures, Kolmogorov complexity illustrates a modern analysis technique with
a strongly computational flavour, while the discussion of Probabilistic methods
looks back to the complexity course and sideways to discussions of security, arti-
ficial intelligence and beyond. I round things off by lookingat the issue of algo-
rithms and parallel hardware. It is clear that moving to parallel hardware re-writes

25

all the cost expectations for processes, so is cause for a fairly total re-think of
almost all data structures and algorithms! Very great care has to be taken in this,
however, since typically the costs of data distribution andsynchronisation can ex-
ceed the operations that one normally thinks of as “computation”. As may have
been made clear in other courses on operating systems and concurrency, correct-
ness in a parallel world is also a significantly nastier problem than in a sequential
environment. I am just going to include one example here. It is included partly
because its history illustrates the delicacy of algorithm design for true concur-
rency. A full write-up can be found in Dijkstra et al[2], and so I will not include a
re-written summary version here.

6 Conclusion

As these notes9 have grown it has become clear that there is a huge amount thatI
could cheerfully include in this course. The main message I want to get across is
the enormous depth and complication there is within computer science, and that
the study of algorithms did not become a finished-off dead subject just because
(almost) everything about sorting techniques is now known.On the contrary, this
area which must surely count as the very heart of Computer Science, continues to
throw up challenges and problems both related to the very practical issue of find-
ing the fastest way of solving certain real problems and to the theoretical issues of
understanding the inherent relationships between problems, styles of computers
and costs.

References

[1] Leiserson Cormen and Rivest.An Introduction to Algorithms. MIT and
McGraw-Hill, 1990.

[2] Dijkstra, Lamport, Martin, Sholten, and Steffens. On-the-fly garbage collec-
tion: an exercise in cooperation.CACM, 21(11):966–975, 1978.

[3] Hardy and Wright.An Introduction to the Theory of Numbers. OUP, 1938.

[4] Donald E. Kunth. The Art of Computer Programming, volume II. Addison
Wesley, 3 edition, 1998.

9Please, whether you liked this course or not, find the Computer Laboratory web page and
indirect through it to the course feedback area and record your thoughts. I already know that the
notes were not available at the very start of the course, and for next year (when it will not be the
first time the course has been given) that will not be a repeat issue, so maybe you can find other
things to complain about!

26

[5] van Leeuwen (editor).Handbook of Theoretical Computer Science, Volume
A, Algorithms and Complexity. Elsevier/MIT Press, 1990.

27

