Advanced Algorithms

A C Norman, Michaelmas Term 1995

Part Il

1 Introduction

The Part B course on Data Structures and Algorithms describes a witgeraf
practically valuable methods, many of which represent thisf of a great deal
of clever and ingenious design. But in general it concerdratesuccess stories,
where a simple and obvious problem has a solution that appea&olve it com-
pletely, and that solution (while often unexpected or caghis fairly compact
and comprehensible in retrospect. Part of the idea behiadPtrt Il course is to
show that the earlier course did not even do justice to theftibe iceberg, and
that the amount of work that has been done on algorithms andrtitount yet to
be completed is enormous. It also looks again at variousegioes introduced
elsewhere in the Tripos and asks the difficult question “Yes,can you do yet
better?” or “What are the detailed implications of the minob-$asks that were
taken for granted in the big outline?”. In several casesgihesd to new and elab-
orate data structures, or forms of analysis that is harder would have a place
in a Part B course.

This course is for Part I, and is new for 1995. There are vermonsequences
of these two facts:

¢ | will not feel obliged to give the course at a level whexery student can
follow (and thus enjoy) it. In Part Il students can choosarframong a
wide range of options and it is proper that some of these willbe at all
suitable for all the class. | will, of course, feel embareabs | take such an
aggressive stance in the course that the audience dropgjte figures.

e These lecture notes will be less complete than ones | hadedeio prepare

for earlier years in the Tripos. Thus inspection of the tex#ts will be
called for.

e As with any new course there may be some teething problemavd te-
signed the syllabus to make it is safe as | reasonably coutdyril | have
given it once it is hard to know exactly how much time | will me@® allo-
cate to each topic. If | cover less (or indeed more!) than yleiéw book”

and these printed notes suggest then | will adjust the exatnmquestions
accordingly.

e Supervisors may feel exposed if they offer to assist witk tiourse. In fact
I do not think I will be saying anything that ought to be a readlgem in
that respect, but a clinic at the end of the Term (Thursdak Bl@ivember,
probably at 4pm, but further details will be circulated fxt®ill provide op-

portunity for students (or indeed supervisors) to crossstjan me or seek
clarification.

e Part B courses are given and attended as a matter of duty, whilellPart
ones are for enjoyment (on both sides). | think that the rmedtéhave
assembled is utterly amazing and entertaining as well agylibe sort of
stuff that every well-educated Computer Scientist oughtriovk Some
is even directly applicable. It also shows that practicafigtivated areas
within the subject can be complicated and hard almost withimit.

¢ | will duck lots of formal proofs and fine details, taking thiew that text-
books cover them much better than a lecturer can.

The course is structured in four two-lecture sections. fhthbe rational for
students to assume that | will prepare one examination iquesh each section,
discard the one that looks least well formed, and use therbasiom number
source | have to choose which of the others | set. Potenttaliguld be possible
to attend the course in modules, skipping one that felt eslheanattractive. The
topics to be considered are:

Binomial and Fibonacci Heaps: these grow out of a desire teedible single-
source shortest path problem (eg using Dijkstra’s algorjtbn sparse graphs
as fast as possible. Maybe the surprise is that Dijkstrgsrahm as docu-
mented at ad level fails to think harder about this—but there again when
you see how messy Fibonacci Heaps are you will understand!

Kolmogorov Complexity: Usually evaluations of the infornaostcontent or com-
plexity of things will be asymptotic, and arbitrary finite dxdases will be
quietly ignored. This part of the course provides some Hasisonsider-
ing a finite string such as “ababababababab” to be less cartipd@ one
like “abbbaabaaabaaaa”. This involves looking at varioless about data
compression, Turing machines, probabilities and inforomatheory. Note
very well that | will only give a simple introduction to a laggnd difficult
subject area.

Probabilistic Algorithms: The relationship between trasdomness and computer-
generated pseudo-random numbers. The extent to whiclyaandom “or-
acle” might be a help in algorithm design, including a distos of the fact
that there are several different ways of producing precisdets of what
“successful random computation” might mean. One of the nmogbrtant
areas where probabilistic algorithms are commonplacesgert primality
checking and factorisation. While | intend to duck most tecainissues
this borders on including a bit of computational number theo

More Garbage Collection: The background challenge herebwitb take a pro-
cedure which is easily implemented as one that takes pldegege disrup-
tive chunks and to derive schemes that support (near-}iraalprocessing.

2

I may discuss both “emphemeral” garbage collection andgseeis behind
true parallel garbage collection where one processormontisly allocates
and uses memory while another rushes along in the backgtalydg up.

2 Binomial and Fibonacci Heaps

| will start with a review of Dijkstra’s algorithm for the sgbe-source shortest path
problem. This is because it (at least on sparse graphs) toglstify some of what
follows. Suppose one has a directed graph with (positiveget) weights on the
edges, and an initial special vertaxcalled the “source”. Then the algorithm will
discover the length of the shortest path frogrto each of the other vertices in the
graph. As a matter of convenience a special values used to indicate that there
is no path from the source to some particular vertex. Pedamsote that | only
want finite values as weights on the edges, and that | do nat avgnarithmetic
overflow in processing these distances to generate anytihatgan be confused
with the formaloo that is used to label unreachable vertices. | will suppoae th
the graph ha¥” vertices and? edges, and that it is represented in such a way that
finding the edges that meet at a given node is cheap.

The algorithm uses a sé} that contains the collection of vertices not yet
processed. This can start off consisting of all the vertindbe entire graphu,
will be marked with the valué, while all other vertices start off labelled witk.
The algorithm proceeds by iterating two steps ufjtis empty:

1. Identify and remove the vertex with smallest label frgm This will of
course bey, on the first occasion. This step decreases the sizelnf one,
and so the step is executed exadtlyimes. Call the extracted vertex

2. For each edge coming outefand running to a vertex, check if the label
onu plus the weight oniy,v) is less than the current label recorded with
If so reset the label on to the new smaller value. Since the graph being
worked on is a directed one it is easy to see that that steprat wpdates
weights onE occasions, since each vertex will take on the rojast once
and at that stage all the edges coming out of it will be praess

The overall cost thus involvels operations that identify the smallest item in
a set and remove it, anfl cases where a value in the set is decreased (note that
values are only decreased, never increased). For a spapgeigrs productive to
view @ as a priority queue. As will shortly be explained if this isglemented as
an ordinary heap (as in heap-sort) each of the two operat@msost proportional
to log(|@|), and since) contains a subset of the vertices this is roughpy(1/).
Overall the cost can be expected to grow ljge+ V) log(V).

This is fairly reasonable in many cases, and ordinary heggpsasy enough
to implement (and | will review them and their properties imament). How-
ever some graphs will be fairly sparse (o< V?) but not sparse to excess (eg
E > V). In such cases a priority queue based method is still btstser cruder
linear searching, but th&log(V') term in the cost function dominates. | will
be showing how to avoid this, to give a complete algorithmhvabsts propor-
tional to F + V' log(V'). To give fair warning, the overheads involved will make
this method unattractive in most if not all real applicapbut that should not
dampen enthusiasm for its aesthetic appeal or theoretigedrtance.

2.1 Ordinary Heaps

First, a review of (ordinary) heaps. A heap will be a binagetwith values stored
in each node, such that the smallest value in the entire $rée the top node,
and each sub-tree also satisfies the heap property. | widrgéy want a heap
to be a pretty well balanced binary tree, so that if it hatems in it its depth is
aroundlog(n)®. The Part B course explained how heaps could be represented by
storing the values in a simple vector and using addresswetib to give implicit
pointers up and down the heap. Thus a value stored at éfisethe array might
have child nodes at locatidik + 1 and2k + 2. For the purposes of this course |
will back off from such cunning, and think of heaps as madeodwgbllections of
separate nodes with explicit pointers linking them all. ilt ae necessary to have
pointers both from parent to child nodes and back from a dbiits parent. The
issue of allocating space for the nodes is something | wilbrg. The overhead
of leaving space for all the explicit pointers and the paiupdating them all in
step will also be something swept under the carpet by salmigainy local update
operation will have cogb(1) and so is within a constant factor of the cost of any
cleverer scheme.

With heaps as considered here it is useful to list the omeratthat can be
performed, and remind ourselves of the associated costacimcase stands for
the number of items in the tree:

1Of course all my logarithms here are base 2.

make-empty-heap O(1)
identify-smallest O(1)
insert-new-item O(log(n))
remove-smallest O(log(n))
decrease-key O(log(n))
O(log(n))

delete-arbitrary log(n
heapify O(n)
union O(n)
search-for O(n)

I need to elaborate a little on the expensive items at the &naydist. The
union operation is to take two heaps (of total sizeand make a new single heap
out of their nodes. It can be done in the time indicated byefhatly the two heaps
into a single unordered list of length and then heapifying it. Theearch-for
operation starts with a heap and a key, and scans the heapl tarfiantry in it
that matches the required key. Balanced binary search tegedathis in time
O(log(n)) but heaps are no better than linear lists in this respect.débesase-
key entry is for the operation needed in Dijkstra’s algorithmendnthe priority of
a node gets decreased and the heap condition is then restored

2.2 Binomial Heaps

As a step towards my ultimate goal (Fibonacci heaps) | willadie Binomial
Heaps which have the property that the cost of tinéon operation drops to
O(log(n)), but to partly compensate the cost of identifying the snsaltem in the
heap jumps ta@)(log(n)). Fortunately this latter is usually not a problem, since
after identifying the smallest item in a heap most applarairemove it (with
log(n) cost anyway).

| lead into Binomial Heaps through Binomial Trees. The Binoniade By,
will have 2* nodes and depth exactly This sounds rather similar to the situation
with regular binary trees! But a Binomial Tree is not binary—particular the top
node of B, will have k children. These children will themselves be structured as
Binomial Trees, and listed from left to right will bB,._, Bx_», ...By. If course
By is just a node with no children at all. Although the fact doesworry me too
much at present the number of nodes at dégithsuch a tree i$C;, a Binomial
Coefficient. Count the total nodes B, and itis(By_1 + ... By) + 1 (the+1 on
the end is for the parent node that holds it all together. tlhéh easy to see that
this is compatible with the tree containi§ nodes. It is also useful to observe
how one makes3;,.,, out of B,. The larger tree is just obtained by extending the
smaller one by adding a second copy of it on the front of thefisub-trees. This
gives another way of setting that the sizel%f, ; is just twice that ofB3,.

Now for Binomial Heaps. Start by demanding that the valuesesttn a Bi-
nomial Tree satisfy the heap property, ie that the smallkastevin any sub-tree is
in the root of that tree. Thus the smallest value in the whele is right at the top.
Now a Binomial Heap is a list of Binomial Trees, heap orderedwhere no two
of the trees are the same size. | think that perhaps an easygownderstand this
is to take a complete Binomial Tree and ignore the top nodeh@othe children
of that node now form a set of binomial sub-trees), and tonaBome of those
subtrees to be omitted. In some other sorts of trees onegasdhat if the num-
ber of items to be stored is not a power of two then it is leafesathat are left out
to get the numbers correct. Here we omit top-level branches.

I should observe that given any particular sizéhere is a single way of struc-
turing a Binomial Heap of size. This is because each of the trees it is made up
out of has a size that is a power of 2, so we can just select wireels should be
included by looking at the binary representation of the nemb Since | have
ordered my lists so that larger sub-trees come first the™itthis binary repre-
sentation will be stored with the highest power of 2 to thé lef

Now a small observation for which cautious readers will wanivrite out a
proper justification. A Binomial Heap containimgentries will have height about
log(n), and this remains so even if the representation used ugeslliists to chain
together the children of a node and traversals along suclaia ene counted as
contributing to “depth”. This is part of why the largest sube was stored first (to
the left, and at the head of the list of children). This impattfact will be what
ensures that operations on the heaps is efficient. It shdsidoe clear that the
top-level list of binomial-sub-trees is of length boundgddy(n).

| can now consider the implementation of all the heap opamati

make-empty-heap: Easy! Clearly stil(1).

identify-smallest: It is now necessary to scan the topteseof trees. Each is
individually heap-ordered so has its smallest item at s 80 to find the
smallest item in the whole tree costglog(n)), the length of the top-level
list.

union: Most other operations are implemented using a unp@raiion, so that
is what | will describe next. Consider two Binomial Heaps asiéyt were
binary numbers with the sub-trees within them standing lierihdividual
bits. The algorithms required will then be just the usual toreaddition,
taking care with carry operations and arranging that thesdig the answer
are built out of the trees in the inputs. It will be necessamrisure that trees
remain heap-ordered throughout the process. | happen edpecified my
version of Binomial Heaps with the most significant bit stofiest, which
is @ minor inconvenience here, but easy to program arouniiiowiog on

6

from hardware courses | observe that all | need to do is defirs@faadder.

I can make a full-adder out of two half-adders and go on froergh A
half-adder takes in two “bits” and generates a sum and a.cdioymake
this convenient to code | will now insist that each node in acBiral Tree
is labelled to show its height. The height is then just andation of the
bit-number that it stands for. The only interesting casemplementing a
half-adder is when both input bits are present, so they meistombined
to produce a carry bit. If the bits are Binomial trees with stuwe B; the
carry that is generated needs to have strucBjre. However, as explained
earlier, this can be achieved by just putting one tree at &zl lof the list
of children for the other. This is clearly@(1) operation. A simple check
on the top values in each tree shows which one should be omtbphich
below to preserve heap ordering within the new tree. Thusctue to
implement a half-adder will run (easily) if(1) time. And since there are
log(n) digits to process the entire union operation can be achievédhe
O(log(n)). | think this is clever!

insert-new-item: Create a one-node Binomial Heap (easy) armd the union
between it and the original one.

remove-smallest: The smallest node in the entire heap Ieabp of one sub-
tree. First remove that subtree. Finding it and splicingittaf the top-level
list costsO(log(n)). Now look at the removed tree. Discard its root node
(the one that was to be removed anyway) and what is left is arBiaddHeap
(it happens to have all the possible sub-trees that it cotdaim the union
of this with the main heap, thereby putting back the items Wexe taken
out along with the smallest element. Looks a bit messy, lrittst is still

O(log(n)).

decrease-key: This only involves adjusting values withe of the constituent
binomial trees, and is just about the same as the operatededdo restore
heap-ness when a value in an ordinary heap is reduced, sbgbsts the
same.

delete-arbitrary: Reduce the value in the arbitrary nodedo, thereby making
it the smallest item in the whole heap, and then remove it.

The effect of all the above is to tame the cost of forming themof two heaps
(eg two priority queues). This is not what is wanted for thg§&ira shortest-path
algorithm, but can be very useful in other circumstancesh@@xplanation helps
prepare the way for the next topic.

2.3 Fibonacci Heaps

These are yet more complicated to implement than Binomiapbldaut will end
up with all the heap operations that do not involve deletiavitig O(1) cost. To
be specific, the costs are
make-empty-heap O(1)
identify-smallest O(1)
insert-new-item O(1)
decrease-key O(1)
union O(1)
remove-smallest O(log(n))
delete-arbitrary O(log(n))

This seems stunningly good, and will be of great benefit toyragorithms
where heap updates are much more common than heap deledidrti{a case
with Dijkstra’s algorithm on most reasonably sparse grapag ones wher& =
V'log(V)). There are two caveats that | have to make here. The firsaidttle
times quoted for ordinary and Binomial Heaps were worst cass,owhile the
ones given here aramortised costs. This is still worst case analysis in some
very real sense, and does not depend on the data being prdcéss it bounds
the average time per operation over a long series of opagtithus it allows an
implementation to queue up work so that most operations ionblve the very
cheap step of adding a request to a queue, but then occdgionalstep will trig-
ger major calculation that rearranges data structurescarporate the batch of
changes. An algorithm has amortised a0$t) if the average time per individual
use of it over a worst case sequence of calls is bounded. i&lgs where the
only good computing time bound is an amortised one may nouiatde for use
in systems with a real-time response requirement, evemgthtiney may guarantee
excellent long term average performance.

A Fibonacci Heap is a collection of trees. For Binomial Headptha nodes
were linked by one-way lists. In the Fibonacci case two-vistg Will be used for
all links, which makes stepping forwards and backwards easyell as allowing
for the splicing in of extra items. So the top level of a Fibcriddeap is a double-
linked circular list of nodes. Each node contains a poirdesrte of its children,
and the other children form a double-linked circular listetded through this
primary child. A node will contain a field that records how mahildren it has,
and a flag bit which is used to help the system know when and haeeds to
re-structure its heaps to keep them from getting too styaggl

The heap as a whole has a pointer to the place in its top-lénailar list
where the subtree with the smallest top-node lives.

| am going to omit proofs that Fibonacci Heaps have the asextrosts in-
dicated for them, and will rely on the fact (which | will notguwe) that all the

8

operations on them that | perform leave them in a state whermode has more
thanlog(n) children (where there arenodes in the whole heap).
Suppose that the only operations performed on our heaps are

1. make-empty-heap
2. insert-new-item
3. identify-smallest
4. union

5. remove-smallest

then the Fibonacci Heap will be structured just like a cqroesling Binomial

Heap except that the order of the trees at the top level carbiiesay (and indeed
there can be several trees of a given size present, but otihe d@op level) and
the order of the subtrees that make up parts of the constiRieamial Heaps is
also arbitrary. This is why you have learned about Binomiapsefirst. Clearly
leaving the order of all the sub-trees unconstrained saw@e $ime building the
lists but makes other operations harder. The idea behinohBdxri Heaps is to
strike a good balance—trees are left in a mess for as long@snpatible with

the final clean-up remaining sufficiently cheap.

Making an empty heap is easy and clearly has unit cost. To adkivatem
a new fragment is created and spliced into the top-levellardist. If the new
item has a smaller key than the previous smallest item therellevant pointer is
changed. After a long sequence of inserts the heap would erad @ long thin
chain. Nodes inserted in this way have their flag bit séalse. Inserting a new
item in this way also clearly has unit cost. The minimum iterthie tree is always
directly identified, so accessing this also has unit cost.

To form the union of two Fibonacci heaps the two top-levelichare just
linked together, and the minimum pointer of the combinedoheecomes one of
the minima in the two original heaps. This again tends to kealdng straggly
lists, but as an individual operation it remains cheap.

That leave the remove-smallest operation, which is whéith@lmess arises.
It is necessary to consolidate the heap as a whole to imphavextent to which
it is balanced. After a long sequence of insert operatioaditht call to remove-
smallest may appear fairly expensive but it will then cldainds up so that sub-
sequent calls are cheaper.

The first thing that is done is that each child of the smalleskenis moved up
to be a tree in the top-level cycle. Then the smallest no@é ikan be removed
easily enough. The cost of this involves a small operatiorach child of the
smallest item in the heap. | asserted earlier that the lafgesout that could arise

9

would belog(n) so this is still reasonable. The structure is now still a Riuxi
Heap, but at this stage it the top-level subtrees will be cliiasted so that at the
end of the deletion operation no two subtrees will be the ssipee

To ensure that all subtrees end up the same size we use a warkay of
lengthlog(n), and start it off with all elements NULL. Then each item in the
original heap is considered in turn. Each tree is marked istheight (if | had
not mentioned that before | do so now, it is clearly not a diffithing to arrange),
and all heights are less thasg(n). So we try to post each sub-tree into one slot in
the working vector. If when we find that the vector elementasoned is already
full we have just found two trees whose sizes match. In the¢ ¢he two trees
can be combined (almost as for Binomial Trees) into a singeeafrdouble the
size (and hence height just one greater) and this can beedseto the next array
element up. Almost the only thing that one has to take cars t§ ensure that
whenever two subtrees are merged the one with the smalleenals up on top.
At the end of a scan of all the sub-trees we end up with the wgr&rray holding
a collection of trees. The algorithm terminates by collegtihese and forming a
circular two-way list out of them, with the one of them thashibe smallest key
specially identified, and this is then the reconstructedf#zci Heap.

If this is done just after a large number of items have beemrddad the tree
one at a time the cost will be steps to consider each individual node, plyg
to handle the first stage of “carry” operation, plus! times for a second-stage
carry and so on—all in all the number of individual steps artional to just.
But in the spirit of amortised analysis we can view this apptydinear cost as
being shared between theoperations used to build the heap up to now, and thus
as contributingO(1) to each such heap-building step. After the heap has been
consolidated it will consist of trees all of different sizes there will be at most
log(n) such trees and subsequent remove-smallest operatioresawifilhave costs
limited to this amount.

have in the whole heap so that the working array could be sedngbnecessary
(for efficiency) that the array end up having size logarithimithe total number
of items stored.

To delete an arbitrary node from a Fibonacci Heap we can festedse its
value to—oo and then perform the remove-smallest operation, so all ¢l nee
worry about now is the process of restoring the structure Bfb@nacci Heap
after a value stored therein has been decreased. Howesas thiessy! After it
has been done the Fibonacci Heap is no longer quite a setaf@red) Binomial
Trees. First observe that if the node being altered is theabits tree, or if the
new value is still larger than the value stored in its paresdea; nothing very
complicated needs doing. The only problem is when the newskssnaller than
that in a node higher up than the node being altered. In theés vae lop the

10

changed node (with all its children) out of the place in tleetwhere it originally
sat and put it in at the top level as a new tree. As such thiearlgl very easy to
do. The potential problem with it is that it deletes a childnfran arbitrary place
within some other tree, and can thus leave that tree withfes®ut than was
desirable, in particular eventually leaving that tree mtazhstraggly. The depth
of the tree could reduced overall by taking all the nodes omaancupwards from
the changed node and moving them all up to the top level. Burtgdttiis all at
once would mean that the cost of changing a key was much gteate)(1). As

a compromise it is again useful to observe that 1/2 +1/4+1/8 + ... = 2
and so arrange that successive bits of this rearrangenedbae at frequencies
that roughly reflect the above geometric progression. Thishiere the flag bit
mentioned before comes in. We arrange to set the flag bit weeaenode loses a
child (through this restructuring step). The flag is re-skémever node is moved
up to top-level. With this flag in place we can detect $beond occasion when a
node loses a child, and let that cause the node to be relotatkd top level in
the heap. The effect is rather as if the chain of flag bits legadp from a leaf in a
tree towards the root can act as a binary counter—on avelagaimber of carry
operations (ie reorganisations) will be small even if ocwaeally a lot happen all
at once. The overall result will be that each decrease-kéyu®aiform O(1) steps
of moving a node to the top level, and so ends p with ¢ngy).

Note that a sequence of decrease-key operations can le@sl ¢b foee that are
in fact just linear lists. So now that the sub-trees involaeel not arranged as if
they were Binomial Heaps | ought to go back and re-think my leemsolidation
algorithm. What is in fact done is to use the degree (ie numbehitdren) of a
node as the basis for the merge operations to be done. If ahasiost some
children it will be treated as if it were a smaller tree, buthiog very untoward
happens as a result. The main clever bit of analysis is to shaweven after a tree
has been subject to an arbitrary collection of decreasekdyconsolidation steps
the greatest number of children that any node can end up svghoportional to
log(n). A proof is worked through in Cormen et al[1], as are propetifieations
that all the operations involved have the (amortised) camguimes claimed
here. But in each case I think the full details are too long aedsyto be included
in this course or its notes.

Fibonacci Heaps are so called because a bound on the sizies aff the trees
turns out to be a Fibonacci number.

2.4 Conseguences

The ability to do decrease-key (1) time can be a great help in many algorithms
of potential practical use. As well as shortest paths it lir@stapplication to min-
imum spanning trees, bipartite matching and other prohlé&rhe only thing that

11

can really be said against Fibonacci Heaps is that the cadrbikeeping all the
doubly-linked circular lists and up and down pointers, amdg fbits and degree
counts up to date can look quite painful, and so in many resdaccepting the
extralog(n) factor that a simple heap would suffer is in fact sensiblee Thal-
lenge that that leaves you with is to design a new and bettarstiaicture having
the compactness and absolute speed of ordinary heaps aswjid asymptotic
performance of Fibonacci ones.

3 AnIntroduction to Kolmogorov Complexity

Overall Kolmogorov Complexity is a subject area that has sidyted to become
widely known quite recently, and which is full of seriouslgltate traps and pit-
falls. It allows one to discuss the “complexity” of finite @gjs, or to consider
whether individual events are “random”. Using it it would pessible to make
a precise form of the statement that you would be amazed iNtteonal Lot-
tery turned up the set of numbef,2,3,4,5,6 rather than some more scrambled
looking bunch. What is better, it would potentially allow ytudesign a rather
complicated bet you could make which would result in you wignif the lot-
tery numbers were fixed (in any way!), and lose if they weredad random—an
admirable bet for those of a paranoid disposition. | am gtingroduce an intro-
duction to the techniques of the subject, and illustratg ghowing how it allows
a Computer Scientist, using obviously Computer Science lofiesgument, to
prove something that you would normally think you needed mlmer theorist to
sort out. To be specific | will prove a lower bound on the dgnsftprime num-
bers, showing that primes are in fact quite common. The trésall end up with
will not be as precise as the ones that the Mathematiciarss (favact by quite a
long way), but the way in which | conduct the proof is not gotndhave to call
upon any difficult number theory techniques or results eadtit will rely on an
understanding of Turing Machines and data compressionitigws! | selected
this example for inclusion in the course because it givesad iflastration of the
fact that Computer Science analysis techniques are diffém@m but sometimes
as elegant and powerful as Pure Mathematics ones—and ifrhe&a a successful
application of Kolmogorov Complexity to this problem | migtdme to believe it
will have many other uses.

3.1 Perfect Data Compression

To start off with | should consider data compression. | widhsider all data
as consisting of strings of bits, so the size of some datasistie number of
bits used. Well actually it turns out that even that simmlargling statement is

12

probably dodgy, and in places | will need to think again! Whemw yake out
your pen and write down a string of bits you will concentratetbe fact that
each bit is either a ‘0’ or a ‘1’. But when you stop writing youlMeave a gap
on the paper that shows where the bit-string ends. This gépel not a bit
and previously when looking at measurements of data we piplosly worried
about the genuine direct data. But implicitly there will bedata length”, and
the information conveyed by that must not be ignored. Aneswtr case in point
would be if the valid binary strings used were to be restd¢te1”, “11”, “111",
“1111", and so on, counting in unary. Then all the real infatimn content is
contained in the (implicitly recorded) length. Some stydéslata will manage to
encode length or termination information as part of the Bbdata, and this will
generally be considered good. Two common examples sprimgrtd: individual
characters coded using a Huffman Code are self-terminaimjtext files under
MSDOS may be represented as a string of bytes, with the enteohéirked by
the special “character” control?ZIn the C language strings are terminated by an
explicit zero character and so are the bit-pattern reptasen of them (including
the final zero) is self-terminating.

Now for data compression. | will define a data compressioesehas a pair
of mappings between bit-strings. | will generally be instesl in compression
that starts with bit-strings where the length is implicithus thecompression
procedure must be able to accept any ofZhélistinct bit-strings of length. and
it turns it onto some other string, which ideally would hagadth less than, at
least a lot of the time. Theecompression process will only ever be fed bit-strings
that have been generated by the compression process aritleslén misbehave
in an arbitrary fashion if given a string that was not credtethat way. But if
given the compressed version of some data it must alwayssecat exactly the
original data string, including knowledge of its length. dpée the fact that the
mapping process is callemmpression it is probable that some input strings will
grow when “compressed”. Observe

1. No compression algorithm can cause every input stringtargpped onto
a strictly shorter compressed form;

2. If a compression scheme has the property that all inpurgstrare either
shortened or stay the same length (so at least none gelysivimtse) then
none actually end up shorter;

3. You can’t even have a compression scheme that managefuierthe size
of half of all possible input strings.

2this explanation about the file structure is of course natlptrue, but it will suffice for now

13

These results follow by counting how many bit-patterns afjlan are available
and observing that there have to be enough distinct conguigsstterns to allow
distinction between all possible inputs.

As an aside | might indicate what this tells us about compoasgilities such
as “zip”. The very high compression seen when such utilaiesused on typical
files indicates that the patterns of data in such files is vpegial in some way.
The fact that zip never seems to cause any file to grow is ordyiynwgue—it can
spot files where its data compression techniques would nkémaod headway
and store the raw uncompressed data with a short prefix thaetiahe decom-
pression process just to copy what follows. Thus it can gedhat in its worst
case the compressed file is only a few bytes longer than tigenalj while in
cases that are very sparse in the space of all possible iitgatterns but which
happen to be remarkably common in human-generated files iachieve com-
pression ratios of (often) 3:1. This is not in conflict with rmore theoretical
argument.

Refinements of the counting argument allow one to show thgtaordally tiny
proportion of input strings can be compressed to a signifiestent. In particular
at best half could save one bit, or a quarter could save tvgp dmtan eight could
save three bits. Strings that can be compressed to halfdhginal length are
stunningly rare.

Now | should consider the concept of an optimal compressiooguiure—one
that will take any string and produce the very best possiblapgressed version
subject to the constraint that there must be a single asedctecompression
algorithm. At first sight it seems very improbable that a ensally optimal com-
pression procedure can exist, since it seems probabledhmgiression techniques
should depend on the class of strings to be handled. Thersnsb bit of sleight
of hand that gets around this! Imagine we hawdifferent compression methods,
calledC; ...C,, and each works best in different circumstances. We can make a
composite method by trying each ©f to C,, and compressing with the one that
works best. The resulting output string then has a prefiogfn) bits stuck on
the front as a signature of which scheme was used. Acrossamgyarge set of
strings the constant number of bits that this introducesisiportant and can be
ignored. So with this in mind we agree that one compressiongss can only be
considered better than another if not only does it compm@s® strings to strictly
shorter lengths, but if there is no constant bound to the atoyiwhich it does
better than the method it is being compared against.

With this way of comparing compression methods it turns bat there is a
universally best method (or to be more precise, a whole faafiimutually equiv-
alent “best” methods). This method is (also amazingly) \eagy to describe. A
string S gets compressed to the shortest program that will print ifseob.S and
then stop.

14

The Computation Theory Course shows, in effect, that any wnile pro-
gramming language can be used to simulate any other, andaofihyte sized
program is needed for the simulator. To be specific it suggdstt Turing ma-
chines might form a sensible concrete way of expressing thgrams we need
here, and it demonstrates that the description of any péatiduring Machine can
be reduced to a numeric code and hence a string of bits. Thes IWbel pedantic
| will say that the best compressed form of any string is thetglst string of bits
that represents a number, which in turn describes a Turinghia, such that that
Turing Machine would, if started with an empty tape, ends uiting the original
bit pattern to the tape and halting. Please note that usihthchine halts it will
not be possible to be certain that it has finished generatitgub

The universal nature of Turing Machines then shows that anyputable de-
compression strategy can be implemented this way with offilyea-length bur-
den. This burden is the encoding (as a Turing Machine desmmjpof the de-
compression strategy, which is then simulated. So thisrselreally does deliver
as good compression (to within a constant additive amourdjy compression
scheme possible. There is a slight difficulty, in that idgig the shortest Tur-
ing Machine is a hard problem. Well actually it is undeci@aBut it is certain
that a shortest machine does always exist, and | will theeefgnore the slight
embarrassment of having the halting problem intervene émtwne and a neat
implementation of all this!

3.2 Complexity Measuresvia Compression

I now define the Kolmogorov Complexity of a string as the lengftithe ideally
compressed version of it. This value will be well defined tohivi an additive
constant. Observe with some surprise that the complexiheifnfinite string that
starts

271828182845904523536028747135266249775724709389995

is finite (in case you do not recognise it this is supposed théeligits ofe, and a
very definitely finite program can be persuaded to print tiggsione after another
without end. The same would be true for the digitsv&fZ) or). However very
nearly all strings will have Kolmogorov complexity just eduo their lengtA.
This last fact turns out to be the key that makes this compylereasure useful.
All sorts of jolly results can be demonstrated by relyindheiton the fact that
in-compressible strings exist, or the stronger assertiahdlmost all strings are
incompressible. | will demonstrate this on the “density ofies” problem.

3Length, that is, when viewed as a bit string.

15

3.3 Thedensity of Prime Numbers

The proof | will produce here starts by imagining that priraes rather rare, and
works by demonstrating that if that were so it would give uspportunity to rep-
resent a numbert in fewer thanlog(n) bits. Kolmogorov complexity tells us that
good compression is very uncommon, and we deduce that tlsttyleh primes
must be sufficient to make the compression process that bpeoworthless. |
should flag this section of the notes with a slight warninghmeffect that I will
not be filling in all the formal details. The very heavy and expesgiandbook
of Computer Science[5] or an even more specialised book fegadlyi on Kol-
mogorov Complexity (cited in the Handbook, but I am not goiagdference it
directly here!) will fill things in with full precision for peple who need that.

Suppose now that theth prime isp(n). | am going to think ofp(n) as an
increasing function of, and will want to place a bound on how rapidly it can
increase. Next consider an arbitrary incompressible artég Here calling it
“incompressible” means that the ordinary bit-string thahaokes it using binary
notation (of lengthlog,(k)) is about the shortest possible way of describing it.
Remember that almost all bit-strings (and hence integeesjn@ompressible so
I have not limited myself in a severe way. | now consider aaralitive way of
describing the numbék. Split it into its prime factors, and identify the largest of
these. Call thap(z). Call the co-factor, so thaty = &/p(i). Now try to represent
k as the ordered paifi, ¢). The reason this is worth trying is that if primes are
very rare them(:) will be a much larger number thanand so using to stand for
it will save us a lot of bits.

Observe that (if | ignore the issues of rounding to integéues) thatog(k) =
log(p(i)) + log(q). That is nothing more than the usual rule about how to use log-
arithms to multiply things together. At first sight it may seéat | can represent
the pair(i, q) in log(7) 4 log(q) bits by just writing down the bits foi then the
ones forq. However this is where the discussion about encoding thgtherof
strings cuts in. If | just write down the bits férand then the bits fog | have no
way to tell where one ends and the next starts. To cope withl thdl start off
my compressed string with a number represeniiagi), the number of bits | use
to represent, so that | can tell. Thus in some sense | will be using a reptase
tion based orlog(i), i, ¢), and the separation point betweeandq is now well
specified. But oh dear, the boundary between where | spegjfy) and where |
starts itself is now murky. Let’s play the same game yet again, apdviting
the script aglog log(i), log(i), i, ¢). And at this stage cop out and observe that the
first number, which is now liable to be pretty small, can betten in binary but
by using two characters per bit we can include an explicihisation mark in it.
To illustrate this last point | will show how the number 5 canrepresented in a
self-terminating way. In natural binary one would have 181t to make things

16

self terminating | will interleave extra digit00011 where the market first ap-
pears to indicate that the end of the number has been realchdtnow try this
out as a potentially compressed representation of my @aligianmber. | end up
with 2 log log log (i) + log log(i) + log(7) + log(q) bits. And because even though
this seemed like an interesting compression process Kanwgomplexity tells
us it can not work, we know that this bit-length is at leastamsylas the length of
our original number, idog(k), which we saw earlier was justg(p(i) + log(q).
To cope with the additive constant by way of slack in the caxpy analysis, |
will stick in a stray constant’, and end up with an inequality:

2logloglog(i) + loglog(i) 4 log(i) + log(q) + V > log(p(7)) + log(q)

and this very easily rearranges to give
log(p(7)) < log(i) 4 loglog(i) + 2logloglog(i) + V'

Unwinding the logarithms, and lettingg(A) = V/, this gives

p(i) < Ailog(i) loglog(i)?

At present this result only applied wherti) is the largest prime factor of an
incompressible number. But since there are an infinite numiq@imes there are
lots of numbers available whose largest factor is itselfeglarge, an in particular
(though I will not fight to prove it formally here) enough thate can be certain
that some of them are incompressible.

It is more common to consider the number of primes less tharesateger
k. This count is usually called (k) and what has been shown here is equiva-
lent to showing thatr(k) is close to being bounded by something proportional
to k/log(k). You should note that mathematicians manage to do bettercam
show that for largek, 7 (i) is rather close té&/ log(k). In this case the logarithm
has to be a “natural” one to baseThis is better than my result firstly because it
turns the inequality into (which provides just an upper hunto something that
gives both upper and lower bounds. They also get rid of¢héog(i)? term, and
show that the constant can be taken to have the value 1. A suitably gentle and
maybe old fashioned book that does all this the mathemastisay is Hardy &
Wright[3], which is certainly not required reading for thiarPll course.

| use this example to introduce Kolmogorov complexity bessauthink the
proof is short and elegant, and it is pleasing to see commgience nibbling
away at the corners of mathematicians’ territory. Howeteritlea of proving a
lower bound on something by showing that beating the bounaldvallow you
to compress some strings rather well has many applicatanjt is one of the
best and most general approaches to proving lower boundseaosts of solving

17

problems. The handbook[5] applies this to show that a (ope)tauring machine
must take at leasgtn? steps to accept a palindrome of lengtfk is some unknown
constant], that adding integers together must take time at least proportional to
log(n) on a certain (quite general) class of parallel computerd,that the re-
sources needed (time and space) for multiplying booleamigeattogether must

in general grow at least as fast/as® for n by » matrices.

3.4 Consequencesagain

At first sight the idea of optimal compression is an enteigrone but slightly
silly, because finding optimally compressed versions ofi@aar strings is un-
decidable. However that does not in any way prevent it fromngia powerful
and unexpectedly practical way of proving computing bourtis important to
understand that even though identifying the best compdefssen of a string is
undecidable, the best compressed form is well defined anuigaous.

More elaborate versions of the same idea consider compreasd decom-
pression subject to resource bounds, or the compressiomeo$toing supposing
that another one is already known to be available.

The use in connection with finite “random” sequences staytsléfining a
string to be random if it is not compressible. In this sense would view an
outcome from the National Lottery that was “31, 4, 15, 9, Z6a$ dubious be-
cause the pattern of digits can be described too neatly byenete to the constant
7. A string quite that short might (just) be accepted as andactj but if the
next week followed on with results based on the next few dligitr | think one
would be entitled to be seriously concerned. By putting Kajorov complexity
in the context of probability it is possible to design beksttare in effect of the
form “I bet that the string of numbers you give me can be cosged really well”
where the average outcome is well balanced if the numbeestsel are indeed
truly random, but which would deliver big returns if the pmmselecting the num-
bers cheated iany way that amounted to having some mechanisable, computable
function causing diversion from true randomness.

4 Probabilistic Algorithms

Having used a number theory problem to illustrate Kolmog@omplexity, | will
use another to motivate a consideration of probabilisgolthms. To be specific
| will look at the problems of identifying prime numbers andfiading the actual
factors of numbers that are known to be composite. Thess tasle had a much
increased visibility to computer scientists since theadtrction of certain Public
Key encryption methods which rely for their security on thetf(well at present

18

it seems to be a fact!) that it is possible to find large primas multiply them
together fairly fast, but finding the factors of a large numbausually very hard.
Right at the start of this discussion | should make it cleat sueh encryption
and authentication applications will be working with nunb#hat have say 200
(decimal) digits. Ordinary 32-bit “machine” integers hasugch a limited range
that brute force can handle them with hardly any need fonfahgorithms! Most
of what is discussed here can be found in Cormen et al[1]. Astradtive presen-
tation covering much the same ground is in Knuth[4] volum&®east last year
there was a Mathematics Part 11l course on Computational Muhbeory, given
by R G E Pinch, and when | last looked his lecture notes wergadl@ via his
home page, which itself was reachable via the Pure MatheshBiepartment’s
web page. Those seriously interested in proofs or in an gtaleting of just
where the current practical limits to our ability to fack®iare could read more
there. Obviously the Computer Science Part Il course on 8gauil elaborate
on why the issues | discuss here are important ones.

4.1 Naive Algorithmsand their costs

Given a numbelV it is very easy to look for factors by trying trial division &y
3, 4,5, ...until either a factor is found or until it becomésae thatV is prime.
A more idealised version of this method would just try divigliby primes, but
to achieve that a list of primes would be needed and for |a¥génat becomes
infeasible. It can however be both sensible and conventeanadid an attempt to
divide by a number that is even or a multiple of 3 or 5.Mfis composite then
it will have a factor that is no larger thayf/NV, so at worst the number of trial
divisions needed grows agN. But the size that we use to measuvewill be
the number of digits used to display it, and measured in texfrttss trial division
is a procedure with exponential costs (however fast thesidimiprocess itself is).
To get a feeling for this observe that trial division can fiadtbrs of any 32-bit
number quite rapidly (less than 64K trials are needed), tu2® (decimal) digit
numbers one would be close to the limiting capabilities effdstest computers.
This method is both a test for primality and a way of findingtdas. It will
be at its slowest when investigating a prime. The next seatwveals that (at
least probabilistically) identifying primes can be danach faster, and there are
distinctly better factorisation methods available too.

4.2 TheMiller-Rabin Test for primality

A treatment of primality checking that was going to contaiager proofs of the
validity of algorithms would normally work through two orréee checking algo-
rithms before getting around to the Miller-Rabin test. Thesdier methods have

19

the defect that certain numbers can fool them to the extextttiey can not de-
tect that those particular numbers are composite howeverthay try (the tern
“Carmichael Numbers” creeps in here). The process at thd b&dne Miller-
Rabin is better behaved. Fany prime input it will always report back that the
input is indeed probably prime, while fany non-prime input it will have at least
a 3 in 4 chance of being able to detect that fact, and hencerat @@5% chance
of indicating that the number may be prime. A critical issaedomputer science
in this is the interpretation of those probabilities. Irsthase the test works on not
just the input numbelN but on a “random” valuea. The 25% bound on the prob-
ability of mis-reporting a composite number as “possiblyitne is not dependent
on the value ofNV and only relates to the range of possiblgalues that can be
selected. Thus if a true random process is used to selectia fala it will be a
genuine probability on the outcome.

The process is amazingly simple. Start with an odd numeand select a
randoma in the range from 1 ta — 1, with all those possible values afequally
likely to be picked. What it does is to form the valu& ! mod N. This power
can be computed by a process that spends most of its eff@ateqly squaring
values starting witla. BecauséV is odd the exponenV — 1 will be even and the
last few steps of computing”¥—! will all be just squarings. The test reports that
N is composite if either

1. a¥ ' mod N #1

2. or somewhere along the sequence of intermediate results iheretep
where two consecutive values drandb? such that # 1 andb # —1 but
b? = 1 where all arithmetic is being performed moduio

The code to raise a number to a power using repeated sqtiésirgsy to code,
and adding the tests both at the end an on intermediate vialpesity trivial.

The final part of the complete Miller-Rabin algorithm is to §pfhe above
“strong” test several times for different independent @ndr/alues of:. Then in
N is composite each test has an independent 3 in 4 chafiepotting that fact.
After (say) 30 trials the probability that something thall seems to be prime is
in fact composite will then be bounded By®°. Many people will believe that the
probability of an undetected error in the program, or unctett hardware failure
in the computer running it, or undetected transcriptionmsrn the result, or some

4...arranging that itV — 1 = 2*v for some odd number the calculation first works out”
however it wants and then squares the rektiitnes.

SSeveral write-ups of the method indicate that it has at lad#% chance here. The reason
they say that is that that is a remark that is tolerably eagyrdwe. The 75% bound quoted here
needs more mathematics to justify it, but is both true andgfmne numbergv at least) a sharp
bound

20

other general foul up will be much greater than this, so tleetfzat the result is
not quite guaranteed is something of a frivolity. Those who feel magarotic
could run 60 trials and thereby reduce the chance of errort&y, or whatever.
But observe that the mathematical theory that justifies coimgithe multiple
tests depends on the random choices for valuesli#ing properly random and
all independent, and arranging that on a computer will bd.hatengthy section
in Knuth[4] discusses the issue of real and pseudo-randaniats. And the way
in which plausible computer processes for generating nanldoking sequences
can end up failing to do that. Time has moved on and the p#ati@aoncrete
recipes for competent random number generation that Kugbessts are now no
longer state-of-the-art, but his general warnings andwserdiscussions remain
valid.

Fairly simple computing-cost analysis of the Miller-Rabigaithm shows
that if we are prepared to be content with a probabilistitfasprimality it gives
us one that uses an amount of tiMés log®(N)) wheres is the number of random
trials to be used. This is pretty good, and when combined whht we know
about the density of prime numbers means that it is accgptalelap to find really
guite huge primes.

Note carefully that the Miller-Rabin test can certify in arsalute way that a
number is composite (though it then does not actually ekkiei factors), but it
is constitutionally incapable of giving an absolute prdwdtta number is prime.
Such absolute certainty calls for quite different algarigh) which often call for
the complete factorisation aV — 1. See Knuth or Number Theory books for
more information!

4.3 Pollard Rho

If we have discovered that a large number is composite thdmfirits factors can
still be very hard. But an unsettling issue is that we can nseifyeeely on it being
hard, because at least in some cases a factorisation witljog out trivially?. As
a prelude to any high technology factorisation process jriglent and normal
to use trial division to detect any factors that are less #wne predefined limit,
typically a few million.

A simple-to-code and tolerably competent procedure thhtoften find fac-
tors using aroundv'/* arithmetic steps, while ordinary trial division needed ap t
N'/2 again uses random numbers. This time there is not going toyguaran-
tee of either success or of a particular running time bouatlithe method works
well enough in practise to be worth reporting. The code $textdelow should be
imagined to be running on a computer where integers can leeaddwndred dig-

8Consider the special case where the input value happensapbeer of 2!

21

its long. It starts with a random initial value formand forms a pseudo-random
sequence using the crude recurremge, = x> — 1. Every so often we record
a value ofx in y, where “every so often” follows the sequence 2, 4, 8, 16,s..a
indicated by the calculations involvidg The procedure exits if a gcd calculation
manages to exhibit a non-trivial factor of.

int pollard_rho(int N)

{
int i =1, k = 2;
int x = random nunber (0, N 1);
int y =x, d;
for (;;)
{ X = (x*x - 1) %N,
d = ged(y-x, N);
I f (dl=1 & d!=N) return d;
if (++i == k) y = x, k = 2*k;
}
}

The procedure works (when it does, which is quite often) bseaf the se-
guence of values generated fobehaves randomly it is expected thabamalue
will be revisited after around/N steps. This just comes from looking at simple
probabilities—ifv/N independent random values are chosen fasnpossibili-
ties it starts to be probable that two of them will be the safet here once a
value ofx repeats the subsequent behaviour will be cycli¢y lis composite, say
N = PQ then the cycle will often have one length moditand another modulo
@, and this allows the gcd calculation to find onefofr). As coded above |
return as soon as | spot one factordf Some people would continue running the
loop in the hope of uncovering more factors from the same run.

There are collections of other approaches to integer fsetioon, and for many
of them the key parts of the algorithms are almost as simpéxpoess as the rho
method, but the theory and proofs that justify them are diffid®robably the most
interesting ones involve running many tolerably modedt¢ekulations each of
which can potentially deliver a small chunk of evidence alibe factor structure
of NV, in such a way that when enough evidence has been colleciadla krge
but manageable calculation can combine the partial resotigeveal a complete
factorisation. Using such an idea the biggest factorigatechieved to date have
used several hundred MIPS-years of CPU cycles in all (usingyncamputers
linked by a crude e-mail communications web) and have cdckenbers with
up to around 150-160 digits. Because costs grow exponsgniigih the number
of digits in the input numbelN this means that factorising 200-digit numbers is
still not on.

22

4.4 Theoriesabout Probabilistic Methods

With the above prime number related algorithms any guaesnédout perfor-
mance or outcome depend on having a reliable source of tngona numbers.
If any algorithmically defined sequence of numbers was used ithskedt would
be at least an outside chance that some especially carehdsen number would
relate so specifically to that algorithm that it would thestsynatically defy fac-
torisation. This at least suggests that there might be argkewaue in studying
the properties of Turing Machines that have been extendedoiade some sort
of source of true randomness.

The way that research in this area has progressed is thrinegtefinition
and study of a number of complexity classes, similar in tianous ways to
the classes P and NIPWith randomness it turns out that there are quite a few
plausible ways of defining associated complexity classesill Idescribe a few
here but neither prove relationships between them nor gifmitive examples
that illuminate the capabilities of each.

441 TheclassR

Without serious pain we can take any non-deterministicritumachine that is
about to solve a problem for us and adjust it so that all itswdations are finite
and then so that all its calculations have the same lengtic@megpad any short
paths with extra waste computation to achieve the balaWle)can also arrange
that every place where the NDTM has to make a choice that ehsipurely
binary, so each state will have either one or two succes€eyond that it is
possible to arrange that each possible calculation thaht#@hine can make will
have the same number of choice points on it. Why do all thishMaio that the
possible behaviours of the machine are in a regular enougérpahat we can
talk about randomness and probability with less pain. No&t since the costs
associated with an ordinary NDTM are taken to be worst cass,quadding all
computations up to this does not alter the overall pattemahatt they can do.
With this understanding, the class R is the set of all prokléhat can be
solved with an NDTM such that either there are no acceptimgpegations or at
least half of all computations are accepting. Because the sfyNDTM being
used is balanced it is possible to take each non-deterngimisbice at random
and the 50% ration of accepting computations turns into a 80éace of eventual

P relates to a fully deterministic Turing Machine and NP te dinat has access to a truly
inspired Oracle, and the classes include those problemgainaalways be solved efficiently by
machines of the types considered. Of course a precise gatayiiwhat is meant by “solved”
and “efficient” would require more than a footnote here, bas\provided in last year’s course on
Complexity

23

success. Observe that the errors that this sort of machinma&e are one-sided,
in that the only thing it can do wrong is to fail to exhibit agtibn to a calculation
that in fact has one. It can never report a solution to a proltteat does not have
one! That one sidedness means it is sometimes useful toeis&ds co-R, where
it will be the “yes” answers that can be wrong with probapilip to 1/2 and the
“no” answers that are totally reliable. The class R is the thia¢ arose with the
Miller-Rabin test for “is this number composite”. Note howewhat this example
neither serves to show that R is strictly larger than P, nat tithe compositeness-
test problem really needs randomriess

442 TheclassZPP

This is the intersection of R and co-R. An alternative chanagation is that it cor-
responds to randomised calculations which always termjimatt which can they
yield one of three outcomes, “yes”, “no” and “don’t know”, e#e the probability
of the last arising is less than 1/2.

4.4.3 Probabilistic Turing Machines

Consider machines where all calculations are the same lemgthcontain the
same number of choice points, and where all computationsegadting “yes” or
“no”. Now this is interpreted as a probabilistic TM if we sdat the machine as
a whole answers “yes” if more than half of the paths througimd on a “yes, and
correspondingly. PP is the class of problems solvable igrmohial time using
one of these. Note that PP is much less nice than R since indbésdl us what the
probability of error will be, and the “more than half path&at give the correct
answer may really be “only very slightly more than half”. Bhun general re-
running a calculation can not be guaranteed to increasertioability of success
very fast. To get around this we can define BPP as the set ofginslduch that
we can have a chance of at least 2/3 (not 1/2) of getting threctonswer from a
single run.

4.4.4 Game playing and Stochastic Turing Machines

Ordinary NDTM calculations are uncomfortably asymmetAcomputation suc-
ceeds if it can find any path through the machine. But it is alomal to want

to consider cases whea#l paths through the machine lead to success (this ob-

servation is at the root of why it is usually the case that prgwa solution exists

8Enthusiasts (?) may like to know that if the Extended Riemdppothesis holds then it is in
P. But we computer scientists do not even know what the ExéiRlemann Hypothesis is!

24

is in NP while proving one does not isn't). Game-playing t&gées for two-
player games provide a useful model for something a littleensymmetric but
still well constrained. To win, player A needs to find somegirnwinning next
move, while before conceding defeat player B needs to becomanced that all
possible responses to that killer move hopeless. In Asificitelligence lectures
you probably find out about the—5 heuristic for coping with just this. Alternat-
ing Turing Machines are ones where the meaning of “succesa’galculation
is expressed in terms of the knowledge needed by playerscim @itwo-person
game. Stochastic Turing Machines combine this idea witdoamresponses, and
so consider the problem of winning a game against an oppovierge moves are
made utterly at random. As with probabilistic machines tdraes useful to con-
sider the class of problems (now games!) where from anyalrdinfiguration the
first (non-random) player has a chance of either more thaonr2&ss than 1/3 of
winning. The class of problems that can be solved this waglied AM, where
the initials are for Arthur-Merlin, and it turns out to be a&dd to the analysis of
interactive proof verification!

4.5 Consequencesyet again

Just talking through the complexity classes | have mentidmere could take a
whole (long) lecture course. There are two major reasonsofiking at them.
Firstly they can often allow one to derive unexpected lingsaeen different al-
gorithms for solving real practical problems, and help weitist analysis of those
methods. The other important issue is that developing asetlof different com-
plexity classes (P, NP, NP-complete, co-NP, R, co-R, ZPP, PP, BM and in
fact | have only scratched the surface here) can help focusttention on the
hierarchy that these problems give us, and on problems taatrethe borderlines
between them. It shows that even if we cheerfully acceptileahink that P is not
the same as NP that there can remain a large number of chialjesugd practical
issues of the same style that still deserve serious attentio

5 Real-time Garbage Collection

This topic is included in an attempt to make the course as denhell balanced.
The various clever Heap data structures are traditionalightly elaborate) data
structures, Kolmogorov complexity illustrates a moderalgsis technique with
a strongly computational flavour, while the discussion ajlfabilistic methods
looks back to the complexity course and sideways to discosf security, arti-
ficial intelligence and beyond. | round things off by lookiagthe issue of algo-
rithms and parallel hardware. Itis clear that moving to parbhardware re-writes

25

all the cost expectations for processes, so is cause forlg faial re-think of
almost all data structures and algorithms! Very great casett be taken in this,
however, since typically the costs of data distribution ayxichronisation can ex-
ceed the operations that one normally thinks of as “compurtat As may have
been made clear in other courses on operating systems aodroamcy, correct-
ness in a parallel world is also a significantly nastier peabthan in a sequential
environment. | am just going to include one example heres ihcluded partly
because its history illustrates the delicacy of algorithesign for true concur-
rency. A full write-up can be found in Dijkstra et al[2], and bwill not include a
re-written summary version here.

6 Conclusion

As these notéshave grown it has become clear that there is a huge amourit that
could cheerfully include in this course. The main messagaritwo get across is
the enormous depth and complication there is within commmdence, and that
the study of algorithms did not become a finished-off deadgestijust because
(almost) everything about sorting techniques is now kno@n the contrary, this
area which must surely count as the very heart of Computen&ejeontinues to
throw up challenges and problems both related to the vemtipedissue of find-

ing the fastest way of solving certain real problems andédlleoretical issues of
understanding the inherent relationships between prahlstyles of computers
and costs.

References

[1] Leiserson Cormen and RivestAn Introduction to Algorithms. MIT and
McGraw-Hill, 1990.

[2] Dijkstra, Lamport, Martin, Sholten, and Steffens. Owifly garbage collec-
tion: an exercise in cooperatio@CACM, 21(11):966-975, 1978.

[3] Hardy and Wright.An Introduction to the Theory of Numbers. OUP, 1938.

[4] Donald E. Kunth. The Art of Computer Programming, volume II. Addison
Wesley, 3 edition, 1998.

%Please, whether you liked this course or not, find the Compiaboratory web page and
indirect through it to the course feedback area and recoud ymughts. | already know that the
notes were not available at the very start of the course, @ndeixt year (when it will not be the
first time the course has been given) that will not be a resati, so maybe you can find other
things to complain about!

26

[5] van Leeuwen (editor) Handbook of Theoretical Computer Science, Volume
A, Algorithms and Complexity. Elsevier/MIT Press, 1990.

27

