
Introduction to MATLAB

Markus Kuhn

Computer Laboratory

http://www.cl.cam.ac.uk/Teaching/2005/DSP/

Michaelmas 2005

What is MATLAB

→ high-level language (garbage collecting, var-len structures)

→ BASIC-like syntax, with elements from C, GUI IDE

→ basic data type: 2- or 3-dimensional floating-point matrix

→ most operators and functions work on entire matrices
⇒ hardly ever necessary to write out loops

→ uses internally highly optimized numerics libraries
(BLAS, LAPACK, FFTW)

→ comprehensive toolboxes for easy access to standard algorithms
from many fields: statistics, image processing, signal process-
ing, neural networks, wavelets, communications systems

→ very simple I/O for many data/multimedia file formats

→ popular for experimental/rapid-prototype number crunching

→ widely used as a visualization and teaching tool

2

What MATLAB is not

→ not a computer algebra system

→ not a strong general purpose programming language

• limited support for other data structures

• few software-engineering features;
typical MATLAB programs are only a few lines long

• not suited for teaching OOP

• limited GUI features

→ not a high-performance language (but fast matrix operators)

→ not freely available

Some of these limitations have been reduced in recent releases, e.g.
release 13 replaced slow interpreter with a JIT compiler (JVM).
As free alternatives, GNU Octave (http://www.octave.org/) reimplements a MATLAB subset;
R (http://www.r-project.org/) is growing beyond being just a statistics and plotting package;
and there are several numerics/matrix packages for Python (e.g., http://www.scipy.org/).

3

Availability and documentation

→ Installed on

• Intel Lab PWF Windows

• Intel Lab PWF Linux (/usr/bin/matlab)

• PWF servers linux{2,3}.pwf.cl.cam.ac.uk

• Computer Laboratory Windows and Linux PCs

→ Full documentation available online in HTML and PDF

• Start matlab, then type helpdesk

• http://www.mathworks.com/access/helpdesk/help/helpdesk.html

→ Read “Getting Started” section of the MATLAB manual

→ Use the command help function-name

PWF MATLAB may be a year behind the latest release. If you spot problems with the PWF
MATLAB installation, please do let the lecturer know (→ mgk25@cl.cam.ac.uk).

4

MATLAB matrices (1)

Generate a “magic square” with equal row/column/diagonal sums and
assign the resulting 3 × 3 matrix to variable a:

>> a = magic(3)

a =

8 1 6

3 5 7

4 9 2

Assignments and subroutine calls normally end with a semicolon.

Without, MATLAB will print each result. Useful for debugging!

Results from functions not called inside an expression are assigned to
the default variable ans.

Type help magic for the manual page of this library function.

5

MATLAB matrices (2)

Colon generates number sequence:

>> 11:14

ans =

11 12 13 14

>> -1:1

ans =

-1 0 1

>> 3:0

ans =

Empty matrix: 1-by-0

Specify step size with second colon:

>> 1:3:12

ans =

1 4 7 10

>> 4:-1:1

ans =

4 3 2 1

>> 3:-0.5:2

ans =

3.0000 2.5000 2.0000

Single matrix cell: a(2,3) == 7. Vectors as indices select several rows and
columns. When used inside a matrix index, the variable end provides the
highest index value: a(end, end-1) == 9. Using just “:” is equivalent
to “1:end” and can be used to select an entire row or column.

6

MATLAB matrices (3)

Select rows, columns and
submatrices of a:

>> a(1,:)

ans =

8 1 6

>> a(:,1)

ans =

8

3

4

>> a(2:3,1:2)

ans =

3 5

4 9

Matrices can also be accessed as a
1-dimensional vector:

>> a(1:5)

ans =

8 3 4 1 5

>> a(6:end)

ans =

9 6 7 2

>> b = a(1:4:9)

ans =

8 5 2

>> size(b)

ans =

1 3
7

MATLAB matrices (4)

Use [] to build new matrices, where , or space as a delimiter joins sub-
matrices horizontally and ; joins them vertically.

>> c = [2 7; 3 1]

c =

2 7

3 1

>> d = [a(:,end) a(1,:)']
d =

6 8

7 1

2 6

>> e = [zeros(1,3); a(2,:)]

e =

0 0 0

3 5 7

Mask matrix elements:

>> find(a > 5)

ans =

1

6

7

8

>> a(find(a > 5)) = 0

a =

0 1 0

3 5 0

4 0 2

8

MATLAB matrices (5)

Operators on scalars and matrices:

>> [1 1; 1 0] * [2 3]'
ans =

5

2

>> [1 2 3] .* [10 10 15]

ans =

10 20 45

Inner and outer vector product:

>> [2 3 5] * [1 7 11]'
ans =

78

>> [2 3 5]' * [1 7 11]

ans =

2 14 22

3 21 33

5 35 55

The imaginary unit vector
√
−1 is available as both i and j, and

matrices can be complex.

Related functions: real, imag, conj, exp, abs, angle

9

Exercise 1 Find a short MATLAB expression to build the matrix

B =

1 2 3 4 5 6 7
9 7 5 3 1 −1 −3
4 8 16 32 64 128 256

Exercise 2 Give a MATLAB expression that uses only a single matrix
multiplication with B to obtain

(a) the sum of columns 5 and 7 of B

(b) the last row of B

(c) a version of B with rows 2 and 3 swapped

Exercise 3 Give a MATLAB expression that multiplies two vectors to
obtain

(a) the matrix

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

 (b) the matrix

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4

10

Plotting

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
20−point raised cosine

x = 0:20;

y = 0.5 - 0.5*cos(2*pi * x/20);

stem(x, y);

title('20-point raised cosine'); 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real
imaginary

t = 0:0.1:10;

x = exp(t * (j - 1/3));

plot(t, real(x), t, imag(x));

grid; legend('real', 'imaginary')
Plotting functions plot, semilogx, semilogy, loglog all expect a pair of
vectors for each curve, with x and y coordinates, respectively.

Use saveas(gcf, 'plot2.eps') to save current figure as graphics file.

11

2D plotting

−20
−10

0
10

20

−20

0

20
−0.5

0

0.5

1

xl = -20:0.3:20;

yl = -20:0.3:20;

[x,y] = meshgrid(xl, yl);

r = sqrt(x.^2 + y.^2);

s = sin(r) ./ r; s(find(r==0)) = 1;

plot3(x, y, s);

grid on;

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

imagesc(xl, yl, s, [-1 1]);

colormap(gray);

set(gca, 'DataAspectRatio', [1 1 1]);

12

Some common functions and operators

*, ^
matrix multiplication, exponentiation

/, \, inv
A/B = AB−1, A\B = A−1B, A−1

+, -, .*, ./, .^
element-wise add/sub/mul/div/exp

==, ~=, <, >, <=, >=
relations result in element-wise 0/1

length, size
size of vectors and matrices

zeros, ones, eye, diag
all-0, all-1, identity, diag. matrices

xlim, ylim, zlim
set plot axes ranges

xlabel, ylabel, zlabel
label plot axes

wavread, wavwrite, sound
audio I/O

csvread, csvwrite
comma-separated-value I/O

imread, imwrite, image,

imagesc, colormap
bitmap image I/O

plot, semilog{x,y}, loglog
2D curve plotting

conv, conv2, xcorr
1D/2D convolution,
cross/auto-correlation sequence

fft, ifft, fft2
discrete Fourier transform

sum, prod, min, max
sum up rows or columns

cumsum, cumprod, diff
cumulative sum or product,
differentiate row/column

find
list non-zero indices

figure, saveas
open new figure, save figure

13

Functions and m-files
To define a new function, for example decibel(x) = 10x/20, write into
a file decibel.m the lines

function f = decibel(x)

% DECIBEL(X) converts a decibel figure X into a factor

f = 10 .^ (x ./ 20);

Only the function that has the same name as the m-file in which it is
defined can be called from outside the file; all other functions are only
visible inside the file. The function keyword sets the variable whose
value will be returned and lists the parameter variables.

The m-file must be in the current directory (cd) or MATLAB’s search
path (path) to become accessible.

Use edit db to edit the m-file, help db to show the first comment
lines and type db to show its source text.

M-files can also contain just sequences of statements instead of a func-
tion definition. These are called simply by typing their name.

14

Example: generating an audio illusion

Generate an audio file with 12 sine tones of apparently continuously
exponentially increasing frequency, which never leave the frequency
range 300–3400 Hz. Do this by letting them wrap around the frequency
interval and reduce their volume near the interval boundaries based on
a raised-cosine curve applied to the logarithm of the frequency.

First produce a 1 s long waveform in which each tone raises 1/12 of
the frequency range, then concatenate that to a 60 s long 16-bit WAV
file, mono, with 16 kHz sampling rate. Avoid phase jumps.

Parameters:

fs = 16000; % sampling frequency [Hz]

d = 1; % time after which waveform repeats [s]

fmin = 300; % lowest frequency

fmax = 3400; % highest frequency

n = 12; % number of tones

15

Spectrogram of the first 3 s:

Time

F
re

qu
en

cy

0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

16

Example solution:

t = 0:1/fs:d-1/fs; % timestamps for each sample point

% normalized logarithm of frequency of each tone (row)

% for each sample point (column), all rising linearly

% from 0 to 1, then wrap around back to 0

l = mod(([0:n-1]/n)' * ones(1, fs*d) + ones(n,1) * (t/(d*n)), 1);

f = fmin * (fmax/fmin) .^ l; % freq. for each tone and sample

p = 2*pi * cumsum(f, 2) / fs; % phase for each tone and sample

% make last column a multiple of 2*pi for phase continuity

p = diag((2*pi*floor(p(:,end)/(2*pi))) ./ p(:,end)) * p;

s = sin(p); % sine value for each tone and sample

% mixing amplitudes from raised-cosine curve over frequency

a = 0.5 - 0.5 * cos(2*pi * l);

w = sum(s .* a)/n; % mix tones together, normalize to [-1, +1]

w = repmat(w, 1, 3); % repeat waveform 3x

specgram(w, 2048, fs, 2048, 1800); ylim([0 4000]) % plot

w = repmat(w, 1, 20); % repeat waveform 20x

wavwrite(w, fs, 16, 'ladder.wav'); % make audio file

17

Exercise 4 Modify slide 17 to produce tones of falling frequency instead.

Exercise 5 (a) Write down the function g(t) that has the shape of a sine
wave that increases linearly in frequency from 0 Hz at t = 0 s to 5 Hz at
t = 10 s.

(b) Plot the graph of this function using MATLAB’s plot command.

(c) Add to the same figure (this can be achieved using the hold command)
in a different colour a graph of the same function sampled at 5 Hz, using
the stem command.

(d) Plot the graph from (c) separately. Try to explain its symmetry (hint:
sampling theorem, aliasing).

Exercise 6 Use MATLAB to write an audio waveform (8 kHz sampling
frequency) that contains a sequence of nine tones with frequencies 659,
622, 659, 622, 659, 494, 587, 523, and 440 Hz. Then add to this waveform
a copy of itself in which every other sample has been multiplied by −1. Play
the waveform, write it to a WAV file, and use the specgram command to
plot its spectrogram with correctly labelled time and frequency axis.

18

