
Information theory and coding –

Image, video and audio compression

Markus Kuhn

Computer Laboratory

http://www.cl.cam.ac.uk/Teaching/2004/InfoTheory/mgk/

Michaelmas 2004 – Part II

Structure of modern audiovisual
communication systems

Signal
Sensor+
sampling

Perceptual
coding

Entropy
coding

Channel
coding

Noise Channel

Human
senses Display

Perceptual
decoding

Entropy
decoding

Channel
decoding

- - - -

-

?

?

� � � �

2

Audio-visual lossy coding today typically consists of these steps:

→ A transducer converts the original stimulus into a voltage.

→ This analog signal is then sampled and quantized.
The digitization parameters (sampling frequency, quantization levels) are preferably
chosen generously beyond the ability of human senses or output devices.

→ The digitized sensor-domain signal is then transformed into a per-

ceptual domain.
This step often mimics some of the first neural processing steps in humans.

→ This signal is quantized again, based on a perceptual model of what
level of quantization-noise humans can still sense.

→ The resulting quantized levels may still be highly statistically de-
pendent. A prediction or decorrelation transform exploits this and
produces a less dependent symbol sequence of lower entropy.

→ An entropy coder turns that into an apparently-random bit string,
whose length approximates the remaining entropy.

The first neural processing steps in humans are in effect often a kind of decorrelation transform;
our eyes and ears were optimized like any other AV communications system. This allows us to
use the same transform for decorrelating and transforming into a perceptually relevant domain.

3

Outline of the remaining four lectures

→ Quick review of entropy coders for removing redundancy from
sequences of statistically independent symbols (Huffman, some
commonly used fixed code tables, arithmetic)

→ Transform coding: techniques for converting sequences of highly-
dependent symbols into less-dependent lower-entropy sequences.

• run-length coding, fax

• decorrelation, Karhunen-Loève transform (Principle Com-
ponent Analysis)

• other orthogonal transforms (especially DCT)

4

→ Introduction to some characteristics and limits of human senses

• perceptual scales (Weber, Fechner, Stevens, dB) and sen-
sitivity limits

• colour vision

• human hearing limits, critical bands, audio masking

→ Quantization techniques to remove information that is irrele-
vant to human senses

→ Image and audio coding standards

• A/µ-law coding (digital telephone network)

• JPEG

• MPEG video

• MPEG audio

5

Entropy coding review – Huffman

0

0

0

0

0

1

1

1

1

1

x

y z
0.05 0.05

0.100.15

0.25

1.00

0.60

v w

0.40

0.200.20 u
0.35

Huffman’s algorithm constructs an optimal code-word tree for a set of
symbols with known probability distribution. It iteratively picks the two
elements of the set with the smallest probability and combines them into
a tree by adding a common root. The resulting tree goes back into the
set, labeled with the sum of the probabilities of the elements it combines.
The algorithm terminates when less than two elements are left.

6

Other variable-length code tables
Huffman’s algorithm generates an optimal code table.
Disadvantage: this code table (or the distribution from which it was
generated) needs to be stored or transmitted.
Adaptive variants of Huffman’s algorithm modify the coding tree in the encoder and decoder
synchronously, based on the distribution of symbols encountered so far. This enables one-pass
processing and avoids the need to transmit or store a code table, at the cost of starting with a
less efficient encoding.

Unary code
Encode the natural number n as the bit string 1n0. This code is optimal
when the probability distribution is p(n) = 2−(n+1).
Example: 3, 2, 0 → 1110, 110, 0

Golomb code
Select an encoding parameter b. Let n be the natural number to be
encoded, q = bn/bc and r = n−qb. Encode n as the unary code word
for q, followed by the (log2 b)-bit binary code word for r.
Where b is not a power of 2, encode the lower values of r in blog2 bc bits, and the rest in dlog2 be
bits, such that the leading digits distinguish the two cases.

7

Examples:

b = 1: 0, 10, 110, 1110, 11110, 111110, . . . (this is just the unary code)
b = 2: 00, 01, 100, 101, 1100, 1101, 11100, 11101, 111100, 111101, . . .
b = 3: 00, 010, 011, 100, 1010, 1011, 1100, 11010, 11011, 11100, 111010, . . .
b = 4: 000, 001, 010, 011, 1000, 1001, 1010, 1011, 11000, 11001, 11010, . . .

Golomb codes are optimal for geometric distributions of the form p(n) = un(u − 1) (e.g., run
lengths of Bernoulli experiments) if b is chosen suitably for a given u.

S.W. Golomb: Run-length encodings. IEEE Transactions on Information Theory, IT-12(3):399–
401, July 1966.

Elias gamma code
Start the code word for the positive integer n with a unary-encoded
length indicator m = blog2 nc. Then append from the binary notation
of n the rightmost m digits (to cut off the leading 1).

1 = 0 4 = 11000 7 = 11011 10 = 1110010
2 = 100 5 = 11001 8 = 1110000 11 = 1110011
3 = 101 6 = 11010 9 = 1110001 . . .

P. Elias: Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, IT-21(2)194–203, March 1975.

More such variable-length integer codes are described by Fenwick in IT-48(8)2412–2417, August
2002. (Available on http://ieeexplore.ieee.org/)

8

Entropy coding review – arithmetic coding
Partition [0,1] according
to symbol probabilities: u v w x y z

0.950.9 1.00.750.550.350.0

Encode text wuvw . . . as numeric value (0.58. . .) in nested intervals:

z
y

x

v

u

w

z
y

x

v

u

w

z
y

x

v

u

w

z
y

x

v

u

w

z
y

x

v

u

w

1.0

0.0 0.55

0.75 0.62

0.55 0.5745

0.5885

0.5822

0.5850

9

Arithmetic coding
Several advantages:

→ Length of output bitstring can approximate the theoretical in-
formation content of the input to within 1 bit.

→ Performs well with probabilities > 0.5, where the information
per symbol is less than one bit.

→ Interval arithmetic makes it easy to change symbol probabilities
(no need to modify code-word tree) ⇒ convenient for adaptive
coding

Can be implemented efficiently with fixed-length arithmetic by rounding
probabilities and shifting out leading digits as soon as leading zeros
appear in interval size. Usually combined with adaptive probability
estimation.

Huffman coding remains popular because of its simplicity and lack of patent-licence issues.

10

Coding of sources with memory and
correlated symbols

Run-length coding:

↓
5 7 12 33

Predictive coding:

P(f(t−1), f(t−2), ...)
predictor

P(f(t−1), f(t−2), ...)
predictor

− +f(t) g(t) g(t) f(t)

encoder decoder

Delta coding (DPCM): P (x) = x

Linear predictive coding: P (x1, . . . , xn) =
n

∑

i=1

aixi

11

Old (Group 3 MH) fax code

• Run-length encoding plus modified Huffman
code

• Fixed code table (from eight sample pages)

• separate codes for runs of white and black
pixels

• termination code in the range 0–63 switches
between black and white code

• makeup code can extend length of a run by
a multiple of 64

• termination run length 0 needed where run
length is a multiple of 64

• single white column added on left side be-
fore transmission

• makeup codes above 1728 equal for black
and white

• 12-bit end-of-line marker: 000000000001
(can be prefixed by up to seven zero-bits
to reach next byte boundary)

Example: line with 2 w, 4 b, 200 w, 3 b, EOL →
1000|011|010111|10011|10|000000000001

pixels white code black code
0 00110101 0000110111
1 000111 010
2 0111 11
3 1000 10
4 1011 011
5 1100 0011
6 1110 0010
7 1111 00011
8 10011 000101
9 10100 000100

10 00111 0000100
11 01000 0000101
12 001000 0000111
13 000011 00000100
14 110100 00000111
15 110101 000011000
16 101010 0000010111
.
63 00110100 000001100111
64 11011 0000001111

128 10010 000011001000
192 010111 000011001001
.

1728 010011011 0000001100101

12

Modern (JBIG) fax code
Performs context-sensitive arithmetic coding of binary pixels. Both
encoder and decoder maintain statistics on how the black/white prob-
ability of each pixel depends on these 10 previously transmitted neigh-
bours:

?

Based on the counted numbers nblack and nwhite of how often each
pixel value has been encountered so far in each of the 1024 contexts,
the probability for the next pixel being black is estimated as

pblack =
nblack + 1

nwhite + nblack + 2

The encoder updates its estimate only after the newly counted pixel has
been encoded, such that the decoder knows the exact same statistics.
Joint Bi-level Expert Group: International Standard ISO 11544, 1993.
Example implementation: http://www.cl.cam.ac.uk/~mgk25/jbigkit/

13

Statistical dependence
Random variables X, Y are dependent iff ∃x, y:

P (X = x ∧ Y = y) 6= P (X = x) · P (Y = y).

If X, Y are dependent, then

⇒ ∃x, y : P (X = x |Y = y) 6= P (X = x) ∨
P (Y = y |X = x) 6= P (Y = y)

⇒ H(X|Y) < H(X) ∨ H(Y |X) < H(Y)

Application
Where x is the value of the next symbol to be transmitted and y is
the vector of all symbols transmitted so far, accurate knowledge of the
conditional probability P (X = x |Y = y) will allow a transmitter to
remove all redundancy.

An application example of this approach is JBIG, but there y is limited
to 10 past single-bit pixels and P (X = x |Y = y) is only an estimate.

14

Practical limits of measuring conditional probabilities
The practical estimation of conditional probabilities, in their most gen-
eral form, based on statistical measurements of example signals, quickly
reaches practical limits. JBIG needs merely an array of 210 = 1024 reg-
isters to maintain estimator statistics for its 10-bit context.

If we wanted to encode each 24-bit pixel of a colour image based on
its statistical dependence of the full colour information from just ten
previous neighbour pixels, the required number of

(224)11 ≈ 3 × 1080

registers for storing each probability will exceed the estimated number
of particles in this universe. (Neither will we encounter enough pixels
to record statistically significant occurrences in all (224)10 contexts.)

This example is far from excessive. It is easy to show that in colour im-
ages, pixel values show statistical significant dependence across colour
channels, and across locations more than eight pixels apart.

A simpler approximation of dependence is needed: correlation.
15

Correlation

Two random variables X ∈ R and Y ∈ R are correlated iff

E{[X − E(X)] · [Y − E(Y)]} 6= 0

where E(· · ·) denotes the expected value of a random-variable term.

Correlation implies dependence, but de-
pendence does not always lead to corre-
lation (see example to the right).

However, most dependency in audiovi-
sual data is a consequence of correlation,
which is algorithmically much easier to
exploit.

−1 0 1
−1

0

1

Dependent but not correlated:

Positive correlation: higher X ⇔ higher Y , lower X ⇔ lower Y
Negative correlation: lower X ⇔ higher Y , higher X ⇔ lower Y

16

Correlation of neighbour pixels

0 64 128 192 256
0

64

128

192

256
Values of neighbour pixels at distance 1

0 64 128 192 256
0

64

128

192

256
Values of neighbour pixels at distance 2

0 64 128 192 256
0

64

128

192

256
Values of neighbour pixels at distance 4

0 64 128 192 256
0

64

128

192

256
Values of neighbour pixels at distance 8

17

Covariance and correlation

We define the covariance of two random variables X and Y as

Cov(X, Y) = E{[X−E(X)]·[Y −E(Y)]} = E(X ·Y)−E(X)·E(Y)

and the variance as Var(X) = Cov(X,X) = E{[X − E(X)]2}.

The Pearson correlation coefficient

ρX,Y =
Cov(X, Y)

√

Var(X) · Var(Y)

is a normalized form of the covariance. It is limited to the range [−1, 1].

If the correlation coefficient has one of the values ρX,Y = ±1, this
implies that X and Y are exactly linearly dependent, i.e. Y = aX + b,
with a = Cov(X, Y)/Var(X) and b = E(Y) − E(X).

18

Covariance Matrix

For a random vector X = (X1, X2, . . . , Xn) ∈ R
n we define the co-

variance matrix

Cov(X) = E
(

(X − E(X)) · (X − E(X))T
)

= (Cov(Xi, Xj))i,j =














Cov(X1, X1) Cov(X1, X2) Cov(X1, X3) · · · Cov(X1, Xn)
Cov(X2, X1) Cov(X2, X2) Cov(X2, X3) · · · Cov(X2, Xn)
Cov(X3, X1) Cov(X3, X2) Cov(X3, X3) · · · Cov(X3, Xn)

...
...

...
. . .

...
Cov(Xn, X1) Cov(Xn, X2) Cov(Xn, X3) · · · Cov(Xn, Xn)















The elements of a random vector X are uncorrelated if and only if
Cov(X) is a diagonal matrix.

Cov(X, Y) = Cov(Y,X), so all covariance matrices are symmetric :
Cov(X) = CovT(X).

19

Decorrelation by coordinate transform

0 64 128 192 256
0

64

128

192

256
Neighbour−pixel value pairs

−64 0 64 128 192 256 320
−64

0

64

128

192

256

320
Decorrelated neighbour−pixel value pairs

−64 0 64 128 192 256 320

Probability distribution and entropy

correlated value pair (H = 13.90 bit)
decorrelated value 1 (H = 7.12 bit)
decorrelated value 2 (H = 4.75 bit)

Idea: Take the values of a group of cor-
related symbols (e.g., neighbour pixels) as
a random vector. Find a coordinate trans-
form (multiplication with an orthonormal
matrix) that leads to a new random vector
whose covariance matrix is diagonal. The
vector components in this transformed co-
ordinate system will no longer be corre-
lated. This will hopefully reduce the en-
tropy of some of these components.

20

Theorem: Let X ∈ R
n and Y ∈ R

n be random vectors that are
linearly dependent with Y = AX + b, where A ∈ R

n×n and b ∈ R
n

are constants. Then

E(Y) = A · E(X) + b

Cov(Y) = A · Cov(X) · AT

Proof: The first equation follows from the linearity of the expected-
value operator E(·), as does E(A ·X ·B) = A ·E(X) ·B for matrices
A,B. With that, we can transform

Cov(Y) = E
(

(Y − E(Y)) · (Y − E(Y))T
)

= E
(

(AX − AE(X)) · (AX − AE(X))T
)

= E
(

A(X − E(X)) · (X − E(X))TAT
)

= A · E
(

(X − E(X)) · (X − E(X))T
)

· AT

= A · Cov(X) · AT

21

Quick review: eigenvectors and eigenvalues
We are given a square matrix A ∈ R

n×n. The vector x ∈ R
n is an

eigenvector of A if there exists a scalar value λ ∈ R such that

Ax = λx.

The corresponding λ is the eigenvalue of A associated with x.

The length of an eigenvector is irrelevant, as any multiple of it is also
an eigenvector. Eigenvectors are in practice normalized to length 1.

Spectral decomposition
Any real, symmetric matrix A = AT ∈ R

n×n can be diagonalized into
the form

A = UΛUT,

where Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of the ordered
eigenvalues of A (with λ1 ≥ λ2 ≥ · · · ≥ λn), and the columns of U
are the n corresponding orthonormal eigenvectors of A.

22

Karhunen-Loève transform (KLT)
We are given a random vector variable X ∈ R

n. The correlation of the
elements of X is described by the covariance matrix Cov(X).

How can we find a transform matrix A that decorrelates X, i.e. that
turns Cov(AX) = A · Cov(X) · AT into a diagonal matrix? A would
provide us the transformed representation Y = AX of our random
vector, in which all elements are mutually uncorrelated.

Note that Cov(X) is symmetric. It therefore has n real eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn and a set of associated mutually orthogonal
eigenvectors b1, b2, . . . , bn of length 1 with

Cov(X)bi = λibi.

We convert this set of equations into matrix notation using the matrix
B = (b1, b2, . . . , bn) that has these eigenvectors as columns and the
diagonal matrix D = diag(λ1, λ2, . . . , λn) that consists of the corre-
sponding eigenvalues:

Cov(X)B = BD
23

B is orthonormal, that is BBT = I.

Multiplying the above from the right with BT leads to the spectral

decomposition

Cov(X) = BDBT

of the covariance matrix. Similarly multiplying instead from the left
with BT leads to

BT Cov(X)B = D

and therefore shows with

Cov(BT
X) = D

that the eigenvector matrix BT is the wanted transform.

The Karhunen-Loève transform (also known as Hotelling transform

or Principal Component Analysis) is the multiplication of a correlated
random vector X with the orthonormal eigenvector matrix BT from the
spectral decomposition Cov(X) = BDBT of its covariance matrix.
This leads to a decorrelated random vector BT

X whose covariance
matrix is diagonal.

24

Karhunen-Loève transform example I

colour image red channel green channel blue channel

The colour image (left) has m = r2 pixels, each
of which is an n = 3-dimensional RGB vector

Ix,y = (rx,y , gx,y , bx,y)T

The three rightmost images show each of these
colour planes separately as a black/while image.

We want to apply the KLT on a set of such
R

n colour vectors. Therefore, we reformat the
image I into an n × m matrix of the form

S =

0

@

r1,1 r1,2 r1,3 · · · rr,r

g1,1 g1,2 g1,3 · · · gr,r

b1,1 b1,2 b1,3 · · · br,r

1

A

We can now define the mean colour vector

S̄c =
1

m

m
X

i=1

Sc,i, S̄ =

0

@

0.4839
0.4456
0.3411

1

A

and the covariance matrix

Cc,d =
1

m − 1

m
X

i=1

(Sc,i − S̄c)(Sd,i − S̄d)

C =

0

@

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

1

A

25

[When estimating a covariance from a number of samples, the sum is divided by the number of
samples minus one. This takes into account the variance of the mean S̄c, which is not the exact
expected value, but only an estimate of it.]

The resulting covariance matrix has three eigenvalues 0.0622, 0.0025, and 0.0006

0

@

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

1

A

0

@

0.7167
0.5833
0.3822

1

A = 0.0622

0

@

0.7167
0.5833
0.3822

1

A

0

@

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

1

A

0

@

−0.5509
0.1373
0.8232

1

A = 0.0025

0

@

−0.5509
0.1373
0.8232

1

A

0

@

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

1

A

0

@

−0.4277
0.8005

−0.4198

1

A = 0.0006

0

@

−0.4277
0.8005

−0.4198

1

A

and can therefore be diagonalized as

0

@

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

1

A = C = U · D · UT =

0

@

0.7167 −0.5509 −0.4277
0.5833 0.1373 0.8005
0.3822 0.8232 −0.4198

1

A

0

@

0.0622 0 0
0 0.0025 0
0 0 0.0006

1

A

0

@

0.7167 0.5833 0.3822
−0.5509 0.1373 0.8232
−0.4277 0.8005 −0.4198

1

A

(e.g. using MATLAB’s singular-value decomposition function svd).

26

Karhunen-Loève transform example I
Before KLT:

red green blue

After KLT:

u v w

Projections on eigenvector subspaces:

v = w = 0 w = 0 original

We finally apply the orthogonal 3×3 transform
matrix U , which we just used to diagonalize the
covariance matrix, to the entire image:

T = UT ·

2

4S −

0

@

S̄1 S̄1 · · · S̄1

S̄2 S̄2 · · · S̄2

S̄3 S̄3 · · · S̄3

1

A

3

5

+

0

@

S̄1 S̄1 · · · S̄1

S̄2 S̄2 · · · S̄2

S̄3 S̄3 · · · S̄3

1

A

The resulting transformed image

T =

0

@

u1,1 u1,2 u1,3 · · · ur,r

v1,1 v1,2 v1,3 · · · vr,r

w1,1 w1,2 w1,3 · · · wr,r

1

A

consists of three new “colour” planes whose
pixel values have no longer any correlation to
the pixels at the same coordinates in another
plane. [The bear disappeared from the last of
these (w), which represents mostly some of the
green grass in the background.]

27

Spatial correlation

The previous example used the Karhunen-Loève transform in order to
eliminate correlation between colour planes. While this is of some
relevance for image compression, far more correlation can be found
between neighbour pixels within each colour plane.

In order to exploit such correlation using the KLT, the sample set has
to be extended from individual pixels to entire images. The underlying
calculation is the same as in the preceeding example, but this time
the columns of S are entire (monochrome) images. The rows are the
different images found in the set of test images that we use to examine
typical correlations between neighbour pixels.
In other words, we use the same formulas as in the previous example, but this time n is the number
of pixels per image and m is the number of sample images. The Karhunen-Loève transform is
here no longer a rotation in a 3-dimensional colour space, but it operates now a much larger
vector space that has as many dimensions as an image has pixels.

To keep things simple, we look in the next experiment only at m = 9000 1-dimensional “images”
with n = 32 pixels each. As a further simplification, we use not real images, but random noise
that was filtered such that its amplitude spectrum is proportional to 1/f , where f is the frequency.
The result would be similar in a sufficiently large collection of real test images.

28

Karhunen-Loève transform example II
Matrix columns of S filled with samples of 1/f filtered noise

. . .

Covariance matrix C Matrix U with eigenvector columns

29

Matrix U ′ with normalised KLT
eigenvector columns

Matrix with Discrete Cosine
Transform base vector columns

Breakthrough: Ahmed/Natarajan/Rao discovered the DCT as an ex-
cellent approximation of the KLT for typical photographic images, but
far more efficient to calculate.
Ahmed, Natarajan, Rao: Discrete Cosine Transform. IEEE Transactions on Computers, Vol. 23,
January 1974, pp. 90–93.

30

Discrete cosine transform (DCT)
The forward and inverse discrete cosine transform

S(u) =
C(u)

√

N/2

N−1
∑

x=0

s(x) cos
(2x+ 1)uπ

2N

s(x) =
N−1
∑

u=0

C(u)
√

N/2
S(u) cos

(2x+ 1)uπ

2N

with

C(u) =

{ 1√
2

u = 0

1 u > 0

is an orthonormal transform:

N−1
∑

x=0

C(u)
√

N/2
cos

(2x+ 1)uπ

2N
· C(u′)
√

N/2
cos

(2x+ 1)u′π

2N
=

{

1 u = u′

0 u 6= u′

31

The 2-dimensional variant of the DCT applies the 1-D transform on
both rows and columns of an image:

S(u, v) =
C(u)

√

N/2

C(v)
√

N/2
·

N−1
∑

x=0

N−1
∑

y=0

s(x, y) cos
(2x+ 1)uπ

2N
cos

(2y + 1)vπ

2N

s(x, y) =
N−1
∑

u=0

N−1
∑

v=0

C(u)
√

N/2

C(v)
√

N/2
· S(u, v) cos

(2x+ 1)uπ

2N
cos

(2y + 1)vπ

2N

A range of fast algorithms have been found for calculating 1-D and
2-D DCTs (e.g., Ligtenberg/Vetterli).

32

Whole-image DCT

2D Discrete Cosine Transform (log10)

−4

−3

−2

−1

0

1

2

3

4

Original image

33

Whole-image DCT, 80% coefficient cutoff

80% truncated 2D DCT (log10)

−4

−3

−2

−1

0

1

2

3

4

80% truncated DCT: reconstructed image

34

Whole-image DCT, 90% coefficient cutoff

90% truncated 2D DCT (log10)

−4

−3

−2

−1

0

1

2

3

4

90% truncated DCT: reconstructed image

35

Whole-image DCT, 95% coefficient cutoff

95% truncated 2D DCT (log10)

−4

−3

−2

−1

0

1

2

3

4

95% truncated DCT: reconstructed image

36

Whole-image DCT, 99% coefficient cutoff

99% truncated 2D DCT (log10)

−4

−3

−2

−1

0

1

2

3

4

99% truncated DCT: reconstructed image

37

Base vectors of 8×8 DCT

38

Discrete Wavelet Transform

39

The n-point Discrete Fourier Transform (DFT) can be viewed as a device that
sends an input signal through a bank of n non-overlapping band-pass filters, each
reducing the bandwidth of the signal to 1/n of its original bandwidth.

According to the sampling theorem, after a reduction of the bandwidth by 1/n,
the number of samples needed to reconstruct the original signal can equally be
reduced by 1/n. The DFT splits a wide-band signal represented by n input signals
into n separate narrow-band samples, each represented by a single sample.

A Discrete Wavelet Transform (DWT) can equally be viewed as such a frequency-
band splitting device. However, with the DWT, the bandwidth of each output signal
is proportional to the highest input frequency that it contains. High-frequency
components are represented in output signals with a high bandwidth, and therefore
a large number of samples. Low-frequency signals end up in output signals with
low bandwidth, and are correspondingly represented with a low number of samples.
As a result, high-frequency information is preserved with higher spatial resolution
than low-frequency information.

Both the DFT and the DWT are linear orthogonal transforms that preserve all
input information in their output without adding anything redundant.

As with the DFT, the 1-dimensional DWT can be extended to 2-D images by trans-
forming both rows and columns (the order of which happens first is not relevant).

40

A DWT is defined by a combination of a low-pass filter, which smoothes
a signal by allowing only the bottom half of all frequencies to pass
through, and a high-pass filter, which preserves only the upper half of
the spectrum. These two filters must be chosen to be “orthogonal”
to each other, in the sense that together they split up the information
content of their input signal without any mutual information in their
outputs.

A widely used 1-D filter pair is DAUB4 (by Ingrid Daubechies). The
low-pass filter convolves a signal with the 4-point sequence c0, c1, c2, c3,
and the matching high-pass filter convolves with c3,−c2, c1,−c0. Writ-
ten as a transformation matrix, DAUB4 has the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

..

.
..
.

. . .

c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

41

An orthogonal matrix multiplied with itself transposed is the identity
matrix, which is fulfilled for the above one when

c20 + c21 + c22 + c23 = 1

c2c0 + c3c1 = 0

To determine four unknown variables we need four equations, there-
fore we demand that the high-pass filter will not pass through any
information about polynomials of degree 1:

c3 − c2 + c1 − c0 = 0

0c3 − 1c2 + 2c1 − 3c0 = 0

This leads to the solution

c0 = (1 +
√

3)/(4
√

2), c1 = (3 +
√

3)/(4
√

2)

c2 = (3 −
√

3)/(4
√

2), c3 = (1 −
√

3)/(4
√

2)

Daubechies tabulated also similar filters with more coefficients.
42

In an n-point DWT, an input vector is convolved separately with a low-
pass and a high-pass filter. The result are two output sequences of n
numbers. But as each sequence has now only half the input bandwidth,
each second value is redundant, can be reconstructed by interpolation
with the same filter, and can therefore be discarded.

The remaining output values of the high-pass filter (“detail”) are part
of the final output of the DFT. The remaining values of the low-pass
filter (“approximation”) are recursively treated the same way, until they
consist – after log2 n steps – of only a single value, namely the average
of the entire input.

Like with the DFT and DCT, for many real-world input signals, the
DWT accumulates most energy into only a fraction of its output values.
A commonly used approach for wavelet-based compression of signals is
to replace all coefficients below an adjustable threshold with zero and
encode only the values and positions of the remaining ones.

43

Discrete Wavelet Transform compression
80% truncated 2D DAUB8 DWT 90% truncated 2D DAUB8 DWT

95% truncated 2D DAUB8 DWT 99% truncated 2D DAUB8 DWT

44

Psychophysics of perception
Sensation limit (SL) = lowest intensity stimulus that can still be perceived

Difference limit (DL) = smallest perceivable stimulus difference at given
intensity level

Weber’s law
Difference limit ∆φ is proportional to the intensity φ of the stimulus
(except for a small correction constant a describe deviation of experi-
mental results near SL):

∆φ = c · (φ+ a)

Fechner’s scale
Define a perception intensity scale ψ using the sensation limit φ0 as
the origin and the respective difference limit ∆φ = c ·φ as a unit step.
The result is a logarithmic relationship between stimulus intensity and
scale value:

ψ = logc

φ

φ0
45

Fechner’s scale matches older subjective intensity scales that follow
differentiability of stimuli, e.g. the astronomical magnitude numbers
for star brightness introduced by Hipparchos (≈150 BC).

Stevens’ law

A sound that is 20 DL over SL is perceived as more than twice as loud
as one that is 10 DL over SL, i.e. Fechner’s scale does not describe
well perceived intensity. A rational scale attempts to reflect subjective
relations perceived between different values of stimulus intensity φ.
Stevens observed that such rational scales ψ follow a power law:

ψ = k · (φ− φ0)
a

Example coefficients a: temperature 1.6, weight 1.45, loudness 0.6,
brightness 0.33.

46

Decibel
Communications engineers often use logarithmic units:

→ Quantities often vary over many orders of magnitude → difficult
to agree on a common SI prefix

→ Quotient of quantities (amplification/attenuation) usually more
interesting than difference

→ Signal strength usefully expressed as field quantity (voltage,
current, pressure, etc.) or power, but quadratic relationship
between these two (P = U 2/R = I2R) rather inconvenient

→ Weber/Fechner: perception is logarithmic

Plus: Using magic special-purpose units has its own odd attractions (→ typographers, navigators)

Neper (Np) denotes the natural logarithm of the quotient of a field
quantity F and a reference value F0.

Bel (B) denotes the base-10 logarithm of the quotient of a power P
and a reference power P0. Common prefix: 10 decibel (dB) = 1 bel.

47

Where P is some power and P0 a 0 dB reference power, or equally
where F is a field quantity and F0 the corresponding reference level:

10 dB · log10

P

P0

= 20 dB · log10

F

F0

Common reference values are indicated with an additional letter after
the “dB”:

0 dBW = 1 W

0 dBm = 1 mW = −30 dBW

0 dBµV = 1 µV

0 dBSPL = 20 µPa (sound pressure level)

0 dBSL = perception threshold (sensation limit)

3 dB = double power, 6 dB = double pressure/voltage/etc.
10 dB = 10× power, 20 dB = 10× pressure/voltage/etc.
W.H. Martin: Decibel – the new name for the transmission unit. Bell System Technical Journal,
January 1929.

48

RGB video colour coordinates
Hardware interface (VGA): red, green, blue signals with 0–0.7 V

Electron-beam current and photon count of cathode-ray displays are
roughly proportional to (v − v0)

γ, where v is the video-interface or
control-grid voltage and γ is a device parameter that is typically in
the range 1.5–3.0. In broadcast TV, this CRT non-linearity is com-
pensated electronically in TV cameras. A welcome side effect is that
it approximates Stevens’ scale and therefore helps to reduce perceived
noise.

Software interfaces map RGB voltage linearly to {0, 1, . . . , 255} or 0–1

How numeric RGB values map to colour and luminosity depends at
present still highly on the hardware and sometimes even on the oper-
ating system or device driver.

The new specification “sRGB” aims to standardize the meaning of
an RGB value with the parameter γ = 2.2 and with standard colour
coordinates of the three primary colours.
http://www.w3.org/Graphics/Color/sRGB, IEC 61966

49

YUV video colour coordinates

The human eye processes colour and luminosity at different resolutions.
To exploit this phenomenon, many image transmission systems use a
colour space with a luminance coordinate

Y = 0.3R + 0.6G+ 0.1B

and colour (“chrominance”) components

V = R− Y = 0.7R− 0.6G− 0.1B

U = B − Y = −0.3R− 0.6G+ 0.9B
50

YUV transform example

original Y channel U and V channels

The centre image shows only the luminance channel as a black/white
image. In the right image, the luminance channel (Y) was replaced
with a constant, such that only the chrominance information remains.
This example and the next make only sense when viewed in colour. On a black/white printout of
this slide, only the Y channel information will be present.

51

Y versus UV sensitivity example

original blurred U and V blurred Y channel

In the centre image, the chrominance channels have been severely low-

pass filtered (Gaussian impulse response). But the human eye

perceives this distortion as far less severe than if the exact same filtering
is applied to the luminance channel (right image).

52

YCrCb video colour coordinates
Since −0.7 ≤ V ≤ 0.7 and −0.9 ≤ U ≤ 0.9, a more convenient
normalized encoding of chrominance is:

Cb =
U

2.0
+ 0.5

Cr =
V

1.6
+ 0.5

Cb

C
r

Y=0.1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Cb

C
r

Y=0.3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Cb

C
r

Y=0.5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Cb

C
r

Y=0.7

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Cb

C
r

Y=0.9

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Cb

C
r

Y=0.99

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Modern image compression techniques operate on Y , Cr, Cb channels
separately, using half the resolution of Y for storing Cr, Cb.
Some digital-television engineering terminology:

If each pixel is represented by its own Y , Cr and Cb byte, this is called a “4:4:4” format. In the
compacter “4:2:2” format, a Cr and Cb value is transmitted only for every second pixel, reducing
the horizontal chrominance resolution by a factor two. The “4:2:0” format transmits in alternat-
ing lines either Cr or Cb for every second pixel, thus halving the chrominance resolution both
horizontally and vertically. The “4:1:1” format reduces the chrominance resolution horizontally
by a quarter and “4:1:0” does so in both directions. [ITU-R BT.601]

53

The human auditory system

→ frequency range 20–16000 Hz (babies: 20 kHz)

→ sound pressure range 0–140 dBSPL (about 10−5–102 pascal)

→ mechanical filter bank (cochlea) splits input into frequency
components, physiological equivalent of Fourier transform

→ most signal processing happens in the frequency domain where
phase information is lost

→ some time-domain processing below 500 Hz and for directional
hearing

→ sensitivity and difference limit are frequency dependent

54

Equiloudness curves and the unit “phon”

Each curve represents a loudness level in phon. At 1 kHz, the loudness unit

phon is identical to dBSPL and 0 phon is the sensation limit.
55

Sound waves cause vibration in the eardrum. The three smallest human bones in

the middle ear (malleus, incus, stapes) provide an “impedance match” between air

and liquid and conduct the sound via a second membrane, the oval window, to the

cochlea. Its three chambers are rolled up into a spiral. The basilar membrane that

separates the two main chambers decreases in stiffness along the spiral, such that

the end near the stapes vibrates best at the highest frequencies, whereas for lower

frequencies that amplitude peak moves to the far end.

56

Frequency discrimination and critical bands
A pair of pure tones (sine functions) cannot be distinguished as two
separate frequencies if both are in the same frequency group (“critical
band”). Their loudness adds up, and both are perceived with their
average frequency.

The human ear has about 24 critical bands whose width grows non-
linearly with the center frequency.

Each audible frequency can be expressed on the “Bark scale” with
values in the range 0–24. A good closed-form approximation is

b ≈ 26.81

1 + 1960 Hz
f

− 0.53

where f is the frequency and b the corresponding point on the Bark
scale.

Two frequencies are in the same critical band if their distance is below
1 bark.

57

Masking

→ Louder tones increase the sensation limit for nearby frequencies and
suppress the perception of quieter tones.

→ This increase is not symmetric. It extends about 3 barks to lower
frequencies and 8 barks to higher ones.

→ The sensation limit is increased less for pure tones of nearby fre-
quencies, as these can still be perceived via their beat frequency.
For the study of masking effects, pure tones therefore need to be
distinguished from narrowband noise.

→ Temporal masking: SL rises shortly before and after a masker.

58

Audio demo: loudness and masking
loudness.wav
Two sequences of tones with frequencies 40, 63, 100, 160, 250, 400,
630, 1000, 1600, 2500, 4000, 6300, 10000, and 16000 Hz.

→ Sequence 1: tones have equal amplitude

→ Sequence 2: tones have roughly equal perceived loudness
Amplitude adjusted to IEC 60651 “A” weighting curve for soundlevel meters.

masking.wav
Twelve sequences, each with twelve probe-tone pulses and a 1200 Hz
masking tone during pulses 5 to 8.

Probing tone frequency and relative masking tone amplitude:

10 dB 20 dB 30 dB 40 dB

1300 Hz
1900 Hz
700 Hz

59

Audio demo: loudness.wav

40 63 100 160 250 400 630 1000 1600 2500 4000 6300 10000 16000

0

10

20

30

40

50

60

70

80

Hz

dB
S

P
L

0 dBA curve (SL)
first series
second series

60

Audio demo: masking.wav

40 63 100 160 250 400 630 1000 1600 2500 4000 6300 10000 16000

0

10

20

30

40

50

60

70

80

Hz

dB
S

P
L

0 dBA curve (SL)
masking tones
probing tones
masking thresholds

61

Quantization

Uniform/linear quantization:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6

Non-uniform quantization:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6

Quantization is the mapping from a continuous or large set of val-
ues (e.g., analog voltage, floating-point number) to a smaller set of
(typically 28, 212 or 216) values.

This introduces two types of error:

→ the amplitude of quantization noise reaches up to half the max-
imum difference between neighbouring quantization levels

→ clipping occurs where the input amplitude exceeds the value of
the highest (or lowest) quantization level

62

Example of a linear quantizer (resolution R, peak value V):

y = max

{

−V,min

{

V,R

⌊

x

R
+

1

2

⌋}}

Adding a noise signal that is uniformly distributed on [0, 1] instead of adding 1

2
helps to spread

the frequency spectrum of the quantization noise more evenly. This is known as dithering.

Variant with even number of output values (no zero):

y = max

{

−V,min

{

V,R

(⌊

x

R

⌋

+
1

2

)}}

Improving the resolution by a factor of two (i.e., adding 1 bit) reduces
the quantization noise by 6 dB.

Linearly quantized signals are easiest to process, but analog input levels
need to be adjusted carefully to achieve a good tradeoff between the
signal-to-quantization-noise ratio and the risk of clipping. Non-uniform
quantization can reduce quantization noise where input values are not
uniformly distributed and can approximate human perception limits.

63

Logarithmic quantization
Rounding the logarithm of the signal amplitude makes the quantiza-
tion error scale-invariant and is used where the signal level is not very
predictable. Two alternative schemes are widely used to make the
logarithm function odd and linearize it across zero before quantization:

µ-law:

y =
V log(1 + µ|x|/V)

log(1 + µ)
sgn(x) for −V ≤ x ≤ V

A-law:

y =

{ A|x|
1+log A

sgn(x) for 0 ≤ |x| ≤ V
A

V (1+log
A|x|

V)
1+log A

sgn(x) for V
A
≤ |x| ≤ V

European digital telephone networks use A-law quantization (A = 87.6), North American ones
use µ-law (µ=255), both with 8-bit resolution and 8 kHz sampling frequency (64 kbit/s). [ITU-T
G.711]

64

−128 −96 −64 −32 0 32 64 96 128

0

si
gn

al
 v

ol
ta

ge

byte value

µ−law (US)
A−law (Europe)

Lloyd’s algorithm: finds least-square-optimal non-uniform quantiza-
tion function for a given probability distribution of sample values.
S.P. Lloyd: Least Squares Quantization in PCM. IEEE Trans. IT-28, March 1982, pp 129–137.

65

Joint Photographic Experts Group – JPEG
Working group “ISO/TC97/SC2/WG8 (Coded representation of picture and audio information)”
was set up in 1982 by the International Organization for Standardization.

Goals:

→ continuous tone gray-scale and colour images

→ recognizable images at 0.083 bit/pixel

→ useful images at 0.25 bit/pixel

→ excellent image quality at 0.75 bit/pixel

→ indistinguishable images at 2.25 bit/pixel

→ feasibility of 64 kbit/s (ISDN fax) compression with late 1980s
hardware (16 MHz Intel 80386).

→ workload equal for compression and decompression

The JPEG standard (ISO 10918) was finally published in 1994.
William B. Pennebaker, Joan L. Mitchell: JPEG still image compression standard. Van Nostrad
Reinhold, New York, ISBN 0442012721, 1993.

Gregory K. Wallace: The JPEG Still Picture Compression Standard. Communications of the
ACM 34(4)30–44, April 1991, http://doi.acm.org/10.1145/103085.103089

66

Summary of the baseline JPEG algorithm

The most widely used lossy method from the JPEG standard:

→ Colour component transform: 8-bit RGB → 8-bit YCrCb

→ Reduce resolution of Cr and Cb by a factor 2

→ For the rest of the algorithm, process Y , Cr and Cb compo-
nents independently (like separate gray-scale images)
The above steps are obviously skipped where the input is a gray-scale image.

→ Split each image component into 8 × 8 pixel blocks
Partial blocks at the right/bottom margin may have to be padded by repeating the
last column/row until a multiple of eight is reached. The decoder will remove these
padding pixels.

→ Apply the 8 × 8 forward DCT on each block
On unsigned 8-bit input, the resulting DCT coefficients will be signed 11-bit integers.

67

→ Quantization: divide each DCT coefficient with the correspond-
ing value from an 8×8 table, then round to the nearest integer:
The two standard quantization-matrix examples for luminance and chrominance are:

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99

12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99

14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99

14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99

18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99

24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99

49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99

72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99

→ apply DPCM coding to quantized DC coefficients from DCT

→ read remaining quantized values from DCT in zigzag pattern

→ locate sequences of zero coefficients (run-length coding)

→ apply Huffman coding on zero run-lengths and magnitude of
AC values

→ add standard header with compression parameters

http://www.jpeg.org/

Example implementation: http://www.ijg.org/

68

Storing DCT coefficients in zigzag order

0 1

2

3

4

5 6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35 36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57 58

59

60

61

6362

horizontal frequency
ve

rti
ca

l f
re

qu
en

cy

After the 8×8 coefficients produced by the discrete cosine transform
have been quantized, the values are processed in the above zigzag order
by a run-length encoding step.
The idea is to group all higher-frequency coefficients together at the end of the sequence. As many
image blocks contain little high-frequency information, the bottom-right corner of the quantized
DCT matrix is often entirely zero. The zigzag scan helps the run-length coder to make best use
of this observation.

69

Huffman coding in JPEG
s value range

0 0
1 −1, 1
2 −3,−2, 2, 3
3 −7 . . . − 4, 4 . . . 7
4 −15 . . . − 8, 8 . . . 15
5 −31 . . . − 16, 16 . . . 31
6 −63 . . . − 32, 32 . . . 63

.
i −(2i − 1) . . . − 2i−1, 2i−1 . . . 2i − 1

DCT coefficients have 11-bit resolution and would lead to huge Huffman

tables (up to 2048 code words). JPEG therefore uses a Huffman table only

to encode the magnitude category s = dlog2(|v| + 1)e of a DCT value v.

A sign bit plus the (s− 1)-bit binary value |v| − 2s−1 are appended to each

Huffman code word, to distinguish between the 2s different values within

magnitude category s.
When storing DCT coefficients in zigzag order, the symbols in the Huffman tree are actually
tuples (r, s), where r is the number of zero coefficients preceding the coded value (run-length).

70

Arithmetic coding in JPEG
As an option, the Huffman coder in JPEG can be replaced with an arith-
metic coder. The coder used is identical to the JBIG one (113-state
adaptive estimator, etc.). It processes a sequence of binary decisions,
therefore each integer value (DC coefficient difference, AC coefficient,
lossless difference) to be coded is first transformed into a bit string
using a variant of the Elias gamma code, which is then fed bit-by-bit
into the arithmetic coder with a suitable context.
If the integer v to be coded is zero, only the bit 0 is fed into the arithmetic coder. Otherwise, the
coder receives a 1 bit, followed by the sign bit of v, followed by the unary-coded value dlog2 |v|e,
followed by the dlog2 |v|e − 1 bits after the leading 1 bit of the binary notation of |v| − 1.

The coding context used depends on the bit position, in the case of the third bit (|v| > 1?) also
on the second bit (v < 0?). In the case of the first three bits, the context also depends on the
zigzag index number for AC coefficients, or on the first few bits of the previous DC coefficient
difference for a DC coefficient.

In other words, integer values are first coded with a fixed Huffman
code that outputs bits with roughly equal probability, and then the
arithmetic coder adapts to exploit the remaining bit bias, as well as
the dependence on a selected small set of previously coded bits.

71

Lossless JPEG algorithm
In addition to the DCT-based lossy compression, JPEG also defines a
lossless mode. It offers a selection of seven linear prediction mecha-
nisms based on three previously coded neighbour pixels:

1 : x = a
2 : x = b
3 : x = c
4 : x = a+ b− c
5 : x = a+ (b− c)/2
6 : x = b+ (a− c)/2
7 : x = (a+ b)/2

c b

a ?

Predictor 1 is used for the top row, predictor 2 for the left-most row.
The predictor used for the rest of the image is chosen in a header. The
difference between the predicted and actual value is fed into either a
Huffman or arithmetic coder.

72

Advanced JPEG features
Beyond the baseline and lossless modes already discussed, JPEG pro-
vides these additional features:

→ 8 or 12 bits per pixel input resolution for DCT modes

→ 2–16 bits per pixel for lossless mode

→ progressive mode permits the transmission of more-significant
DCT bits or lower-frequency DCT coefficients first, such that
a low-quality version of the image can be displayed early during
a transmission

→ the transmission order of colour components, lines, as well as
DCT coefficients and their bits can be interleaved in many ways

→ the hierarchical mode first transmits a low-resolution image,
followed by a sequence of differential layers that code the dif-
ference to the next higher resolution

Not all of these features are widely used today.

73

JPEG-2000 (JP2)
Processing steps:

→ Preprocessing: If pixel values are unsigned, subtract half of the
maximum value → symmetric value range.

→ Colour transform: In lossy mode, use RGB ↔ YCrCb.
In lossless mode, use RGB ↔ YUV with integer approximation
Y = b(R + 2G+B)/4c.

→ Cut each colour plane of the image into tiles (optional), to be
compressed independently, symmetric extension at edges.

→ Apply discrete wavelength transform to each tile, via recur-
sive application (typically six steps) of a 2-channel uniformly
maximally-decimated filter bank.
In lossy mode, use a 9-tap/7-tap real-valued filter (Daubechies),
in lossless mode, use a 5-tap/3-tap integer-arithmetic filter.

74

→ Quantization of DWT coefficients (lossy mode only), same
quantization step per subband.

→ Each subband is subdivided into rectangles (code blocks). These
are split into bit planes and encoded with an adaptive arithmetic
encoder (probability estimates based on 9 contexts).
For details of this complex multi-pass process, see D. Taubman: High-performance
scalable image compression with EBCOT. IEEE Trans. Image Processing 9(7)1158–
1170, July 2000. (On http://ieeexplore.ieee.org/)

→ The bit streams for the independently encoded code blocks
are then truncated (lossy mode only), to achieve the required
compression rate.

Features:

→ progressive recovery by fidelity or resolution

→ lower compression for specified region-of-interest

→ CrCb subsampling can be handled via DWT quantization

ISO 15444-1, example implementation: http://www.ece.uvic.ca/~mdadams/jasper/

75

JPEG examples (baseline DCT)

1:5 (1.6 bit/pixel) 1:10 (0.8 bit/pixel)

76

JPEG2000 examples (DWT)

1:5 (1.6 bit/pixel) 1:10 (0.8 bit/pixel)

77

JPEG examples (baseline DCT)

1:20 (0.4 bit/pixel) 1:50 (0.16 bit/pixel)

Better image quality at a compression ratio 1:50
can be achieved by applying DCT JPEG to a 50%
scaled down version of the image (and then inter-
polate back to full resolution after decompression):

78

JPEG2000 examples (DWT)

1:20 (0.4 bit/pixel) 1:50 (0.16 bit/pixel)

79

Moving Pictures Experts Group – MPEG
→ MPEG-1: Coding of video and audio optimized for 1.5 Mbit/s

(1× CD-ROM). ISO 11172 (1993).

→ MPEG-2: Adds support for interlaced video scan, optimized
for broadcast TV (2–8 Mbit/s) and HDTV, scalability options.
Used by DVD and DVB. ISO 13818 (1995).

→ MPEG-4: Adds algorithmic or segmented description of audio-
visual objects for very-low bitrate applications. ISO 14496
(2001).

→ System layer multiplexes several audio and video streams, time
stamp synchronization, buffer control.

→ Standard defines decoder semantics.

→ Asymmetric workload: Encoder needs significantly more com-
putational power than decoder (for bit-rate adjustment, motion
estimation, perceptual modeling, etc.)

http://www.chiariglione.org/mpeg/

80

MPEG video coding
→ Uses YCrCb colour transform, 8×8-pixel DCT, quantization,

zigzag scan, run-length and Huffman encoding, similar to JPEG

→ the zigzag scan pattern is adapted to handle interlaced fields

→ Huffman coding with fixed code tables defined in the standard
MPEG has no arithmetic coder option.

→ adaptive quantization

→ SNR and spatially scalable coding (enables separate transmis-
sion of a moderate-quality video signal and an enhancement
signal to reduce noise or improve resolution)

→ Predictive coding with motion compensation based on 16×16
macro blocks.

J. Mitchell, W. Pennebaker, Ch. Fogg, D. LeGall: MPEG video compression standard.
ISBN 0412087715, 1997. (CL library: I.4.20)

B. Haskell et al.: Digital Video: Introduction to MPEG-2. Kluwer Academic, 1997.
(CL library: I.4.27)

John Watkinson: The MPEG Handbook. Focal Press, 2001. (CL library: I.4.31)

81

MPEG motion compensation

current picturebackward
reference picture

forward
reference picture

time

Each MPEG image is split into 16×16-pixel large macroblocks. The predic-

tor forms a linear combination of the content of one or two other blocks of

the same size in a preceding (and following) reference image. The relative

positions of these reference blocks are encoded along with the differences.
82

MPEG reordering of reference images
Display order of frames:

I B B B P B B B P B B B P

time

Coding order:

I B B B B B BP P B P B

time

B

MPEG distinguishes between I-frames that encode an image independent of any others, P-frames
that encode differences to a previous P- or I-frame, and B-frames that interpolate between the
two neighbouring B- and/or I-frames. A frame has to be transmitted before the first B-frame
that makes a forward reference to it. This requires the coding order to differ from the display
order.

83

MPEG system layer: buffer management

encoder
encoder
buffer

decoder
buffer

decoder

time time

fixed−bitrate
channel

bu
ffe

r c
on

te
nt

bu
ffe

r c
on

te
nt

en
co

de
r

de
co

de
r

MPEG can be used both with variable-bitrate (e.g., file, DVD) and fixed-bitrate (e.g., ISDN)
channels. The bitrate of the compressed data stream varies with the complexity of the input
data and the current quantization values. Buffers match the short-term variability of the encoder
bitrate with the channel bitrate. A control loop continuously adjusts the average bitrate via the
quantization values to prevent under- or overflow of the buffer.

The MPEG system layer can interleave many audio and video streams in a single data stream.
Buffers match the bitrate required by the codecs with the bitrate available in the multiplex and
encoders can dynamically redistribute bitrate among different streams.

MPEG encoders implement a 27 MHz clock counter as a timing reference and add its value as a
system clock reference (SCR) several times per second to the data stream. Decoders synchronize
with a phase-locked loop their own 27 MHz clock with the incoming SCRs.

Each compressed frame is annotated with a presentation time stamp (PTS) that determines when
its samples need to be output. Decoding timestamps specify when data needs to be available to
the decoder.

84

MPEG audio coding
Three different algorithms are specified, each increasing the processing
power required in the decoder.
Supported sampling frequencies: 32, 44.1 or 48 kHz.

Layer I

→ Waveforms are split into segments of 384 samples each (8 ms at 48 kHz).

→ Each segment is passed through an orthogonal filter bank that splits the
signal into 32 subbands, each 750 Hz wide (for 48 kHz).
This approximates the critical bands of human hearing.

→ Each subband is then sampled at 1.5 kHz (for 48 kHz).
12 samples per window → again 384 samples for all 32 bands

→ This is followed by scaling, bit allocation and uniform quantization.
Each subband gets a 6-bit scale factor (2 dB resolution, 120 dB range, like floating-
point coding). Layer I uses a fixed bitrate without buffering. A bit allocation step
uses the psychoacoustic model to distribute all available resolution bits across the 32
bands (0–15 bits for each sample). With a sufficient bit rate, the quantization noise
will remain below the sensation limit.

→ Encoded frame contains bit allocation, scale factors and sub-band samples.

85

Layer II
Uses better encoding of scale factors and bit allocation information.
Unless there is significant change, only one out of three scale factors is transmitted. Explicit zero
code leads to odd numbers of quantization levels and wastes one codeword. Layer II combines
several quantized values into a granule that is encoded via a lookup table (e.g., 3× 5 levels: 125
values require 7 instead of 9 bits). Layer II is used in Digital Audio Broadcasting (DAB).

Layer III

→ Modified DCT step decomposes subbands further into 18 or 6 frequencies

→ dynamic switching between MDCT with 36-samples (28 ms, 576 freq.)
and 12-samples (8 ms, 192 freq.)
enables control of pre-echos before sharp percussive sounds (Heisenberg)

→ non-uniform quantization

→ Huffman entropy coding

→ buffer with short-term variable bitrate

→ joint stereo processing

MPEG audio layer III is the widely used “MP3” music compression format.

86

Psychoacoustic models
MPEG audio encoders use a psychoacoustic model to estimate the spectral
and temporal masking that the human ear will apply. The subband quan-
tization levels are selected such that the quantization noise remains below
the masking threshold in each subband.

The masking model is not standardized and each encoder developer can
chose a different one. The steps typically involved are:

→ Fourier transform for spectral analysis

→ Group the resulting frequencies into “critical bands” within which
masking effects will not vary significantly

→ Distinguish tonal and non-tonal (noise-like) components

→ Apply masking function

→ Calculate threshold per subband

→ Calculate signal-to-mask ratio (SMR) for each subband

Masking is not linear and can be estimated accurately only if the actual sound pressure levels
reaching the ear are known. Encoder operators usually cannot know the sound pressure level
selected by the decoder user. Therefore the model must use worst-case SMRs.

87

Exercise 1 Compare the quantization techniques used in the digital tele-
phone network and in audio compact disks. Which factors to you think led
to the choice of different techniques and parameters here?

Exercise 2 Which steps of the JPEG (DCT baseline) algorithm cause a
loss of information? Distinguish between accidental loss due to rounding
errors and information that is removed for a purpose.

Exercise 3 How can you rotate by multiples of ±90◦ or mirror a DCT-
JPEG compressed image without losing any further information. Why might
the resulting JPEG file not have the exact same file length?

Exercise 4 Decompress this G3-fax encoded line:
1101011011110111101100110100000000000001

Exercise 5 You adjust the volume of your 16-bit linearly quantizing sound-
card, such that you can just about hear a 1 kHz sine wave with a peak
amplitude of 200. What peak amplitude do you expect will a 90 Hz sine
wave need to have, to appear equally loud (assuming ideal headphones)?

88

Literature

References used in the preparation of this part of the course in addition
to those quoted previously:

→ D. Salomon: A guide to data compression methods.
ISBN 0387952608, 2002.

→ L. Gulick, G. Gescheider, R. Frisina: Hearing. ISBN 0195043073,
1989.

→ H. Schiffman: Sensation and perception. ISBN 0471082082,
1982.

→ British Standard BS EN 60651: Sound level meters. 1994.

89

Some final thoughts about redundancy . . .

Aoccdrnig to rsceearh at Cmabrigde Uinervtisy, it

deosn’t mttaer in waht oredr the ltteers in a wrod are,

the olny iprmoetnt tihng is taht the frist and lsat

ltteer be at the rghit pclae. The rset can be a total

mses and you can sitll raed it wouthit porbelm. Tihs is

bcuseae the huamn mnid deos not raed ervey lteter by

istlef, but the wrod as a wlohe.

. . . and perception

Count how many Fs there are in this text:

FINISHED FILES ARE THE RE-

SULT OF YEARS OF SCIENTIF-

IC STUDY COMBINED WITH THE

EXPERIENCE OF YEARS

90

