## Next Generation Itanium<sup>™</sup> Processor Overview



Gary Hammond Principal Architect Enterprise Platform Group Intel Corporation

August 27-30, 2001

Sam Naffziger Lead Circuit Architect Microprocessor Technology Lab HP Corporation



Copyright © 2001 Hewlett-Packard Company.

# Agenda

- Program Goals
- Processor Enhancements
- Processor Structures
  - Pipelines
  - Front-End
  - Functional Units
  - Caches
- System Bus
- Reliability Features
- Summary



Copyright © 2001 Hewlett-Packard Company.



#### **Program Goals**





- Builds on Itanium<sup>™</sup> processor's EPIC design philosophy
- 100% Itanium Processor Family binary compatibility
- World class performance
  - high performance for commercial servers
  - high integer and floating-point performance
- Support for mission critical applications
  - Robust error recovery and containment



## Program Goals Architecture Philosophy



- Builds on Itanium<sup>™</sup> processor's EPIC features to achieve higher instruction level parallelism
  - Prefetch/branch/cache hints, speculation, predication, register stacking = same as Itanium processor.
  - Provide performance scaling + binary compatibility with Itanium-based applications/OSes
    - Full hardware score-board design to resolve register hazards between instruction groups

#### Same programming model as Itanium<sup>™</sup> processor No code changes required



#### **Processor Enhancements**

# **McKinley Optimizations**



Improved dynamic properties

- Target production frequency is 1 GHz
- Reduced L1, L2, L3 latencies
- L3 cache has been incorporated on die
- Improved L2 cache capacity
- Improved FSB bandwidth
- Lower branch prediction penalties

#### McKinley provides significant speed ups on existing Itanium<sup>™</sup> processor binaries





# **McKinley Optimizations**

## Reduced execution paths

- More parallelism/resources
  - More integer, multi-media units and memory ports

## - Short latencies

- Fully bypassed functional units
- Very Low L1D/L2/L3 Cache Latencies
- Low latency FP execution
- Many more ways to issue/execute 6 insts/clk

#### McKinley provides performance headroom for re-optimized binaries







Page 7

**Processor Enhancements** 

# **Architectural Changes**



## -Beneficial to compilers

- Improved data/control speculation support
  - ALAT fully associative = minimize thrashing
  - processor directly vectors to recovery code for reduced speculation costs
- 64-bit Long Branch Instruction

## -Beneficial to OS and System designs

- Full 64-bit virtual addressing
- Full 2\*\*24 virtual address spaces
- 4GB virtual pages = reduced TLB pressure
- 50-bit Physical addressing = very large memory/IO spaces

# Changes provide more flexibility to compiler, OS and system designs



# McKinley Microarchitecture



- Full Chip Block Diagram
- Pipelines
- Front-end and Branch prediction
- Functional Units
- Caches
- System Bus



Copyright © 2001 Hewlett-Packard Company.



# Micro-Architecture Comparison

Intel

Forum



#### Processor Pipelines

# **McKinley Pipelines**



| FPU  | FP1 FP2 FP3 FP4 WB          |
|------|-----------------------------|
| Core | IPG ROTEXPRENREGEXE DET WB  |
| L2   | L2N L2I L2A L2M L2D L2C L2W |

| IPG | IP Generate, L1I Cache (6 inst) and TLB access | EXE     | ALU Execute(6), L1D Cache and TLB<br>access + L2 Cache Tag Access(4) |
|-----|------------------------------------------------|---------|----------------------------------------------------------------------|
| ROT | Instruction Rotate and Buffer (6 inst)         | DET     | Exception Detect, Branch Correction                                  |
| EXP | Expand, Port Assignment and Routing            | WB      | Writeback, Integer Register update                                   |
| REN | Integer and FP Register Rename (6 inst)        | FP1-WB  | FP FMAC pipeline (2) + reg write                                     |
| REG | Integer and FP Register File read (6)          | L2N-L2I | L2 Queue Nominate/Issue (4)                                          |
|     |                                                | L2A-W   | L2 Access, Rotate, Correct, Write (4)                                |

#### - Short 8-stage in-order main pipeline

- In-order issue, out-of-order completion
- Reduced branch misprediction penalties
- Fully interlocked, no way-prediction or flush/replay mechanism

## **Pipelines are designed for very low latency**



Copyright © 2001 Hewlett-Packard Company.

Page 12

#### **Processor Pipeline**

# **McKinley Issue Ports**



## **Issue ports**

- 4 Mem/ALU/Multi-Media
- 2 Integer/ALU/Multi-Media
- 2 FMAC
- 3 branch



## –4 memory ports

- Integer: allow 2 load AND 2 store per clk
- FP: 2 FP load pairs AND 2 store per clk to feed 2 FMACs

# Substantial performance headroom for FP and integer kernels



Page 13

#### **Processor Pipeline** 🗝 Intel loper **McKinley Dispersal Matrix** Forum Fall 2001 MII MLI MMI MFI MMF MIB **MBB BBB** MBB MFM MII MLI MMI MFI **MMF** MIB\* **MBB BBB MMB\*** MFB\* Possible McKinley full issue

\* hint in first bundle

Possible Itanium<sup>TM</sup> processor and McKinley full issue

## **McKinley allows more compiler dispersal options**



Copyright © 2001 Hewlett-Packard Company.

Page 14

#### **Processor Pipeline**

# **McKinley Unit Latencies**



|                                    | <b>Consuming Class Instruction</b> |                 |                 |               |
|------------------------------------|------------------------------------|-----------------|-----------------|---------------|
| <b>Producing Class Instruction</b> | Integer                            | Multi-<br>media | Load<br>Address | Store<br>Data |
| Mem/integer ports ALU              | 1                                  | 2               | 1               | 1             |
| Integer only ports ALU             | 1                                  | 2               | 1               | 1             |
| Multimedia                         | 3                                  | 2               | 3               | 3             |
| Integer Loads (L1D hit)            | 1                                  | 2               | 2               | 1             |

## Short latencies and full bypasses, improve performance for re-optimized code



Page 15

# Processor Pipeline Floating Point Latencies



| Operation                           | Latency |
|-------------------------------------|---------|
| FP Load (4)<br>(L2 Cache hit)       | 6       |
| FMAC,FMISC (2)                      | 4       |
| FP -> Int (getf)                    | 5       |
| Int -> FP (setf)                    | 6       |
| Fcmp to branch<br>Fcmp to qual pred | 2<br>2  |

**Short latencies = performance upside for re-optimized FP code** 



Copyright © 2001 Hewlett-Packard Company.

Page 16

**Processor Front-end** 



# **Branch Prediction**

- Zero clock branch prediction
  - -2 level branch prediction hierarchy
    - L1IBR Level 1 Branch Cache
      - Part of the L1 I-cache
      - 1K trigger predictions+0.5K target addresses
    - L2B Level 2 Branch Cache (12K histories)
    - PHT Pattern History Table (16K counters)

## Reduced prediction penalties

- IP-relative branch w/correct prediction -0 cycle
- IP-relative branch w/wrong target -1 cycle
- Return branch w/correct prediction -
- Last branch in counted loop prediction -
- Branch Misprediction
  - 6 cycle

#### Reduced branch penalties speed up existing code



Page 17

"Itanium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States or other countries.

1 cycle

0 cycle

Processor Front-End

# **Instruction Prefetching**



## -Streaming prefetching

## -Initiated by br.many (hint on branch inst)

- CPU prefetches ahead the sequential execution stream
- Streaming prefetch is cancelled by:
  - a predicted-taken branch in the front-end
  - a branch misprediction occurs on the back-end
  - Software cancels the prefetch with a brp instruction

## **–Branch Prefetching Hints**

- Initiated by brp.few, brp.many or mov\_to\_br
  - One time prefetch for the target
  - Two hint prefetches can be initiated per cycle

# Software initiated instruction prefetching improves performance by lower instruction fetch penalties



**McKinley Caches** 



|               | L1I       | L1D       | L2        | L3        |
|---------------|-----------|-----------|-----------|-----------|
| Size          | 16K       | 16K       | 256K      | 3M on die |
| Line Size     | 64B       | 64B       | 128B      | 128B      |
| Ways          | 4         | 4         | 8         | 12        |
| Replacement   | LRU       | NRU       | NRU       | NRU       |
| Latency       | I-Fetch:1 | INT:1     | INT: 5    | 12        |
| (load to use) |           | FP: NA    | FP: 6     |           |
| Write Policy  | -         | WT (RA)   | WB (WA    | WB (WA)   |
|               |           |           | +RA)      |           |
| Bandwidth     | R: 32 GBs | R: 16 GBs | R: 32 GBs | R: 32 GBs |
|               |           | W: 16 GBs | W: 32 GBs | W: 32 GBs |

All caches are physically indexed, pipelined, and non-blocking: score boarded registers allow continued execution until load use



Copyright © 2001 Hewlett-Packard Company.

Page 19



## L1D (1 clock Integer Cache)

## -High Performance 16GBs, 2 ld AND 2 st ports

- Write Through all stores are pushed to the L2
- FP loads force miss, FP stores invalidate
- True dual-ported read access no load conflicts
- pseudo-dual store port write access
  - 2 store coalescing buffers/port hold data until L1D update
- Store to load forwarding

#### **One clock data cache provides a significant performance benefit**



# L2 and L3 Cache



## -L2 256KB, 32GBs, 5 clk

– Data array is pseudo-4 ported - 16 banks of 16KB each

## - Non-blocking/out-of-order

- L2 queue (32 entries) holds all in-flight load/stores
- out-of-order service smoothes over load/store/bank conflicts, fills
- Can issue/retire 4 stores/loads per clock
- Can bypass L2 queue (5,7,9 clk bypass) if
  - no address or bank conflicts in same issue group
  - no prior ops in L2 queue want access to L2 data arrays

## -Large L3 3MB, 32GBs, 12 clk cache on die!!

– Single ported – full cache line transfers

# Large on die L2 and L3 cache provides significant performance potential



opyright © 2001 Hewlett-Packard Company.

Page 21





# 2-level TLB hierarchy DTC/ITC (32/32 entry, fully associative, .5 clk) Small fast translation caches tied to L1D/L1I Key to achieving very fast 1clk L1D, L1I cache accesses DTLB/ITLB (128/128 entry, fully associative, 1 clk) All architected page sizes (4K to 4GB) Supports up to 64/64 ITR/DTRs TLB miss starts hardware page walker

#### Small fast TLBs enable low latency caches



Page 22

#### System Bus



# **System Bus Enhancements**

■ Extension of the Itanium<sup>™</sup> processor bus

- Same protocol with minor extensions
- Increased to 6.4GBs bandwidth
  - frequency 200MHz, 400MHz data, 128-bit data bus
- Bus is non-blocking and out of order
  - Most transactions can be deferred for later service
  - Buffering
    - 18 bus requests/CPU are allowed to be outstanding
    - 16 Read Line + 6 Write Line + two 128 byte WC buffers

# McKinley significantly extends the system bus performance level



## System Bus New Bus Transactions



- L3 cast-outs (Normally silent L3 replacement (E->I, S->I))

- Reduces snoop traffic in Directory based systems
- Backward inquiry for L2, L1 coherency

## - Memory read current

- non-destructive (non-coherent) snoop of CPU lines
- Used in high bandwidth graphic based systems
- Cache Cleanse writes all modified lines to memory
  - M->E, Used in fault tolerant systems invoked via PAL

# McKinley provides several new bus transactions to improve performance/reliability



#### **Reliability Features**

# Error Features



- Error detection on all major arrays
  - Parity coverage on L1D, L1I, and TLBs
  - ECC on L2 and L3
    - double bit detection single bit correction Out of path repair
    - all errors are fully contained
  - Bus is covered with parity/ECC
    - double bit detection single bit correction on transmission
  - Error Isolation (end-to-end error detection)
    - From memory: unique FSB 2xECC syndrome encoding can tolerate additional single bit errors in transmission
    - Error not reported until referenced by a consuming process

## McKinley provides extensive error detection/correction/containment



# Reliability Features Thermal Management



## - Programmable fail-safe thermal trip

## - McKinley will reduce power consumption

- Reduce power consumption to ~60% of peak
- Execution rate dropped to 1 inst per clock
- Correct Machine Check notification posted to OS
- Full speed execution resumes when temperature drops

# - never invoked in properly designed and operating cooling systems

- even on worse case power code

#### McKinley provides a thermal fail-safe mechanism in the event of a cooling failure







- McKinley builds on and extends the Itanium<sup>™</sup> processor family to meet the needs of the most demanding enterprise and technical computing environments
  - Enhanced McKinley features are a result of extensible Itanium<sup>™</sup> architecture
  - McKinley is compatible with Itanium<sup>™</sup> processor software
- Major enhancements include:
  - Increased frequency
  - Enhanced micro-architecture more execution units, issue ports
  - Efficient data handling; higher bandwidth and reduced latencies
- Intel estimates McKinley based systems will deliver ~1.5X 2X performance improvement over today's Itanium<sup>™</sup> based systems

