
Solving problems by search II

We now look at how an agent might achieve its goals using more
sophisticated search techniques.

Aims:

� to introduce the concept of a heuristic in the context of search
problems;

� to introduce some further algorithms for conducting the neces-
sary search for a sequence of actions, which are able to make
use of a heuristic.

Reading: Russell and Norvig, chapter 4.
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Problem solving by informed search

Basic search methods make limited use of any problem-specific knowl-
edge we might have.

� Use of the available knowledge is limited to the formulation of the
problem as a search problem.

� We have already seen the concept of path cost � � � �

� � � � � cost of any path (sequence of actions) in a state space

� We can now introduce an evaluation function. This is a function
that attempts to measure the desirability of each node.

The evaluation function will clearly not be perfect. (If it is, there is no
need to search!)



Best-first search and greedy search

Best-first search simply expands nodes using the ordering given by
the evaluation function.

� We could just use path cost, but this is misguided as path cost is
not in general directed in any sense toward the goal.

� A heuristic function, usually denoted

� 	�
 �
is one that estimates

the cost of the best path from any node 
 to a goal.

� If 
 is a goal then

� 	�
 �  �

.

Using a heuristic function along with best-first search gives us the
greedy search algorithm.



Example: route-finding

A reasonable heuristic function here is

� ��� � � straight line distance from � to the nearest goal

Example:

��
Goal

�� ��� �

� � �� ��� �

� � �� ��� � �

� � �� � � � 

��

Goal

�� ��



Example: route-finding

Greedy search suffers from some problems:

! its time complexity is

" #

branchingdepth $

;

! it is not optimal or complete;

! its space-complexity is

" #

branchingdepth $

.

BUT: greedy search is often very effective, provided we have a good% #�& $

.



'(

search

' (

search combines the good points of:

) greedy search—by making use of

* +�, -

;

) uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path cost . + , -

and also
the heuristic function

* + , -

by forming

/ +�, - 0 . +�, - 1 * +�, -

where

. +�, - 0 cost of path to ,

and * +�, - 0 estimated cost of best path from ,

So:

/ +�, -

is the estimated cost of a path through , .
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search

2 3

search:

4a best-first search using

5 6�7 8

;

4it is both complete and optimal...

4...provided that

9

is an admissible heuristic.

Definition: an admissible heuristic

9 67 8
is one that never overesti-

mates the cost of the best path from 7 to a goal.



Monotonicity

Assume

:

is admissible. Remember that

; <�= > ? @ < = > A : <�= >

so if = B

follows =

@ <�= B > C @ <�= >

and we expect that : <�= B > D : <�= >

although this does not have to be the case. The possibility remains
that

; <�= B >

might be less than

; <�= >

.

E if it is always the case that

; <�= B > C ; <�= >
then

: < = >

is called mono-
tonic;

E : <�= >

is monotonic if and only if it obeys the triangle inequality.

If

: <�= >

is not monotonic we can make a simple alteration and use

; <�= B > ? F GH I ; < = >KJ @ <�= B > A : <�= B >L

This is called the pathmax equation.



The pathmax equation

Why does the pathmax equation make sense?

M
M N

O P M Q�R S
T P M Q R U

O P M N Q�R V

T P M N Q R W
So here

X Y�Z [ \ ]

and

X Y�Z ^ [ \ _

.

The fact that

X Y�Z [ \ ]

tells us the cost of a path through Z is at least]

(because

` Y�Z [

is admissible).

But Z ^

is on a path through Z . So to say that

X Y�Z ^ [ \ _

makes no
sense.
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search is optimal

To see that

a b

search is optimal we reason as follows.

Let Goalopt be an optimal goal state with

c d

Goalopt

e f g dGoalopt

e f c

opt

Let Goal h be a suboptimal goal state with

c d

Goal h e f g dGoal h e f c h i c
opt

We need to demonstrate that the search can never select Goal h.



jk

search is optimal

Let l be a leaf node on an optimal path to Goalopt. So

m

opt

n m o l p

because

q

is admissible and we’re assuming it’s also monotonic.

Now say Goal r is chosen for expansion before l. This means that

m o l p n m r

so we’ve established that

m

opt

n m r s t oGoal r pKu

But this means that Goalopt is not optimal! A contradiction.
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search is complete

v w

search is complete provided:

1. the graph has finite branching factor;

2. there is a finite, positive constant x such that each operator has
cost at least x.

Why is this?



yz

search is complete

The search expands nodes according to increasing

{ |�} ~

. So: the
only way it can fail to find a goal is if there are infinitely many nodes
with

{ |�} ~ � { |

Goal

~

.

There are two ways this can happen:

1. there is a node with an infinite number of descendants;

2. there is a path with an infinite number of nodes but a finite path
cost.



Complexity

� ��

search has a further desirable property: it is optimally efficient.

� This means that no other optimal algorithm that works by con-
structing paths from the root can guarantee to examine fewer
nodes.

� BUT: despite its good properties we’re not done yet!

� ��

search unfortunately still has exponential time complexity in
most cases unless

� ��� �

satisfies a very stringent condition that is
generally unrealistic:

� � ��� � � � � ��� � � � � ���� � � � ��� � �

where

� � � � �

denotes the real cost from � to the goal.

� As

��

search also stores all the nodes it generates, once again it
is generally memory that becomes a problem before time.



IDA

�

- iterative deepening

� �

search

Iterative deepening search used depth-first search with a limit on
depth that gradually increased.

� IDA

�

does the same thing with a limit on

�

cost.

� It is complete and optimal under the same conditions as

� �

.

� It only requires space proportional to the longest path.

� The time taken depends on the number of values

�

can take.

If

�

takes enough values to be problematic we can increase

�

by a
fixed � at each stage, guaranteeing a solution at most � worse than
the optimum.



IDA

�

- iterative deepening

� �

search

Action_sequence ida()
{

float f_limit = f(root);
Node root = root node for problem;

while(true)
{

(sequence,f_limit) = contour(root,f_limit);
if (sequence != empty_sequence)

return sequence;
if (f_limit == infinity)

return empty_sequence;
}

}



IDA

�

- iterative deepening

� �

search

(Action_sequence,float) contour(Node node, float f_limit)
{

float next_f = infinity;
if (f(node) > f_limit)

return (empty_sequence,f(node));
if (goaltest(node))

return (node,f_limit);
for (each successor s of node)
{

(sequence,new_f) = contour(s,f_limit);
if (sequence != empty_sequence)

return (sequence,f_limit);
next_f = minimum(next_f,new_f);

}
return (empty_sequence,next_f);

}
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