
Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine
it from a slightly different perspective.

Aims:

� To introduce the idea of a constraint satisfaction problem (CSP)
as a general means of representing and solving problems by
search.

� To look at the basic backtracking algorithm for solving CSPs.

� To look at some basic heuristics for solving CSPs.

Reading: Russell and Norvig, chapter 5.

Copyright c

�

Sean Holden 2004-2005.



Constraint satisfaction problems

The search scenarios examined so far seem in some ways unsatis-
factory.

� States were represented using an arbitrary and problem-specific
data structure.

� Heuristics, similarly, were problem-specific.



Constraint satisfaction problems

CSPs standardise the manner in which states and goal tests are
represented.

� As a result we can devise general purpose algorithms and heuris-
tics.

� The form of the goal test can tell us about the structure of the
problem.

� Consequently it is possible to introduce techniques for decom-
posing problems.

� We can also try to understand the relationship between the struc-
ture of a problem and the difficulty of solving it.



Constraint satisfaction problems

We have:

� A set of � variables

� � �
� � � � � � �
�
�.

� For each

� �, and domain

� � specifying the values that
� � can take.

� A set of 	 constraints



� �

 � � � � � �


�.

Each constraint


 � involves a set of variables and specifies an allow-
able collection of values.

� A state is an assignment of specific values to some or all of the
variables.

� An assignment is consistent if it violates no constraints.

� An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.



Formulation of CSPs as standard search problems

Clearly a CSP can be formulated as a search problem in the familiar
sense:

� Initial state:

� �

—no variables are assigned.

� Successor function: assigns value(s) to currently unassigned
variable(s) provided constraints are not violated.

� Goal: reached if all variables are assigned.

� Path cost: constant � per step.

In addition:

� The tree is limited to depth � so depth-first search is usable.

� We don’t mind what path is used to get to a solution, so it is
feasible to allow every state to be a complete assignment whether
consistent or not. (Local search is a possibility.)



Varieties of CSP

The simplest possible CSP will be discrete with finite domains and
we will concentrate on these.

1. Discrete CSPs with infinite domains:

� will need a constraint language. For example

�
�

� � � � � �

� Algorithms are available for integer variables and linear con-
straints.

� There is no algorithm for integer variables and nonlinear con-
straints.

2. Continuous domains:

� Using linear constraints defining convex regions we have linear
programming.

� This is solvable in polynomial time in �.



Types of constraint

We will concentrate on binary constraints.

� Unary constraints can be removed by adjusting the domains.

� Higher-order constraints applying to three or more variables can
certainly be considered, but...

� ...when dealing with finite domains they can always be converted
to sets of binary constraints by introducing extra auxiliary vari-
ables.

It is also possible to introduce preference constraints in addition to
absolute constraints.

We may sometimes also introduce an objective function.



Example

We will use the problem of colouring the nodes of a graph as an
example.

1

2

3
4

5
6

7

8

1

2

3
4

5
6

7

8

We have three colours and directly connected nodes should have
different colours.



Example

This translates easily to a CSP formulation:

� The variables are the nodes

� � � node

�

� The domain for each variable contains the values black, white
and green (or grey on the printed handout)

� � � � � �

�
�
� �

� The constraints enforce the idea that directly connected nodes
must have different colours. For example, for

�

and

�

the con-
straints specify

� �
�

� �
�
� �
�
� �
�
� �
�
� �
�
� �
�
� �
�
� �
�
� �
�
� �
�

� �



Backtracking search

Consider what happens if we try to solve a CSP using a simple tech-
nique such as breadth-first search.

The branching factor is � � at the first step, for � variables each with

�

possible values.

Step 2:

� � � � � �

Step 3:

� � � � � �

...
Step �:

�

�
�� �
���

Number of leaves � �
� � � � � � � � � � � � � �

� � � � �

BUT: only

� �

assignments are possible.

The order of assignment doesn’t matter, and we should assign to
one variable at a time.



Backtracking search

The search now looks something like this...

1=B
2=W

1=B
2=G 1=B

2=B

1=B
2=G
3=B

1=B
2=G
3=G

1=B
2=G
3=W

1=B

1=W 1=G

...and new possibilities appear.



Backtracking search

Backtracking search searches depth-first, assigning a single variable
at a time, and backtracking if no valid assignment is available.

1=B
2=W
3=G
4=B
5=W

Nothing is available for 7, so 
either assign 8 or backtrack

6=B

1

2

3
4

5
6

7

8

Rather than using problem-specific heuristics to try to improve search-
ing, we can now explore heuristics applicable to general CSPs.



Backtracking search

result backtrack(problem)
{
return bt ([],problem);

}

result bt(assignment_list problem)
{
if (assignment_list is complete)

return assignment_list;
next_var = get_next_var(assignment_list, problem);
for (every value in order_variables(next_var, assignment_list, problem))
{

if (value is consistent with assignment_list)
{
add "next_var=value" to assignment_list;
solution = bt(assignment_list, problem);
if (solution is not "fail")

return solution;
remove "next_var=value" from assignment_list;

}
}
return "fail";

}



Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain
general CSP-based heuristics:

� In what order should we try to assign variables?

� In what order should we try to assign possible values to a vari-
able?

Or being a little more subtle:

� What effect might the values assigned so far have on later at-
tempted assignments?

� When forced to backtrack, is it possible to avoid the same failure
later on?



Heuristics I: Choosing the order of variable assignments and values

Say we have

� � � and

� � �

1

2

3
4

5
6

7

8

?

At this point there is only one possible assignment for

�

, whereas the
others have more flexibility. Assigning such variables first is called
the minimum remaining values (MRV) heuristic. (Alternatively, the
most constrained variable or fail first heuristic.



Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The degree heuristic chooses the variable involved in the most con-
straints on as yet unassigned variables.

1

2

3
4

5
6

7

8

Start with 3, 5 or 7.

MRV is usually better but the degree heuristic is a good tie breaker.



Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, in what order should values be assigned?

The least constraining value heuristic chooses first the value that
leaves the maximum possible freedom in choosing assignments for
the variable’s neighbours.

1

2

3
4

5
6

7

8

?
The heuristic prefers 1=B

Choosing

� � � is bad as it removes the final possibility for

�

.



Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add

� � �.

1

2

3
4

5
6

7

8

G is ruled out as an assignment to 
2 and 3.

Each time we assign a value to a variable, it makes sense to delete
that value from the collection of possible assignments to its neigh-
bours. This is called forward checking. It works nicely in conjunction
with MRV.



Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

At the fourth step,

�

has no possible assignments left.

However, we could have detected a problem a little earlier...



Heuristics II: forward checking and constraint propagation

...by looking at step three.

� At step three,

�

can be

�

only and

�

can be

�

only.

� But

�

and

�

are connected.

� So we can’t progress, and this hasn’t been detected.

� Ideally we want to do constraint propagation.

Trade-off: time to do the search, against time to explore constraints.



Constraint propagation

Arc consistency:

Consider a constraint as being directed. For example

� � �.

In general, say we have a constraint

� � � and currently the domain
of

�

is

� � and the domain of

�

is

� �.

� � � is consistent if

� � � � � �
� � � � � � such that
� � � is valid



Constraint propagation

Example:

In step three of the table,

�
� � � � �
� �

and

�
� � � � � .

� � � � in step three of the table is consistent.

� � � � in step three of the table is not consistent.

� � � can be made consistent by deleting
�

from

�
�.



Enforcing arc consistency

We can enforce arc consistency each time a variable

�

is assigned.

� We need to maintain a collection of arcs to be checked.

� Each time we alter a domain, we may have to include further arcs
in the collection.

This is because if

� � � is inconsistent, resulting in a deletion from

� �, we may as a consequence make some arc

� � � inconsistent.



Enforcing arc consistency

Why is this?

� � � � inconsistent means removing a value from

� �.

� � � � � � such that there is no valid

� � � � �.

� So delete

� � � �.

However some

� � � � �
� may only previously have been pairable with

�

.

�
�

�
�

�
�

...

�

�

We need to continue until all consequences are taken care of.



Enforcing arc consistency

Complexity:

� A binary CSP with � variables can have

� � � � � directional con-
straints

� � � .

� Any

� � � can be considered at most

�

times where

� � � � � � � � � �

because only

�

things can be removed from
� �.

� Checking any single arc for consistency can be done in

� � � � �

.

So the complexity is

� � � � � � � .

Note: this setup includes 3SAT.

Consequence: we can’t check for consistency in polynomial time.
Which suggests this doesn’t guarantee to find all inconsistencies.



The AC-3 algorithm

new_domains AC-3 (problem)
{

queue to_check = all arcs i->j;
while (to_check is not empty)
{
i->j = next(to_check);
if (remove_inconsistencies(Di,Dj))
{

for (each k that is a neighbour of i)
add k->i to to_check;

}
}

}



The AC-3 algorithm

bool remove_inconsistencies (domain1, domain2)
{

bool result = false;
for (each d in domain1)
{
if (no d’ in domain2 valid with d)
{

remove d from domain1;
result = true;

}
}
return result;

}



A more powerful form of consistency

We can define a stronger notion of consistency as follows:

Given:

� Any

�

�
�

variables and,

� any consistent assignment to these.

Then:

� We can find a consistent assignment to any

�

th variable.

This is known as

�

-consistency.



A more powerful form of consistency

Strong

�

-consistency requires the we be

�

-consistent,

�

�
�

-consistent
etc as far down as

�

-consistent.

If we can demonstrate strong �-consistency (where as usual � is the
number of variables) then an assignment can be found in

� � � � � .

Unfortunately, demonstrating strong �-consistency will be worst-case
exponential.



Backjumping I

The basic backtracking algorithm backtracks to the most recent as-
signment. This is known as chronological backtracking. It is not
always the best policy:

1

2

3
4

5
6

7

8

Say we’ve done

� � �,
� � �,

� � � and

� � � and now we want
to do

�

. This isn’t possible so we backtrack, however re-assigning

�

clearly doesn’t help.



Backjumping I

Backjumping backtracks to the conflict set, which in this case is
� � �

:

conflict

�
�
� � set of currently assigned variables connected to �

This can be done by accumulating the sets conflict
�
�
�

as we make
assignments.



Backjumping I

If forward checking is in operation it can be used to find conflict sets.

Say we’re assigning to �, say � � �:

� Forward checking removes � from the

� � of all � � connected to �.

� Then � needs to be added to conflict

�
� �
�

.

� If the last member of

� � is ever removed then we need to add all
of conflict

�
� �
�

to conflict

�
�
�

.

In fact, use of forward checking turns out to make backjumping re-
dundant.



Backjumping II

In the current example, only two assignments are needed to doom
the process:

1

2

3
4

5
6

7

8

Next we can assign

�
�
�
�
�

and
�

, but then

�

fails.

This can never work because

�

and

�

prevent us from getting an
assignment for

�
�
�
�
�

and

�

.



Backjumping II

In this example

� �
�
�
�
�
�
� �

as a collection are prevented by
�

and

�

from having an assignment.

We can redefine conflict

�
�
�

to be the collection of preceding variables
causing � and any subsequent variables not to have a valid set of
assignments.

Using the new concept for conflict

�
�
�

gives us conflict-directed back-
jumping:

When backtracking from �
�

to �:

conflict

�
�
� � conflict
�
�
� � �

conflict

�
�
� �
� �
�

so that the causes of failure after � are maintained.

34


