Should we build Gnutella on a
structured overlay?

Ant Rowstron

joint work with
Miguel Castro, Manuel Costa
Microsoft Research Cambridge

Structured P2P overlay networks

route(“lookup”, k) ',

route(“insert v”, k) 3
overlay network W|th N nodes

« Structured overlay network maps keys to nodes
* Routes messages to keys; (can implement hash table)

[CAN, Chord, Kademlia, Pastry, Skipnets, Tapestry, Viceroy]

Mapping keys to nodes

 Large id space (128-bit integers)
* Nodelds picked randomly from space
id space - Key is managed by its root node:

* Live node with id closest to the key

e nodeld
m key

Pastry

o~ |1+ |2r |3
20~ |21* |22* |23 203231
200" |201* 202 203 | nodeld
2030* |2031* | 2032* | 2033

* routing table leaf set
 nodelds and keys in some base 2° (e.g., 4)
* prefix constraints on nodelds for each slot

Structured overlays

* Overlay topology
— nodes self organize into structured graph
— node identity constrains set of neighbors

« Data placement
— data identified by a key
— data stored at node responsible for key

* Queries
— efficient key lookups (O(logN))

examples: CAN, Chord, Pastry, Tapestry

Gnutella

route(“lookup”, reg. exp)

route(“insert v”)
overlay network with N nodes

* Nodes form random graph (unstructured overlay)
* Node stores its own published content
 Lookups flooded through network (inefficient)

Gnutella

route(“lookup”, reg. exp)

route(“insert v”)
overlay network with N nodes

* Nodes form random graph (unstructured overlay)
* Node stores its own published content
 Lookup using random walks (needles and haystacks!)

Unstructured overlay

* Overlay topology
— nodes self-organize into random graph

« Data placement
— node stores data it publishes

* Queries
— overlay supports arbitrarily complex queries
— floods or random walks disseminate query
— each node evaluates query locally

example: Gnutella

Can we build Gnutella on a
structured overlay?

« Complex queries are important
— unstructured overlays support them
— structured overlays do support them

* Peers are extremely transient
— unstructured overlays more robust to churn
— structured overlays have higher overhead

[Chawathe et al. SIGCOMM’03]}

Complex queries

 Arbitrarily complex queries

— Unstructured overlay
* Flood

— High overhead due to duplicates
 Random walks
— High lookup latency

— Support arbitrarily complex queries

— Structured overlays
« ?

Complex queries (structured)

» Structured overlay topology
— nodes self organize into structured graph

 Same data placement as unstructured
— node stores data it publishes

 Same queries as unstructured
— overlay supports arbitrarily complex queries
— floods or random walks disseminate queries
— each node evaluates query locally

Flood queries

* Exploit structure to avoid duplicates

Flood queries

Random walk queries 1

Random walk queries 2

Random walk
queries 3

« Exploiting routing tables

* Breadth-first Ox
search ‘
3X
()
‘)
()
‘ —_—
)
@

Story so far....

« Gnutella is built using an unstructured overlay

* Described hybrid approach
— Structured overlay graph
— Unstructured overlay data placement

» Described how to exploit structure in lookup
— Same techniques as in an unstructured overlay
— Implemented more efficiently

Next part: Churn and overhead

Overhead

» Both structured and unstructured
— detect failures
— repair overlay graph when nodes join or leave

Detecting failures

Probe neighbors in overlay

Exploit symmetric state
— Heartbeats versus probes

Number of heartbeats is number of neighbors
Supress heartbeats with application traffic

Exploiting structure for maintenance

» Heartbeat sent to neighbor on the left
* Probe node if no heartbeat
* Tell others about failure if no probe reply

(L

 Leads to lower overhead

Comparing overhead

« Unstructured overlay (Gnutella 0.4)
— Max and min bounds placed on # neighbors
— Node discovery on join using random walks
— Failure detection heartbeat every 30 seconds

« Structured overlay (MS Pastry)
— Leafsets
 Failure detection using heartbeats every 30 seconds

— Routing table

 Failure detection using probes (tuned to churn)

Experimental comparison

* Discrete event simulator
— Transit-stub network topology

« UW trace of node arrivals and departures
— [Saroiu et al. MMCN'02]
— 60 hours trace
— average session = 2.3 hours, median ~ 1 hour
— Active nodes varies between 2,700 and 1,300

Gnutella trace: Failure rate

3.00E-04

2.50E-04

2.00E-04

1.50E-04

1.00E-04

Node failures per second per node

5.00E-05

0.00E+00

| J

mh il ‘1

'W' i

10

20

30

Time (Hours)

40

50

60

Overhead: Configuration

« Gnutella 0.4 (4)
— Min neighbors 4, max neighbors 8 (avg. 5.8)

» Gnutella 0.4 (8)
— Min neighbors 8, max neighbors 32 (avg. 11)

« Pastry
— b=1, no proximity neighbor selection, | = 32

Messages / second / node

Overhead: Maintenance

0.9
0.8
~ Gnutella 0.4 (8)
0.7 — Gnutella 0.4 (4)
06 — Pastry
0.5 | j\
e i
0.3 JJ\ A /\ A A | Jr/\/%ﬂ&/&x
K ; WM ww M /\ k
0.1
0 ‘ | | | ‘
0 10 20 30 9 >

Time(hours)

Gnutella 0.6 (SuperPeers)

e Super peers form random graph
— Uses Gnutella 0.4 algorithm

 Normal nodes use super peers as proxies
— Failure detections using heartbeats (30 secs)
— Connect to multiple super peers

SuperPastry

* Super peers form Pastry overlay

 Normal nodes use super peers as proxies
— Failure detections using heartbeats (30 secs)

Overhead: Configuration

0.2 probability of node being a super peer

Gnutella 0.6 configured:
— Min neighbours = 10
— Max neighbours = 32

SuperPastry configured
— Max in-degree from routing table = 32

Super peers proxy for 30 normal nodes
Normal nodes pick 3 super peers

0.45

0.4

0.35

o
w

0.25

o
N

0.15

Messages / second / node

©
—_—

0.05

Overhead: Maintenance

—— Gnutella 0.6

— SuperPastry

0 10

20

30
Time(hours)

40

50

60

Gia
« Adapts overlay to exploit heterogeneity
— Uses a per-node metric of satisfaction
— Seeks new neighbors if unsatisfied

— Use parameters in Sigcomm Paper
— Neighbors [min = 3, max = max(3,min(128,C/4)) |

* Average 15.8

Capacity | Probability | Neighbors
1 0.20 3
10 0.45 3
100 0.30 25
1000 0.049 125
10000 0.001 128

HeteroPastry

* Routing table neighbor selection using
capacity metric

» Uses routing table in-degree bound
— Calculated as for Gia

Overhead: Maintenance

0.8
— Gia

0.7 — HeteroPastry
o 0.6 A,
e,
g WWWM\WMM M
; 05 IMW\ I I
c
s W

0.4

T

P A

0.1

0 10 20 30 40 50
Time(hours)

The story so far....

* Both structured and unstructured
— detect failures
— repair overlay graph when nodes join or leave

« Structured exploits structure
— Lower overheads

» Unstructured overlays sensitive to neighbors choice
— Random walks between node discovery

Finally: Putting it all together....

Search: Configuration

* eDonkey file trace [Fessant et al. IPTPS’04]
— 37,000 peers (25,172 contribute no files)

— 923,000 unique files (heavy tail zipf-like)

» Each node performs 0.01 lookups per
second (using a Poisson process)
— Random walks TTL 128

* One hop replication [chawathe et al. sSIGCOMM03]

— Uses routing table in structured overlays (***)

Search: Messages

rﬂ:\ﬂ o

— Gia

— Gnutella 0.6
SuperPastry

— HeteroPastry

20

30
Time (hours)

40

50

60

1.2

Success rate
o o o
AN ()] (@)

O
N

Search: Success rate

w*f’""wvh'\'ﬁv K, P .

— HeteroPastry

—Gia
— Gnutella 0.6

SuperPastry

10

20

30
Time(hours)

40

50

60

Delay (ms)

Search: Delay

30000 — Gnutella 0.6
SuperPastry
25000 Gia o
S /“""!‘\\,M . A"‘w““ﬂw — HeteroPastry
20000 - "v W .
15000 'r '
10000 -
5000
0 » » | | |
0 10 20 30 40 50

Time(hours)

60

Conclusions

» Structure can improve Gnutella
— Handles transient peers well
— Exploits structure to reduce maintenance overhead
— Supports complex queries
— Can also support DHT functionality
— Can exploit heterogenity

And finally a question...

Does structure make security easier?

For slides:

http://www.research.microsoft.com/~antr/camb-ast.ppt

For more information:

http://www.research.microsoft.com/~antr/Pastry

Flooding queries

« exploit structure to avoid duplicates
 flooding a query g

— if node is source of g do
for each routing table row r
send <flood, q, r>to nodes in row r

— if node receives <flood, q, s> do
for each routing table row r such thatr> s
send <flood, q, r>to nodes in row r

 recursively partitions nodes into disjoint sets

