
Should we build Gnutella on a
structured overlay?

Ant Rowstron

joint work with

Miguel Castro, Manuel Costa

Microsoft Research Cambridge

Structured P2P overlay networks

• Structured overlay network maps keys to nodes
• Routes messages to keys; (can implement hash table)

overlay network with N nodes

k,v

[CAN, Chord, Kademlia, Pastry, Skipnets, Tapestry, Viceroy]

route(“insert v”, k)

route(“lookup”, k) v

Mapping keys to nodes

• Large id space (128-bit integers)

• NodeIds picked randomly from space

• Key is managed by its root node:

• Live node with id closest to the key

root node
for key

id space

nodeId
key

Pastry

2033*2032*2031*2030*

203*202*201*200*

23*22*21*20*

3*2*1*0*

203231

• routing table
• nodeIds and keys in some base 2b (e.g., 4)
• prefix constraints on nodeIds for each slot

leaf set

nodeId

Structured overlays
• Overlay topology

– nodes self organize into structured graph
– node identity constrains set of neighbors

• Data placement
– data identified by a key
– data stored at node responsible for key

• Queries
– efficient key lookups (O(logN))

examples: CAN, Chord, Pastry, Tapestry

Gnutella

• Nodes form random graph (unstructured overlay)
• Node stores its own published content
• Lookups flooded through network (inefficient)

route(“insert v”)

v

overlay network with N nodes

route(“lookup”, reg. exp)

Gnutella

• Nodes form random graph (unstructured overlay)
• Node stores its own published content
• Lookup using random walks (needles and haystacks!)

route(“insert v”)

v

overlay network with N nodes

route(“lookup”, reg. exp)

Unstructured overlay

• Overlay topology
– nodes self-organize into random graph

• Data placement
– node stores data it publishes

• Queries
– overlay supports arbitrarily complex queries
– floods or random walks disseminate query
– each node evaluates query locally

example: Gnutella

Can we build Gnutella on a
structured overlay?

• Complex queries are important
– unstructured overlays support them

– structured overlays do support them

• Peers are extremely transient
– unstructured overlays more robust to churn

– structured overlays have higher overhead

[Chawathe et al. SIGCOMM’03]

Complex queries

• Arbitrarily complex queries
– Unstructured overlay

• Flood
– High overhead due to duplicates

• Random walks
– High lookup latency

– Support arbitrarily complex queries

– Structured overlays
• ?

Complex queries (structured)

• Structured overlay topology
– nodes self organize into structured graph

• Same data placement as unstructured
– node stores data it publishes

• Same queries as unstructured
– overlay supports arbitrarily complex queries
– floods or random walks disseminate queries
– each node evaluates query locally

Flood queries

0x

1x

2x

3x

• Exploit structure to avoid duplicates

03x

0x

1x

2x

3x

Flood queries 00x

01x

02x

Random walk queries 1

Random walk queries 2

03x

0x

1x

2x

3x

Random walk
queries 3

00x

01x

02x
• Exploiting routing tables

• Breadth-first
search

Story so far….

• Gnutella is built using an unstructured overlay
• Described hybrid approach

– Structured overlay graph
– Unstructured overlay data placement

• Described how to exploit structure in lookup
– Same techniques as in an unstructured overlay
– Implemented more efficiently

Next part: Churn and overhead

Overhead

• Both structured and unstructured
– detect failures

– repair overlay graph when nodes join or leave

Detecting failures

• Probe neighbors in overlay

• Exploit symmetric state
– Heartbeats versus probes

• Number of heartbeats is number of neighbors
• Supress heartbeats with application traffic

Exploiting structure for maintenance

• Heartbeat sent to neighbor on the left
• Probe node if no heartbeat
• Tell others about failure if no probe reply

• Leads to lower overhead

Comparing overhead

• Unstructured overlay (Gnutella 0.4)
– Max and min bounds placed on # neighbors

– Node discovery on join using random walks

– Failure detection heartbeat every 30 seconds

• Structured overlay (MS Pastry)
– Leafsets

• Failure detection using heartbeats every 30 seconds

– Routing table
• Failure detection using probes (tuned to churn)

Experimental comparison

• Discrete event simulator
– Transit-stub network topology

• UW trace of node arrivals and departures
– [Saroiu et al. MMCN’02]

– 60 hours trace

– average session = 2.3 hours, median ~ 1 hour

– Active nodes varies between 2,700 and 1,300

Gnutella trace: Failure rate

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 10 20 30 40 50 60

Time (Hours)

N
od

e
fa

ilu
re

s
pe

r
se

co
nd

 p
er

 n
od

e

Overhead: Configuration

• Gnutella 0.4 (4)
– Min neighbors 4, max neighbors 8 (avg. 5.8)

• Gnutella 0.4 (8)
– Min neighbors 8, max neighbors 32 (avg. 11)

• Pastry
– b=1, no proximity neighbor selection, l = 32

Overhead: Maintenance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60

Time(hours)

M
es

sa
g

es
 /

se
co

n
d

 /
n

o
d

e

Gnutella 0.4 (8)

Gnutella 0.4 (4)

Pastry

Gnutella 0.6 (SuperPeers)

• Super peers form random graph
– Uses Gnutella 0.4 algorithm

• Normal nodes use super peers as proxies
– Failure detections using heartbeats (30 secs)

– Connect to multiple super peers

SuperPastry

• Super peers form Pastry overlay

• Normal nodes use super peers as proxies
– Failure detections using heartbeats (30 secs)

Overhead: Configuration

• 0.2 probability of node being a super peer

• Gnutella 0.6 configured:
– Min neighbours = 10

– Max neighbours = 32

• SuperPastry configured
– Max in-degree from routing table = 32

• Super peers proxy for 30 normal nodes

• Normal nodes pick 3 super peers

Overhead: Maintenance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60

Time(hours)

M
es

sa
g

es
 /

se
co

n
d

 /
n

o
d

e

Gnutella 0.6

SuperPastry

Gia [Chawathe et al. SIGCOMM’03]

• Adapts overlay to exploit heterogeneity
– Uses a per-node metric of satisfaction

– Seeks new neighbors if unsatisfied

– Use parameters in Sigcomm Paper

– Neighbors [min = 3, max = max(3,min(128,C/4))]
• Average 15.8

0.001

0.049

0.30

0.45

0.20

Probability

128

125

25

3

3

NeighborsCapacity

1000

10000

100

10

1

HeteroPastry

• Routing table neighbor selection using
capacity metric

• Uses routing table in-degree bound
– Calculated as for Gia

Overhead: Maintenance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

Time(hours)

M
es

sa
g

es
 /

se
co

n
d

 /
n

o
d

e

Gia

HeteroPastry

The story so far….

• Both structured and unstructured
– detect failures

– repair overlay graph when nodes join or leave

• Structured exploits structure
– Lower overheads

• Unstructured overlays sensitive to neighbors choice
– Random walks between node discovery

Finally: Putting it all together….

Search: Configuration

• eDonkey file trace [Fessant et al. IPTPS’04]
– 37,000 peers (25,172 contribute no files)

– 923,000 unique files (heavy tail zipf-like)

• Each node performs 0.01 lookups per
second (using a Poisson process)
– Random walks TTL 128

• One hop replication [Chawathe et al. SIGCOMM’03]

– Uses routing table in structured overlays (***)

Search: Messages

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60
Time (hours)

M
es

sa
g

es
 /

se
co

n
d

 /
n

o
d

e

Gia
Gnutella 0.6
SuperPastry
HeteroPastry

Search: Success rate

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60
Time(hours)

S
u

cc
es

s
ra

te

HeteroPastry
Gia
Gnutella 0.6
SuperPastry

Search: Delay

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60
Time(hours)

D
el

ay
 (

m
s)

Gnutella 0.6
SuperPastry
Gia
HeteroPastry

Conclusions

• Structure can improve Gnutella
– Handles transient peers well

– Exploits structure to reduce maintenance overhead

– Supports complex queries

– Can also support DHT functionality

– Can exploit heterogenity

And finally a question…

Does structure make security easier?

For slides:

http://www.research.microsoft.com/~antr/camb-ast.ppt

For more information:

http://www.research.microsoft.com/~antr/Pastry

Flooding queries

• exploit structure to avoid duplicates

• flooding a query q
– if node is source of q do

 for each routing table row r

 send <flood, q, r> to nodes in row r

– if node receives <flood, q, s> do

 for each routing table row r such that r > s

 send <flood, q, r> to nodes in row r

• recursively partitions nodes into disjoint sets

