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Structured P2P overlay networks

• Structured overlay network maps keys to nodes
• Routes messages to keys; (can implement hash table)

overlay network with N nodes

k,v

[CAN, Chord, Kademlia, Pastry, Skipnets, Tapestry, Viceroy]

route(“insert v”, k)

route(“lookup”, k) v



Mapping keys to nodes

• Large id space (128-bit integers)

• NodeIds picked randomly from space

• Key is managed by its root node:

• Live node with id closest to the key

root node
for key

id space

nodeId
key



Pastry

2033*2032*2031*2030*

203*202*201*200*

23*22*21*20*

3*2*1*0*

203231

• routing table
• nodeIds and keys in some base 2b (e.g., 4)
• prefix constraints on nodeIds for each slot

leaf set

nodeId



Structured overlays
• Overlay topology

– nodes self organize into structured graph
– node identity constrains set of neighbors

• Data placement
– data identified by a key
– data stored at node responsible for key

• Queries
– efficient key lookups (O(logN))

examples: CAN, Chord, Pastry, Tapestry



Gnutella

• Nodes form random graph (unstructured overlay)
• Node stores its own published content
• Lookups flooded through network (inefficient)

route(“insert v”)

v

overlay network with N nodes

route(“lookup”, reg. exp)



Gnutella

• Nodes form random graph (unstructured overlay)
• Node stores its own published content
• Lookup using random walks (needles and haystacks!)

route(“insert v”)

v

overlay network with N nodes

route(“lookup”, reg. exp)



Unstructured overlay

• Overlay topology
– nodes self-organize into random graph

• Data placement
– node stores data it publishes

• Queries
– overlay supports arbitrarily complex queries
– floods or random walks disseminate query
– each node evaluates query locally

example: Gnutella



Can we build Gnutella on a
structured overlay?

• Complex queries are important
– unstructured overlays support them

– structured overlays do support them

• Peers are extremely transient
– unstructured overlays more robust to churn

– structured overlays have higher overhead

[Chawathe et al. SIGCOMM’03]



Complex queries

• Arbitrarily complex queries
– Unstructured overlay

• Flood
– High overhead due to duplicates

• Random walks
– High lookup latency

– Support arbitrarily complex queries

– Structured overlays
• ?



Complex queries (structured)

• Structured overlay topology
– nodes self organize into structured graph

• Same data placement as unstructured
– node stores data it publishes

• Same queries as unstructured
– overlay supports arbitrarily complex queries
– floods or random walks disseminate queries
– each node evaluates query locally



Flood queries

0x

1x

2x

3x

• Exploit structure to avoid duplicates
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Flood queries 00x

01x

02x



Random walk queries 1



Random walk queries 2



03x

0x

1x

2x

3x

Random walk
queries 3

00x

01x

02x
• Exploiting routing tables

• Breadth-first
search



Story so far….

• Gnutella is built using an unstructured overlay
• Described hybrid approach

– Structured overlay graph
– Unstructured overlay data placement

• Described how to exploit structure in lookup
– Same techniques as in an unstructured overlay
– Implemented more efficiently

Next part: Churn and overhead



Overhead

• Both structured and unstructured
– detect failures

– repair overlay graph when nodes join or leave



Detecting failures

• Probe neighbors in overlay

• Exploit symmetric state
– Heartbeats versus probes

• Number of heartbeats is number of neighbors
• Supress heartbeats with application traffic



Exploiting structure for maintenance

• Heartbeat sent to neighbor on the left
• Probe node if no heartbeat
• Tell others about failure if no probe reply

• Leads to lower overhead



Comparing overhead

• Unstructured overlay (Gnutella 0.4)
– Max and min bounds placed on # neighbors

– Node discovery on join using random walks

– Failure detection heartbeat every 30 seconds

• Structured overlay (MS Pastry)
– Leafsets

• Failure detection using heartbeats every 30 seconds

– Routing table
• Failure detection using probes (tuned to churn)



Experimental comparison

• Discrete event simulator
– Transit-stub network topology

• UW trace of node arrivals and departures
– [Saroiu et al. MMCN’02]

– 60 hours trace

– average session = 2.3 hours, median ~ 1 hour

– Active nodes varies between 2,700 and 1,300



Gnutella trace:  Failure rate
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Overhead: Configuration

• Gnutella 0.4 (4)
– Min neighbors 4, max neighbors 8 (avg. 5.8)

• Gnutella 0.4 (8)
– Min neighbors 8, max neighbors 32 (avg. 11)

• Pastry
– b=1, no proximity neighbor selection, l = 32



Overhead:  Maintenance
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Gnutella 0.6 (SuperPeers)

• Super peers form random graph
– Uses Gnutella 0.4 algorithm

• Normal nodes use super peers as proxies
– Failure detections using heartbeats (30 secs)

– Connect to multiple super peers



SuperPastry

• Super peers form Pastry overlay

• Normal nodes use super peers as proxies
– Failure detections using heartbeats (30 secs)



Overhead: Configuration

• 0.2 probability of node being a super peer

• Gnutella 0.6 configured:
– Min neighbours = 10

– Max neighbours = 32

• SuperPastry configured
– Max in-degree from routing table = 32

• Super peers proxy for 30 normal nodes

• Normal nodes pick 3 super peers



Overhead:  Maintenance
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Gia [Chawathe et al. SIGCOMM’03]

• Adapts overlay to exploit heterogeneity
– Uses a per-node metric of satisfaction

– Seeks new neighbors if unsatisfied

– Use parameters in Sigcomm Paper

– Neighbors [min = 3, max = max(3,min(128,C/4)) ]
• Average 15.8
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HeteroPastry

• Routing table neighbor selection using
capacity metric

• Uses routing table in-degree bound
– Calculated as for Gia



Overhead:  Maintenance
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The story so far….

• Both structured and unstructured
– detect failures

– repair overlay graph when nodes join or leave

• Structured exploits structure
– Lower overheads

• Unstructured overlays sensitive to neighbors choice
– Random walks between node discovery

Finally: Putting it all together….



Search: Configuration

• eDonkey file trace [Fessant et al. IPTPS’04]
– 37,000 peers (25,172 contribute no files)

– 923,000 unique files (heavy tail zipf-like)

• Each node performs 0.01 lookups per
second (using a Poisson process)
– Random walks TTL 128

• One hop replication [Chawathe et al. SIGCOMM’03]

– Uses routing table in structured overlays (***)



Search:  Messages
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Search: Success rate
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Search: Delay
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Conclusions

• Structure can improve Gnutella
– Handles transient peers well

– Exploits structure to reduce maintenance overhead

– Supports complex queries

– Can also support DHT functionality

– Can exploit heterogenity



And finally a question…

Does structure make security easier?

For slides:

http://www.research.microsoft.com/~antr/camb-ast.ppt

For more information:

http://www.research.microsoft.com/~antr/Pastry



Flooding queries

• exploit structure to avoid duplicates

• flooding a query q
– if node is source of q do

      for each routing table row r

    send <flood, q, r> to nodes in row r

– if node receives <flood, q, s> do

      for each routing table row r  such that r > s

    send <flood, q, r> to nodes in row r

• recursively partitions nodes into disjoint sets


