

Advanced Graphics 2004

- Subdivision curves & surfaces
 - Lecture 6: 26th October 2004

Beware: some slides contain multi-layer animations, which do not print well.

©2002,2003 Neil Dodgson

Modelling smooth 3D surfaces

- Where are smooth 3D surfaces used?
 - Computer Aided Design (CAD)
 - First developed for cars & aeroplanes
 - Adopted for other manufactured objects
 - Computer animation
- What mechanisms exist?
 - Bézier patches
 - NURBS surfaces
 - Subdivision surfaces

Desirable features

- Need to handle any surface
- Need guaranteed continuity
 - C1-continuity
 - Smooth surfaces
 - C2-continuity
 - Smoothly reflecting surfaces
 - Required for some aerodynamics
- Need to allow discontinuities
 - Edges, creases and holes
- Needs to be easy to use

History of 3D modelling 1/3

- Some mechanism was needed for modelling 3D surfaces
- Hermite interpolation was generalised to bivariate patches
 - ...but proved too difficult to use in practice
- Bézier patches
 - Developed for car design around 1960
 - Bézier (Renault), de Casteljau (Citreön), de Boor (GM)

History of 3D modelling 2/3

- B-spline theory
 - Developed in the 1960s and '70s, led to:
- NURBS (Non-Uniform Rational B-Splines)
 - More general than Bézier patches
 - Béziers are special cases of NURBS
 - NURBS quickly became the industry standard in CAD
 - ...and remain the industry standard today
 - Adopted by the computer animation industry when it began

History of 3D modelling 3/3

- Subdivision surfaces
 - Theory developed in 1970s and early '80s
 - Picked up by computer animation industry in late 1990s
 - Now replaced NURBS in computer animation
 - Solves one of the big problems of NURBS
 - Still under active research for use in CAD
 - Introduces new problems, not present in NURBS, which make it unsuitable for CAD in its present form

NURBS curve

- A curve is defined parametrically
- Its shape is determined by:
 - control points, P_i
 - \blacksquare and the NURBS basis functions, $N_{i,k}$

$$P(t) = \sum_{i=1}^{n+1} N_{i,k}(t) P_i$$

$$P_1 \bullet P_2$$

$$P_3 \bullet P_6$$

Basic properties of NURBS 1/3

$$P(t) = \sum_{i=1}^{n+1} N_{i,k}(t) P_i$$

■ The basis functions must sum to 1 to produce a valid new point

$$\sum_{i=1}^{n+1} N_{i,k}(t) = 1, t_{\min} \le t \le t_{\max}$$

Basic properties of NURBS 2/3

$$P(t) = \sum_{i=1}^{n+1} N_{i,k}(t) P_i$$

- The basis functions are calculated from a *knot vector*
 - Just a non-decreasing sequence of real numbers
 - e.g. [0,0,0,1,1,1] or [1,2,3,4,5,6] or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]
 - See lecture notes or Rogers & Adams for details

Basic properties of NURBS 3/3

$$P(t) = \sum_{i=1}^{n+1} N_{i,k}(t) P_i$$

- If the basis functions are Cm-continuous at t, then P(t) is guaranteed to be Cmcontinuous at t
 - So continuity depends only on the basis functions, $N_{i,k}$
 - Continuity does *not* depend on the locations of the control points
 - you can sometimes get extra continuity by careful positioning of control points

NURBS surface

A bivariate generalisation of the univariate NURBS curve

Curve
$$P(t) = \sum_{i=1}^{n+1} N_{i,k}(t) P_i$$

Surface
$$P(s,t) = \sum_{i=1}^{m+1} \sum_{j=1}^{n+1} N_{i,k}(s) N_{j,k}(t) P_{i,j}$$

The big constraint...

 NURBS surfaces require a quadrilateral mesh of $(m+1)\times(n+1)$ points

Use of subdivision schemes

- Pixar picked up the ideas and tested them in Geri's Game (1997)
- ...then discarded its NURBS based software in favour of subdivision schemes

- NURBS
 - Toy Story

1995

1998

- A Bug's Life
- Subdivision surfaces
 - 1999 Tov Storv II Monsters Inc. 2001

 - Finding Nemo 2003

The limit curve

- It can be shown that the limit curve of the Chaikin scheme is the uniform quadratic B-spline, which is guaranteed to be C1
- When drawing curves in computer graphics, we draw a set of straight lines, so only need to subdivide until each segment is about a pixel long and we have a good enough approximation to the curve

C2 approximating scheme

- Underlies Catmull-Clark surface subdivision
- Can be described as: "Insert a midpoint and adjust the old control points"

The analysis tools

- Generating function formalism
 - Use the *z*-transform on the kernel, *h*
 - Provides sufficient conditions for continuity
 - Essentially checks that the differences between adjacent points decrease fast enough at each refinement step to produce a smooth curve
- There is also a matrix formalism
 - Analyse stationary points
 - Provides necessary conditions for continuity
- For details see our research papers ☺

Useful subdivision kernels

 $h = \frac{1}{4} [1,3,3,1]$

- C1, approximating, limit curve is quadratic B-spline
- $h = \frac{1}{8} [1,4,6,4,1]$ C2, approximating, limit curve is cubic B-spline

- C1, interpolating, "four-point scheme"
- There is also a C2 interpolating six-point scheme

co-efficients for these

 $\alpha_0 = \frac{1}{4} + \frac{5}{4K}$ $\alpha_i = \frac{1}{4K} (3 + 2\cos\frac{2i\pi}{K})$

The future

- Computers now have enough memory to handle subdivision easily
- Subdivision now standard for computer animation
- NURBS still standard for CAD
- Subdivision will eventually replaced NURBS for CAD if we can sort out the artifact problems

Our work at Cambridge

- Univariate schemes that are not binary
 - Ternary (×3) schemes
 - Sesquiary (×1½) schemes
- Towards a bestiary of bivariate schemes
 - Classification & analysis of all schemes
 - Identification & analysis of new schemes (especially ternary)
- Geometrically-sensitive subdivision
 - Modifying existing schemes to take account of geometric relationships